- 1. Let V be a vector space. Prove: if $U \subset V$ and $W \subset V$ are subspaces, then the intersection $U \cap W$ is also a subspace.
- 2. Construct such subspaces U and W of the vector space \mathbb{R}^2 that the union $U \cup W$ is not a subspace of \mathbb{R}^2 .
- 3. Let

$$A = \left[\begin{array}{rrrrr} 2 & -4 & 0 & 2 & 1 \\ -1 & 2 & 1 & 2 & 3 \\ 1 & -2 & 1 & 4 & 4 \end{array} \right].$$

Construct bases for the spaces row(A), col(A) and null(A).

4. Let

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{array} \right].$$

Construct bases for the spaces row(A), col(A) and null(A).

- 5. Let A be a 4×2 matrix.
 - (a) Explain why the rows of A are necessarily linearly dependent.
 - (b) What are the possible values of nullity(A)?
- 6. Do vectors

		0		1
$\begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}, \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$,	$\begin{array}{c c} 1 \\ 1 \\ 1 \end{array}$,	1 1

form a basis of \mathbb{R}^4 ?