Linear algebra and matrices I, syksy 2009 Samuli Siltanen

1. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$. Prove that

$$c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v},$$

$$c(d\vec{u}) = (cd)\vec{u},$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w},$$

$$\vec{u} \cdot \vec{u} \ge 0,$$

$$\vec{u} \cdot \vec{u} = 0 \text{ if and only if } \vec{u} = 0.$$

2. Consider the lines in \mathbb{R}^2 determined by the equations

(a)
$$x_2 = 3x_1 - 1$$
, (b) $3x_1 + 2x_2 = 5$

Write both lines in vector form $\vec{x} = \vec{p} + t\vec{d}$.

3. Consider the plane in \mathbb{R}^3 that contains the points

[1]		$\begin{bmatrix} 4 \end{bmatrix}$		[0]	
1	,	0	,	1	
$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$		$\left[\begin{array}{c}4\\0\\2\end{array}\right]$		$\left[\begin{array}{c} 0\\ 1\\ -1 \end{array}\right]$	

Write the plane in vector form $\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$.

4. Which of the following equations are linear? Why?

(a)
$$\sqrt{2}x + \pi^2 y - (\log \pi^3)z = 1$$
, (b) $4y + e^z = 6$, (c) $x_1 + 2x_2 = 4 + x_4 - x_5$.

- 5. Show that each of the elementary row operations can be inverted.
- 6. In the picture below, thin lines depict pixels and thick lines depict X-rays. The length of the side of the pixel is one. There is an unknown X-ray attenuation coefficient, denoted by x_j , $j = 1, 2, \ldots, 9$, corresponding to each pixel. Each X-ray produces a measurement $m_k = \ell_{k1}x_1 + \ell_{k2}x_2 + \ldots + \ell_{k9}x_9$, where $1 \le k \le 6$ ja ℓ_{kj} is the length that ray number k travels inside pixel number j. Write the measurement as a set of linear equations concerning the variables x_1, x_2, \ldots, x_9 . (You can number the pixels and X-rays in any order you like.)

