1. Use the Gauss-Jordan method to find the inverses of the following matrices. Check your result by multiplication.
(a) $\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$,
(b) $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.
2. Let B be a matrix of size 3×3. Denote by B^{\prime} the result of applying the elementary row operation $R_{3}+2 R_{1}$ to B. Construct a matrix C satisfying $B^{\prime}=C B$. Is C invertible? Why?
3. Check the validity of the following identities using block matrix multiplication:
(a) $\left[\begin{array}{cc}A & B \\ 0 & D\end{array}\right]^{-1}=\left[\begin{array}{cc}A^{-1} & -A^{-1} B D^{-1} \\ 0 & D^{-1}\end{array}\right]$,
(b) $\left[\begin{array}{cc}I & B \\ C & I\end{array}\right]^{-1}=\left[\begin{array}{cc}(I-B C)^{-1} & -(I-B C)^{-1} B \\ -C(I-B C)^{-1} & I+C(I-B C)^{-1} B\end{array}\right]$.
(You can assume that all needed inverses exist.)
4. Use the Gauss-Jordan method to find the inverses of the following matrices.
(a) $\left[\begin{array}{rrr}2 & 3 & 0 \\ 1 & -2 & -1 \\ 2 & 0 & -1\end{array}\right]$,
(b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
5. (a) Prove: if A is invertible and $A B=0$, then $B=0$.
(b) Construct 3×3 matrices $A \neq 0$ and $B \neq 0$ satisfying $A B=0$.
6. Square matrix A is idempotent if $A^{2}=A$.
(a) Find three idempotent 2×2-matrices.
(b) Prove that the only invertible idempotent $n \times n$ matrix is the identity matrix.
