1. Let A be a $m \times n$ matrix and let $\vec{e}_{i} \in \mathbb{R}^{m}$ be the standard basis vector of size $1 \times m$. Show that $\vec{e}_{i} A$ is the i th row of the matrix A.
2. Matrix A is symmetric if $A=A^{T}$. Let B be an arbitrary matrix. Prove that $B B^{T}$ ja $B^{T} B$ are well-defined and symmetric.
3. Construct 6×6 matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ satisfying the following conditions:

$$
a_{i j}=\left\{\begin{array}{cc}
i+j, & \text { jos } i \leq j, \\
0, & \text { jos } i>j .
\end{array} \quad b_{i j}=\left\{\begin{array}{cc}
1, & \text { jos }|i-j| \leq 1, \\
0, & \text { jos }|i-j|>1 .
\end{array}\right.\right.
$$

4. Let $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
(a) Show that $A^{2}=\left[\begin{array}{rr}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$.
(b) Prove by induction that $A^{n}=\left[\begin{array}{rr}\cos n \theta & -\sin n \theta \\ \sin n \theta & \cos n \theta\end{array}\right]$ for $n \geq 1$.

Hint: an induction proof has two parts. In the first part one shows that the claim holds for $n=1$. The second part assumes that the claim holds for $n-1$ and proves that this implies the claim for n.
5. Let A be an invertible matrix.
(a) Show that $(c A)^{-1}=\frac{1}{c} A^{-1}$, when $c \in \mathbb{R}$ and $c \neq 0$.
(b) Show that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
6. There are k chicken and p pigs on a farm. It is known that the total number of feet is 38 and the total number of heads is 16 .
(a) Denote $\vec{x}=\left[\begin{array}{ll}k & p\end{array}\right]^{T}$ and write the problem in the form $A \vec{x}=\vec{b}$ where A is a 2×2 matrix.
(b) Calculate by hand the inverse matrix A^{-1}.
(c) Find the number of chicken and pigs using formula $\vec{x}=A^{-1} \vec{b}$.

