1. Let V be a vector space. Prove: if $U \subset V$ and $W \subset V$ are subspaces, then the intersection $U \cap W$ is also a subspace.
2. Construct such subspaces U and W of the vector space \mathbb{R}^{2} that the union $U \cup W$ is not a subspace of \mathbb{R}^{2}.
3. Let

$$
A=\left[\begin{array}{rrrrr}
2 & -4 & 0 & 2 & 1 \\
-1 & 2 & 1 & 2 & 3 \\
1 & -2 & 1 & 4 & 4
\end{array}\right]
$$

Construct bases for the spaces $\operatorname{row}(A), \operatorname{col}(A)$ and $\operatorname{null}(A)$.
4. Let

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right]
$$

Construct bases for the spaces $\operatorname{row}(A), \operatorname{col}(A)$ and $\operatorname{null}(A)$.
5. Let A be a 4×2 matrix.
(a) Explain why the rows of A are necessarily linearly dependent.
(b) What are the possible values of $\operatorname{nullity}(A)$?
6. Do vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

form a basis of \mathbb{R}^{4} ?

