Linear algebra and matrices II, fall 2009 Samuli Siltanen

1. Show that $w \in \operatorname{span}(\mathcal{B})$, when

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}, \qquad w = \begin{bmatrix} 1\\6\\2 \end{bmatrix}.$$

What are the coordinates of w in the basis \mathcal{B} ?

2. Let

$$\mathcal{B} = \Big\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \Big\}.$$

- (a) Prove that \mathcal{B} is a basis for \mathbb{R}^2 .
- (b) What are the coordinates of the standard basis vector $\vec{e}_1 \in \mathbb{R}^2$ in the basis \mathcal{B} ?
- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map that reflects a given vector with respect to the vertical coordinate axis (see picture).

- (a) What is the matrix of T in standard basis?
- (b) What is the matrix of T in the basis \mathcal{B} of problem 2 above?
- 4. Show that if the columns of a matrix A are linearly independent, then they form a basis for col(A).
- 5. Let A be an invertible 2×2 matrix.
 - (a) Determine $\operatorname{null}(A)$.
 - (b) Determine row(A).
 - (c) Determine $row(A^T)$.
- 6. Square matrices A and B are *similar* if there exists an invertible matrix P satisfying $P^{-1}AP = B$. In that case we denote $A \sim B$. Show that the similarity relation satisfies
 - (a) $A \sim A$,
 - (b) if $A \sim B$ then $B \sim A$,
 - (c) if $A \sim B$ and $B \sim C$ then $A \sim C$.

A relation satisfying (a)-(c) is called an *equivalence relation*.