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Abstract

This thesis investigates different aspects of conformal field theory and string theory and their applications in
statistical properties of systems. First, we study the free fermions in planar Ising model and its scaling limit
at criticality. On the one hand, we examine the relation between the transfer matrix formalism and discrete
holomorphicity. We show that the fermion operators of the Ising model satisfy a complexification of the
defining relations of s-holomorphicity, a strong notion of discrete holomorphicity, and examples of fermion
correlation functions are shown to reproduce s-holomorphic parafermionic observables. On the other hand,
we study the relation between fermionic conformal field theory and Schramm Loewner evolution by focusing
on the interfaces and fermionic correlation functions of the Ising model. We demonstrate an explicit, rigorous
realization of the CFT/SLE correspondence in the case of Ising model. Second, we develop a statistical
framework for bosonic string theory in order to study transport properties of black holes in the context of
membrane paradigm. We find that the shear viscosity of a highly excited bosonic string is equal to that of
black hole horizon up to a numerical factor.
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1 OVERVIEW

The conformal field theory is one of the most successful theories describing facets of nature from low en-
ergies to high energies. It provides illuminating explanations and various applications in wide spectrum of
systems from statistical lattice models to string theory. The powerful techniques of CFT enable us to predict
and calculate definite properties and exact results of different systems. In fact, CFTs are solvable toy models
of more complicated interacting quantum field theories and recently it has been conjectured that some spe-
cific exactly solvable two-dimensional CFTs describe higher dimensional interacting quantum field theories.
For a short and general review on different aspects of CFT consult [FRS10].

However, the rigorous derivations and proofs of CFT results are not available completely but in the case
of 2d CFTs, they have been gradually obtained by the new mathematical techniques from different branches
of mathematics such as analysis, combinatoric and probability. One of the aims of this thesis is to shed light
on these new relations and clarify them through explicit concrete examples. We will employ the 2d CFT in
two different directions, namely two applications of fermionic and bosonic conformal field theories: i) free
fermion of Ising model and its relation to discrete holomorphicity and Schramm Loewner evolution and ii)
transport properties of string theory and black holes in membrane paradigm. The basic underlying theory of
both topics is conformal field theory; i) fermionic conformal field theory in continuum limit of the critical
Ising model and ii) bosonic conformal field theory for bosonic strings. Let us discuss two topics separately.

I) Ising model is one of the simplest models of statistical mechanics which has very interesting critical
behavior and rich mathematical structure. This model of ferromagnetism was introduced in the 1920’s and
solved in the one-dimensional case by Ising. In 1940’s, the thermodynamic limit of the model was shown to
exhibit a phase transition between ferromagnetic and paramagnetic phases when the space dimension is two
or above [McWu73]. The two-dimensional Ising model, on which this thesis also focuses, has particularly
remarkable mathematical properties such as exact solvability: in the thermodynamic limit, the free energy
per unit volume can be calculated explicitly as a function of the parameters of the model.

The exact solvability of the Ising model discovered by Onsager in 1944 is based on infinite dimensional
(conformal) symmetry inherent in the two-dimensions. This is the first example of infinite-dimensional
algebra which has been used in physics. After Onsager discovery, several other methods of exact solutions
were found. Kaufman in 1949, [Kau49], used the free fermions for computation of free energy. Other
methods include the combinatorial ones used by Kac, Ward, Hurst and Green and star-triangle equations and
functional equations used by Baxter [Ba08]. In addition, in the fermionic formalism explicit calculations of
free energy and some important correlation functions can be performed. Such solutions of the Ising model
were mostly based on the transfer matrix formalism.

At the critical point of the phase transition, conformal invariance emerges in the scaling limit of the
model. This allows to compute some correlation functions by only symmetry considerations. The conformal
invariance was observed and studied extensively in the physics literature of conformal field theories since
1980’s, specially after seminal papers by Belavin, Polyakov and Zamolodchikov [BPZ84a] and [BPZ84b].
However, conformal invariance in conformal field theory approach is not clearly stated in mathematical
sense and the procedure to take the scaling limit is non-rigorous. In recent years remarkable progress has
been made in rigorous understanding of the conformal invariance properties.

The recent advances in rigorous understanding of conformal invariance started with making clear prob-
abilistic formulations of the conformal invariance property in simply connected sub-domains of the plane.
Most notably, these formulations lead to the introduction of the random fractal curves known as Schramm-
Loewner evolutions. A successful strategy, put forward especially by Smirnov, was to show first the con-
formal invariance of the scaling limit of a single observable or a correlation function, and then use this
knowledge to obtain conformal invariance of the scaling limit of random curves appearing in the model. The
proof that an observable of the lattice model converges to a conformally invariant scaling limit required a
suitable and strong enough notion of complex analysis on the lattice. For the Ising model, the correct notion
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of discrete holomorphicity is now termed s-holomorphicity, [Smi06], [Smi10b].
In another direction, the relation between SLE curves and observables on the one hand and conformal

field theory on the other hand has been grown, during last years. Bauer and Bernard, [BaBe06], have made
a neat observation that the differential equations of conformal field theory and stochastic differential equa-
tions of SLE are related. Moreover, they constructed an operator formalism approach to study SLE. These
observation and construction led to a correspondence between CFT and SLE. In addition, many realizations
of CFT/SLE correspondence such as relations between SLE and Gaussian free field, [KaMa11], Coulomb
gas formalism, [Gr06], etc. have been investigated.

II) Two-dimensional bosonic CFT or theory of free scalar fields is one of the most studied theories in
physics and it is known as Gaussian free fields in mathematics [KaMa11]. This theory has been applied
extensively from statistical field theory to high energy physics. A field theory living on the 2d world-sheet of
the bosonic strings describing the symmetries and dynamics of open and closed strings is an example of two-
dimensional bosonic CFT. This model of CFT is employed successfully in different areas of particle physics
and cosmology. As one of these examples, we present the long-standing unsolved problems of theoretical
physics namely, the statistical and thermodynamical properties of black holes, which are tackled by string
theory.

The source of these puzzles returns to an observation in early 1970; the laws of black hole dynamics
resemble the laws of thermodynamics. For example, area law of the black hole which is that the area of the
horizon can not decrease during the black hole evolution, is similar to the entropy law of the thermodynamics.
These similarities and relations among the others led physicists to associate the temperature and entropy to
black holes, known as Hawking temperature and Bekenstein-Hawking entropy. Moreover, there is another
subtle puzzle called information paradox. This paradox is inherent in the fact that the black hole radiates as
black-body with Hawking temperature. This radiation contains no information and therefore, the information
in the structure of the in-falling matter is destroyed during the evaporation of the black hole, [To97].

String theory as a theory with rich physical and mathematical structure can provide microscopic sugges-
tions and descriptions to solve these puzzles, [Se95] and [CaMa96]. In fact, the correspondence between
string theory and black holes has been studied extensively during the last twenty five years and some aspects
of this correspondence such as Bekenstein-Hawking entropy formula for black holes have been obtained
by string theory techniques [StVa96]. In order to study the transition and matching between black hole
and strings some formalism has been proposed such as string/black hole correspondence by Horowitz and
Polchinski, [HoPo97] and [HoPo98]. Basically, when the curvature of space-time becomes of the order of
string scale, the entropies of a highly excited string and black hole match.

Another unsolved puzzle of the black hole physics which is one of the subjects of this thesis is the
membrane paradigm. In membrane paradigm, we think of the extended horizon of a black hole as a fictitious
fluid with hydrodynamical, electromechanical and thermal properties. As we explained, the string theory at
some regimes describes the black hole physics and its paradoxes. Our proposal in this thesis extends this
correspondence and tries to explain the black hole membrane paradigm via string theory.

In the following, we will discuss two parts of the thesis, separately.
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PART I:

2 TWO-DIMENSIONAL CONFORMAL FIELD THEORY AND STOCHASTIC LOEWNER
EVOLUTION

In this chapter we review basic backgrounds and standard results of conformal field theory (CFT) in physics
language, [DMS96], [BlPl09]. This review will be useful for proper understanding of two applications in this
part and also the next part. This chapter includes the most fundamentally important and necessary aspects
of conformal field theory in the Euclidean plane R2 or equivalently, the complex plane C. First, we briefly
summarize the definitions of conformal group and algebra. Second, the representation of conformal group,
namely the conformal fields and their correlation functions and differential equations are reviewed. Then
we continue with two basic examples of CFTs, the bosonic and fermionic free fields. In the last part of this
chapter, we will briefly review the standard constructions and results in stochastic Loewner evolution (SLE).
Moreover, we will describe some standard aspects of the relation between CFT and SLE in details.

GLOBAL CFT IN D-DIMENSIONS

From a general point of view, quantum field theories are constructed based on symmetry groups. In fact,
they are invariant under Poincaré transformations or their Euclidean version. Furthermore, one can ask
also for more general symmetry groups and the quantum field theories as the representations of those. A
possible general extension of the Poincare group is the conformal group which is a group of transformations
that preserve angles but not necessarily lengths. The CFTs are theories that behave nicely under conformal
transformations, specially they are scale invariant theories. In other words, the conformal transformations in
D-dimensional space-time are special type of coordinate transformations that preserve the metric gµν(x) up
to a scale change,

gµν(x)→ g′µν(x′) = Ω(x)gµν(x), (1)

where µ, ν = 0, 1, ..., D − 1. Notice that the Ω(x) = 1 case presents the Poincaré group as a subgroup of
conformal group.

As we mentioned, conformal transformations are extension of Poincaré transformations. In addition to
Poincaré transformations, there are dilation or scale transformations and special conformal transformations
which is the conjugation of the translation by an inversion. Therefore, we have a collection of transforma-
tions; i) translations and rotations which preserve angles as well as lengths and ii) scale transformations and
special conformal transformations which preserve the angles only. These transformations can be written in
the following form:

xµ → xµ + aµ, translations,

xµ → ωµνx
ν , rotations,

xµ → λxµ, dilations,

xµ → xµ + aµx2

1 + 2a · x+ a2x2
, special conformal transformations, (2)

where aµ is an arbitrary constant vector, ωµν is an anti-symmetric rotation matrix, λ is a scalar and the dot
product represents contraction with metric, x2 = x · x = gµνx

µxν . Respectively, the generators of these
transformations are Pµ, Jµν , N and Kµ, given by

Pµ = −i∂µ, Jµν = i(xµ∂ν − xν∂µ), N = −ix · ∂, Kµ = −i[x2∂µ − 2xµ(x · ∂)]. (3)

InD−dimensional manifold, the number of these generators isD+ 1
2D(D−1)+1+D = 1

2(D+2)(D+1)
which is the same as number of generators of the group of rotations in D + 2 dimensions. The conformal
transformations form a group which is called conformal group.
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TWO-DIMENSIONAL CFT

The aim of this section is to introduce the powerful method of conformal field theory in two-dimensions.
Conformal symmetries in two-dimensions are of great importance because of their infinite dimensional sym-
metry algebra. Thus, the 2dCFTs are exactly solvable by symmetry consideration. However, the applications
of the two-dimensional conformal field theory are so vast, from statistical physics to string theory. Therefore,
introducing the general framework of the 2d CFT is useful and beneficial in the sense that it can be applied
to many different systems with slightly different formulations and interpretations.

Having said this brief motivation, we will start by physical definitions of conformal field theory in a
descriptive way and then we will focus on the theoretical basis and properties of the 2d CFT and its bosonic
and fermionic realizations. Although the conformal transformations can be considered in any dimensions
but we will consider a special case of D = 2. In the two-dimensional case, it is easier to work with complex
coordinates z, z̄.

2.1 CONFORMAL GROUP AND ALGEBRA

As we mentioned, the conformal group consists of globally invertible conformal transformations, but in
fact, local conformal transformations in two-dimensions are analytic coordinate transformations by locally
invertible holomorphic and anti-holomorphic functions f and f̄ ,

z → f(z), z̄ → f̄(z̄). (4)

The infinitesimal conformal transformations are given by the infinitesimal forms of the functions, f(z) =
z + ε(z), f̄(z̄) = z̄ + ε̄(z̄), in which ε(z) and ε̄(z̄) can be expanded by the Laurent expansions,

ε(z) = −
∑
n

εnz
n+1, ε̄(z̄) = −

∑
n

ε̄nz̄
n+1. (5)

The generators of these infinitesimal conformal transformations are ln = −zn+1 ∂
∂z and l̄n = −z̄n+1 ∂

∂z̄ .
In fact, they are generators of a Lie algebra which is called conformal or Witt algebra. The Witt algebra
is a complex Lie algebra of meromorphic vector fields on a circle. The vector fields are expanded by the
generators ln, l̄n and the generators satisfy the Witt algebra commutators

[ln, lm] = (n−m)ln+m, [l̄n, l̄m] = (n−m)l̄n+m, [ln, l̄m] = 0. (6)

Notice that the number of generators ln is infinite and therefore, the algebra of infinitesimal two-dimensional
Euclidean conformal transformations is infinite dimensional.

The conformal algebra (6) is not well-defined even on the Riemann sphere S2 = C ∪ {∞}, because a
vector field v(z) = −

∑
n anln, has singularities at z → 0 and z → ∞, unless an = 0 for n < −1 and

n > 1. Therefore, globally defined and invertible transformations are those which are generated by l0,±1

and l̄0,±1. The generators l−1, l̄−1 generate translations, i(l0 − l̄0) generates rotations, (l0 + l̄0) generates
dilatations and l1, l̄1 generate special conformal transformations.

In the finite form, these transformations are of the following form,

z → az + b

cz + d
, (7)

where a, b, c, d ∈ C, ad − bc = 1. These transformations form a group which is called Möbius group and
it is isomorphic to restricted conformal group, SL(2,C)/Z2

∼= SO(3, 1). The quotient by Z2 reflects the
invariance of the transformations under replacement of the parameters a, b, c, d by their negatives.
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The Witt algebra can be interpreted as a symmetry algebra of classical conformal theory. However, the
appropriate symmetry algebra of quantum conformal theory is the central extension of the Witt algebra and
it is called Virasoro algebra Virc. The generators of the Virasoro algebra satisfy

[Ln, Lm] = (n−m)Ln+m +
C

12
(n3 − n)δn+m,0, [Ln, C] = 0, (8)

where C is the central charge c times the unit operator. The central charge refers to the quantum breaking of
the classical conformal symmetry or in other word, conformal anomaly.

2.2 CONFORMAL FIELDS AND THEIR PROPERTIES

In a naive sense, conformal field theories are representations of conformal algebra and its corresponding
conformal transformations. In a conformally invariant field theory, the primary field operators φi(zi, z̄i)
with real-valued conformal weights (hi, h̄i) are defined by following transformation rule

φi(zi, z̄i) = (
∂f

∂zi
)hi(

∂f̄

∂z̄i
)h̄iφi(f(zi), f̄(z̄i)), (9)

for all conformal transformations f, f̄ as defined in previous section. The mode expansion of a holomorphic
primary field φi(zi) on the plane can be obtained by Fourier expansion of the field on a cylinder and then
transform it to the plane by using the above relation,

φi(zi) =
∑
n∈Z

φinz
−n−hi
i . (10)

If the conformal transformation is of the special type of restricted conformal group, f ∈ SL(2,C)/Z2, then
the fields, defined by eq. (9), are called quasi-primary fields. The field contents of the conformal field
theory consist of primary and the fields which are called secondary or descendant. In a naive sense, the
secondary fields are obtained by taking the derivatives and products of primary fields. We will see that the
descendant fields are obtained from the primary fields in a rather complicated way. We separate the primary
and quasi-primary fields from rest of the fields because they have rather simple transformation rules.

An important example of the quasi-primary fields is the stress-tensor field. In general, stress tensor
is defined by variation of the action with respect to the metric. In terms of the partition function it can be
written as response of the system to a local change in the geometry, Tµν(x) ∝ (δ lnZ)/(δgµν(x)). Invariance
of the theory under translation, rotation and scale transformations imply that stress tensor is conserved,
∂µT

µν(x) = 0 and it is traceless, Tµµ = 0. These equations in two-dimensional Euclidean space translate to
Tzz̄ = Tz̄z = 0 and ∂z̄Tzz = ∂zTz̄z̄ = 0 and therefore, stress tensor has two non-vanishing components, a
chiral and an anti-chiral fields,

Tzz(z, z̄) = T (z), Tz̄z̄(z, z̄) = T̄ (z̄). (11)

It can be shown that the conformal transformation of the stress tensor is

T (z) = T (f(z))f ′(z)2 +
c

12
S(f(z), z), (12)

where f ′(z) is derivative of f with respect to z and S(f(z), z) = (f
′′′(z)
f ′(z) )− 3

2(f
′′(z)
f ′(z) )2 is called Schwarzian

derivative. The relation between generators of infinitesimal conformal transformations Ln and T (z) is de-
fined by

Ln =

∮
dz

2πi
zn+1T (z). (13)
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Consequently, the Virasoro algebra generators appear as the modes in the formal power expansion of holo-
morphic stress tensor T (z),

T (z) =
∑
n∈Z

Lnz
−n−2. (14)

We have similar relations for L̄n and T̄ . Having defined primary and quasi-primary operator fields, we need
to define products of operator fields.

OPERATOR PRODUCT EXPANSION

The essential idea of operator product expansion is to replace the product of two local operator fields at
different points in space-time z and w, with a series of other local operator fields at either one of the initial
points z or w, times c-number coefficient functions which depend on (z − w). More precisely, the product
of the field operators φi(z, z̄) and φj(w, w̄) which has singularities in the limits z → w and z̄ → w̄ satisfies
the algebra called operator product expansion (OPE),

φi(z, z̄).φj(w, w̄) =
∑
k

cijk(z − w)−hi−hj+hk(z̄ − w̄)−h̄i−h̄j+h̄kφk(z, z̄) + ..., (15)

where the sum is over complete set of operators φk indexed by k, cijk is called structure constant and ...
are non-singular terms in the product, the terms that are not divergent in the limit z → w and z̄ → w̄. For
simplicity, let us consider holomorphic fields and some important OPEs of them such as OPE of the stress
tensor T (z) and a primary field φi(zi), which produces a set of secondary fields as follow

T (z)φi(zi) =
hi

(z − zi)2
φi(zi) +

1

(z − zi)
∂ziφi(zi) + φ

(−2)
i (zi) + (z − zi)φ(−3)

i (zi) + ..., (16)

where the secondary fields φ(−n)
i (zi) are determined by

φ
(−n)
i (zi) = L−n(zi)φi(zi) =

∮
dz

2πi
(z − zi)−n+1T (z)φi(zi), (17)

where zi is inside the integration contour. Equivalently, the OPE (16) can be written as

T (z)φi(zi) =
∑
n≥0

(z − zi)n−2L−n(zi)φi(zi). (18)

Similarly, the OPE between two stress tensors can be calculated and the result is

T (z)T (w) =
c/2

(z − w)4
+

1

(z − w)2
T (w) +

1

(z − w)
∂wT (w) + ..., (19)

where c is the central charge of the CFT. In principle, OPEs generate descendant fields and provide all the
information about the transformations and correlation functions of the primary fields in CFT. The conformal
family of a primary field φi(z) with conformal dimension hi, is defined as an infinite set of descendant fields
which are generated by repeated action of L−n operators and it is denoted by

[φi(z)] = {L−nkL−nk−1
...L−n1φi(z)}, (20)

where nk > nk−1 > ... > n1. We will explain more the action of L−n and concept of conformal family
when we discuss the highest weight representations of CFT.
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CORRELATION FUNCTIONS AND WARD IDENTITY

In this section we concentrate on properties and behaviors of the conformal fields in two-dimensions implied
by the conformal symmetry. In fact, a 2d CFT is determined by its space of states and its full collection of
correlation functions.

We study very briefly the correlation functions of quasi-primary fields and differential equations that
the correlation functions of them satisfy. We provide some physical explanations and justifications but
for detailed derivations of the results see [BlPl09]. In our language, a correlation function is defined as
expectation value of the fields between SL(2, (C))/Z2-invariant vacuum states |0 > on the 2d Euclidean
space or the complex plane.

The one, two and three point correlation functions are determined by the fact that they are invariant under
Möbius transformations SL(2,C)/Z2 in eq. (7), (whose generators, L0, L±1, annihilates the vacuum). The
one-point correlation function vanishes unless hi = h̄i = 0,

< φi(zi, z̄i) >= C, (21)

where C is independent of zi and z̄i. The two-point function vanishes unless hi = hj and h̄i = h̄j and it is
given by

< φi(zi, z̄i)φj(zj , z̄j) >=
Cijδij

(zi − zj)2hi(z̄i − z̄j)2h̄i
, (22)

where Cij is the structure constant. For example, the two-point correlation function of stress tensor can be
obtained by using the OPE (19) and the fact that the one-point function is zero,

< T (z)T (w) >=
c/2

(z − w)4
. (23)

The three point function of three quasi-primary fields φ1, φ2 and φ3 is fixed up to a constant C123 to

< φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3) >=

C123
1

(z1 − z2)h1+h2−h3(z2 − z3)h2+h3−h1(z1 − z3)h1+h3−h2

× 1

(z̄1 − z̄2)h̄1+h̄2−h̄3(z̄2 − z̄3)h̄2+h̄3−h̄1(z̄1 − z̄3)h̄1+h̄3−h̄2
. (24)

Moreover, the four-point and higher-point correlation functions of quasi-primary fields are restricted partially
by Möbius symmetry. The full Virasoro symmetry provides more restrictions on the forms of four and higher
point correlation functions. In fact, the Virasoro symmetry generators Ln with n ≤ −2 do not annihilate the
vacuum and they lead to differential equations for correlation functions called Ward identities.

Now, let us study the differential equations that the correlation functions satisfy. An infinitesimal con-
formal transformation z → z + ε(z) make a change in the metric and its effect on a correlation function
of primary fields is expressed through an integral equation with an insertion of stress tensor which is called
Ward identity: ∮

C
< T (z)

n∏
i=1

φi(zi, z̄i)) > ε(z)dz =

n∑
i=1

(hiε
′(z) + ε(z)(∂/∂zi))

〈
n∏
i=1

φi(zi, z̄i)

〉
, (25)
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where C is a contour encircling all the points zj and ε′(z) is the derivative of ε(z). For an arbitrary ε(z) and
an arbitrary contour integral, the above equation is valid. This leads to the following differential equation:

< T (z)
n∏
i=1

φi(zi, z̄i) >=
n∑
i=1

[
1

z − zi
∂zi +

hi
(z − zi)2

] <
n∏
i=1

φi(zi, z̄i) > . (26)

HIGHEST WEIGHT REPRESENTATIONS

Having introduced the operator spectrum of CFT, the notion of quasi-primary and descendant fields, then
we need to construct their correspondence states in the Hilbert space. Our aim in this section is to study
the representations of the Virasoro algebra and one particular example of that, highest weight representation
of Virasoro algebra. The idea is that the generators of the Virasoro algebra act on the states of the Hilbert
space and either create another states or annihilate them. This is basically analogous to the case of su(2) Lie
algebra of spins in quantum mechanics. For simplicity we consider the holomorphic part of the theory.

First, as we discussed let us define the vacuum |0 > to be SL(2,C) invariant and it is given by an
insertion of the unit operator at the origin of complex plane, z = 0. Moreover, the action of Virasoro
generators on the vacuum is defined such that Ln|0 >= 0 for n ≥ −1 and L−n|0 > for n ≥ 2 creates the
non-trivial states in Hilbert space.

