Linear algebra and matrices II, fall 2009

1. Show that $w \in \operatorname{span}(\mathcal{B})$, when

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right\}, \quad w=\left[\begin{array}{l}
1 \\
6 \\
2
\end{array}\right] .
$$

What are the coordinates of w in the basis \mathcal{B} ?
2. Let

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}
$$

(a) Prove that \mathcal{B} is a basis for \mathbb{R}^{2}.
(b) What are the coordinates of the standard basis vector $\vec{e}_{1} \in \mathbb{R}^{2}$ in the basis \mathcal{B} ?
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map that reflects a given vector with respect to the vertical coordinate axis (see picture).

\xrightarrow{T}

(a) What is the matrix of T in standard basis?
(b) What is the matrix of T in the basis \mathcal{B} of problem 2 above?
4. Show that if the columns of a matrix A are linearly independent, then they form a basis for $\operatorname{col}(A)$.
5. Let A be an invertible 2×2 matrix.
(a) Determine null (A).
(b) Determine row (A).
(c) Determine $\operatorname{row}\left(A^{T}\right)$.
6. Square matrices A and B are similar if there exists an invertible matrix P satisfying $P^{-1} A P=B$. In that case we denote $A \sim B$.
Show that the similarity relation satisfies
(a) $A \sim A$,
(b) if $A \sim B$ then $B \sim A$,
(c) if $A \sim B$ and $B \sim C$ then $A \sim C$.

A relation satisfying (a)-(c) is called an equivalence relaation.

