Linear algebra ja matrices I, fall 2009

1. Determine the solution sets of the following equations:
(a) $2 x_{1}+3 x_{2}=5$,
(b) $4 x_{1}+3 x_{2}+2 x_{3}=1$.
2. Let $k \neq 0$. Consider the following linear system of equations:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1}, \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} .
\end{aligned}
$$

(a) Show that the row operation $k R_{1}$ leads to an equivalent system.
(b) Show that the row operation $R_{2}+k R_{1}$ leads to an equivalent system.
(Two systems are equivalent if they have the same solution set.)
3. Which of the following matrices are in reduced row echelon form? Why?

$$
\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

4. Transfomr the following matrix to reduced row echelon form using elementary row operations:

$$
\left[\begin{array}{rrr}
-2 & -4 & 7 \\
-3 & -6 & 10 \\
1 & 2 & -3
\end{array}\right]
$$

5. Solve the following system of equations using Gauss-Jordan elimination:

$$
\begin{array}{r}
2 w+3 x-y+4 z=0 \\
3 w+z=1 \\
3 w-4 x+y-z=2
\end{array}
$$

6. Show that matrices A ja B are row equivalent:

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
3 & 1 & -1 \\
3 & 5 & 1 \\
2 & 2 & 0
\end{array}\right]
$$

Present the elementary row operations needed in the proof.