A primary state which is called highest weight state |h > is defined by the action of a primary field
operator φ(z) on the vacuum state as follow:

|h >= lim
z→0

φ(z)|0 >, (27)

where φ(z) is a primary field with conformal dimension h. This is called field/state correspondence. More-
over, from the OPE between stress tensor and the primary field we obtain

[Ln, φ(z)] = (zn+1 d

dz
+ (n+ 1)znh)φ(z), (28)

which leads to
Ln|h >= 0, for n > 0, L0|h >= h|h > . (29)

The action of the central element C on the highest weight state is simply C|h >= c|h >.
An arbitrary descendant state |~n > can be constructed by the action of arbitrary polynomials in {L−ni :

ni ≥ 1} on the highest weight state as follow

|~n >= L−nkL−nk−1
...L−n1 |h >, (30)

where nk > nk−1 > ... > n1. It can be checked that the descendant state |~n > satisfies the following
property:

L0|~n >= (h+
k∑
i=1

ni)|~n > . (31)

The set of the highest weight state and its all descendant states, corresponding to the conformal family
[φ(z)], forms an infinite-dimensional representation, which is completely characterized by its central charge
c and the conformal dimension h, and it is called Verma module, Vc,h. The Hilbert space of states is a
direct sum of a tensor product of holomorphic and anti-holomorphic Verma modules, over all conformal
dimensions of the theory, ⊕

h,h̄

Vc,h ⊗ V̄c,h̄. (32)
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The Vc,h could have zero-norm and even negative-norm states depending on (c, h). In a non-degenerate
unitary CFT these states and their descendants should be removed from the Verma module. The zero-norm
state which is called a null or singular state is a highest weight which is primary state and a descendant state
at the same time. It can be checked that a null state |χ > at level N satisfies the following equations:

Ln|χ >= 0 (for n > 0), L0|χ >= (h+N)|χ >, (33)

which are the properties that we expect from null state as a highest weight state. For example, in a CFT with
the central charge given by c = 2h

2h+1(5− 8h), a null state at level two is of the following form

|χ >= (L−2 − aL2
−1)|h >= 0, (34)

where a = 3
2(2h+1) .

The null states in a Verma module generate their own Verma modules Vχ included in the original Vc,h.
Thus, |χ > and its submodule is orthogonal to the whole Verma module.

A general procedure to determine the null states of the Verma module is through determination of roots
of the determinant of a matrix consisting of inner-products between all the basis states of Verma module.
Entries of this matrix at level N is of the form < h|

∏
i Lki

∏
j L−mj |h >, where

∑
i ki =

∑
jmj = N ,

for ki,mj ≥ 0. The determinant of a matrix M (N)
c,h at level N which is called Kac determinant is given by,

[BlPl09],
detM

(N)
c,h = aN

∏
0<p,q≤N

(h− hp,q(c))P (N−pq), (35)

with

hp,q(m) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
, m = −1

2
± 1

2

√
25− c
1− c

, (36)

where aN is a positive constant and P (N − pq) is a number of partitions of N − pq. From a Verma module
which contains null states, one can construct an irreducible representation of Virasoro algebra by quotient
the null submodules out of the Vc,h.

It is known that for the following values of the c and h, we have unitary representations with c < 1, h ≥
0,

c = 1− 6

m(m+ 1)
, (37)

for m = 3, 4, ....

hp,q(m) =
((m+ 1)p−mq)2 − 1

4m(m+ 1)
, (38)

with 1 ≤ p ≤ m− 1 and 1 ≤ q ≤ m.
The most studied and particular interesting class of conformal field theories is the class of rational

conformal field theories were first studied by Belavin, Polyakov, and Zamolodchikov in 1984, [BPZ84a] and
[BPZ84b]. They are CFTs with the rational conformal weights and central charges that only have finitely
many irreducible representations. The simplest example of such RCFTs are the minimal models which exist
for certain discrete values of c < 1. They can be unitary or non-unitary models, specially those minimal
models with applications in statistical models are not constrained by unitarity. The first example of minimal
model is for m = 3, c = 1/2. This minimal model contains unity, energy and spin conformal operators with
conformal dimensions h = 1, 1/2, 1/16, respectively. This minimal model describes the scaling limit of 2d
Ising model at criticality. We will discuss more about this at the end of this chapter.
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2.3 BOSONIC AND FERMIONIC CFTS

In this short section, we demonstrate two basic examples of conformal field theories which have Lagrangian
descriptions, [Ket95]. These two examples are basically, bosonic and fermionic free massless field theory
on the plane. Most importantly, they play the central roles in our studies toward two applications in this
thesis. We will see that 2d free fermion is the crucial object in studies of Ising model and its scaling limit at
criticality, on the one hand. On the other hand, open bosonic string theory which is an example of 2d free
bosonic field theory, is the subject of our studies towards understanding the black hole membrane paradigm.

FREE BOSONS

As we mentioned, two-dimensional bosonic CFT is the theory of free massless scalars or bosons on the
plane. The central charge of the 2d bosonic conformal field theory can be computed by employing the
Virasoro algebra and it is c = 1. Two important examples of bosonic CFT are Gaussian free fields and
bosonic strings.

In the Lagrangian formulation, we start by the action of the 2d free massless scalar field theory on the
complex plane, defined as

S =
1

4π

∫
d2z∂Φ(z, z̄)∂̄Φ(z, z̄), (39)

where the integration is on the complex plane. The invariance of the action under conformal transformation
(9) requires that the scalar field Φ(z, z̄) has conformal dimensions (h, h̄) = (0, 0). The equation of the
motion which is obtained by variation of the action with respect to the field is

∂∂̄Φ(z, z̄) = 0. (40)

The currents, chiral and anti-chiral fields J(z) and J̄(z̄), are primary fields and they are defined by

J(z) = ∂Φ(z, z̄), J̄(z̄) = ∂̄Φ(z, z̄). (41)

The J(z) and J̄(z̄) have conformal dimensions (h, h̄) = (1, 0) and (h, h̄) = (0, 1).
The holomorphic and anti-holomorphic components of the stress tensor are non-zero and they are ob-

tained form the action as follow:

T (z) = −1

2
: ∂Φ∂Φ : (z), T̄ (z̄) = −1

2
: ∂̄Φ∂̄Φ : (z̄), (42)

where :: is the normal order product. In general, normal ordering of any composition of operators in quantum
field theory is the rearrangement of the expression such that the annihilation operators are put on the right of
the creation operators. In our case, it is a product with subtraction of the divergent parts and can be calculated
by means of Wick’s formula as : ∂Φ∂Φ : (z) = limz→w(∂zΦ(z)∂wΦ(w)− ∂z∂w < Φ(z)Φ(w) >).

The two-point correlation function or propagator of field Φ is the Green functionG(z, z̄, w, w̄), a solution
of the 2d Laplace equation ∂z∂z̄G(z, z̄, w, w̄) = −2πδ(2)(z − w),

G(z, z̄, w, w̄) =< Φ(z, z̄)Φ(w, w̄) >= − log |z − w|2, (43)

and consequently correlation functions of currents J, J̄ can be obtained as

< J(z)J(w) >= − 1

(z − w)2
, < J̄(z̄)J̄(w̄) >= − 1

(z̄ − w̄)2
, < J(z)J̄(w̄) >= 0. (44)
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Another interesting class of primary operators are the normal ordered exponentials of free bosons which are
called vertex operators; Vα(z, z̄) =: eiαΦ(z,z̄) : with the conformal dimension (h, h̄) = (α

2

2 ,
α2

2 ). The OPEs
of vertex operators can be derived as

T (z)Vα(w, w̄) =
α2/2

(z − w)2
Vα(w, w̄) +

1

z − w
∂wVα(w, w̄) + ...,

Vα(z, z̄)Vβ(w, w̄) = |z − w|2αβVα+β(w, w̄) + ....

FREE FERMIONS

In this part, two-dimensional free massless fermionic field theory on the complex plane as an example of
CFT with central charge c = 1

2 is introduced very briefly in a general setting and its relation to the scaling
limit of the 2d Ising model at critical point will be discussed at the end of this part. In fact, we conjecture
that the free fermionic fields appear in the scaling limit of the lattice fermions of the Ising model that will be
defined in the next chapter. Moreover, formal aspects of the free fermion CFT in bounded domains is briefly
summarized in the section (4.2).

Theory of free massless real fermions is defined by its action

S =
1

4π

∫
d2z

(
ψ̄(z̄)∂ψ̄(z̄) + ψ(z)∂̄ψ(z)

)
, (45)

where ψ is a chiral anticommuting Majorana-Weyl fermion and ψ̄ is its complex conjugate, [Ket95]. The
classical equations of motion are obtained by variation of the action with respects to the fields and they are

∂ψ̄(z̄) = 0,

∂̄ψ(z) = 0. (46)

The above equations imply that fermions and anti-fermions are holomorphic and anti-holomorphic functions,
respectively. Invariance of the action under conformal transformation (9) requires that the ψ and ψ̄ are
primary fields with conformal dimensions (h, h̄) = (1

2 , 0) and (h, h̄) = (0, 1
2), respectively. The energy

momentum tensor of the fermions is obtained from the action as follow

T (z) = −1

2
: ψ(z)∂ψ(z) :, T̄ (z̄) = −1

2
: ψ̄(z̄)∂̄ψ̄(z̄) : . (47)

The correlation functions of fermions are obtained by means of OPE of fermions as follow:

< ψ(z)ψ(w) >=
1

z − w
, < ψ̄(z̄)ψ̄(w̄) >=

1

z̄ − w̄
< ψ(z)ψ̄(w̄) >= 0. (48)

All the properties of bosonic and fermionic field theories, such as their Laurent expansion, their OPEs
and Ward identities for correlation functions can be obtained simply from the general formulas given in pre-
vious sections by putting the appropriate central charges and conformal dimensions of the primary fields.
Moreover, the canonical quantization of CFT which is called radial quantization can be performed in cylin-
drical coordinates. It is a standard technique which can be found in any CFT textbook, for example see
section (I.2) in [Ket95].

Roughly speaking, the scaling limit of the lattice fermion operators of the Ising model at critical tem-
perature which will be defined in the next chapter gives the free fermion CFT. In bounded domains, this
conjecture is verified at the level of correlation functions and differential equations, sections (2.3) and (3.3)-
(3.5) in [Za13]. Moreover, as we discussed very briefly, the c = 1/2 minimal model explains the 2d Ising
model at the critical temperature. In fact, the operator content of this model consists of identity, spin and
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energy operators. The spin operator σ is the continuum limit of the lattice spin operator σ̂j and the energy
operator ε is the continuum limit of the lattice interaction energy in the Ising model, see "the square lattice
Ising model in rectangle" section. In the following, we briefly discuss the relation between the free fermionic
sector of the Fock space fields (free fermion CFT) and the primary operators in the setting of the c = 1/2
minimal model. In fact, the equivalency between these two theories is at the heart of the exact solutions in
2d Ising model.

The energy density operator, ε(z, z̄) ≡ ϕ( 1
2

)(z, z̄) with conformal dimension 1/2 can be written in
terms of the fermion and anti-fermion of the free fermionic CFT as the composite of two fermionic fields
ε(z, z̄) = i : ψ(z)ψ̄(z̄) :. The correlation functions of energy densities can be easily obtained from the
multi-point fermionic correlation functions obtained from the Wick’s formula, for example see section (2.3)
in [Za13] for the Pfaffian form of the multi-point fermionic correlation function. Two-point correlation
function of energy densities can be obtained from the fermionic correlation functions as

< ϕ( 1
2

)(z, z̄)ϕ( 1
2

)(w, w̄) >=
1

|z − w|2
.

The relation between spin operator σ(z, z̄) ≡ ϕ( 1
16

)(z, z̄) with the conformal dimension 1/16 and the
fermion fields is more subtle than the energy case. In fact, one can not get the spin operator from the fermion
field in a local way. However, the OPE of the fermion field and the spin operator can be obtained as (see
sections (12.2.2) and (12.3.3) [DMS96])

ψ(z)σ(w, w̄) ∼ 1

(z − w)
1
2

µ(w, w̄), ψ̄(z̄)µ(w, w̄) ∼ 1

(z̄ − w̄)
1
2

σ(w, w̄),

where µ(w, w̄) which is called disorder operator is the dual operator to the spin operator with the same
conformal dimension and OPE except for the sign;

σ(z, z̄)σ(w, w̄) =
1

|z − w|1/4
+Cσσε|z−w|

3
4 ε(w, w̄)+..., µ(z, z̄)µ(w, w̄) =

1

|z − w|1/4
+Cµµε|z−w|

3
4 ε(w, w̄)+...,

with Cµµε = −Cσσε. Similarly, the two-point correlation function of spin operators can be obtained as
follow

< ϕ( 1
16

)(z, z̄)ϕ( 1
16

)(w, w̄) >=
1

|z − w|1/4
.

The above two-point correlation functions of energy and spin operators coincide with the continuum limit of
the correlation functions of lattice energy and spin operators of the Ising model at the critical temperature,
see section (7.4.2) in [DMS96];

< σ̂iσ̂i+n >=
1

n
1
4

, < εiεi+n >=
1

n2
.

Having discussed the basics of CFT, in the following we describe the elements of stochastic Loewner evolu-
tion and its relation to CFT.
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2.4 STOCHASTIC LOEWNER EVOLUTION

Stochastic (Schramm) Loewner evolution (SLE) was introduced by O. Schramm in 1999, [Sch00], as a way
to describe the boundary of percolation clusters and the limit of loop-erased random walk. Roughly speaking,
SLE is a family of random non-self-crossing curves in a domain that appear in most 2d statistical systems at
criticality whose continuum limit respects the conformal invariance. In a physical sense, SLE is an approach
towards the description of random curves that appear in the scaling limit of the 2d statistical lattice models
at critical point. These are curves which appear as the domain walls or interfaces of domains in the scaling
limit of the critical two-dimensional statistical systems such as Ising model, percolation etc. It is known for
a long time that the scaling limit of these models at criticality exhibits conformal symmetry, therefore we
expect that boundaries of domains are conformally invariant curves. Thus, SLE are defined to be conformally
invariant curves. The precise meaning of the conformal invariance of the SLE curves will be discussed later
in this section. Another property of the SLE curves, that is also motivated by the interfaces in statistical
mechanics models, is the domain Markov property which will be defined carefully in the following. But
before studying SLE in details we need to introduce some backgrounds: the theory of conformal mapping
and stochastic processes, [KaNi04] and [BaBe06].

CONFORMAL MAPPING THEORY

A conformal map f : D → D′ for simply connected domains D,D′ 6= C is a one-to-one map which
preserves angles. The heart of the conformal mappings is the Riemann mapping theorem. Let D ⊂ C be a
simply connected domain such that C \D is not empty, then there is a conformal map from D onto the open
unit disk D, f : D → D. Examples include any bounded domains or domains with well-defined boundary
points at infinity such as infinite strip S = {z|0 < =z < π} and upper-half plane H = {z|=z > 0}.

In general, the theorem implies that there is a holomorphic conformal mapping f : D → D′ between
any two domains D,D′. Thus, any two simply connected domains are conformally equivalent by Riemann
mapping theorem. As the result of above theorem and the fact that a map f : D → H is defined by
f(z) = i(1+z)

1−z , any simply connected domain can be mapped conformally onto upper half-plane H.

STOCHASTIC PROCESSES

In this part we give a very short summary of some important definitions such as stochastic process, martin-
gales, Brownian motion and stochastic calculus.

A stochastic process is a collection of random objects (Xt)t≥0 indexed by t. In the continuous stochastic
processes the index t is interpreted as the continuous time, t ∈ [0,∞). Let us recall that the filtration
(Ft)t≥0 is a collection of sub-sigma algebras satisfying Fs ⊆ Ft for s ≤ t. Sigma algebra Fs represents
the information available at time s. A filtration (Fs)s≥0 is all the information generated by the stochastic
process Xt up to time s.

A stochastic process (Mt)t≥0 is called a martingale with respect to filtration (Ft)t≥0, if it satisfies

E[|Mt|] <∞, E[Mt|Fs] = Ms, (49)

for all 0 ≤ s ≤ t and t ≥ 0. It means that the average value of the process at future, given the information at
the present, is equal to the present value of the process.

The Brownian motion plays a key role in the studies about SLE. The standard one-dimensional Brownian
motion (Bt)t≥0 is a continuous stochastic process in time, with B0 = 0 and stationary independent incre-
ments Bt−Bs for t > s ≥ 0. The increment has a Gaussian distribution with mean zero and variance t− s.
The transition probability density for the Brownian motion going from the position x at time s to position y
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at time t is

P (y − x, t− s) =
1√

2π(t− s)
e
− (y−x)2

2(t−s) . (50)

Equivalently, the Brownian motion could also be defined as a continuous Gaussian process with

E[Bt] = 0, E[BtBs] = min{t, s}. (51)

STOCHASTIC DIFFERENTIAL EQUATIONS

Let us review a brief intuitive explanation for stochastic calculus which will be used in this section, for
a proper treatment of stochastic calculus see [Oks02]. In the stochastic calculus, the differential of time
parameter dt should be interpreted as (∆t)i = ti − ti−1 where 0 = t0 < t1 < t2 < ... is a discretization of
time. Similarly, differentials of Brownian motion dBt should be interpreted as (∆B)i = Bti − Bti−1 . The
expressions involving dt or dBt are always to be integrated. The integrals over dt or dBt are taken over time
intervals that are much longer than the mesh size of time discretization, (∆t)i.

Consider a stochastic process (Xt)t≥0, whose infinitesimal increments have the form

dXt = a(Xt, t)dt+ b(Xt, t)dBt. (52)

This is called an stochastic differential equation with the proper mathematical meaning as follow

Xs = X0 +

∫ s

0
a(Xt, t)dt+

∫ s

0
b(Xt, t)dBt,

where the integral to be understood as limits of discretizations. Roughly speaking, for any continuously
higher-differentiable function f , by using Taylor expansion up to order dt and the fact (dBt)

2 = dt (intu-
itively speaking, the size of dBt is of order

√
dt because dBt is a centered Gaussian of variance dt indepen-

dent of B|[0,t]), it can be shown that the stochastic process f(Xt, t) satisfies Itô formula:

df(Xt, t) = [a(Xt, t)f
′(Xt, t) + ḟ(Xt, t) +

1

2
b(Xt, t)

2f ′′(Xt, t)]dt

+b(Xt, t)f
′(Xt, t)dBt, (53)

where f ′(Xt, t) and f ′′(Xt, t) are first and second order derivatives of f(Xt, t) with respect to X and
ḟ(Xt, t) is the derivative of f(Xt, t) with respect to t. The above formula can be easily generalized to a
multi-dimensional case.

It can be shown that, if the first term in the Itô formula which is called the drift term vanishes, then
f(Xt, t) is a local martingale.

SLE CURVES

Generally speaking, SLE is a stochastic conformally invariant process in fictitious time, that generates a
conformally invariant family of non-self-crossing random curves, [La05]. The SLE curves are defined by so-
lutions of a differential equation, called Loewner equation with random input. The meaning of this sentence
will become clear as we proceed.

Let us consider a simply connected domain D with arbitrary number of marked boundary points and
also arbitrary number of marked interior points. Then, different SLE curves are defined depending on the
starting and ending of the curve on these boundary and interior points. There are two major different types
of SLE curves: i) chordal SLE with two boundary points in a domain; the chordal SLE curve starts at a
boundary point and ends at another boundary point, ii) radial SLE with a boundary and an interior points in
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a domain; the radial SLE curve starts at a boundary point and end at an interior point. Moreover, there are
also some other variants of the SLE, such as multiple SLE with many boundary points etc. In the following
presentation of the SLE, its properties and relations to CFT, we restrict ourselves to the simplest fundamental
case of chordal SLE i.e. SLEs defined for simply connected domains and depend on two marked points on
the boundary of the domain, denoted by x0 and x∞.

In order to define the SLE curves, which are in fact nothing but the probability measures on random
curves, we start by writing down two assumptions that are motivated from the scaling limit of statistical
lattice models at criticality. Moreover, we have to assume first that the curves exist and they are given by the
Loewner chain, a collection of conformal maps that will be defined in the following. Consider the simplest
case, chordal SLE, with probability measures {µD(x0, x∞)}, indexed by simply connected domain D and
distinct boundary points x0, x∞ ∈ ∂D. Then we assume that these measures have two properties: Conformal
invariance and domain Markov property.
• Conformal Invariance: let us define a conformal map: f : D → D′. It maps all the points in the

domain D to some other points in domain D′. It also maps the boundary points to f(x0) and f(x∞). As we
mentioned, the SLE is defined to be a stochastic conformally invariant process. It means that the probability
measure associated to (D;x0, x∞) which we denote it by µD(x0, x∞), and the probability measure associ-
ated to (f(D); f(x0), f(x∞)), µ̃f(D)(f(x0), f(x∞)), are related via a push-forward relation; µ̃ = f ∗ µ. In
other words, if a random curve γ in D that connect two boundary points a, b ∈ ∂D has the law µD(a, b),
then its image f ◦ γ has the law µf(D)(f(a), f(b)). Therefore, it is sufficient to define the SLE in a simply
connected reference domain like upper half-plane H and then the definition of the SLE in any other simply
connected domain is given by the conformal mapping. In our case, the case of chordal SLE, it is sufficient
to consider the SLE in (H, 0,∞).
• Domain Markov property: for any given initial segment γ[0, s] of the chordal SLE curve in domain

(D;x0, x∞), the conditional distribution (law) of the remaining part of the curve, µD(x0, x∞)|γ[0,s], is the
same as the original distribution on the remaining domain, µD\γ[0,s](γ(s), x∞), i.e. the law of chordal SLE
in (D \ γ[0, s]; γ(s), x∞).

The SLE curves can be studied from a complex analysis point of view. In order to describe the SLE
curves, we consider the complementary of the curves and the conformal mapping uniformizing them.

In general, simple curves γ(t) : [0,∞] → C growing in the upper half plane H can be described by the
behavior of their shrinking complementary Ht := H \ γ[0, t]. Therefore, we use the Loewner equation that
describes the evolution of the conformal uniformizing mappings, gt : Ht → H, from the complement of the
curves, Ht := H\γ[0, t], to H. There is a unique map gt such that satisfies the hydrodynamic normalization,
limz→∞(gt(z)− z) = 0. Then the expansion of gt at infinity with a choice of time parametrization is given
by

gt(z) = z +
2t

z
+O(1/z2). (54)

Loewner has proved that the maps gt satisfy a differential equation

∂gt(z)

∂t
=

2

gt(z)−Xt
, g0(z) = z, (55)

where X : [0,∞)→ R is a continuous function with X0 = 0. The function Xt is in fact the image of the tip
of curve under the map gt, Xt = gt(γ(t)). This differential equation is called the Loewner equation.

Following the above construction, the chordal SLEκ, indexed by a parameter κ > 0, can be described
in (D,x0, x∞). Schramm observed that the above two assumptions on probability measures translate into
assumptions on the driving function in the Loewner equation; Xt =

√
κBt where Bt is a one-dimensional

standard Brownian motion. The proof of the fact that the only driving force for the random curves that
are satisfying the conformal invariance, Markov property and the reflection symmetry (in the case of half-
plane) is the one-dimensional Brownian motion can be performed. A simple physical argument is based on
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the conformal invariance and Markov properties which lead to the following statement: all the increments
∆n = X(n+1)δt − Xnδt of the process Xt are independent identically distributed random variables for
δt > 0. The only process that satisfies this is Brownian motion with a possible drift term, which the
reflection symmetry set the drift term to zero. For further details see theorem (3.1) in [Car05].

