Linear algebra and matrices I, fall 2009 Samuli Siltanen

- 1. Let A be a $m \times n$ matrix and let $\vec{e_i} \in \mathbb{R}^m$ be the standard basis vector of size $1 \times m$. Show that $\vec{e_i}A$ is the *i*th row of the matrix A.
- 2. Matrix A is symmetric if $A = A^T$. Let B be an arbitrary matrix. Prove that BB^T ja B^TB are well-defined and symmetric.
- 3. Construct 6×6 matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ satisfying the following conditions:

$$a_{ij} = \begin{cases} i+j, & \text{jos } i \le j, \\ 0, & \text{jos } i > j. \end{cases} \quad b_{ij} = \begin{cases} 1, & \text{jos } |i-j| \le 1, \\ 0, & \text{jos } |i-j| > 1. \end{cases}$$

4. Let $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

(a) Show that
$$A^2 = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$
.
(b) Prove by induction that $A^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$ for $n \ge 1$.

Hint: an induction proof has two parts. In the first part one shows that the claim holds for n = 1. The second part assumes that the claim holds for n - 1 and proves that this implies the claim for n.

- 5. Let A be an invertible matrix.
 - (a) Show that $(cA)^{-1} = \frac{1}{c}A^{-1}$, when $c \in \mathbb{R}$ and $c \neq 0$.
 - (b) Show that $(A^T)^{-1} = (A^{-1})^T$.
- 6. There are k chicken and p pigs on a farm. It is known that the total number of feet is 38 and the total number of heads is 16.
 - (a) Denote $\vec{x} = \begin{bmatrix} k & p \end{bmatrix}^T$ and write the problem in the form $A\vec{x} = \vec{b}$ where A is a 2 × 2 matrix.
 - (b) Calculate by hand the inverse matrix A^{-1} .
 - (c) Find the number of chicken and pigs using formula $\vec{x} = A^{-1}\vec{b}$.