Linear algebra and matrices I, fall 2009 Samuli Siltanen

1. Use the Gauss-Jordan method to find the inverses of the following matrices. Check your result by multiplication.

(a)
$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
, (b) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

- 2. Let B be a matrix of size 3×3 . Denote by B' the result of applying the elementary row operation $R_3 + 2R_1$ to B. Construct a matrix C satisfying B' = CB. Is C invertible? Why?
- 3. Check the validity of the following identities using block matrix multiplication:

(a)
$$\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}$$
,
(b) $\begin{bmatrix} I & B \\ C & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - BC)^{-1} & -(I - BC)^{-1}B \\ -C(I - BC)^{-1} & I + C(I - BC)^{-1}B \end{bmatrix}$.

(You can assume that all needed inverses exist.)

4. Use the Gauss-Jordan method to find the inverses of the following matrices.

	$\begin{bmatrix} 2 \end{bmatrix}$	3	0			[1]	1	0]
(a)	1	-2	-1	,	(b)	1	0	1	.
	2	0	-1			0	1	1	

- 5. (a) Prove: if A is invertible and AB = 0, then B = 0.
 - (b) Construct 3×3 matrices $A \neq 0$ and $B \neq 0$ satisfying AB = 0.
- 6. Square matrix A is *idempotent* if $A^2 = A$.
 - (a) Find three idempotent 2×2 -matrices.
 - (b) Prove that the only invertible idempotent $n \times n$ matrix is the identity matrix.