The above two assumptions (conformal invariance and domain Markov property) lead to the Schramm
principle. The Schramm principle classifies all possible conformal invariant random curves which can be
described by Loewner evolution and satisfy domain Markov property. In the case of chordal SLE, it states
that the chordal SLE curves are the only non-self crossing curve processes in (D,x0, x∞) whose measure
are conformally invariant and satisfy domain Markov property and they are characterized uniquely by one
parameter, κ ≥ 0. In other words, there can be no other conformally invariant chordal random curves
with domain Markov property except the ones whose half plane Loewner chain (gt) has driving process
(
√
κBt)t≥0 for some κ ≥ 0.
One can argue in the opposite direction and use the Schramm observation to define the chordal SLE.

Therefore, the chordal SLEκ in (H, 0,∞) can be defined as a collection of conformal maps gt of the form
(54) obtained by solving the Loewner equation (55) for all z ∈ H with random driving force, Xt =

√
κBt,

∂gt(z)

∂t
=

2

gt(z)−
√
κBt

, g0(z) = z. (56)

Then, it has been proved in [RoSc05] that chordal SLEκ is generated by a curve and also one can prove
that the chordal SLE curve that is defined in this way has the above two properties: conformal invariance
and domain Markov property. Therefore, chordal SLEκ is a conformally invariant law on random curves
in D from x0 to x∞ and in the half plane it is obtained by solving the Loewner equation driven by the
one-dimensional standard Brownian motion Bt.

A curve γ(t) is called chordal SLEκ trace in (H, 0,∞) and its defined by γ(t) = limε→0 g
−1
t (Xt + iε).

The SLE trace continuously depends on time, t ≥ 0, and limt→∞ γ(t) =∞. The existence of the limit and
its continuous dependence on t ≥ 0 is proved in [RoSc05]. Moreover, it has been proved in [RoSc05] that
the trace of the chordal SLEκ in (H, 0,∞) is transient; limt→∞ γ(t) =∞.

The characteristics of geometry of the SLE curves are dependent of the parameter κ and it has been
proved that the chordal SLEκ have three phases, [La05], for physical justification of the following result see
section (3.4.1) in [Car05] and section (4.2) in [KaNi04]:
• For κ ≤ 4, γ is a simple non-intersecting curve;
• For 4 < κ < 8, γ is a self-intersecting curve;
• For κ ≥ 8, γ is a space filling curve.
It has been proved in [Bef02], [Bef08] and [La10] that the Hausdorff (fractal) dimension of the SLEκ

trace, dim[γ(0,∞)], for 0 ≤ κ ≤ 8, is 1 + κ
8 and for κ ≥ 8 is 2.

The proof of the above results are beyond the scope of this thesis and for the logical completeness of
the thesis we just summarized some very important results and properties of the SLE. The main feature of
the theory that is proved in some cases is that the SLE curve with one parameter κ, chordal SLEκ, appears
in the two-dimensional statistical lattice models as the rigorous scaling limit of the interfaces of the model.
Some important examples are SLE6 in percolation, SLE4 in Gaussian free fields and SLE3 in Ising model.

Let us just recall some of the applications and properties of the SLE. I) boundary hitting probabilities:
the probabilities that the SLE curve intersects some specific sequence of intervals on the real axis and ii)
the SLE can be used to calculate Cardy’s crossing probability formula for critical percolation: that is the
probability that a percolation cluster connects the left side of a rectangle to the right side of that.
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2.5 CFT/SLE CORRESPONDENCE

Recently, deep connections between conformal field theory and Schramm Loewner evolution have been
found, for review of different aspects of these relations see [BaBe06], [Car05] and [Gr06]. These relations
led to a new active interdisciplinary subject between physics and mathematics with lots of collaborations
between physicists and mathematicians. The CFT/SLE relations shed a new light on both topics and have
many advantages from different points of view. On the one hand, SLE provides a rigorous approach to
statistical mechanics of the planar lattice models which was not available via the path integral approach. On
the other hand, calculations and predictions that CFT provide in SLE-related areas are difficult or impossible
to obtain by present techniques of SLE.

The connection between CFT and SLE is based on the fact that the boundary point where the interface
emerges can be viewed as the insertion of a boundary condition changing operator. This operator is a Virasoro
primary field ψ degenerate at level two i.e. it has a vanishing descendant field at level two. We will see that
it is related to the martingale property of SLE observables. In order for CFT/SLE correspondence to happen,
SLE parameter κ and central charge c and scaling dimension h of the field ψ in CFT moduli should satisfy

cκ =
(3κ− 8)(6− κ)

2κ
, h =

6− κ
2κ

. (57)

In other words, SLEκ appears in interfaces of the CFT’s with Virasoro central charge cκ < 1 which is invari-
ant under duality κ↔ 16/κ. Before explaining these deep relations more carefully with some calculations,
we have to introduce the notion of the CFT in bounded domains, boundary conformal field theory.

BOUNDARY CONFORMAL FIELD THEORY

CFTs in domains with boundaries are of great interest and importance because of many applications such as
boundary critical behaviors of lattice models and SLE in mathematics.

In this chapter we have reviewed the two-dimensional CFT in the whole complex plane. However, it is
possible to study CFT in a domain with boundaries such as half-plane H or any arbitrary domain D. The
starting point of this study is the pioneering works of Cardy, [Car84] and [Car89] which lead to the important
topic of boundary conformal field theory (BCFT). The simplest example of BCFT is the CFT in the upper-
half plane H. Once we understand CFT, its OPE, correlation functions etc. in the simple case of half
plane then the results can be transformed to any arbitrary simply connected domain D which is conformally
equivalent to H, by using the Riemann mapping theorem. Having discussed the preliminary definitions and
results in CFT which are also valid on the half plane, we try to define BCFT in the following way.

The boundary conformal field theory consists of boundary conformal fields located on the boundary of
the domain, ∂D, as well as bulk fields inside the domain D. We denote a field by φi(xi) with xi ∈ D. The
bulk and boundary fields are either primary or secondary fields and the primary ones transform under the
conformal active domain transformations between domains according to their conformal weights, hi. As an
example, let us consider the transformation rules for a primary field φi and quasi-primary field, stress tensor
T , on the domain D to the half-plane H. Under a conformal domain transformation, g : D → H, we have

φi(xi) = g′(xi)
hiφi(g(xi)),

T (xi) = g′(xi)
2T (g(xi)) +

c

12
Sg(xi), (58)

where c is the central charge of CFT, g′(xi) is the derivative of g with respect to xi and Sg is the Schwarzian
derivative of g. Therefore, the correlation functions of a product of primary fields transform homogeneously
under the conformal mapping f : D → D′ from domain D to domain D′ as follow〈

n∏
i=1

φi(xi)

〉
D

=
n∏
i=1

|f ′(xi)|hi
〈

n∏
i=1

φi(f(xi))

〉
D′

. (59)
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In this chapter, we have introduced the Virasoro generators and their relation to the notion of descendant
fields. Recall that, if the central charge c = 2h(5−8h)

(2h+1) , then a null field at level two can be constructed from
the primary field ψ, with a conformal dimension h, as follow

L−2ψ − aL2
−1ψ, (60)

where a = 3
2(2h+1) . The primary field ψ is called degenerate at level two if the above expression vanishes.

This plays an important role in CFT/SLE correspondence. In fact, the field ψ, a primary and degenerate at
level two, is a boundary condition changing (B.C.C.) operator and it is inserted in a point where the SLE
curve starts. The B.C.C. operator is an operator which change the boundary conditions on the right and left
sides of its insertion point. For example, as we will see in the next chapter, in the case of Ising model the
sign of spin flips on the left and right sides of the insertion point of the fermion operator.

The next important ingredient of CFT for the CFT/SLE correspondence is the null field differential
equation. From the expression (60), the null field equation for a primary field ψ degenerate at level two and
the equation L−1ψ(z) = ∂ψ(z) imply that L−2ψ(z) = ψ(−2)(z) = a∂2

zψ(z). Now, we can use the OPE
(16) to write

L−2ψ(z) = lim
w→z

[
T (w)ψ(z)− hψ(z)

(w − z)2
− ∂zψ(z)

w − z

]
. (61)

Finally, replacing this into the Ward identity (26), the differential equation for half-plane correlation func-
tions of primary fields φi(zi) with conformal dimension hi and a Virasoro field ψ(z) degenerate at level two
is obtained as follow(

3

2(2h+ 1)
∂2
z +

n∑
i=1

[
1

zi − z
∂zi −

hi
(zi − z)2

]

)
< ψ(z)

n∏
i=1

φi(zi) >H= 0, (62)

Having briefly introduced BCFT, we will continue the explanation of CFT/SLE correspondence.
We will elaborate on the CFT/SLE correspondence in two closely related directions. First, we give a

group theoretical operator formalism description for this correspondence and second, we describe a more
physical and intuitive approach based on statistical mechanics and field theory. The latter one is basically
the relation between CFT null field differential equation for correlation functions and martingale property of
SLE observables.

GROUP THEORETICAL OPERATOR FORMALISM

The idea of this section is to present the CFT/SLE correspondence by showing the relation between the group
theoretical formulation of the SLE and the operator formalism of CFT. The goal is to clarify the relation
between SLE and representation of the Virasoro algebra, [BaBe06] and [BaBe03]. Roughly speaking, we
want to study the SLE as a formal stochastic process in the group of conformal transformations, through the
first order stochastic differential equation (SDE) on Lie group. In order to be more clear we will consider the
simplest case, the chordal SLE.

STATE OF THE SLEκ CURVE

We start with a short review on the conformal stochastic processes. Consider a stochastic motion on a
Riemann surface Σ. A stochastic flow ft(z) in a coordinate system for some open subset of Σ, z ∈ U ⊂
C, satisfies an equation of motion, dft = dtσ(ft(z)) + dξtρ(ft(z)) where ξt is a Brownian motion with
covariance E[ξtξs] = κmin(t, s). By using the map φ : U → V , the equation of motion for fφt = φ◦ft◦φ−1

can be written in a different coordinate system V , with the help of Itô formula,

dfφt = dt(σφ ◦ fφt ) + dξt(ρ
φ ◦ fφt ), (63)
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where σφ ◦ φ = φ′σ + κ
2φ
′′ρ2 and ρφ ◦ φ = φ′ρ. As we know, the paths of the particles on manifolds

are related to vector fields. One can see that, eq. (63) expresses that the holomorphic vector fields of this
equation are w−1 ≡ ρ(z)∂z and w−2 ≡ 1

2(−σ(z) + κ
2ρ(z)ρ′(z))∂z . The two vector fields generate a Lie

algebra and this Lie algebra will give us a group theoretical formulation of the problem. In this sense, we
want to associate to the flow ft an element of a group. We assume that there exists such a group and we call
it N . Furthermore, we assume that there is a linear space O of holomorphic functions F , that the group acts
faithfully on this space and the elements of the group gft ∈ N act by composition gft ·F = F ◦ ft. Thus we
associate an element gft ∈ N to each ft. In this sense, ft can be interpreted as a random process gft on N .

Then Itô formula shows that

g−1
ft
· dgft = (dtσ + dξtρ)F ′ + dt(

κ

2
)ρ2F ′′), (64)

or equivalently
g−1
ft
· dgft = dt(−2w−2 +

κ

2
w2
−1) + dξtw−1. (65)

We will see that by using the appropriate linear spaceO and the groupN for the SLE processes this equation
determines the relation between SLE and CFT in the operator formalism. In fact, w−2 and w−1 generate a
Lie algebra which can be embedded in the Virasoro algebra, a central extension of the Witt algebra.

Similar to the above arguments, in the following first we introduce a function ft for the SLE process and
then we define a corresponding group element of conformal transformation of ft whose germ at infinity is
given. The group of this conformal transformations can be identified with a Lie group generated by negative
Virasoro generators. Elements of this Virasoro group which we denote by Gf satisfy a SDE which defines a
stochastic Markov process on this group.

In the upper half plane for the chordal SLE, we define a conformal map ft(z) = gt(z)− ξt, where gt is
the Loewner map for SLE from 0 to∞ and ξt is the multiple of Brownian motion. It satisfies a differential
equation dft = 2dt

ft
−dξt. Let us define a groupN− of germs of holomorphic functions at infinity of the from

z +
∑

m≤−1 fmz
m+1. Similar to the above discussion, to any ft of the latter form we associate an element

gft ∈ N−, then by using Itô formula, we have

g−1
ft
dgft = dt(

2

z
∂z +

κ

2
∂2
z )− dξt∂z = dt(−2l−2 +

κ

2
l2−1) + dξtl−1, (66)

where we have used w−n = l−n in eq. (65) and recall that ln = −zn+1 ∂
∂z are generators of Witt algebra.

In the CFT, the operator ln are promoted to Virasoro generators Ln which satisfy commutation rela-
tion (8). The group of germs of conformal transformations z → z +

∑
m≤−1 fmz

m+1 at infinity can be
identified with the Lie group V ir− obtained from the exponentiating the generators Ln (n<0). More pre-
cisely, to any function f ∈ z + C[[z−1]] of the form f(z) = z +

∑
m≤−1 fmz

1+m, one can associate
an operator Gf ∈ U(vir−) =

∏∞
d=0 U(vir−)d which is a completion of the universal enveloping algebra

U(vir−) =
⊕∞

d=0 U(vir−)d of the Virasoro subalgebra vir− generated by Ln(n < 0). The representations
of the Virasoro algebra are not automatically the representation of N−, but the highest weight representation
of the Virasoro algebra can be extended in such a way that the N− can be embedded in the appropriate
completion U(vir−) of the enveloping universal algebra of the Virasoro subalgebra vir− generated by Ln
(n<0), [BaBe06] and [BaBe03]. Therefore, we can associate to gft ∈ N− an operatorGft ∈ U(vir−) in CFT
which acts on the appropriate representation of Virasoro algebra so that gft → Gft is a homomorphism. The
operatorGft as an operator implementing the conformal map ft(z) in CFT Hilbert space acts by conjugation,

G−1
ft
ψh(z)Gft = |f ′t(z)|hψh(ft(z)), (67)

where ψh(z) is a primary field with conformal dimension h. Using the homomorphism gft → Gft , the
stochastic equation for stochastic operator Gft in CFT follows from eq. (66),

G−1
ft
dGft = dt(−2L−2 +

κ

2
L2
−1) + dξtL−1, Gt=0 = 1, (68)
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where Ln are generators of conformal transformations in CFT.
If the state |ψ > is a highest weight vector of the Virasoro algebra representation and degenerate at level

two with the central charge and conformal dimension in eq. (57), then it satisfies (−2L−2 + κ
2L

2
−1)|ψ >= 0.

Then the transformed state in the domain Ht with ft : Ht → H is given by Gft |ψ >. The Itô formula for
the transformed state can be obtained by the action of both sides of eq. (68) on the state |ψ > as follow,

dGft |ψ >= GftL−1|ψ > dξt. (69)

Since the drift term in the above equation is zero, we observe that the Gft |ψ > is a local martingale. There-
fore, the scalar product < φ|Gft |ψ > for any state < φ| is a martingale and it satisfies a stochastic version
of the conservation law. In fact, for t ≥ s we have

E[< φ|Gft |ψ > |{Gfu}u≤s] =< φ|Gfs |ψ > . (70)

Since Gft is the intertwining operator between domain H and random domain Ht, then the correlation
function of an arbitrary operator O in domain Ht, can be constructed from the transformed states, Gft |ψ >,
as follow

< O >Ht=< ψ|G−1
ft
OGftψ(0)|0 >=< ψ|OGft |ψ >, (71)

where we used ψ(0)|0 >= |ψ > and< ψ|G−1
ft

=< ψ|. Since, Gft |ψ > is a local martingale, then< O >Ht
is also a local martingale observable, and therefore we have

E[< O >Ht ] =< O >H . (72)

It shows that the CFT correlation functions in domain Ht are in average time independent.
Let us review our observation. The state |ψ > of the SLEκ at time t = 0 in (H, 0,∞) which keeps the

track of boundary conditions is defined formally by the action of a primary field on the vacuum, |ψ >=
limz→0 ψ(z)|0 >. It can be easily seen that the translated state |ψx >= ψ(x)|0 > satisfies |ψx >=
exL−1 |ψ > where L−1 is infinitesimal generator of translations. The state of the SLE in the CFT Fock
space at time t in (H \ γ[0, t], γ(t),∞), is then given by the action of an operator Gft , implementing the
conformal transformation on the space of states and it is Gft |ψ >. This state is called a generating function
of local martingales.

STATISTICAL MARTINGALE PROPERTY OF CORRELATION FUNCTIONS

In the following we present the martingale property in the context of spin systems in statistical physics.
Consider a correlation function of the operator O(z1, ..., zn) as a product of general local fields that depend
on spin configurations with zi ∈ D and two marked boundary points a, b ∈ ∂D. The normalized correlation
functions can be written in the statistical mechanics language as follow

< O(z1, ..., zn) >D;a,b=

∑
σ∈CD;a,b

e−βH(σ)O(z1, ..., zn)

ZD;a,b
, (73)

where the sum is over all the spin configurations σ ∈ CD;a,b in domain D with marked boundary points a, b,
the function H(σ) is the Hamiltonian and the partition function is defined as ZD;a,b =

∑
σ∈CD;a,b

e−βH(σ).
For simplicity, we will denote the partition function by ZD.

Furthermore, we can assume that there is a path γt starting at point a in domain D and its tip point x
is in the bulk of the D until it will reach the boundary point b at time t = T . Notice that t is a fictitious
parameterizing time. Then, we can write the correlation function as follow

< O(z1, ..., zn) >D;a,b=

∑
γt

∑
σ∈CD;a,b,γ(σ)=γt

e−βH(σ)O(z1, ..., zn)

ZD
, (74)
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where the first sum is over all possible shape of paths denoted by curves γt and the second sum is over spin
configurations which are compatible with any specific curve γt. It can be shown that the correlation function
can be written in the following form

< O(z1, ..., zn) >D;a,b=
∑
γt

P [γ[0, t] = γt] < O(z1, ..., zn) >D\γt;x,b, (75)

where the probability on the paths is defined as

P [γ[0, t] = γt] =

∑
σ∈CD;a,b,γσ=γt

e−βH(σ)

ZD
=
ZD\γt
ZD

, (76)

and the correlation function on domain D \ γt is defined as

< O(z1, ..., zn) >D\γt;x,b=
1

ZD\γt

∑
σ∈CD\γt

e−βH(σ)O(z1, ..., zn). (77)

Therefore, the relation between correlation functions on different domains is obtained as

< O(z1, ..., zn) >D;a,b=
∑
γt

ZD\γt
ZD

O(z1, ..., zn)D\γt,x,b. (78)

This leads to the domain Markov property of correlation functions

ED;a,b[O(z1, ..., zn)|γ[0, t] = γt] = ED\γt;x,b[O(z1, ..., zn)], (79)

< O(z1, ..., zn) >D;a,b |γ[0,t]=γt = < O(z1, ..., zn) >D\γt;x,b . (80)

Let us rewrite ED;a,b[O(z1, ..., zn)|γ[0, t] = γt] as E[O(z1, ..., zn)|Ft] ≡< O >t. Then, by construction
< O >t is a martingale with respect to Ft,

E[< O >t |Fs] = E[E[O(z1, ..., zn)|Ft]|Fs] = E[O(z1, ..., zn)|Fs] =< O >s

which we have used Fs ⊂ Ft for t > s.

CFT CORRELATION FUNCTIONS AND SLE MARTINGALE OBSERVABLES

One of the most important aspects of the relations between CFT and SLE is the relation between correlation
functions of CFT and SLE martingale observables. Moreover, there are SLE observables or some functions
of them which have the martingale property. It means that the drift term in the Itô formula of the SLE
observables, vanishes. Therefore, we can naively formulate this corresponding as the following: A large
collection of observables of the SLE on domain D can be written in terms of the correlation functions of
primary fields including the B.C.C field on the domainD which the corresponding CFT correlation functions
on H satisfy the null field differential equations.

The first important example is the relation between correlation functions of primary fields including
Virasoro field ψ(x), with conformal dimension h, degenerate at level two with null descendant, and SLE
martingales in the chordal case. In this section we study the relations between null field differential equation
and vanishing of the drift term in the Itô formula for the chordal SLE on H. In the case of chordal SLE, the
correlation function of number of primary fields Ψi(Yi) with conformal dimension hi, O =

∏N
i Ψi(Yi) on

the domain Ht where the curve is cut from the half plane is obtained by the insertion of two boundary fields,
one at infinity and the other one at the tip of the curve, γt. The boundary field at infinity creates the state
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< ψ| =< 0|ψ(∞) and furthermore, the boundary fields are primary fields degenerate at level two. Then, the
normalized correlation function on domain Ht is written as

< O >Ht=
< ψ(∞)Oψ(γt) >Ht
< ψ(∞)ψ(γt) >Ht

. (81)

By using the conformal map gt : Ht → H the normalized correlation function can be written as

< O >Ht=
< ψ(∞)Otψ(Xt) >H
< ψ(∞)ψ(Xt) >H

, (82)

where the Ot =
∏N
i=1(g′t(Yi)

hiΨi(Yi)) is the image of O under the conformal map gt and Xt = gt(γt) =√
κBt in the case of chordal SLE. Moreover, since the normalization factor is trivial the correlation function

can be written explicitly as CFT correlation function

< O >Ht=

N∏
i=1

g′t(Yi)
hi < ψ|

N∏
i=1

Ψi(gt(Yi))ψ(Xt)|0 >= JtZ. (83)

where the Jacobian is Jt =
∏N
i=1 g

′
t(Yi)

hi and by using the simpler notation x = Xt, yi = gt(Yi), Z can be
written as Z =< Ψ1(y1)...ΨN (yN )ψ(x) >H . The claim is that the correlation function is a local martingale
observable of chordal SLE. The reason is that for the above SLE observable the drift term in the Itô derivative
vanishes. To show that, first we need the null field differential equation for the Z which is the following[

3

2(2h+ 1)

∂2

∂x2
−

N∑
i=1

(
hi

(x− yi)2
+

1

x− yi
∂

∂yi

)]
Z = 0. (84)

Using the Itô formula for the ψ(x), dψ(x) = ψ′(x)dx+ 3
2ψ
′′(x)dt, and Loewner equation for gt(z) and its

derivative with respect to z, one can get the Itô derivative of < O >Ht as follow

d < O >Ht= Jt

[
dXt∂x + dt

(
3

2(2h+ 1)

∂2

∂x2
−

N∑
i=1

(
hi

(x− yi)2
+

1

x− yi
∂

∂yi

))]
Z. (85)

Then, from eqs. (84) and (85), since the drift term vanishes, we observe that the SLE observable is a local
martingale.

There are specific realizations of CFT/SLE correspondence, as explained above, for different CFTs and
SLEs. One important example of this correspondence is the relation between Gaussian free fields and SLE4,
[SchSh09] and [KaMa11]. Especially, the Coulomb gas formalism and its relation to SLE has been studied
extensively, [Gr06]. In the section (4.2), we explore another realization of CFT/SLE, namely the relation
between free fermion fields and SLE3 in the scaling limit of Ising model at critical temperature.

Finally, it is good to mention that there is an alternative point of view for CFT/SLE correspondence based
on path integral formulation found by J. Cardy, [Car05]. However, in this thesis we focus on the introduced
approach to CFT/SLE correspondence in [BaBe06].
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3 PLANAR ISING MODEL AND DISCRETE HOLOMORPHICITY

In this chapter, first we review some standard topics in the 2d Ising model such as transfer matrix formalism,
free fermions etc. and then we will briefly explain the basic definitions and standard results in the subject of
discrete holomorphicity and its relation to planar Ising model.

