1. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and $c, d \in \mathbb{R}$. Prove that

$$
\begin{aligned}
& c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v}, \\
& c(d \vec{u})=(c d) \vec{u} \\
& \vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w} \\
& \vec{u} \cdot \vec{u} \geq 0 \\
& \vec{u} \cdot \vec{u}=0 \text { if and only if } \vec{u}=0 .
\end{aligned}
$$

2. Consider the lines in \mathbb{R}^{2} determined by the equations

$$
\begin{array}{ll}
\text { (a) } x_{2}=3 x_{1}-1, & \text { (b) } 3 x_{1}+2 x_{2}=5 .
\end{array}
$$

Write both lines in vector form $\vec{x}=\vec{p}+t \vec{d}$.
3. Consider the plane in \mathbb{R}^{3} that contains the points

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right], \quad\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] .
$$

Write the plane in vector form $\vec{x}=\vec{p}+s \vec{u}+t \vec{v}$.
4. Which of the following equations are linear? Why?
(a) $\sqrt{2} x+\pi^{2} y-\left(\log \pi^{3}\right) z=1$,
(b) $4 y+e^{z}=6$,
(c) $x_{1}+2 x_{2}=4+x_{4}-x_{5}$.
5. Show that each of the elementary row operations can be inverted.
6. In the picture below, thin lines depict pixels and thick lines depict X-rays. The length of the side of the pixel is one. There is an unknown X-ray attenuation coefficient, denoted by $x_{j}, j=1,2, \ldots, 9$, corresponding to each pixel. Each Xray produces a measurement $m_{k}=\ell_{k 1} x_{1}+\ell_{k 2} x_{2}+\ldots+\ell_{k 9} x_{9}$, where $1 \leq k \leq 6$ ja $\ell_{k j}$ ios the length that ray number k travels inside pixel number j. Write the measurement as a set of linear equations concerning the variables $x_{1}, x_{2}, \ldots, x_{9}$. (You can number the pixels and X-rays in any order you like.)

