1. Are the following vectors linearly independent? Why?

$$
\vec{v}_{1}=\left[\begin{array}{r}
2 \\
-1 \\
3
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right] .
$$

2. Are the following vectors linearly independent? Why?

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
3 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right] .
$$

3. Calculate the following matrix products:
(a) $\left[\begin{array}{rrr}-2 & 1 & 3 \\ 2 & -3 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$
(b) $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$
(c) $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$
4. In the photosynthesis reaction of plants carbon dioxide and water is transformed to glycose and oxygen. Find suitable coefficients to the chemical reaction equation

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} .
$$

5. Compute the matrix product $A B$ in two different ways: directly from definition and by utilizing the block strucure.

$$
A=\left[\begin{array}{ll|ll}
2 & 3 & 1 & 0 \\
4 & 5 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{r|rr}
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline 1 & 5 & 4 \\
-2 & 3 & 2
\end{array}\right]
$$

Do you get the same result? (It should be the same.)
6. Show that a system of linear equations with augmented matrix $[A \mid \vec{b}]$ is consistent if and only if vector \vec{b} is a linear combination of the columns of A.