3.1 PLANAR ISING MODEL, TRANSFER MATRIX, FREE FERMIONS

In this section we explain first the transfer matrix formalism which is an approach towards an exact solution
of two-dimensional Ising model on a rectangle with specific boundary conditions. Second, the Fock space
representation in Ising model is briefly reviewed.

Before starting to explain the transfer matrix formalism and Fock representation of the Ising model we
try to give a brief description of the other exact solutions of the Ising model. In the introduction we briefly
reviewed the history of exact methods in the Ising model. However, the complete review of all the exact
approaches to the Ising model is beyond the scope of this thesis.

In addition to the Onsager-Kauffman solution which is basically the diagonalization of the transfer ma-
trix, there are two important approaches to the exact solution of the Ising model. The first one is based
on the Jordan-Wigner transformation that builds a set of anticommuting fermionic creation and annihilation
operators from spin operator and the Bogoliubov diagonalization of the transfer matrix. This approach ex-
hibits the fermionic character of the Ising model from a different perspective. The fermionic technique is
underlying most of the studies about the exact results in Ising model, [SML64]. In fact, the conjecture is that
the fermions of the Jordan-Wigner transformation in the continuum limit are identified with the free fermion
fields introduced in the previous part.

The other approach is the construction of the disorder operator µ in [KaCe71]. In recent studies, the spin
and disorder operators are used to define the fermions on the lattice [RaCa07]. However, the focus of this
thesis is not on this approach and we keep to the original definition of the lattice fermions as it is explained
in [Pal07].

3.1.1 FOCK SPACE FORMALISM IN ISING MODEL

Analogy between quantum field theories and scaling limit of lattice statistical systems near criticality has
been studied extensively. However, operator formalism of QFT can be applied even for lattice models
outside of criticality. We explicitly investigate one of the fundamental examples, fermionic techniques in
two-dimensional Ising model.

The fermionic structure of the Ising model was used also in studies of conformal field theory of the
critical Ising model, [DMS96]. However, the transfer matrix formalism is mainly suitable for the rigorous
study of the model in the full plane or enough symmetric domains, whereas the formulations of conformal
invariance of the model should be performed in domains of arbitrary shapes.

THE SQUARE LATTICE ISING MODEL IN RECTANGLE

We start with a brief review on basic definitions about two-dimensional Ising model [Pal07]. Ising model
is the simplest nontrivial lattice model consisting of spins {σi} on the vertices of the lattice and inter-
acting by nearest neighborhood interactions. In contrary to one-dimensional model, as shown by Peierls
[Pe36], Onsager [Ons44], Kramers and Wannier [KrWa41] and Kaufman and Onsager [KaOn49], two-
dimensional Ising model possess a second order phase transition at critical inverse temperature (β = 1

kBT
),

βc = 1
2 ln (

√
2 + 1).
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Consider a rectangular square lattice Z2 in a finite domain ΛM,N ,

ΛM,N = {(j, i) ∈ Z2 | |j| ≤M, |i| ≤ N}. (86)

The Hamiltonian or the energy of a configuration σ ∈ CΛ = {±1}Λ, which is a spin configuration in the set
of all configurations in the domain Λ composed of all possible arrangements of up and down spins on the
lattice sites, is defined by

EΛ(σ) = −
∑

<x,y>⊂Λ

Jσxσy, (87)

where J is strength of the interaction between spins in both horizontal and vertical directions and < x, y >
denotes the pairs of sites that are nearest neighbors. For the rest of this chapter we assume isotropic and ho-
mogenous coupling and for simplicity we put J = 1. Gibbs measure for the probability of the configurations
is

PT (σ) =
1

ZΛ(T )
exp (−βEΛ(σ)), (88)

where the partition function of the model is

ZΛ(T ) =
∑
σ∈CΛ

exp (−βEΛ(σ)). (89)

The expected value of the product of spin variables, σA =
∏
i∈A σi in a subset A of the domain Λ, a

finite collection of sites, defines an observable of the system by

< σA >Λ=
1

ZΛ

∑
σ∈CΛ

σA exp (−βEΛ(σ)). (90)

In presence of boundary conditions, the sums over all configurations in partition function and correlation
functions are restricted to the configurations that satisfy the boundary conditions.

THE TRANSFER MATRIX FORMALISM

As we mentioned, operator formalism in quantum field theory is one of the main approaches to study systems
with finite and infinite degrees of freedom such as lattice models and their scaling limit. Transfer matrix
method is an analogues powerful technique in analysis of the one and two-dimensional Ising model and other
related statistical models. This method provide an approach to an exact solution of the two-dimensional Ising
model. For the first time, Kramers and Wannier applied the transfer matrix method in the two-dimensional
Ising model, [KrWa41]. The transfer matrix is a linear operator which the partition function and free energy
can be read off of a matrix element of some high power of it, see eq. (97). Also correlation functions of
operators can be expressed using the transfer matrix and the operators acting on the same vector space, see
eq. (98).

In this section we review the machinery of the transfer matrix formalism for the square lattice Ising
model. The aim of this part is to obtain the observables of the Ising model by the transfer matrix formalism.
In the transfer matrix formalism, the sums over all configurations in partition function or correlation functions
are divided into the multiple sums over the configurations of the rows, CΛ(row) = {±1}2M+1. The row
configurations are indexed by ”i = −N,−N + 1, ..., N − 1, N”, and the columns in each row configuration
are indexed by following set of integers

IM = {−M,−M + 1, ...,M}. (91)
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In order to explicitly calculate the partition function and correlation functions, it is convenient to intro-
duce a Hilbert space of dimension 22M+1 and the basis which are indexed by CΛ(row)

H =
M⊗

j=−M
C2
j = C2

−M ⊗ ...⊗ C2
M . (92)

The map between elements of CΛ(row) and basis of the vector space is

CΛ(row) 3 σ → eσ =
M⊗

j=−M

[
1+σj

2
1−σj

2

]
. (93)

Spin operator acting on this vector space has the following representation:

σ̂j = 1⊗ ...⊗ 1⊗
[
1 0
0 −1

]
⊗ 1⊗ ...⊗ 1 =

[
1 0
0 −1

]
j

. (94)

Suppose that σ and ρ ∈ CΛ(row), then we define symmetrized transfer matrix VM : CΛ(row)→ CΛ(row) by

VM = V
1
2

1 V2V
1
2

1 and V1 is a diagonal matrix

(V1)ρσ =

{
exp

(∑M−1
j=−M βσjσj+1

)
if σ ≡ ρ

0 otherwise,
(95)

and the matrix elements of V2 are given by

(V2)ρσ =

{
exp

(∑M
j=−M βρjσj

)
if σ−M = ρ−M and σM = ρM

0 otherwise,
(96)

where ρj and σj are the row configurations evaluated as j − th column.
As a final remark of this section, we translate the expression for the partition function (up to a normaliza-

tion) and correlation functions in presence of fixed plus or minus boundary conditions into the vector space
representation as follow:

ZΛ =< eNσ |V
1
2

1 V
2N
M V

1
2

1 |e
−N
σ >, (97)

and

< σA >Λ=
< eNσ |V

1
2

1 VMσAN−1
VMσAN−2

...σA−N+1
VMV

1
2

1 |e−Nσ >

ZΛ
, (98)

where eNσ and e−Nσ are Hilbert space representation of the N th and −N th row configurations and they play
the role of boundary states, and σAi denotes the restriction of σA to the i−th row. In the case of the partition
function and correlation functions of spin operators, the boundary conditions of the lattice is fixed to either
plus or minus boundary conditions on all four sites of the lattice.

CLIFFORD ALGEBRA AND CLIFFORD GROUP

As we see in this section, exact solvability of the two-dimensional Ising model leads to an observation that
the transfer matrix can be written as exponential of a quadratic expression in Clifford algebra generators eqs.
(108) and (109), and as a representation of the Clifford algebra, the space on which the transfer matrix acts is
a fermionic Fock space. In this sense the two-dimensional Ising model is a fermionic field theory. The field
theory is free in the sense that the transfer matrix and its spectrum are simply expressible in terms of its action
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on the one-particle sector of the fermionic Fock space only. In this part we demonstrate a representation of
the Clifford algebra and group in the case of the Ising model. First, we give some general definitions in
Clifford algebra and then we introduce a representation of Clifford algebra in Ising model.

Assume that W is a finite-dimensional complex vector space with a nondegenerate complex bilinear
form denoted by (·, ·). In general, a Clifford algebra Cliff(W ) on the vector space W is defined as an
associative algebra with unit e which is generated by elements in W satisfying the following relation

ab+ ba = (a, b)e. (99)

The basis of Cliff(W ) consists of e and the monomials wk1wk2 ...wkn for 1 ≤ k1 < k2 < ... < kn ≤
dim(W ) where wk are basis of W . Therefore, the dimension of Cliff(W ) is 2dim(W ).

In the case of Ising model, the Clifford algebra generators { pk√
2
, qk√

2
} as they will be defined below are

orthonormal basis of a complex vector space W ′M which is a finite-dimensional complex Hilbert space

W ′M = Span({pk|k ∈ IM −
1

2
} ∪ {qk|k ∈ IM +

1

2
})

= WM ⊕ (Cp−M− 1
2

+ Cq
M+ 1

2

). (100)

Elements of the Clifford algebra, pk and qk are indexed by half-integers k. We define a finite-dimensional,
irreducible spin representation of Clifford algebra Cliff(W ′M ), the so called Brauer-Weyl representation,
acting on

⊗M
j=−M C2

j space. For k ∈ IM − 1
2 , we define

pk =


k− 1

2∏
j=−M

[
0 1
1 0

]
j


[
1 0
0 −1

]
k+ 1

2

, (101)

and for k ∈ IM + 1
2 :

qk =


k− 3

2∏
j=−M

[
0 1
1 0

]
j


[
0 −i
i 0

]
k− 1

2

. (102)

The elements pk and qk form an irreducible representation of the Clifford algebra as it can be easily checked
that they satisfy the anti-commutation Clifford relations:

pkpl + plpk = 2δkl,

qkql + qlqk = 2δkl,

pkql + qlpk = 0. (103)

Any vector v ∈W ′M can be expanded as a complex linear combination of basis vectors, pk and qk,

v = y0(v)
p−M− 1

2√
2

+ x0(v)
qM+ 1

2√
2

+

M− 1
2∑

k=−M+ 1
2

xk(v)
qk√

2
+ yk(v)

pk√
2
, (104)

and the conjugated vector is defined by

v̄ = y0(v)
p−M− 1

2√
2

+ x0(v)
qM+ 1

2√
2

+

M− 1
2∑

k=−M+ 1
2

xk(v)
qk√

2
+ yk(v)

pk√
2
.
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Moreover, the Hermitian symmetric inner product between two vectors v and w is defined by

< v,w >= x0(v)x0(w) + y0(v)y0(w) +

k=M− 1
2∑

k=−M+ 1
2

xk(v)xk(w) + yk(v)yk(w), (105)

and furthermore the bilinear form is defined by (v, w) =< v̄, w >.
Another crucial concept in this part is induced rotation. Assume V is a linear transformation on

⊗M
j=−M C2

j

and it is invertible. The induced rotation of V is defined as T (V ) : W ′M → W ′M such that for all v ∈ W ′M
we have

T (V )v = V vV −1. (106)

The induced rotation T (V ) determines V up to an scalar factor. If there exists T (V ), V is called an element
of the Clifford group. Both spin operators and the transfer matrix are elements of the Clifford group. In
the case of transfer matrix, the induced rotation preserves the bilinear form and it is a complex orthogonal
map. To calculate the action of the induced rotation of the transfer matrix T (VM ) on vector v in the above

equation, we use the spin representation, in which the transfer matrix is defined as VM = V
1
2

1 V2V
1
2

1 , and by
using the following identities[

0 1
1 0

]
j

= ipj− 1
2
qj+ 1

2
,

[
1 0
0 −1

]
j

[
1 0
0 −1

]
j+1

= iqj+ 1
2
pj+ 1

2
, (107)

V1 and V2 can be obtained in spin representation as

V1 = exp

iβ

M− 1
2∑

k=−M+ 1
2

qkpk

, (108)

V2 = (2 sinh(2β))M−
1
2 exp

iβ∗
M− 3

2∑
j=−M+ 1

2

pkqk+1

. (109)

For derivation of the above results see [Pal07] (section 1.2.1) or [HKZ12] (proposition 8). As we see, the
transfer matrix is given by the exponentials of the Clifford algebra generators and therefore it is an element
of the Clifford group. These are crucial results which are necessary to obtain the induced rotation of the p
and q and finally the fermion operator of the Ising model.

FOCK REPRESENTATION

In this part we give a short presentation of the Fock representation of the Clifford algebra which are the basis
of important results in this thesis. The complete exposition of the Fock space formalism is developed in
sections (3.3)-(3.5) in [HKZ12].

We are interested in the representation of the Clifford algebra which arises in an isotropic splitting of W .
In general, an isotropic splitting of W = W+ + W− is a direct sum decomposition in which the subspaces,
W+ and W−, are isotropic subspaces that means they have the property that the bilinear form on them is
identically zero. In the case of Ising model, we are interested in an isotropic splitting of W which is called
Hermitian polarization. This polarization is defined such that W+ and W− are orthogonal with respect to the
Hermitian inner product and its written as W = W+

⊕
W−. To each polarization of the latter form there is

a Fock representation of the Clifford algebra on W which lives on the alternating tensor algebra Alt(W+)
defined by

Alt(W+) = C⊕Alt1(W+)⊕Alt2(W+)⊕ ...⊕Altn(W+),
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where Altj(W+) is the space of alternating j tensors over W+ and n = dim(W+); Altj(W+) 3 v =
v1 ∧ v2 ∧ ... ∧ vj = 1

j!

∑
σ∈Sj Sgn(σ)vσ(1) ⊗ vσ(2)... ⊗ vσ(j) for vi ∈ W+, i = 1, ..., j and Sj denotes

the permutation group of j letters. Due to the nondegeneracy of the bilinear form, two subspaces W+ and
W− are dual to each other. Let (x†α)nα=1 be a basis of W+ and (xα)nα=1 be a dual basis of W−. The Fock
representation associated to the Hermitian polarization is given by the action of creation operator x†α ∈ W+

and annihilation operator xα ∈W− which are defined by

x†α.(x
†
β1
∧ ... ∧ x†βp) = x†α ∧ x

†
β1
∧ ... ∧ x†βp ∈ Alt

p+1(W+),

xα.(x
†
β1
∧ ... ∧ x†βp) =

p∑
i=1

(−1)i−1(xα, x
†
βi

)x†β1
∧ ... ∧ x†βi−1

∧ x†βi+1
∧ ... ∧ x†βp ∈ Alt

p−1(W+),

where (xα, x
†
βi

) = δα,βi .
The vacuum vector of the Fock representation is defined as a unique vector that is annihilated by annihi-

lation operators in W−. The vacuum vector in Alt(W+) is usually denoted by |0 >= 1⊕ 0⊕ ...⊕ 0.
In a physical polarization, the vacuum state is an eigenvector associated to the largest eigenvalue of the

transfer matrix VM and the isotropic splitting which the Fock representation is associated to that can be
defined as WM = W+

M

⊕
W−M such that W+

M is spanned by eigenvectors of TM (restriction of T (VM ) on
WM ) with eigenvalues less than one and W−M is spanned by eigenvectors with eigenvalues bigger than one.
The spectral analysis of the TM (section (3.5) in [HKZ12]) shows that: 1) TM does not have eigenvalue 1.
2) WM = W+

M

⊕
W−M is an orthogonal direct sum decomposition. 3) Since TM is an complex orthogonal

mapping, for any v, w ∈ W+
M eigenvectors of TM , TMv = av and TMw = bw with eigenvalues a, b < 1,

we have (v, w) = (TMv, TMw) = ab(v, w). This leads to (v, w) = 0, which means that W+
M is an isotropic

subspace. The similar argument shows that W−M is an isotropic subspace.

FERMION OPERATORS AND DIRAC EQUATION

In general, free fermions play an important role in many different areas of physics and mathematical physics.
In our context, it is believed that "the two-dimensional Ising model is a free fermion". As we discussed, the
Fock representation lives on the alternating tensor algebra. Therefore, Fock space approach to the two-
dimensional Ising model, using the alternating tensor algebra, provides a natural framework for describing
the antisymmetric statistics of many particle states for free fermions.

First, we define lattice fermion and anti-fermion operators on the mid-points of horizontal edges of two-
dimensional rectangular lattice. In spin representation we define

ψk = Aψ(qk + pk), (110)

ψ̄k = Aψ̄(pk − qk), (111)

where Aψ = λ−3
√

2
and Aψ̄ = Aψ for λ = e

iπ
4 . Moreover, one can simply check that the fermions and

anti-fermions satisfy

ψkψl + ψlψk = 4A2
ψδkl, ψ̄kψ̄l + ψ̄lψ̄k = 4A2

ψ̄δkl, ψkψ̄l + ψ̄lψk = 0.

Roughly speaking, we expect that fermions satisfy the Dirac equation. However, derivation of the Dirac
equation is not a result of this thesis but in order to clarify the discussion, we demonstrate the appropriate
form of the Dirac equation for Ising fermions without derivations. The Dirac equation is obtained from the
action of induced rotation of the transfer matrix on generators of Clifford algebra and fermion operators in a
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complicated way. It has been shown in [Pal07] (sections 1.3 and 4.2) that in a naive scaling limit the fermion
Ψ(x) which is defined by

Ψ(x) =

[
ψ(x)
ψ̄(x)

]
=

[
Aψ(q(x) + p(x))
Aψ̄(−q(x) + p(x))

]
, (112)

satisfies the massive Dirac equation with mass µ(β) = βc−β
β ,

DΨ(x)− µ(β)Ψ(x) = 0, (113)

where

D =

[
0 2∂

2∂̄ 0

]
, (114)

and the definition of partial complex derivatives are

∂ =
1

2
(
∂

∂x1
− i

∂

∂x2
) and ∂̄ =

1

2
(
∂

∂x1
+ i

∂

∂x2
). (115)

The basic idea is that the massless free fermions which satisfy the Dirac equation in the limit µ→ 0,

∂̄ψ(x) = 0, (116)

∂ψ̄(x) = 0, (117)

describe the scaling limit of Ising model at critical temperature. Moreover, we observe that, free fermions
(anti-fermions) are holomorphic (anti-holomorphic) functions.

BRANCHING OF THE FERMION AT SPIN INSERTION

Another important property of a fermion is its branching around the spin operator insertion. The induced
rotation of the spin operator for ψk and ψ̄k can be easily obtained from induced rotation of the spin operator
for the pk and qk as follow: the induced rotations of the spin operator can be obtained easily as

sjqk = sgn(j − k)qk, (118)

sjpk = sgn(j − k)pk, (119)

where sjv = σ̂jvσ̂
−1
j for any vector v ∈W ′M . Therefore, we obtain

sjψk = −sgn(k − j)ψk and sjψ̄k = −sgn(k − j)ψ̄k. (120)

We observe that fermion operator at point k (anti-)commute with spin operator inserted on the (left) right
hand side of k.

In the next section we introduce the graphical techniques to obtain the partition function and correlation
functions in Ising model.

3.1.2 THE HIGH AND LOW TEMPERATURE EXPANSIONS AND DUALITY

In statistical physics, the method of cluster expansions provides a systematic way of computing partition
functions and correlation functions as power series. Cluster expansion has variety of applications to lattice
models such as Ising model.

The Ising model can be studied by series expansions, so called low-temperature and high-temperature
expansions. General definitions of low-temperature and high-temperature expansions of partition function
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and correlation functions are based on the graphical expansions of the model which consist of collection of
spin configurations.

In this part, we will present the low-temperature and high-temperature expansions of the partition func-
tions, then we establish the relation between the low-temperature and high-temperature expansions, using
the concept of duality.

The partition function of the 2d Ising model is given by the following expression:

Z(β) =
∑

σ∈{±1}V

∏
<x,y>

exp (βσxσy), (121)

where the sum is over all spin configurations, σ ∈ {±1}V , which V is the collection of vertices of the square
lattice.

In low-temperature expansion, a spin configuration is represented by the set of its interfaces and in fact
there is a bijection between spin configurations with plus boundary conditions and contours of graphical
low-temperature expansion. This correspondence can be obtained by setting the rule that spin values on the
dual lattice change sign when traversing an edge and otherwise remains the same. In the low-temperature
regime by using the expansion of the product in partition function (121) in power series of 1

β∗ , Z(β∗) in the
low temperature can be obtained as

Zlow(β∗) = e(β∗E)
∑
σ∈CL

e−2β∗L(σ), (122)

where the sum is over collections of dual edges in all configurations σ ∈ CL, consisting of loops, surrounding
plus (or minus) spin clusters in the minus (or plus) spins backgrounds, E is the total number of dual edges
of lattice and L(σ) is the number of dual edges of loops in each configuration σ.

In the high-temperature regime although there is no bijection between spin configurations and contour
representations (boundaries on the dual lattice), the partition function can be represented in an expansion
called high-temperature expansion. By using the identity

e(βσxσy) = cosh(β) + σxσy sinh(β) = coshβ(1 + σxσy tanhβ), (123)

and the expansion of the product over edges in partition function as power series of β, after some sim-
plifications the partition function for the Ising model on square lattice with free boundary conditions in
high-temperature regime can be obtained as the following:

Zhigh(β) = 2V (cosh(β))E
∑
σ∈CH

[tanh(β)]L(σ), (124)

where the sum is over collections of edges in all configurations σ ∈ CH , consisting of closed loops on the
lattice, V is the number of vertices, E is the total number of edges of lattice and L(σ) is the number of edges
of loops in each configuration σ. Indeed, low and high temperature expansions hold in any temperature
regime, since they are exact expansions on the lattice.

As it is mentioned, there is a duality between high and low-temperature expansions of the Ising model
on the square lattice, called Kramers-Wannier duality, [KrWa41]. In fact, duality transformation is a duality
between ordered and disordered phases of the model.

The high-low temperature duality transformation can be summarized briefly as following:
1) there is a mapping or a duality relation between high and low-temperature phases of the Ising model:

tanh(β)↔ e−2β∗ , (125)

where β∗ is dual inverse temperature. In fact the low-temperature and high-temperature expansions mapped
to each other through the identification tanh(β) = e−2β∗ ,
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2) by using trigonometric identities and the above identification it is easy to show that the dual inverse
temperature β∗, is related to β, by the following equation:

sinh(2β) sinh(2β∗) = 1, (126)

and
3) at critical temperature or self-dual point β = β∗ = βc, the equation tanh(βc) = e−2βc implies

βc =
1

2
ln (
√

2 + 1) = 0.440686... (127)

In the following we give an introduction to discrete holomorphicity, especially the notion of s-holomorphicity
and other related subjects.

3.2 DISCRETE HOLOMORPHICITY

In this part we introduce discrete holomorphicity and its special realization, the s-holomorphicity. We will
also discuss about its role in the 2d Ising model, [DuSm11]. The linear equations between lattice fermions
were found for the Ising model in 80’s, [DoPo88]. At the end of this section, the parafermionic observables
will be discussed for the critical 2d Ising model. Moreover, discrete holomorphicity has been applied to
other models such as O(N)−models etc. [RaCa07], [IkCa09] and [Car09].

Analyticity and holomorphicity have been provided a mathematical toolbox to study the statistical sys-
tems including continuum models as well as lattice models. However, in lattice models, we need a discrete
version of analyticity and holomorphicity. A trivial example of discrete holomorphicity is the discrete version
of the Cauchy-Riemann equation on a two-dimensional lattice.

