Linear algebra and matrices I, fall 2009 Samuli Siltanen

1. Are the following vectors linearly independent? Why?

$$\vec{v}_1 = \begin{bmatrix} 2\\-1\\3 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\4\\4 \end{bmatrix}.$$

2. Are the following vectors linearly independent? Why?

$$\vec{v}_1 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\0\\2\\1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\3\\2\\1 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 4\\3\\2\\1 \end{bmatrix}.$$

3. Calculate the following matrix products:

$$(a) \begin{bmatrix} -2 & 1 & 3 \\ 2 & -3 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \quad (b) \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad (c) \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

4. In the photosynthesis reaction of plants carbon dioxide and water is transformed to glycose and oxygen. Find suitable coefficients to the chemical reaction equation

$$CO_2 + H_2O \longrightarrow C_6H_{12}O_6 + O_2.$$

5. Compute the matrix product AB in two different ways: directly from definition and by utilizing the block strucure.

$$A = \begin{bmatrix} 2 & 3 & | & 1 & 0 \\ 4 & 5 & | & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & | & 1 & 0 \\ 0 & 0 & 1 \\ \hline 1 & 5 & 4 \\ -2 & | & 3 & 2 \end{bmatrix}.$$

Do you get the same result? (It should be the same.)

6. Show that a system of linear equations with augmented matrix $[A | \vec{b}]$ is consistent if and only if vector \vec{b} is a linear combination of the columns of A.