Assume, G is a simply connected subgraph of the square lattice Z2 consisting of entire plaquette. A
discrete holomorphic observable F (zij) is a complex-valued function defined at the midpoints zij of edges
(ij) of G and it satisfies the discrete version of the contour integral,∑

(ij)∈F

F (zij)(zi − zj) = 0, (128)

which the sum is over the edges of that face F of G. Equivalently, F is discrete analytic if it satisfies the
discrete Cauchy-Riemann equation, i∂xF = ∂yF . The discrete version of this on the lattice in fig. (1) is

F (N)− F (S) = i (F (E)− F (W )) . (129)

Notice that eqs. (128) and (129) are both relating values of the function at four distinct points via an equation.
Roughly speaking, we have one complex equation and two complex unknowns per plaquette. By Dirichlet
boundary conditions on the boundary of the lattice, one can observe that these equations are not enough
generically to determine the bulk points of the lattice in terms of the boundary points. In the following, we
will define an stronger notion of discrete holomorphicity known as s-holomorphicity.

3.2.1 S-HOLOMORPHICITY

THE DEFINITION OF S-HOLOMORPHICITY

S-holomorphicity is a notion of discrete holomorphicity for functions defined at the midpoints of edges of
square lattice domains. It admits generalizations to isoradial graphs with slightly different formulation from
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Figure 1: Discrete holomorphicity

the definition below, [ChSm11]. However, s-holomorphicity is a stronger condition than discrete Cauchy-
Riemann equation, in the sense that s-holomorphicity implies discrete Cauchy-Riemann equation. For de-
tailed study of discrete complex analysis with s-holomorphic functions look at [ChSm11].

Consider a square lattice domain, a rectangle D = ΛM,N , a subgraph of Z2 consisting of entire plaque-
ttes. The set of midpoints of edges of D is denoted by D�. To each pair of adjacent midpoints we associate
a line in the complex plane. Associated lines to the edges of the medial graph in the complex plane are,

lNE = ωR, lNW = ω−1R, lSE = ω3R, lSW = ω−3R, (130)

with ω = e
iπ
8 .

A function F : D� → C is called s-holomorphic if for all pairs of adjacent midpoints the orthogonal
projections of F (at the two points) to the corresponding line coincide. For u ∈ C of unit modulus, |u| = 1,
the projection to the line uR of a complex number ζ is 1

2(ζ + u2ζ̄). Then, for N,W,S,E ∈ D�, the four
midpoints of edges around a plaquette, a s-holomorphic function F satisfies

F (N) + λF (N) = F (E) + λF (E) (131)

F (N) + λ−1F (N) = F (W ) + λ−1F (W )

F (S) + λ3F (S) = F (E) + λ3F (E)

F (S) + λ−3F (S) = F (W ) + λ−3F (W ),

where λ = 1+i√
2

. The standard discretizations of the Cauchy-Riemann equations can be derived from these
equations. Therefore, s-holomorphicity is naturally a notion of discrete holomorphicity.

The s-holomorphicity is defined in a general way, independent of any lattice models. Although, we will
see that, fermions of Ising model at critical temperature satisfy the s-holomorphicity relations. However,
in order to define massive s-holomorphicity, we restrict ourselves to the case of the Ising model. Outside
the critical point of the Ising model, there are functions solving the modification of the s-holomorphicity
equation, known as massive s-holomorphicity. A massive holomorphic function F : D� → C satisfies

τF (N)− F (N) = λ3F (E) + τλF (E) (132)

F (N)− τF (N) = τλ−3F (W ) + λ−1F (W )

F (S) + τF (S) = τλ−3F (E) + λ3F (E)

τF (S) + F (S) = λ3F (W ) + τλ−3F (W ),

where τ = α+i
α−i = −1+iS∗

C∗ and α = e−2β = tanhβ∗. At the critical point β = βc (C∗ = C∗c =
√

2 and
S∗ = S∗c = 1, so τ = τc = λ3), these equations reproduce equations (131). Moreover, it has been shown in
[BeDC10] that the massive s-holomorphicity implies the massive Laplace equation,

1

4

∑
Z=X±1,X±i

(F (Z)− F (X)) = µF (X),
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forX is the bulk point of the lattice and µ = S+S−1

2 −1. For further discussion see section (2.2) in [HKZ12].
Both equations (131) and (132) imply that we have four real-linear equations and two complex unknowns

(four linear unknowns) per plaquette. Therefore, we have roughly equal number of equations and unknowns
in the lattice. As we mentioned, s-holomorphicity relations are stronger notion of discrete analyticity eq.
(129). In fact, s-holomorphicity equations are enough to determine the values of the function at every bulk
points of the lattice in terms of the boundary points. As we will see in the "propagation of s-holomorphic
functions" part in chapter (4), the set of s-holomorphicity equations can be used to write for example the
value of the function in an specific column and row in the bulk of the lattice in terms of the values of the
functions in previous row and one column before and after. Moreover, in the next part, we fix the phases of
the functions on the four boundaries of the lattice which is called Riemann-Hilbert boundary value problem.
By using the s-holomorphicity relations and values of the function at boundaries, the function is uniquely
determined on the bulk points of the lattice as well as boundary points.

THE RIEMANN-HILBERT BOUNDARY VALUE PROBLEM FOR S-HOLOMORPHIC FUNCTIONS

In order to study the Ising model on the square lattice with specific boundary conditions we will use s-
holomorphic functions as concrete mathematical tools. In addition to the above equations, the s-holomorphic
functions of the Ising model satisfy boundary conditions that specify the argument of the functions on the
boundaries. Therefore, they are solutions of the Riemann-Hilbert boundary condition as defined in the
following.

A function F : D� → C satisfies the Riemann-Hilbert boundary conditions, if at all boundary midpoints
of edges the value of the function is determined by the type of the boundary edge in fig. (1) as follows:

-For type N the value is purely real, F (N) ∈ R;
-For type S the value is purely imaginary, F (S) ∈ iR;
-For type W the value is a real multiple of λ = eiπ/4, F (W ) ∈ λR;
-For type E the value is a real multiple of λ−1, F (E) ∈ λ−1R.

As it is stated and proved in section (2.6) in [Hon10a], any discrete Riemann-Hilbert boundary value
problem has at most one solution and if we assume the existence of the solution, then the Riemann-Hilbert
boundary value problem is a well posed problem with a unique solution.

3.2.2 PARAFERMIONIC OBSERVABLES

The next step in our study is to explicitly determine the s-holomorphic functions of the Ising model which
satisfy the s-holomorphicity conditions as well as Riemann boundary conditions except than some excep-
tional points. These solutions are called s-holomorphic parafermionic or winding observables. In fact, there
are different winding observables for critical lattice Ising model which satisfy s-holomorphicity conditions
as well as Riemann boundary conditions except than some exceptional points. In this section, we try to give
a short introduction to these parafermionic observables and their physical meanings.

As we mentioned, the parafermionic observables have played an important role in exact studies about
the convergence to conformal field theory in scaling limit of the 2d lattice models at critical temperature.
Specially, in two directions; i) the rigorous proofs of the convergence of lattice models interfaces to the SLE
conformal curves and ii) the proof of convergence of various correlation functions of the critical lattice model
in the continuum limit to CFT correlation functions.

For Smirnov, the first important use of s-holomorphicity was to show conformal invariance of the scaling
limit of two particular observables that pertain to the proofs that macroscopic spin-cluster boundaries and
Fortuin-Kasteleyn-cluster boundaries tend in the scaling limit to two different SLE type random curves.
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More recently, s-holomorphic observables have been used to obtain rigorous results about the conformal
invariance of the Ising model somewhat more directly. In [HoSm10b], the scaling limit of the energy den-
sity of the critical Ising model is derived from an s-holomorphic observable, and in [Hon10a] the method
is generalized to the derivation of any energy correlations and also boundary spin correlations. Finally, the
physically very important spin correlations in the bulk were shown to have conformally invariant scaling lim-
its in the works [ChIz11] and [CHI12], using s-holomorphic observables that are multi-valued and branching
around singularities.

SMIRNOV OBSERVABLE

The first kind of the Ising parafermionic observable on the rectangular lattice is introduced by S. Smirnov,
[Smi06], [Smi10a] and [ChSm09]. It is a graphical expansion on the rectangular lattice and it has one
boundary condition changing point a on the bottom of the lattice and one bulk point z. It is defined by the
following expansion

Fa(z) =
1

Z

∑
σ∈Ca,z

αL(σ)
c e−

i
2

w(σ:a z), (133)

where Z is a partition function, the sum is over collections of dual edges in all graphical expansions σ ∈ Ca,z ,
consisting of loops and a path from a to z, αc = e−2βc and w is the winding number of directed path starting
upward at a and ending at z either from above or below. The point a is a midpoint of a horizontal edge at the
bottom boundary of the lattice and the point z is a midpoint of a horizontal or vertical edge in the bulk of the
lattice. A partition function of the critical model with plus boundary conditions is defined by

Z =
∑
σ∈C+

αL(σ)
c , (134)

where the sum is over collections of dual edges in all configurations with plus boundary conditions, σ ∈ C+

and L(σ) is number of edges in each configuration σ ∈ C+.
Smirnov observable is one of the appropriate tools to study the scaling limit of the critical 2d Ising model.

All the exact results about the convergence of the scaling limit of the critical Ising model to conformal field
theory, including the conformal invariance of the scaling limit of the interfaces are obtained by using these
observables. Specially the convergence of interfaces to SLE3 is obtained by implementing this method.

ENERGY OBSERVABLE AND PFAFFIAN FORMULAS

The energy density observable is defined by Hongler and Smirnov [Hon10a] and [HoSm10b]. It has two
bulk points z, z′ at midpoint of the edges in the configurations and it’s defined by

Fz′(z) =
1

Z

∑
σ∈Cz′,z

αL(σ)
c e−

i
2

w(σ:z′ z), (135)

where the sum is over collections of dual edges in all configurations σ ∈ Cz′,z , consisting of loops and a
directed path between z′ and z starts at z′ either from above or below and ending at z either from above or
below. The relation between this definition and the energy density definition of the Ising model has been
explored in [HoSm10b].

Notice that when the z′ is on the bottom boundary of the lattice, the energy density observables reduces
to the Smirnov observables. The energy density observable Fz′(z) at z′ = a, the bottom boundary of the
lattice, is the solution of the Riemann boundary value problem and it is the appropriate observable to study
the convergence of the energy correlation functions of the critical Ising model in the scaling limit.
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The definition of the energy density observable can be generalized to a multi-point parafermionic ob-
servable,

F (zη1
1 , ..., z

η2n
2n ) =

1

Z

∑
σ∈Cz1,...,z2n

αL(σ)
c e

− i
2

∑
{zi,zj}

w(σ:zi zj)Sgn(p), (136)

where the sum is over collections of dual edges in all configurations σ ∈ Cz1,...,z2n , consisting of loops and n
oriented paths linking the bulk points z1, ..., z2n and ηi = ±1 depends on the possibilities to start at zi from
above or below. The notation {zi, zj} denotes the path between zi and zj . The sign factor Sgn(p) = (−1)nc

is the sign of pairing of the paths and nc is the number of crossing in the pairing of the paths. There is a
relation between the multi-point functions and two-point functions which is called Pfaffian formula. The
Pfaffian formula for the generalized energy density observable is obtained in [Hon10a] and it can be stated
as follow

F (zη1
1 , ..., z

η2n
2n ) = Pf

[(
F (zηii z

ηj
j )
)2n

i,j=1

]
, (137)

where the definition of the Pfaffian of an anti-symmetric matrix A ∈ Cn×n is

Pf(A) =

{
1

2kk!

∑
P sgn(P )

∏k
i=1AP (2i−1),P (2i) for n = 2k

0 for n = 2k − 1
. (138)

SPINOR OBSERVABLE AND BRANCHING AT SPIN INSERTION

The spinor observables are defined by Chelkak, Hongler and Izyurov [ChIz11], [CHI12]. They are multi-
valued parafermionic observables on the Riemann surface, double cover of the domain, which have spin
operators,

F spinor
a (z, z′) =

1

Zs

∑
σ∈Cspinor

αL(σ)
c e−

i
2

w(σ:a z)(−1)lz′ (σ)(−1)I(σ), (139)

where Zs =
∑

σ∈C+
s
α
L(σ)
c (−1)lz′ (σ), in which the sum is over all graphical expansions with plus boundary

conditions and one spin insertion, the sum in eq. (139) is over collections of dual edges in all configurations
σ ∈ Cspinor, consisting of loops and a path from a to z, lz′(σ) is number of loops surrounding spin operator
at point z′ and I(σ) indicates that the endpoint of the path, z, is on principal sheet or opposite sheet,

I(σ) =

{
0 endpoint at z
1 endpoint at z̃

, (140)

where z̃ is the corresponding point of z on the opposite sheet.
The spinor observable on the lower sheet of the double cover is minus the spinor observable on the upper

sheet. That is a property that we expect from the fermionic observables. The spinor observable can be simply
generalized to include more than one spin operator as

F spinor
a (z; z′1, ..., z

′
S) =

1

ZS

∑
σ∈CSpinor

αL(σ)
c e−

i
2

w(σ:a z)
S∏
s=1

(−1)
Lz′s

(σ)
, (141)

where ZS =
∑

σ∈C+
S
α
L(σ)
c

∏S
s=1(−1)

lz′s
(σ), in which the sum is over all configurations with plus boundary

conditions and many spin insertions, the sum in eq. (141) is over collections of dual edges in all graphical
expansions σ ∈ CSpinor, consisting of loops and a path from a to z, z′s is a point on a vertices of the lattice,
Lz′s(σ) is the number of the vertical edges on the right hand side of the spin operator σ̂z′s .

Because spinor observables with appropriate partition function are solutions to the discrete Riemann
boundary value problem they provide the mathematical tools to study the scaling limit of the spin operators
correlation functions in the critical 2d Ising model.
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4 ISING FERMIONS, DISCRETE HOLOMORPHICITY AND SLE: SUMMARY
OF RESULTS

In the first part of this chapter we investigate the relations between the old powerful picture of fermionic
techniques and the new rigorous discrete holomorphicity methods in two directions.

First, the connections between properties and behaviors of fermion operators and s-holomorphic func-
tions are investigated. We consider the fermion operators ψ(z) and ψ̄(z) acting on the fermionic Fock space,
indexed by z a midpoint of a horizontal edge of the square lattice domain. These are first order expressions in
the generators of the Clifford algebra. We find that, inside and outside of the critical temperature, the action
of induced rotation of transfer matrix on fermions of Ising model leads to time propagation of fermions on the
lattice and this propagation relation is roughly the same as the relations between s-holomorphic functions
on the lattice, derived from s-holomorphicity conditions. Second, we show that the fermionic correlation
functions are closely related to s-holomorphic observables.

Beside the understanding of the deep relations between the two topics, there are new advantages such
as proof of Pfaffian formula for s-holomorphic multi-point correlations by using Wick’s formula, and a
generalization of fermion operator definition.

Then, we consider two-dimensional fermionic CFT or the theory of free fermions. We will find that
this is an appropriate theory to describe the scaling limit of the 2d Ising model at critical temperature. The
exact rigorous proofs of the conformal invariance of scaling limit of critical lattice models was missing until
recently. Smirnov’s results provide the proof of the conformal invariance and convergence of boundaries to
some mathematical objects, SLE curves. In this direction, we study the fermionic conformal field theory,
which describe the scaling limit of critical Ising model, and its relations to the SLE3 curves as the interfaces
appearing in the scaling limit of the Ising model at critical temperature.

4.1 FREE FERMIONS/S-HOLOMORPHICITY CORRESPONDENCE

In this section we present our main results of studies about Ising free fermions and s-holomorphic functions,
[HKZ12]. We will observe that the fermion operators and s-holomorphic functions have similar behavior
and properties. For instance, they both have the same row-to-row propagation and the same spectra etc.
Moreover, there are close relations between fermion correlations and parafermionic observables. All of these
results generalize to the case of massive s-holomorphic functions and Ising model transfer matrix outside of
the critical temperature.

Furthermore, we have obtained some results such as i) proof of Pfaffian formula for (massive) s-holomorphic
functions by using the easy and powerful method of Wick’s formula for multi-point fermions correlations,
ii) extension of the definition of fermion operator to the midpoint of vertical edges by using the definition of
s-holomorphicity and iii) an algebraic construction of rigorous scaling limit of transfer matrix.

4.1.1 LOCAL RELATIONS, PROPAGATIONS AND SPECTRA

AN EXTENSION OF THE FERMION OPERATOR TO HALF-INTEGER ROWS

In previous sections, we have defined fermion operators ψ(z) and ψ̄(z), acting on the fermionic Fock space,
at z, mid-points of horizontal edges. However, we can extend this definition uniquely in such a way that
fermion operators take value on mid-points of vertical edges as well. As we have seen, s-holomorphic func-
tions are defined on mid-points of all edges including vertical and horizontal. The extensions satisfy linear
relations among neighboring midpoints of edges in the bulk with coefficients that coincide with the defin-
ing relations of s-holomorphicity. Moreover, the extensions satisfy linear relations at midpoints of bound-
ary edges with coefficients that coincide with the boundary relations defining the discrete Riemann-Hilbert
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boundary value problem. Notice that, in general using massive s-holomorphicity leads to a temperature
dependent definition. It can be seen from local relations of fermions.

LOCAL RELATIONS OF FERMIONS

For the first time, the linear equations between lattice fermions were found for the Ising model in [DoPo88].
In our study, we found that the pair of Ising fermion operators ψ(z) and ψ̄(z̄) form a complexified operator-
valued s-holomorphic function solving the Riemann-Hilbert boundary value problem. In the following, two
precise formulations of this result are given in terms of local relations and the propagation of values of
functions from one row to the next.

From the s-holomorphicity conditions (131) and (132), in the massive as well as massless case, we can
essentially find the local relations between fermions as follow;

ψ(N) + λψ̄(N) = ψ(E) + λψ̄(E) (142)

ψ(N) + λ−1ψ̄(N) = ψ(W ) + λ−1ψ̄(W )

ψ(S) + λ3ψ̄(S) = ψ(E) + λ3ψ̄(E)

ψ(S) + λ−3ψ̄(S) = ψ(W ) + λ−3ψ̄(W ),

and

τψ(N)− ψ̄(N) = λ3ψ(E) + τλψ̄(E) (143)

ψ(N)− τψ̄(N) = τλ−3ψ(W ) + λ−1ψ̄(W )

ψ(S) + τψ̄(S) = τλ−3ψ(E) + λ3ψ̄(E)

τψ(S) + ψ̄(S) = λ3ψ(W ) + τλ−3ψ̄(W ),

where λ and τ are defined in section (3.2.1). Furthermore, there are local relations for the fermions on the
left and right boundaries

ψ(a+ im) + iψ̄(a+ im) = 0, ψ(b+ im)− iψ̄(b+ im) = 0, (144)

where a = −M + 1
2 , b = M − 1

2 and for any m. A detailed rigorous proof of the above results are given in
theorem (19) of [HKZ12].

Furthermore, it can be guessed that in principle, there is an appropriate discretization scheme for the
Dirac equation which gives the above results.

ROW-TO-ROW PROPAGATIONS OF FERMIONS AND S-HOLOMORPHIC FUNCTIONS

In the following, first we obtain the propagation of fermions by using the definition of fermion, in terms of
the Clifford algebra generators p and q, and the induced rotations of the Clifford algebra generators. Then,
we obtain the propagation of s-holomorphic functions by using the s-holomorphicity definition. Finally, we
compare the obtained results for propagation of the fermions and s-holomorphic functions.

PROPAGATIONS OF FERMIONS

In this section we state important results, namely the row-to-row propagation of the lattice fermions, theorem
(10) in [HKZ12]. The starting point of the calculation is the definition of time-dependent fermion operators
as follow:

ψ(k + im) = V −mψkV
m, ψ̄(k + im) = V −mψ̄kV

m. (145)
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Then the following relations define the row-to-row propagation,

ψ(k + i(m+ 1)) = V −m−1ψkV
m+1 = T (V )−1ψ(k + im)

= V −1ψ(k + im)V = V −m(V −1ψkV )V m. (146)

The induced rotations of the pk and qk are obtained in lemma in section (3.2) in [HKZ12], from the eqs.
(108) and (109) by using the Taylor series expansion

exp (αX)v exp (−αX) =
∞∑
n=0

αn

n!
[X, ..., [X, v], ...]. (147)

For simplicity in the incoming results, we will use the following short hands for the values of hyperbolic
functions

c = cosh(β), s = sinh(β),

C = cosh(2β) = c2 + s2, S = sinh(2β) = 2cs,

and

c∗ = cosh(β∗), s∗ = sinh(β∗),

C∗ = cosh(2β∗), S∗ = sinh(2β∗).

We collect the useful formulas for induced rotation of p and q in the bulk and the boundary of the lattice, see
section (3.2) in [HKZ12].

The action of Vi on boundaries:
Vip−M− 1

2
V −1
i = p−M− 1

2
,

ViqM+ 1
2
V −1
i = qM+ 1

2
,

for i = 1, 2.
The action of V1 in bulk:

V1qlV
−1

1 = Cql − iSpl,

V1plV
−1

1 = iSql + Cpl,

for l = −M + 1
2 , ...,M −

1
2 .

The action of V2 in bulk:
V2q−M+ 1

2
V −1

2 = q−M+ 1
2
,

V2pM− 1
2
V −1

2 = pM− 1
2
.

And finally for l = −M + 1
2 , ...,M −

3
2 :

V2ql+1V
−1

2 = iS∗pl + C∗ql+1,

V2plV
−1

2 = C∗pl − iS∗ql+1.
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Figure 2: Bulk propagation of fermions

BULK PROPAGATIONS

The induced rotation of the pk and qk in the bulk of the lattice can be easily calculated as follow:

V −1pkV = V
−1/2

1 V −1
2 V

−1/2
1 pkV

1/2
1 V2V

1/2
1

= C∗Cpk − iC∗Sqk + iS∗c2qk+1 −
1

2
pk+1 −

1

2
pk−1 + iS∗s2qk−1,

(148)

and

V −1qkV = V
−1/2

1 V −1
2 V

−1/2
1 qkV

1/2
1 V2V

1/2
1

= C∗Cqk + iC∗Spk −
1

2
qk+1 − iS∗s2pk+1 − iS∗c2pk−1 −

1

2
qk−1.

(149)

Then by using the definition ψk = Aψ(qk + pk) and the induced rotations of the pk and qk in the bulk of
the lattice in eqs. (148) and (149) we obtain the induced rotation for the fermion operator in the bulk of the
lattice at arbitrary temperature, see fig (2),

V −1ψkV = C∗Cψk +

(
−1

2
− i

2
S∗
)
ψk−1 +

(
−1

2
+

i

2
S∗
)
ψk+1

+
Aψ
Aψ̄

(
iC∗Sψ̄k −

i

2
S∗Cψ̄k−1 −

i

2
S∗Cψ̄k+1

)
. (150)

At the critical temperature or equivalently for massless fermion we obtain

V −1ψkV = 2ψk +
−i− 1

2
ψk−1 +

i− 1

2
ψk+1

+
Aψ
Aψ̄

(√
2iψ̄k −

i√
2
ψ̄k−1 −

i√
2
ψ̄k+1

)
. (151)

Similarly, we can obtain the propagation of fermions on the boundaries of lattice.
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Figure 3: Boundary propagation of fermions

BOUNDARY PROPAGATIONS

On the left and right boundaries we have slightly different induced rotations. For example, on the left
boundary we have

V −1p−M+ 1
2
V = V

−1/2
1 V −1

2 V
−1/2

1 p−M+ 1
2
V

1/2
1 V2V

1/2
1

= (cC∗c+ s2)p−M+ 1
2
− ic(C∗ + 1)sq−M+ 1

2

−cS∗sp−M+ 3
2

+ icS∗cq−M+ 3
2
,

and

V −1q−M+ 1
2
V = V

−1/2
1 V −1

2 V
−1/2

1 q−M+ 1
2
V

1/2
1 V2V

1/2
1

= i(cs+ sC∗c)p−M+ 1
2

+ (c2 + sC∗s)q−M+ 1
2

−isS∗sp−M+ 3
2

+ sS∗cq−M+ 3
2
.

In a similar way to the case of bulk, for the induced rotation of fermion operator on the left boundary in fig.
(3) we obtain

V −1ψ−M+ 1
2
V =

(1 + C∗)C

2
ψ−M+ 1

2
+

(S∗ + i)

2
iψ−M+ 3

2

+
Aψ
Aψ̄

(
(C∗ − 1) + i(S + C)

2
ψ̄−M+ 1

2
− C∗

2
iψ̄−M+ 3

2

)
.

(152)

And at the critical limit, for the massless fermion, this becomes

V −1ψ−M+ 1
2
V = (1 +

1√
2

)ψ−M+ 1
2

+
i− 1

2
ψ−M+ 3

2

+
Aψ
Aψ̄

(
1

2

(
(
√

2− 1) + i(
√

2 + 1)
)
ψ̄−M+ 1

2
− i√

2
ψ̄−M+ 3

2

)
.

(153)

Similarly, for fermions on the right boundary there are similar relations.
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Figure 4: Bulk propagation of s-holomorphic functions

PROPAGATION OF S-HOLOMORPHIC FUNCTIONS

Having introduced the s-holomorphic functions, we discuss the concept of propagation of these functions
which is defined based on the s-holomorphicity local relations. Consider the restrictions of an s-holomorphic
function to one horizontal line, then by propagation we mean how the values of the function change from
one line to the next. In the case of a rectangle ΛM,N , we call it “row-to-row propagation”. The space of
possible values in one row of ΛM,N is denoted by

SM (row) = C[[−M,M ]]∗ ,

where [[−M,M ]]∗ and [[−M,M ]] denote the half-integer and integer interval from−M to M , respectively.
For example in the row m ∈ [[−N,N ]], the fm ∈ SM (row) is determined by

fm(k) = F (k + im), k ∈ [[−M,M ]]∗.

We will define an R-linear operation, P : SM (row)→ SM (row) such that the s-holomorphic functions
with Riemann-Hilbert boundary values, fm+1, are determined by

fm+1 = P fm.

The spectrum and eigenvectors of the operator P , are intimately related to the asymptotics of s-holomorphic
functions since

F (k + im) = (Pm f0) (k).

For further details see section (2.4) in [HKZ12].

BULK PROPAGATION

Let us consider the propagation of s-holomorphic functions in the bulk of the lattice as demonstrated in fig.
(4). To write down explicit formulas for F (t) in terms of F (l) and F (r), and then for F (l) and F (r) in
terms of F (a), F (b), F (c), one solves the linear systems given by the defining eqs. (131) and (132). The
final expression for the row-to-row propagation of the massive s-holomorphic function can be obtained as

F (t) =
−1− iS∗

2
F (a) + C∗C F (b) +

−1 + iS∗

2
F (c)

+
C∗

2
F (a)− CF (b) +

C∗

2
F (c).

At the critical point β = βc this becomes

F (t) =
λ−3

√
2
F (a) + 2F (b) +

λ3

√
2
F (c) +

1√
2
F (a)−

√
2 F (b) +

1√
2
F (c).

48



 

          

          

          

          

          

          

b c b a 

t 

r l 

t 

r l 

Figure 5: Boundary propagation of s-holomorphic functions

BOUNDARY PROPAGATION

On the boundary of the rectangle, the row-to-row propagation of s-holomorphic functions is not determined
only by s-holomorphicity relations, but we also need to consider the boundary conditions as it is defined in
Riemann-Hilbert boundary value problem.

For example let us consider the left boundary demonstrated in fig. (5). The row-to-row propagation for
the left boundary is the expression for F (t) in terms of F (b) and F (c) as follow:

F (t) =
(1 + C∗)C

2
F (b) +

−1 + iS∗

2
F (c)

+
−(1 + C∗)S + i(C∗ − 1)

2
F (b) +

C∗

2
F (c).

At critical point β = βc this becomes

F (t) =

(
1 +

1√
2

)
F (b) +

λ3

√
2
F (c) +

(
λ3 +

λ−3

√
2

)
F (b) +

1√
2
F (c).

The explicit form of the operator P in massive and massless cases are given in lemma (6) in [HKZ12].
We observe that the row-to-row propagations of s-holomorphic functions are closely related to the prop-

agations of fermions by the action of induced rotation of the transfer matrix.
In the following we present the main results of this part, theorem (10) and theorem (18) in [HKZ12].

The theorems are proved rigorously in the paper and can be summarized as follow. In the Ising model on
rectangular lattice with plus or minus boundary conditions and with the choice Aψ

Aψ̄
= i, the row-to-row

propagations of the free massive fermions, obtained from conjugations by the transfer matrix in this section,
become the complexification of row-to-row propagation of the massive s-holomorphic functions, PC, that
satisfy massive s-holomorphicity conditions as well as Riemann boundary conditions. Especially, there exist
a linear isomorphism ρ : (C2)[[−M,M ]]∗ →WM such that

T (VM ) = ρ ◦ PC ◦ ρ−1. (154)

In another words, a complexification of the space SM (row) of values of functions in a row can be identified
with the space of first order elements of the Clifford algebra. At β = βc, the complexification of the row-
to-row propagation of s-holomorphic solutions to the Riemann-Hilbert boundary value problem becomes
row-to-row propagations of free massless fermions.

SPECTRUM OF PROPAGATION

It can be shown analytically that the operator P implementing the row-to-row propagation of s-holomorphic
solutions of the Riemann-Hilbert boundary value problem is diagonalizable with positive eigenvalues, Λ,Λ−1

and Λ 6= 1, proposition (7) in [HKZ12].
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Let us briefly summarize the Bethe ansatz approach in the analysis of the eigenvectors and eigenvalues of

the induced rotation of the transfer matrix T (VM )|WM
= TM = T (V

1
2

1 )T (V2)T (V
1
2

1 ), [Pal07]. First, let us
define the spectral parameter z = |z|eiω and ϕi(ω) := arg eiω−αi

1−αieiω
, where α1 = e2(β−β∗) = (C∗−S∗)(C +

S) and α2 = e2(β+β∗) = (C∗ + S∗)(C + S).
Theorem (Theorem (1.2.2) in [Pal07]): Suppose that α1 > 1, T < Tc. Then, the spectrum of TM

consists of 4M distinct values e±γn for n = 1, 2, ..., 2M , where γn = γ(eiωn) and γ(z) ≥ 0 is given by

cosh γ(z) = C∗C − S∗S z + z−1

2
, (155)

and ωn is the positive root of

2Mω − nπ =
ϕ1(ω) + ϕ2(ω)

2
, (156)

lying between 0 an π. This is obtained from the eigenvalue equation

z4M =
z − α1

1− α1z

z − α2

1− α2z
. (157)

Moreover, the eigenvector, S1-valued function v(z), satisfies[
cosh γ v sinh γ
v̄ sinh γ cosh γ

][
±v
1

]
= e±γ

[
±v
1

]
, (158)

v(z) sinh γ(z) = i

(
S∗C − C∗S z + z−1

2

)
. (159)

Furthermore, it is shown that
cosh γ(eiω) ≥ cosh(2β − 2β∗) > 1. (160)

We have explicitly checked that the eigenvalues and eigenvectors of operator P both coincide with the results
of the analysis of the Ising model spectrum in [Pal07].

4.1.2 PARAFERMIONIC OBSERVABLES AND FERMIONS CORRELATION FUNCTIONS

Particular correlation functions of the fermion operators reproduce the s-holomorphic observables that are
used in the recent rigorous approaches to the conformal invariance of the Ising model. Precisely, case by case
it can be proved that the various s-holomorphic observables are consistently related to the low-temperature
expansion of the fermion, fermion-antifermion and spin-fermion correlations. Furthermore, for any n-point
fermion correlation function there is a corresponding parafermionic observable, chapter (4) in [HKZ12]. In
the following first we derive the graphical expansions of the fermionic correlation functions and then we
compare the obtained results with the parafermionic observables. This equivalency between the fermionic
correlation functions and parafermionic observables provides a concrete and explicit connection between
the standard physical results in Ising model and the new rigorous method of s-holomorphic observables in
mathematical studies of Ising model.

LOW TEMPERATURE EXPANSIONS FOR FERMIONS

In the low-temperature expansion, each configuration includes collections of spins up and down in different
regions with some edges surrounding those regions such as loops. Moreover, in correlation functions, there
are also operators such as spin or fermion inserted on the lattice vertices or midpoints of edges. The paths
start at fermion insertion move along interfaces and end at another fermion insertion points. The fermion

50



a
+ + + − − −

+ + + − + −

+ + − − − −

+ + + + − −

− −+ − − +

+ − − + + −

+ + + + − −

− − + + − −

− − − − − −

− − + + − −

− − − − − −

σ′m

σm

ψ(z)

Figure 6: One-point fermion correlation function I

operator is located either on the boundaries or in the bulk. Depending on the correlation functions, the
configurations include different operators and they have different graphical representations.

Having introduced the low-temperature expansion in Ising model, in the following, the low tempera-
ture expansions for single and multi-point correlation functions such as fermion, fermion-antifermion, spin-
fermion and higher point correlation functions at critical temperature are obtained.

EXPANSIONS OF ONE-POINT AND TWO-POINT FERMION CORRELATIONS

In the first part of this section, we define the low-temperature expansion of a single fermion correlation
function with an specific boundary conditions, with one boundary change which means that at one point on
the lower boundary of the lattice, the sign of the spin changes. Let us define the states, |++ >= V N |e−N(+) >

,< + + | =< eN(+)|V
N and e(+) is the vector corresponding to a (+) row configuration at an arbitrary row

in which all the spins are plus. All the other states such as | + − > are defined similarly. We describe the
correlation function < − − |ψ(z)| + − > /Z, where z is on the discrete complex plane, z = k + im, and
the normalization factor is Z =< + + |+ + >.

Let start by one-point fermion correlation function which is written in a series expansion as follow

< −− |ψ(k + im)|+− >=
∑

σi∈CΛ(row)

Vσ−N+1,+−Vσ−N+2,σ−N+1 ...

Vσm,σm−1ψkσ′m,σm
Vσm+1,σ′m ...

VσN−1,σN−2V−−,σN−1 , (161)

where the sum is over all possible row configurations σi ∈ CΛ(row) and i = −N + 1, ..., N − 1.
Our claim is that the above equation, can be written as following expression (up to a multiplicative

constant) which is based on graphical representation, see figs. (6) and (7),

< −− |ψ(k + im)|+− >= c
∑
σ∈Cψ

αL(σ)
c Aψ(−1)(1 + ηzi)(−1)Lz(σ), (162)
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Figure 7: One-point fermion correlation function II

where the sum is over collections of dual edges in all configurations σ ∈ Cψ with one fermion operator
insertion, consisting of loops and a path from a boundary point to the fermion insertion point z, αc =
e−2βc =

√
2 − 1, L(σ) is the number of the edges in a configuration σ, Lz(σ) is the number of the vertical

edges in row m on the right hand side of the z in the configuration σ, ηz is +1 or −1 according to two
different possibilities in picture; a path can end at fermion insertion either from above (−1) or from below
(+1). This result is one of the important results of this thesis. Therefore, we will give a detailed proof of
that. The proof is based on graphical representation. Let prescribe definite rules for graphical representation
of the expansion of fermions correlation functions.

For any given configuration, we draw edges on the dual graph which follow these rules: 1) draw a vertical
edge between each two subsequent sites with opposite spins and 2) start from the right hand side of each
row, draw a horizontal edge when the parity of vertical edges changes. In other words, the term in the sum
is non-zero when all boundary spins agree for the each V , i.e.

−1 = (σ−N+1)M = · · · = (σN−1)M = (σ′N−m)M

+1 = (σ−N+1)−M = · · · = (σN−m)−M

−1 = (σ′N−m)−M = (σN−m+1)−M = · · · = (σN−1)−M ,

where (σi)j represents the spin on the j − th column of the i− th row of the lattice. Let us represent such a
matrix element pictorially by drawing in row r a vertical line at between any j and j+ 1 with opposite spins,
(σr)j 6= (σr)j+1 and between rows r and r+ 1 a horizontal line at position j if (σr)j 6= (σr+1)j . Moreover,
at vertical position m we split things in an upper and lower half, and in the upper half use σ′m instead, and in
the top and bottom rows we only use half a row. Note that the parity of lines coming to each point is even,
with the exceptions of the boundary point k′ − iN where the boundary spin changes, and the point k + im,
where we inserted the fermion. Following these rules, in any configuration or picture, V1’s count the number
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of horizontal edges, Lh, in picture and we have

(V1)σi,σ′i = δσi,σ′i exp

β M−1∑
j=−M

σjσj+1


= δσi,σ′i exp (2Mβ) exp (−2βLh).

In a similar fashion, one can show that V2’s count the number of vertical edges, Lv, in the picture, and we
have

(V2)σi,σi+1 = exp ((2M + 1)β) exp (−2βLv).

Therefore, at critical temperature, using the relation, αc = exp (−2βc), we find that, the V factors in low-
temperature expansion of fermion correlation functions give rise to the factor αLc where L = Lv + Lh.

The second part of the proof is based on derivation of the contribution of ψkσ′m,σm factor in low-
temperature expansion. Using the relation, ψk = Aψ(pk + qk), and spin representations of pk and qk in
eqs. (101) and (102) we obtain

ψk =

[
0 1
1 0

]
⊗ ...⊗

[
0 1
1 0

]
⊗
(
Aψ

[
0 −i
i 0

]
+Aψ

[
1 0
0 −1

])
⊗ 1⊗ ...⊗ 1.

Using this representation, we observe that the matrix element
< σ′m|ψk|σm > is non-zero only if{

(σ′m)j = −(σm)j for j < k

(σ′m)j = (σm)j for j > k
,

where j is the column index. As we mentioned, in order to derive the contribution of ψkσ′m,σm in graphical
representation, we use the relation ψk = Aψ(pk + qk), and representations of pk and qk. First, notice that
there is a vertical edge ending at the mid-point k, because fermion operator ψk change the signs of spins on
left of its insertion point k and keep the signs of spins on right of its insertion point k. Therefore, there is a
vertical edge ending at point k either from above or from below. Also notice that when we have a vertical
edge from below, then there is a change of spin signs at k in row configuration σm = emσ , see fig. (7),
and when we have a vertical edge from above, then there is no change of spin signs at column k in σm,
see fig. (6). Then, we calculate explicitly the action of pk and qk on a row configuration by using the spin
representations of pk and qk. Let us calculate complex factors of the whole expression. If there is a spin up
(down) in the right hand side of k, in k + 1

2 , then pk gives the (+1) factor for spin up and (−1) factor for
spin down. Similarly, qk gives (+i) for spin up and (−i) for spin down located in the left hand side of k, in
k − 1

2 . If we fix minus spins on the right boundary, it is not difficult to see that the actions of pk and qk on a
row configuration give (−1)(−1)Lz and (ηzi)(−1)(−1)Lz factors, respectively. Finally, we can obtain that
the factor from the matrix elements of ψk is

(ψk)σ′m,σm = Aψ (−1)(−1)Lz (1 + ηzi) = Aψ (−1)(−1)Lz (1 + i)ηz .

These arguments lead to the eq. (162).
After introducing the one-point fermion correlation functions, it would be natural to ask about higher-

point fermion correlation functions and also spin-fermion correlation functions.
Consider two-point fermion-fermion correlation functions and its expansion. Similar to expansion of

fermion correlation function, we have following expression which is based on graphical representation of
the low-temperature expansion,

< + + |ψ(k + im)ψ(k′ + im′)|+ + >= c
∑
σ∈Cψψ

αL(σ)
c A2

ψ(1 + ηzi)(−1)Lz(σ)

(1 + ηz′ i)(−1)Lz′ (σ). (163)
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where the sum is over collections of dual edges in all configurations σ ∈ Cψψ̄ with plus boundary conditions
and two fermion operators insertions, these configurations consist of loops and a path between z = k + im
and z′ = k′ + im′ and L(σ), Lz(σ) and Lz′(σ) are defined in a similar way as above.

Similar calculations for fermion-antifermion correlations, lead to

< + + |ψ(k + im)ψ̄(k′ + im′)|+ + >= c
∑
σ∈Cψψ̄

αL(σ)
c AψAψ̄(1 + ηzi)(−1)Lz(σ)

(1− ηz′ i)(−1)Lz′(σ) , (164)

As a remark, notice that one-point fermion correlation functions can be considered as an special case
of the two-point correlation functions, because the one-point correlation functions with the boundary state
which has one boundary change can be seen as the two-point correlation functions when one of the fermion
operators is inserted on the boundary state in the bottom of the lattice.

EXPANSIONS OF MULTI-POINT FERMION CORRELATIONS AND WICK’S FORMULA

The above results of two-point correlation functions can be generalized straightforwardly. The general idea
of this section is that any 2n−point correlation functions of the fermions and anti-fermions can be reduced
to the sum of the products of the two-point correlation functions by using the lattice version of the Wick’s
formula.

The low temperature expansion for the 2n−point fermion correlation functions is a straightforward gen-
eralization of the two-point results,

< + + |ψ(z1)...ψ(z2n)|+ + >= c
∑

σ∈Cψ2n

αL(σ)
c A2n

ψ

2n∏
j=1

(1 + ηj i)(−1)Lzj (σ), (165)

where the sum is over collections of dual edges in all configurations σ ∈ Cψ2n with 2n fermion operators
insertions, consisting of loops and n paths between any two fermions and ηj = ±1 depending on the choice,
starting or ending at point zj either from above or below.

In general, one can obtain a Pfaffian formula for 2n-point correlation functions of fermions ψ, as follow

1

Z
< + + |ψ(z1)...ψ(z2n)|+ + >= Pf

([
1

Z
< + + |ψ(zi)ψ(zj)|+ + >

]2n

i,j=1

)
, (166)

where Z =< ++|++ >. Here we give a physical justification and sketch the proof of Pfaffian formula. The
proofs of the Pfaffian formula or lattice fermionic Wick’s formula is based on a special choice of isotropic
splitting of the Fock space. In simple words, we define our polarization of the Fock space in such a way
that the | + + > state is the vacuum of the lattice theory meaning that it is annihilated by the annihilation
operator. Then, notice that the fermion operator can be written as a linear expansion of annihilation and
creation operators. The rest of the proof is just the same as the proof of the fermionic Wick’s formula is
quantum field theory. The exact derivation of the above Pfaffian formula is given in the proof of the theorem
(23) in [HKZ12].

EXPANSIONS OF SPIN-FERMION CORRELATIONS

In a similar way, the low-temperature expansion of spin-fermion correlation functions 1
Zσ

< −−|ψ(z)σ̂(z′)|+
− > with Zσ =< + + |σ̂(z′)|+ + > can be obtained as follow:

< −− |ψ(z)σ̂(z′)|+− >=

c
∑
σ∈Cψσ̂

αL(σ)
c Aψ(1 + ηzi)(−1)Lz(σ)(−1)Lz′ (σ), (167)
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where the sum is over collections of dual edges in all configurations σ ∈ Cψσ̂ with one fermion and one
spin operators insertions, consisting of loops surrounding spin operator etc. and a path between a point on
the boundary to the fermion insertion point z, a midpoint of horizontal edge, ηz = ±1 respectively in the
cases that the path starting from the boundary point ends at fermion from above or below, z′ is a point on a
vertices of the lattice and Lz′(σ) is the number of vertical edges on the right hand side of the point z′ in the
same row. In order to prove this expression, we need to evaluate the contribution of σ̂(z′) in low-temperature
expansion. It is easy to see that the contribution of spin operator is (−1)(−1)Lz′ (σ) factor. Moreover, from
previous sections, it is clear that the contribution of fermion ψ(z) is the (−1)(1 + ηzi)(−1)Lz(σ).

The spin-fermion correlation functions can be easily generalized to spin-fermion correlation functions
with arbitrary number of spin operators

< −− |ψ(z)
S∏
s=1

σ̂(z′s)|+− >= c
∑

σ∈Cψσ̂s
αL(σ)
c Aψ(−1)(1 + ηzi)(−1)Lz(σ)

S∏
s=1

(−1)(−1)
Lz′s

(σ)
. (168)

where the sum is over collections of dual edges in all configurations σ ∈ Cψσ̂s with one fermion operator and
S spin operators insertions, consisting of loops and a path between a point on the boundary to the fermion
insertion point z, a midpoint of horizontal edge, ηz = ±1 is defined as above, z′s is a point on a vertices of
the lattice and Lz′s(σ) is the number of vertical edges on the right hand side of point z′s in the same row.

In the following we describe the relations between the definitions and properties of the fermions and their
correlation functions to rigorously defined mathematical objects, s-holomorphic functions and parafermionic
observables.

SMIRNOV OBSERVABLES & ONE-POINT FERMION CORRELATIONS

The s-holomorphic winding observable of Smirnov, [Smi06], is crucial in the proof of convergence of Ising
spin-interfaces to chordal SLE3, and in fact it is the low temperature expansion of a one-point correlation
function of the fermion ψ with one boundary change at the bottom boundary. However, s-holomorphic
observables generalize this low-temperature expansion to different domains.

By comparing the formulas (162) and (133), it is the matter of combinatorics to find the relation between
the one-point fermion correlations at critical temperature and s-holomorphic observables of Smirnov Fa(z)
as

1

Z
< −− |ψ(z)|+− >=

√
2λ3AψFa(z), (169)

where Z =< + + |+ + > is the partition function.
Sketch of the proof. Comparing two expressions (162) and (133), one can match the complex factors in

two equations. On the one hand, the fermion contribution in the low-temperature expansion of< −−|ψ(z)|+
− > is the factor

√
2Aψ(−1)ληz(−1)Lz(σ). On the other hand, complex factor in Smirnov observable

Fa(z) is e
−i
2
w(σ). It is basically a matter of combinatorics to check that (−1)ληz(−1)Lz(σ) = λ3e

−i
2
w(σ).

Combinatorics in the Smirnov observables consist of all the possibilities that a path starting upward from the
point a and ending at z can have. This includes paths which turn either clock-wise or anti clock-wise and
ending at z either from above or from below. This possibilities make differences in the winding of the paths
and consequently in the computation of the observable and fermion correlation function. In all the cases, the
mentioned equality is checked and is valid.

ENERGY OBSERVABLES & TWO-POINT FERMION CORRELATIONS

The s-holomorphic winding observable of [HoSm10b] is used for the derivation of the scaling limit of energy
density of the critical Ising model. We show that it is a linear combination of two-point correlation functions
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of fermions ψ and ψ̄ with constant boundary conditions. In order to find the relation between fermion-
fermion correlations < + + |ψ(z)ψ(z′)| + + > and the parafermionic observables we have defined s-
holomorphic functions, [HKZ12],

F ↑z′(z) =
1

Z

∑
σ∈C

z′↑

αL(σ)
c e−

i
2

w(z′ z),

F ↓z′(z) =
1

Z

∑
σ∈C

z′↓

αL(σ)
c e−

i
2

w(z′ z), (170)

where in F ↑z′(z) (F ↓z′(z)) the paths starts at z′ upward (downward).
In a slightly different notation, it has been shown in theorem (22) in [HKZ12] that the relations between

two-point fermion correlations and the defined energy-density observables are

1

Z
< + + |ψ(z)ψ̄(z′)|+ + >= 2iAψAψ̄(F ↑z′(z) + F ↓z′(z)), (171)

and
1

Z
< + + |ψ(z)ψ(z′)|+ + >= 2A2

ψ(F ↑z′(z)− F
↓
z′(z)). (172)

For completeness of this part we sketch the proof of the above results. In order to calculate for example the
fermion-fermion correlations < + + |ψ(z)ψ(z′)|+ + > in terms of s-holomorphic observables we have to
slightly change the derivation presented in previous part. The difference lies in the fact that in the fermion-
fermion correlations there is no preferred direction for paths between z and z′, because we have fermions at
both z and z′. Therefore, we have to make a choice. We assume that all the paths starts at z′ and ends at
z. With this assumption we can compare the fermion-fermion correlations with the s-holomorphic functions
defined above.

Let us start with fermion-antifermion correlation function. In fact, we can imagine that the configurations
which have paths starting at ψ̄(z′) from above and ending at ψ(z) from either above or below, correspond
to F ↑z′(z). Equivalently, other configurations which have paths starting at ψ̄(z′) from below and ending
at ψ(z) from either above or below, correspond to F ↓z′(z). The equivalency between fermion-antifermion
correlations and energy-density observables can be proved by careful consideration of combinatorial cases.
One can imagine that there is four different possibilities corresponding to four different combinations of
paths starting at ψ̄(z′) from either above or below and ending at ψ(z) from either above or below. Moreover,
each path at z and z′ can turn either clock-wise or anti-clock-wise.

Eventually, by comparing energy density observables expression and low temperature expansion of two-
point correlation functions the equality ie

−i
2
w(z′ z) = ληz(−1)Lz(σ)λ−ηz′ (−1)Lz′ (σ) can be combinatorially

checked separately in each of the four possibilities. Therefore, we obtain eq. (171).
About the fermion-fermion correlation functions, we follow the same graphical approach as in the case of

fermion-antifermion correlations. Using the graphical representations, we compare the four possibilities and
we obtain that the proportionality factor between s-holomorphic observables (F ↑z′(z), F ↓z′(z)) and fermion-
fermion correlation functions, eq. (172).

In general, any combination of multi-point fermion correlation functions of fermions ψ and ψ̄, such as
1
Z < + + |ψ(z1)...ψ(z2m)|+ + > is related to a multi-point observable F (zη1

1 , ..., z
η2m
2m ) used in [Hon10a]

to derive energy correlations and boundary spin correlations.

SPINOR OBSERVABLES & SPIN-FERMION CORRELATIONS

Briefly stating, we obtained that the multi-valued s-holomorphic branching observables introduced in [ChIz11]
and used in [CHI12] to prove conformal invariance of spin correlations, coincide with correlation functions
of ψ, ψ̄ and σ̂, when an appropriate branch cut is used.
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In the low-temperature expansion of spin-fermion correlations on a simply connected domain, we have
two different kinds of configurations, first those which the path from a to z, fermion insertion point, crosses
the row m′ in the right hand side of z′, spin insertion point, in odd number of times and second those which
the path crosses even number of times. Thus, the spin-fermion correlation function can be written as

< −− |ψ(z)σ̂(z′)|+− >= c
∑
σ∈Cψσ̂

αL(σ)
c Aψ(1 + ηzi)(−1)Lz(σ)(−1)lz′ (σ)(−1)Ic(σ), (173)

where lz′(σ) is the number of loops surrounding z′ and Ic(σ) is the indicator of crossing:

Ic(σ) =

{
0 if the path crosses even times
1 if the path crosses odd times

. (174)

This expression can be compared with the spinor observable in section (3.2.2). Similar to the previous cases,
the fermion contribution in eqs. (167) or (173) leads to the winding term in eq. (139), modulo a complex
factor. The spin contribution in both equations is the same and thus we obtain the relation between spin-
fermion correlation functions and spinor observables as

1

Zσ
< −− |ψ(z)σ̂(z′)|+− >= −

√
2λ3AψF

spinor
a (z, z′), (175)

where Zσ =< + + |σ̂(z′)| + + > is the partition function in this case. We also observe that the spinor
observables and fermion operators have the similar behavior at spin insertion.

PROOF OF THE PFAFFIAN FORMULA BY WICK’S FORMULA

The Pfaffian formula for the multi-point s-holomorphic functions can be proved by Riemann-Hilbert bound-
ary value problem method [Hon10a]. Although, difficult combinatorial machinery has been used in the proof
and moreover, for the case of massive s-holomorphic functions the proof is not known. However, by using
the Wick’s formula for fermion correlation functions and the fact that the multi-point correlation functions
of fermions are linear combinations of multi-point s-holomorphic functions, we obtained easily the proof of
the Pfaffian formulas for multi-point s-holomorphic functions in massless and massive cases, sections (4.4)
and (4.5) in [HKZ12].

OPERATORS ON CAUCHY DATA SPACES

In section (5) in [HKZ12], we have constructed an algebraic framework which presents the geometric in-
formation of the domain in terms of an operator, called Poincaré Steklov operator. The scaling limit of this
operator is well defined and therefore this can be considered as a starting point for an algebraic construction
of rigorous scaling limit of the quantum states of the Ising model in s-holomorphic terms. The final goal
would be a rigorous construction of well-defined quantum field theory for Ising model.
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4.2 CHORDAL SCHRAMM-LOEWNER EVOLUTION WITH κ = 3 AND SCALING LIMIT OF
ISING FREE FERMIONS

In this part, we summarize our results about the correspondence between fermionic CFT and SLE3, [Za13].
The main idea is to construct a quantum field theory of Ising model which is a fermionic conformal field
theory and study the relation between CFT and SLE3 of the Ising model in an explicit manner. Consider
the Ising model on a simply connected domain with boundaries. Assume plus/minus boundary conditions
on the domain. Therefore, there are two boundary condition changing points on the boundary. At critical
temperature the bulk of the lattice is divided into clusters with either plus or minus spins and a discrete path
connecting two boundary points. In the scaling limit, when the lattice mesh tends to zero, these clusters
are separated by random curves which we call them domain walls or interfaces, for a recent lecture on the
subject see [Kon03]. Furthermore, a path starting at a marked point a on the boundary and separating minus
spins from plus spins in the bulk of the domain will end at another boundary marked point b. This path is a
random curve characterized by SLE curves.

The scaling limit of the Ising lattice interface is proved to be conformally invariant object and it is the
Schramm-Loewner evolution, SLE3, [CDHKS12]. Moreover, it has been shown in [Hon10a] that the scaling
limit of the Ising model operators such as fermion etc. and their correlation functions converges to the free
fermionic field theory, a CFT. This is a CFT with central charge c = 1/2 consisting of fermionic Fock space
fields. In addition to Virasoro algebra, they respect also the Clifford algebra symmetry

The results that we are going to summarize consist of first, rigorous construction of the CFT for the
scaling limit of the Ising fermions on bounded domains and second, a new explicit and rigorous realization
and formulation of the known CFT/SLE correspondence in the case of Ising model. The heart of this part is
the theorem that connects the VOA (as the Fock space of states) to the correlation functions of Fock space
fields in domain D. This theorem is used to state rigorously the known results of CFT/SLE correspondence.
We start with the definition of lattice fermion correlation functions in transfer matrix formalism. Then, by
using the rigorous methods of discrete holomorphicity we find the scaling limit of the Ising fermion corre-
lation functions on the half plane as well as any other domain. Following these result, the Fock space of
fermionic states and fields, the operator product expansion, differential equations of the correlation func-
tions in the conformal field theory can be constructed explicitly by using algebraic and analytic techniques.
Our construction of the fermionic CFT is similar to the construction of CFT for Gaussian free fields in
[KaMa11]. Then, the relation between fermionic CFT and SLE3 is investigated, via an approach introduced
in [BaBe06], at two levels: 1) the operator formalism in which we have the explicit form of the martingale
generators in terms of Clifford vertex operator algebra and 2) the fermionic CFT correlation functions which
are related to SLE3 partition functions and martingale observables.

4.2.1 ISING FERMIONIC CFT ON BOUNDED DOMAINS

In the Ising model, the lattice correlation functions of fermions can be defined and calculated by using the
transfer matrix method as introduced in eq. (98). We define the two-point fermionic correlation functions as
the scaling limit of the two-point lattice correlation functions of fermions

lim
δ→0

1

δ
< + + |ψ(z)ψ(z′)|+ + >=< ψ(z)ψ(z′) >Rectangle, (176)

where δ is the lattice mesh size and the limit is taken such that the length of the rectangle is kept fixed, the
state | + + > is defined in the paragraph "expansions of one-point and two-point fermion correlations" in
section (4.1.2), in the left hand side of the above equation z = k + im and ψ(z) = V −mM ψkV

m
M . Next step

of the study is towards the scaling limit of the lattice correlation functions by using the methods of discrete
holomorphicity. We summarize the results of our study about the free fermionic conformal field theories on
bounded domains such as upper-half plane H.
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The two-point correlation functions of fermions on the upper-half plane are obtained rigorously by using
first the relation between lattice correlation functions and s-holomorphic observables, found in [HKZ12] and
second by discrete holomorphicity techniques that control the scaling limit of the s-holomorphic observables
introduced in [HoSm10b] and [Hon10a]. For further descriptions of the derivations see section (2.3) in
[Za13],

< ψ(z)ψ(w) >H=
1

z − w
, < ψ̄(z̄)ψ̄(w̄) >H=

1

z̄ − w̄
, < ψ(z)ψ̄(w̄) >H=

1

z − w̄
. (177)

In the following, we will use these results to check the characteristics and properties of fermionic CFT in
an explicit and rigorous way similar to the introduced approach for Gaussian free fields in [KaMa11]. For
further descriptions of the following results see sections (3.3)-(3.5) in [Za13]. The two-point correlation
results can be transformed to any arbitrary domain D by a conformal map g : D → H. In general, in order
to do the transformation of correlation functions, we need to know the transformation rules for primary field
ψ(z) and quasi-primary field T (z) under a domain change, g : D → H,

ψ(z) = g′(z)
1
2ψ(g(z)), T (z) = g′(z)2T (g(z)) +

1

24
Sg(z). (178)

Then, the two-point correlation function of fermions on the domain D becomes

< ψ(z)ψ(w) >D=
g′(z)

1
2 g′(w)

1
2

g(z)− g(w)
. (179)

Furthermore, by using the Taylor expansions of functions g(z) and g′(z) we obtained

< ψ(z)ψ(w) >D=
1

z − w
+

(z − w)

12
Sg(w) + .... (180)

This is an example of a general result which states that the singular part of the OPE of ψ(z) and T (z) are
domain independent.

Given the two-point correlation functions of fermions ψ(z), any 2n-point correlation function on H can
be obtained form the scaling limit of the multi-point lattice correlation as the Pfaffian formula,

< ψ(z1)...ψ(z2n) >H= Pf

([
1

zi − zj

]2n

i,j=1

)
. (181)

Then by eq. (179), the 2n−point correlation function of fermions on domain D is given by

< ψ(z1)...ψ(z2n) >D= Pf

[√g′(zi)√g′(zj)
g(zi)− g(zj)

]2n

i,j=1

 . (182)

It can be explicitly checked that the fermion correlation function on H in the Pfaffian form satisfies the Ward
identity and the null field differential equation

< T (z)ψ(w1)...ψ(wn) >H=

N∑
i=1

[
1/2

(z − wi)2
+

1

z − wi
∂

∂wi

]
< ψ(w1)...ψ(wn) >H, (183)

and [
3

4

∂2

∂z2
−

N∑
i=1

(
1/2

(z − wi)2
+

1

z − wi
∂

∂wi

)]
< ψ(z)ψ(w1)...ψ(wn) >H= 0, (184)
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where ψ(wi) are fermion primary fields with conformal dimension h = 1
2 and ψ(z) is a fermion primary

field degenerate at level two. As we have seen, the null field differential equation plays an important role in
CFT/SLE correspondence.

Moreover, by using the definition of the Virasoro field T (z) = −1
2 : ψ(z)∂zψ(z) :, Wick’s theorem on

domain D and Taylor expansion we found that the operator product expansion of the quasi-primary fields on
the domain D are

ψ(z)ψ(w)|D =
1

(z − w)
+ reg(D),

T (z)ψ(w)|D =
1
2ψ(w)

(z − w)2
+
∂wψ(w)

z − w
+

3

4
∂2
wψ(w) + reg(D),

T (z)T (w)|D =
1/4

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)
+ reg(D), (185)

where reg(D) denotes the terms which do not diverge in the limit z → w.

4.2.2 CLIFFORD VOA AND FERMIONIC CORRELATION FUNCTIONS

In this part, we will present a theorem which is the central result of this section. The known construction
of the Clifford VOA, which is reviewed in sections (3.1) and (3.2) in [Za13], leads to the theorem which
provides an explicit realization of fermionic Fock space of states and its relation to fermionic CFT and SLE3.
As we explained in section (3.2) in [Za13], the fermionic vertex operators are defined by the following formal
power series

ψ(z) =
∑

k∈Z+ 1
2

ψkz
−k− 1

2 , (186)

and
T (z) =

∑
k∈Z

Lkz
−k−2. (187)

where Lk is Virasoro algebra generator. We have introduced a Fock space V of the fermionic states in section
(3.2) in [Za13]. The highest weight vector of the Virasoro algebra is ψ− 1

2
|0 > and basis vectors of the Fock

space V are of the following form ψ−kn− 1
2
ψ−kn−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 > for kn > kn−1 > ... > k2 >

k1 > 0. The fermionic Fock space V =
⊕

d∈ 1
2
N Vd satisfies the vertex operator algebra axioms. This explicit

Fock space of fermionic states in VOA can be used to present a concrete example of algebraic aspects of
CFT/SLE correspondence in the case of Ising model. In order to proceed, by using a collection of results
in CFT in domain D and Clifford VOA, we have proved rigorously the following theorem, in sections (3.2)
and (3.5) in [Za13],

Theorem. There exists a unique mapping from n−th tensor power of V , the Fock space of states in VOA,
to correlation functions of Fock space fields of the CFT in domain D; χ(D)

(z1,...zn)(v1 ⊗ ...⊗ vn) : V ⊗n → C,
such that it satisfies the following properties:

1)

χ
(D)
(z1,...,zn)(ψ ⊗ ...⊗ ψ) = Pf

[√g′(zi)√g′(zj)
g(zi)− g(zj)

]n
i,j=1

 ,

2)

χ
(D)
(z1,...,zn)(v1 ⊗ ...⊗ L−1vi ⊗ ...⊗ vn) =

∂

∂zi
χ

(D)
(z1,...,zn)(v1 ⊗ ...⊗ vn),

3)
χ

(D)
(z1,...,zn)(v1 ⊗ ...⊗ vm ⊗ vm+1 ⊗ ...⊗ vn) =
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N−1∑
j=−∞

1

(zm − zm+1)j+1
χ

(D)
(z1,...,ẑm,zm+1,...,zn)(v1 ⊗ ...⊗ vm ∗j vm+1 ⊗ ...⊗ vn), (188)

where vm ∗j vm+1 is the j−th OPE product in vertex operator algebra. In fact, the theorem provides a
threefold connections between fermionic Fock space of states in VOA, the fermionic Fock space of fields
and their correlators in CFT, and martingale generators and observables in SLE3.

4.2.3 CFT/SLE CORRESPONDENCE: ISING MODEL

In section (2.5) we have discussed the fundamentals of CFT/SLE correspondence. In this part, we briefly
discuss the relation and application of the previous constructions in VOA and CFT to the SLE3. The main
results include the explicit form, fermionic Pfaffian formula, for partition function of the chordal n− SLE3

in section (4.1) in [Za13], explicit algebraic construction of the SLE3 martingale generators in section (4.2)
in [Za13] and SLE3 martingale observables in terms of correlation functions of primary or descendant
fermionic conformal fields in section (4.3) in [Za13].

SLE3 PARTITION FUNCTION AND FERMIONIC PFAFFIAN FORMULA

A partition function of a chordal n−SLE3 can be obtained by considering the insertion of 2n fermion fields
on the 2n boundary points, see CFT/SLE correspondence in [BaBe06]. Then, on the half plane the partition
function is given by the 2n−point correlation function of fermions which has the Pfaffian structure,

ZH
n−SLE3

= χ
(H)
(x1,...,x2n)(ψ ⊗ ...⊗ ψ) =< ψ(x1)...ψ(x2n) >H= Pf([

1

xi − xj
]2ni,j=1). (189)

From the Pfaffian structure of correlation functions one can check thatZH
n−SLE3

is a positive smooth function
which is covariant under Möbius transformation and it satisfies the null differential equation3

4

∂2

∂x2
i

+
∑
l 6=i

[
1

xl − xi
∂

∂xl
− 1/2

(xl − xi)2

]ZH
n−SLE3

= 0. (190)

This partition function can be used to define local martingale for multiple chordal SLE3.

SLE3 MARTINGALE GENERATORS AND CLIFFORD VOA

In order to find an explicit algebraic expression for SLE3 martingale generators in terms of Clifford VOA,
we need to check the level two singular vector condition for the fermionic Fock state ψ− 1

2
|0 >∈ V . As we

observed, the fermion primary field degenerate at level two plays the role of boundary condition changing
operator. Analogously, in the Clifford VOA language, the fermionic vertex operator has to play the same
role. To show this in Clifford VOA language we use the fermionic representation of the Virasoro operator

Lm = −1

2

∑
k∈Z+ 1

2

(k +
m

2
) : ψm+kψ−k : +

1

16
δm, (191)

for m ∈ Z, then by using the relation [Lm, ψk] = −(1
2m+ k)ψm+k, it can be obtained that

(L−2 +
3

4
L2
−1)ψ− 1

2
|0 >= 0, (192)
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which shows that the state ψ− 1
2
|0 > is the highest weight state degenerate at level two. Then, by using the

SLE martingale generator construction in [BaBe03], from eq. (69), the SLE3 martingale generators can be
written explicitly as vector valued local martingales

1

Z
Gftψ− 1

2
|0 >=

∑
d∈ 1

2
N

Md ∈ V̄ , (193)

where Z is chordal SLE3 partition function on the half plane and it is equal to one, V̄ is the completion of
V and for ∀d, t 7→Md(t) is a graded component of the local martingale of the chordal SLE3.

SLE3 MARTINGALE OBSERVABLES AND FERMIONIC CORRELATION FUNCTIONS

By using the theorem in section (4.2.2), we can explicitly construct the general Fock space fields and their
correlation functions from VOA. Therefore, the CFT/SLE correspondence in the case of Ising model can be
realized explicitly at the level of correlation functions via the theorem. Similarly, one can use the differential
equations of correlation functions of primary or descendant fermionic fields on arbitrary domains to obtain
SLE3 martingale observables which satisfy correspondingly an stochastic differential equation with vanish-
ing drift term. It has been shown in section (4.3) in [Za13] that a large collection of the chordal n − SLE3

martingale observables are of the following explicit form

1

ZHtn−SLE3

χ
(Ht)
(x1,...,x2n,z1,...,zm)((ψ⊗...⊗ψ)⊗(v1⊗...⊗vm)) =

1

ZHtn−SLE3

<

2n∏
j=1

ψ(xj)

m∏
i=1

Yi(zi) >Ht , (194)

where Ht is the domain that 2n SLE3 curves are removed from the half plane, ZHtn−SLE3
= χ

(Ht)
(x1,...,x2n)(ψ⊗

... ⊗ ψ) =<
∏2n
j=1 ψ(xj) >Ht , ψ(xj) is primary fermion field degenerate at level two inserted at boundary

point xj and Yi(zi) is an arbitrary Fock space field at point zi, corresponds to vector vi ∈ V . The simplest
case is the case Yi(zi) = ψ(zi) for all i = 1, ...,m. In this case, the proof of the martingale property has
been done rigorously in section (4.3) in [Za13].
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PART II:

5 TRANSPORT PROPERTIES OF OPEN STRINGS AND BLACK HOLE MEM-
BRANE PARADIGM

In this chapter we review the standard subject of bosonic open string and a statistical framework for transport
properties of a highly excited string introduced by Damour and Veneziano, [DaVe00]. Then we explain the
powerful technique of linear response theory. Finally, we briefly review the thermodynamical aspects of the
black holes and the membrane paradigm.

5.1 BOSONIC OPEN STRING THEORY

String theory is a candidate theory for the unification of general relativity and quantum mechanics. This
unification plays an essential role in understanding the fundamental laws of Nature, [BBS07], [GSW87] and
[Pol98]. The string theory consists of one-dimensional extended objects called strings. Size of a fundamental
string is of the order of the planck-length. Although, string theory has its origins in describing strong force
and QCD but it turned out that the theory is capable to construct a quantum theory that unifies the description
of gravity and other fundamental forces of standard model.

In a naive sense, string theory can describe the unification because the strings with different modes of
vibrations at low energies are different particles of matter and forces including gravity and gauge forces in
nature. In spite of all the potentials and powerful mathematical techniques that string theory brings into the
picture, it has rather strange features such as supersymmetry and extra dimensions which are not yet proven
experimentally.

Let us start with a Lagrangian description of the string theory. A string lives on a (d + 1)-dimensional
curved space-time manifoldM with metric gµν(x), (µ, ν = 0, ..., d) and it sweeps a two-dimensional surface,
called world-sheet Σ, during its time evolution in the space-time. The interactions in string theory can be
described in terms of world-sheet topology. Therefore, strings can be described by the local sigma model
action called Polyakov action of the world-sheet,

SP = − 1

4πα′

∫
Σ
dτdσ

√
−γγαβ∂αXµ∂βX

νgµν(X), (195)

where τ and σ are world-sheet coordinates, α′ is a parameter proportional to the inverse of string tension
and it measures the stringy effects, Xµ(σ, τ) : Σ → M are the mappings from the world-sheet coordinates
to background space-time coordinates, γαβ(σ, τ) is the auxiliary world-sheet metric, γ = detγαβ and gµν is
the space-time metric.

There are two types of strings, closed strings and open strings which are topologically, circles and line
intervals, respectively. The boundary conditions for closed strings are periodical in σ and for open strings
there are two possibilities, either they have to satisfy Neumann or Dirichlet boundary conditions.

Polyakov action in the Minkowski space background has specific symmetries:
• Poincaré invariance: invariance under global Poincaré transformations:

δXµ = aµνX
ν + bµ, δγαβ = 0. (196)

• Re-parametrization invariance or diffeomorphisms: invariance under local transformations of the
world-sheet coordinates (σ, τ):

σα → fα(σ) = σ′α, γαβ(σ) =
∂fρ

∂σα
∂f δ

∂σβ
γρδ(σ

′). (197)
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• Weyl invariance: scale invariance of the action under local transformations:

γαβ → eg(σ,τ)γαβ, δXµ = 0, (198)

where g(σ, τ) : Σ→ R is a positive function.
Re-parametrization invariance and Weyl invariance are local transformations, therefore we can make a

choice and gauge-fix the induced metric. For example, we can make the following choice which is called
conformal or unit gauge γαβ = ηαβ = (−1, 1). In this gauge the action becomes

SP =
1

4πα′

∫
dτdσ(ẊµẊν −X ′µX ′ν)gµν(X), (199)

where Ẋµ = ∂Xµ

∂τ and X
′µ = ∂Xµ

∂σ .
The classical equation of motion is derived by taking the variation of the action with respect to Xµ and

it takes the form of wave equations:

∂α∂
αXµ = 0, or (

∂2

∂σ2
− ∂2

∂τ2
)Xµ = 0. (200)

The solution of these equations can be written in a mode expansion. Depending on the imposed boundary
conditions, the form of mode expansion changes, and for example for the Neumann boundary conditions,
X ′µ = 0 at σ = 0, π, it takes the following form:

Xµ(τ, σ) = x̄µ + 2α′pµτ + i
√

2α′
∑

n∈Z\{0}

αµn
n
e−inτ cos(nσ), (201)

where x̄µ is a central mass position, pµ is the total string momentum and αµn are oscillation modes.
The next step is to quantize the free theory of bosonic strings. Canonical quantization of the open strings

leads to the following commutation relations:

[x̄µ, pν ] = iηµν , [αµm, α
ν
n] = mδm+n,0η

µν . (202)

Moreover, there are different approaches in quantization of string theory such as path integral and BRST
quantization, [Pol98].

LIGHT-CONE GAUGE QUANTIZATION AND VIRASORO CONSTRAINTS

The equation of motion for auxiliary field γαβ implies that the world-sheet stress tensor vanishes,

Tαβ = − 4π√
−γ

δSP
δγαβ

= 0. (203)

In the gauge γαβ = ηαβ , the components of the stress tensor are

T01 = T10 = Ẋ ·X ′ = 0, T00 = T11 =
1

4
(Ẋ2 +X ′2) = 0. (204)

The Virasoro constraint for the bosonic string which is obtained from the vanishing of the components of
stress tensor is

(Ẋµ ±X ′µ)2 = 0. (205)

At the classical level, the variations of the action with respect to X and γ give the variational equations,
∂α∂

αXµ = 0, Tαβ = 0. Analyzing these equations leads to the elimination of the two longitudinal vibra-
tions of the X(Σ) and leaving d− 2 transverse directions.
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At the quantum level, the analysis of the constraints can be performed in different ways, such as direct
imposing of the constraints on the physical states of the Fock space. In this approach, the constraints are
imposed as an invariance conditions which select out an invariance subspace of the full Fock space.

Another approach is the method of light-cone gauge quantization. In this approach, the longitudinal
degrees of freedom are eliminated at the classical level by first choosing a gauge in which the oscillation
modes α+

n = 0 and second, solving the longitudinal oscillator α−n in terms of the transverse oscillator by
using the Virasoro constraints. Then, we can quantize the transverse directions. In the light cone gauge, the
negative-norm states are manifestly excluded from the Fock space and thus it is possible to solve explicitly
all the Virasoro conditions instead of imposing them as constraints. However, the Lorentz invariance is not
manifest in the light-cone gauge quantization.

In order to perform light-cone gauge quantization, we use the light-cone coordinates of the space-time

X± ≡ 1√
2

(X0 ±Xd). (206)

The mode expansion of the X± is trivially

X±(τ, σ) = x̄± + 2α′p±τ + i
√

2α′
∑

n∈Z\{0}

α±n
n
e−inτ cos(nσ). (207)

Then, by using the residual gauge freedom of the action, we make a choice and take the non-covariant
light-cone gauge as X+ = x̄+ + 2α′p+τ .

In the light-cone coordinates and by using the light-cone gauge, Virasoro constraint and its mode expan-
sion can be written as

Ẋ− ±X ′− =
1

4α′p+
(Ẋi ±X ′i)2,

α−n =
1√

2α′p+
[
1

2

d−2∑
i=1

∑
m∈Z

: αin−mα
i
m : −δn,0]. (208)

Moreover, the mass shell condition M2 = −pµpµ, can be obtained in terms of the level of the open string
N =

∑∞
i=1 : αi−nαni : where :: is normal order product, the product with annihilation operators to the right.

In fact, by using the αµ0 ≡
√

2α′pµ in the eq. (208), the mass shell condition can be obtained as

M2 =
1

α′
(N − 1). (209)

Finally, from the physical constraints such as non-negative norm states condition, it can be shown that
the bosonic string theory as a quantum theory is consistent only in 26-dimensional space-time. In the spirit
of CFT, it could be helpful to consider the bosonic open string theory on the flat Euclidean spaceM = Rd+1

E .
In this case, the Polyakov action for fixed metric γ defines a CFT of d+ 1 scalar fields Xµ with c = d+ 1.
This is similar to the bosonic CFT that is explained in section (2.3).

5.1.1 STRING THEORY IN A CURVED BACKGROUND

In order to understand the dynamics of the open bosonic string in presence of external fields, we have to
study the general action of the bosonic string with all possible couplings of the string with background
fields. In general, the action is local in its dependence on X and other fields and is chosen to satisfy the
diffeomorphism invariance Diff(Σ), Diff(M) and renormalizability conditions as a QFT. There are only
certain background fields which are consistent with the above conditions and they are background massless
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fields: 1) metric tensor gµν , 2) Kalb-Ramond field or 2-form B-field Bµν ∈ Ω(2)(M) which is an anti-
symmetric tensor field, 3) dilaton field Φ ∈ Ω(0)(M), with non-trivial vacuum expectation values. The
action which include all these couplings is of the following form,

SP =
1

4πα′

∫
Σ
d2σ

[√
−γγαβgµν(X) + εαβBµν(X)

]
∂αX

µ∂βX
ν

+
1

4π

∫
Σ
d2σ
√
−γR(2)Φ(X), (210)

where εαβ is Levi-Civita tensor and R(2) is the scalar curvature of the metric γαβ .
In this study, we only consider a perturbation of the background metric from the flat metric and thus we

set gµν(X) = ηµν + hµν(X), Bµν(X) = 0 and Φ(X) = 0. Therefore, the action can be written in two
separate terms as

SP = S0 + S1,

S0 =
1

4πα′

∫
dτdσ

(
(Ẋµ)2 − (X

′µ)2
)
,

S1 =
1

4πα′

∫
dτdσ(ẊµẊν −X ′µX ′ν)hµν(X). (211)

The response of the bosonic open string and its two-dimensional world-sheet to any change or deformation
in the background geometry such as external perturbation in background metric is reflected in the space-time
stress tensor

Tµν = − 4π√
−g

δSP
δgµν

, (212)

where g = det gµν .

5.1.2 STATISTICAL THEORY OF HIGHLY EXCITED STRINGS

As we mentioned, in order to study the transport properties of the open strings we need a statistical frame-
work. Damour and Veneziano [DaVe00] developed a statistical formalism to study the size distribution and
mass shift of a very massive highly excited single string state due to self-gravity. Moreover, they clarify the
correspondence between string states and black holes, proposed by Susskind and by Horowitz and Polchin-
ski.

It was known from 70’s in the context of the dual resonance model that the spectrum of the string theory
shows a large degeneracy of states which grow as an exponential of the mass. Moreover, the entropy of a
string is proportional to the first power of mass, independent of the dimension of the space. However, there
are natural questions such as how many massive string states have a certain size? To answer these questions,
several approximations such as random walk model, self-gravitational model etc. have been proposed and
different distribution functions in size of the ensemble of free string states with certain mass are introduced.

In order to systematically deal with these issues, a statistical approach has been initiated and developed
for massive highly excited states.

In this section we review a grand-canonical ensemble for the states of bosonic strings, [DaVe00]. Let us
start with a formal partition function of the system and the probability of the state {N i

n} in terms of levels of
strings, in grand-canonical ensemble with fixed conjugate parameter β

Z(β) = tr(e−βN ) =
∑
{N i

n}

< {N i
n}|e−βN |{N i

n} >=
∑
{N i

n}

(
e−βN [N i

n]
)
, (213)

p[{N i
n}] = Z−1(β)e−βN [N i

n], (214)
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where β is a formal conjugate to N , N [N i
n] =

∑∞
n=1

∑d−1
i=1 nN

i
n and N i

n = ai†n ain with ain = 1√
n
αin and

ai†n = 1√
n
αi−n.

In this formulation, using the following formulas, logZ = (d−1)π2

6β and < N >β= N̄ = −∂ logZ(β)
∂β , the

mass and entropy of the string can be obtained as

m2 =
N̄

α′
=

(d− 1)π2

6β2α′
,

S = −tr(ρ log ρ) = logZ + βN̄ = 2π

√
(d− 1)N̄

6
, (215)

where the density matrix is ρ = Z(β)−1e−βN and the averages are given by < A >β= tr(ρA).
Another ingredient that we need is the contraction between the oscillation modes which can be derived

from the definition of the density matrix as

<: ain(ajm)† :>β=<: (ajm)†ain :>β=
δijδnm
eβn − 1

. (216)

5.2 LINEAR RESPONSE THEORY AND KUBO’S FORMULA

In order to calculate the shear viscosity of the open string in section (6.1), we introduce briefly linear response
theory in the following, [Cha00].

Applying an external disturbance to a physical system leads to a response from the system which is
parameterized by a response function. The response function is the key concept towards the calculations of
the transport coefficients of statistical systems via the Kubo’s formula. Especially, we are interested in the
hydrodynamical transport coefficients and in particular entropy and shear viscosity.

For simplicity, we will assume that the quantities are only time-dependent. When there is an external
perturbation by weak fields hi(t), the Hamiltonian or the action of the system can be separated to free and
perturbed parts

S = S0 +
∑
i

∫
dtOi(t)hi(t), (217)

where, S0 is a free action, Oi(t) is a conjugate operator of hi(t) and i denotes the number of external
perturbation field. The expectation value < Oi(t) >h at time (t > t0) is defined by a time-dependent
density matrix ρh(t, t0) in presence of external field as follow

< Oi(t) >h= tr(ρh(t, t0)Oi(t0)). (218)

The deviation of expectation value of an operator from its equilibrium value δ < Oi(t) >=< Oi(t) >h − <
Oi(t) >, to the first order change in the external source hi(t) is given by

δ < Oi(t) >'
∑
j

∫ ∞
−∞

dt′GR(t− t′)hj(t′), (219)

where GR(t− t′) is the retarded Green function, called response function and it is given by

GR(t− t′) = iθ(t− t′) < [Oi(t), Oj(t
′)] >, (220)

where θ(t− t′) is a step function.
The Fourier transform of the eq. (219) is

δ < Oi(ω) >=
∑
j

GR(ω)hj(ω), (221)
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and in the low frequency limit, ω → 0, it takes the form

δ < Oi(ω) >=
∑
j

(χ< + iχ=ω)hj(ω), (222)

where χ< and χ= are the leading coefficients of real and imaginary parts of the response function in ω,
respectively. The χ= is called transport coefficient and it can be obtained in the low frequency limit by using
the Kubo’s formula:

lim
ω→0

1

ω
=GR(ω) ' χ=. (223)

In the following we will discuss the basics of black hole physics.

5.3 BLACK HOLES THERMODYNAMICS AND MEMBRANE PARADIGM

There are some controversial aspects of black holes such as information paradox, black hole radiation and
membrane paradigm which are important unsolved problems in theoretical physics, [To97]. As it will be
explained, the thermodynamics of the black holes possess a deep puzzle. Solutions to almost all of the
mentioned unsolved problems need a complete statistical microscopic description of black holes which is
not available now. However, string theory as a candidate theory of quantum gravity should in principle be
able to describe black holes and their quantum behaviors and effects. In fact, string theory has been provided
partial solutions to some aspects of black hole physics such as thermodynamical properties of classes of
black holes.

Black holes are special singular solutions of Einstein equations, the fundamental equations of general
relativity:

Rµν − gµν(Λ− 1

2
R) =

8πG

c4
Tµν , (224)

where Rµν is Ricci curvature tensor, R is Ricci scalar, gµν is metric, Λ is cosmological constant, Tµν is
stress tensor and G and c are Newton gravitational constant and speed of light, respectively. These are
equations of motion obtained by variation of the Einstein-Hilbert action

S =
1

2κ

∫
d4x
√
−gR, (225)

where g = det gµν . These solutions describe the singular regions of the space-time which are causally
disconnected from the asymptotic space at infinity. These singular regions have some boundaries that are
shielding the singularity. This hypersurface is called "event horizon".

In three space dimensions, the space-time around a Schwarzschild black hole is described by the follow-
ing metric in the spherical coordinate as

ds2 = −
(

1− 2GM

rc2

)
dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dΩ2. (226)

This is a solution to the vacuum Einstein’s equation, Rµν = 0. This region of the space-time is separated
casually by the event horizon with the radius RS = 2GM

c2
.

There is a close relation between thermodynamics and black holes mechanics. In fact, general relativity
implies that a black hole as a macroscopic object behaves like a thermodynamic object with an entropy which
is called Bekenstein-Hawking entropy

SBH =
AH
4G

, (227)

and temperature
TH =

κ

2π
, (228)
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whereAH is the area of the horizon and κ = c2

4GM is the surface gravity at the horizon. Surface gravity on the
event horizon as well as temperature are constant as the black hole is in the thermal equilibrium. Furthermore,
the area law of the black holes δABH ≥ 0 is consistent with the second law of the thermodynamics δS ≥ 0.

In usual thermodynamics, we have two levels of descriptions for systems. Macroscopic and microscopic
descriptions which the former is the coarse-grained description of the latter. Basically, these systems are
described by a few macroscopic parameters such as energy, mass and volume. For each values of the pa-
rameters there are large numbers of microstates, Ω. This is a picture emerging from the atomic structure of
the matter. Therefore, there is a natural basis for the degeneracies in the thermodynamical systems, which is
stated as an entropy S = k log Ω, where k is the Boltzmann’s constant. In the case of black holes, "no-hair
theorem" restricts the characteristics of a black hole to its mass, charge and angular momentum. This theo-
rem puts no space for any candidates for microstates, while the entropy of black hole necessarily implies the
internal structure of the black hole which has numerous microscopic states. This leads to many subtleties in
black hole physics.

MEMBRANE PARADIGM

In addition to the mentioned unsolved problems, there is a mystery about black holes, the "membrane
paradigm", [Mat10], [PaWi97] and [TPM86]. This is the toy model describing the quantum mechanical
effects about black holes by using degrees of freedom on the surface of the extended event horizon. This
is inspired by the conjecture that the dynamics of the bulk and internal states of the black holes might be
described by the surface dynamics of the event horizon. This means that an effective theory of a fictitious
electromechanical and hydrodynamical membrane can be used to understand the bulk dynamics of the black
holes.

In other words, the membrane paradigm describes the fact that, in general relativity, transport coeffi-
cients such as shear viscosity and conductivity can be obtained on a stretched horizon of a black hole which
is located near the event horizon. This means that there seems to be a fictitious viscous and conductive mem-
brane living on the stretched horizon from the viewpoint of a distant observer. However, the microscopic
interpretation of the membrane is not still clear.

ADM formalism, [ADM59], provides a framework in which the response of the black holes to external
disturbances can be obtained from the Einstein equations. It can be derived in several different ways that the
shear viscosity of the membrane is η = 1

16πG , where G is the Newton gravitational constant, [TPM86].
In addition to hydrodynamical transport properties, there are other thermal and electrical transport prop-

erties and coefficients such as diffusion constant, electric conductivity, magnetic susceptibility etc. which a
membrane can carry. For further investigations see [TPM86].

5.3.1 STRING THEORY/BLACK HOLE CORRESPONDENCE

The conjecture that the black holes with evolving mass in the radiation process, at some critical mass, trans-
form to the string states and the Schwarzschild radius of black hole becomes of order of string scale was first
initiated by Bowick et al [BSW87]. In fact, the value of the critical mass is given by the string mass scalems

and its coupling constant gs as mc ∼ msg
−2
s . Similarly, the correspondence between Schwarzschild black

holes and fundamental strings with the fixed entropy and varying coupling gs was conjectured by Susskind
[Su93] and [Su94] as follow: as the coupling of the string increases, the size of the highly excited string state
decreases and at some point becomes less than its Schwarzschild radius, RS , and therefore string should
transit to a black hole. On the other hand, when the coupling decreases, black hole states evolve to the string
states as its size becomes less than the string scale, ls. Horowitz and Polchinski [HoPo97] generalized this
conjecture to charged black holes.

In general, the spectra of the black holes and single string agree and there is one-to-one correspondence
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between states of the Schwarzschild black holes and states of the fundamental strings. At some critical value
of the string coupling g2

c ∼ ms/m, we have RS ∼ ls, and thus both descriptions coincide and the black hole
is described by the fundamental strings. In fact, the transition between a fundamental string and a black hole
is smooth and it has been found that the Bekenstein-Hawking entropy of a Schwarzschild black hole can be
reproduced by the entropy of a highly excited string covering the stretched horizon. As we mentioned, it has
also been proposed that a highly excited string, when we increase the string coupling, becomes a black hole
whose horizon radius is of the order of the fundamental string length scale ls at the critical string coupling.

Although the mass dependence in the entropy formulas of the string and black holes are different, as for
string we have Ss ∼ m/ms and for black hole, SBH ∼ (m/ms)

2 (in four dimensional space-time) they
coincide at the critical coupling and critical mass, in Susskind and Bowick conjectures, respectively.

If black holes can be explained by string theory, the membrane paradigm must also be explained by
string theory. Moreover, a microscopic description of the fictitious membrane might be understood through
string theory which is closely related to black hole physics. In particular, from the perspective of the polymer
representation of string/black hole correspondence [Kh99], we can obtain the shear viscosity of the stretched
horizon from a highly excited string.
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6 SHEAR VISCOSITY OF AN OPEN STRING AND MEMBRANE PARADIGM:
SUMMARY OF RESULTS

In this chapter we use the statistical framework for the open strings and its relation to the unsolved problem of
the membrane paradigm in black hole physics. In this study, we think of a bosonic string as a highly excited
long string covering the fictitious membrane on the stretched horizon of a black hole. Then, by applying a
time-dependent homogeneous background metric perturbation, string possess a viscosity. Thus, the highly
excited states of a string can be seen as a viscous membrane.

Using the linear response theory, the shear viscosity of the highly excited string states can be calculated.
Moreover, in the membrane paradigm, one can obtain the shear viscosity of the fictitious fluid on the stretched
horizon of a black hole. Comparison of the obtained results about the transport coefficients in two approaches
shows an agreement up to a numerical factor. The importance of this result is due to the recent calculations
of the ratio of shear viscosity to entropy density by using the AdS/CFT correspondence, [SoSt07], and its
applications in the membrane paradigm [IqLi08].

In summary, we describe the interpretation of the results as shear viscosity of fictitious fluid living on
the horizon of the black hole in the contexts of string/black hole correspondence and membrane paradigm.
In our study, [SaZa11], the transport coefficient that we are interested in, shear viscosity of a highly excited
string, is obtained from the stress tensor by using Kubo’s formula in linear response theory.

6.1 ENTROPY AND SHEAR VISCOSITY OF OPEN STRINGS

In order to calculate the shear viscosity, we adopt relations in section (5.2) in a way that the external source
of the disturbance hµν is the perturbation of the geometry or the background metric from the flat space. The
operator that is coupled with the metric tensor is the stress tensor and therefore the Kubo’s relation (219)
becomes

< Tij(x
+) >=

∫ ∞
−∞

dx′+χ̃ij,kl(x
+ − x′+)′hkl(x′+). (229)

Notice that the quantities are functions of light-cone coordinates. The response function χ̃ij,kl(x+ − x′+) is
given by

χ̃ij,kl(x
+ − x′+) = 2iθ(x+ − x′+)χ̃′′ij,kl(x

+ − x′+). (230)

where χ̃′′ij,kl(x
+ − x′+) = Vd

4 < [Tij(x
+), Tkl(x

′+)] > and Vd is proportional to the volume that the string
occupies. For details of the calculations see [SaZa11].

The Fourier transform of the Kubo’s relation is

< Tij(ω) >= χij,kl(ω)hkl(ω), (231)

where χij,kl(ω) = χ′ij,kl(ω) + iχ′′ij,kl(ω) is the Fourier transform of the response function.
Then, the shear viscosity is given by the Kubo’s formula

η = lim
ω→0

1

ω
=GRxy,xy(ω) = lim

ω→0

2

ω
χ′′12,12(ω). (232)

In [SaZa11] we have obtained the response function of the string by using the linear response theory as
explained above with the help of mode expansion of the stress tensor and the introduced statistical framework
for bosonic strings. In the low frequency limit the response function is obtained as

χ′′ij,kj(ω) ∼ω→0 m

4Vd

√
6α′

d− 1
δij,klω, (233)

where δij,kl = δikδjl + δilδjk.

71



Moreover, as we mentioned, the entropy of a highly excited string is

S ∼
√
N ∼ m/ms. (234)

Before calculating the shear viscosity of the open bosonic string we need to understand the meaning of it. In
calculation of the shear viscosity we think of a string as a polymer. Let us consider a polymeric liquid as an
illustrating example [DoEd86]. It is known in polymer physics that the viscosity of a polymeric liquid is in
general different from the viscosity of the original solvent because the stress tensor of the polymer itself is
added to the stress tensor of the solvent. In other words, a polymer possess its own viscosity. In the same
way, a string also possess its own viscosity because the string has its own stress tensor.

By using the Kubo’s formula we obtain the shear viscosity, entropy density and ratio of the shear viscosity
to entropy density of an open string as follow:

η =

√
6

d− 1

mls
2Vd

, s =
S

Vd
= 2π

√
d− 1

6

mls
Vd

,
η

s
=

3

2πc
. (235)

6.2 OPEN STRING AND MEMBRANE PARADIGM IN BLACK HOLE PHYSICS

In order to compare the obtained results about open strings and membrane paradigm, we have to introduce
the longitudinally reduced string which produces quantities with appropriate dimensions, [SaZa11]. Then,
the entropy and shear viscosity of the longitudinally reduced string on the stretched event horizon become
of the same order as entropy and shear viscosity of the event horizon in the membrane paradigm. The main
result of this chapter is that the shear viscosities for the reduced string covering the stretched horizon and for
the membrane paradigm are equal up to a numerical factor as follow:

ηr =

√
6

d− 1

mls
2Vd−1

∼ mls

ld−1
s

∼ 1

ld−1
s g2

c

∼ 1

16πG
= ηBH , (236)

where Vd−1 is proportional to the volume of the longitudinally reduced string and we have used the relation
G = g2

s l
d−1
s .

Finally, in order to exactly match the ratio formula in membrane paradigm, ηBH
sBH

= 1
4π and in highly

excited string formalism, ηsss = 3
2πc , we have to set c = 6. This value of central charge has been discussed in

earlier works such as [HKRS96].
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7 CONCLUSIONS

Different applications and realizations of conformal field theories have been provided predictive methods
and techniques with fruitful insights and results in many physical systems. Our studies towards two of these
applications represent the depth and power of CFT in studies of different physical systems.

I) Free fermions in the transfer matrix formalism of Ising model indirectly provide a rigorous mathe-
matical framework to study the scaling limit of the Ising model as a quantum conformal field theory. The
powerful analytic techniques from discrete holomorphicity and Riemann-Hilbert boundary value problems
provide the rigorous results about Ising model. In fact, Ising free fermions are closely related to the pre-
cisely defined mathematical objects, s-holomorphic functions, which play the central role in controlling of
the scaling limit of Ising model. We clarified these relations and then proposed a mathematically rigorous
approach for exact scaling limit of the transfer matrix formalism in term of operators in Cauchy data spaces.
Furthermore, in the continuum limit, free fermionic Fock space field theory and Clifford vertex operator
algebra of the scaling limit of Ising model provides more concrete understanding of the SLE3 and thus they
explicitly exemplify the general statements in CFT/SLE correspondence.

II) Correctness and further applicability of the string theory/black hole correspondence has been ap-
proved in the context of membrane paradigm; we have shown that the string theory has correctly reproduce
the shear viscosity of the membrane fictitious fluid.
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