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ABSTRACT. We study the algebraic construction of the conformal field theory (CFT) and its relation to the
Schramm Loewner evolution (SLE) in an example of the Ising model. We first obtain the rigorous scaling limit
of the correlation functions of Ising free fermions on an arbitrary simply connected two-dimensional domain
D in the explicit form of Pfaffians. Then, we study the algebraic and analytic aspects of the fermionic confor-
mal field theory on D in terms of the Clifford vertex operator algebra (VOA). This construction leads to the
fermionic Fock space of states and conformal field theory of the Fock space fields of the Ising free fermions.
Furthermore, we investigate the conformal structure of the fermionic Fock space fields, namely their operator
product expansions, correlation functions and differential equations. Finally, by using the Clifford VOA con-
struction and the fermionic CFT, we investigate a rigorous realization of CFT/SLE correspondence in the case
of the fermionic CFT/SLE3 in two directions: operator formalism and correlation functions. By studying the
relation between the operator formalism in VOA and SLE3 martingale generators, we found an explicit Fock
space for the SLE3 martingale generators. Also we obtain a large collection of SLE3 martingale observables in
terms of the correlation functions of fermionic Fock space fields which are constructed from the Clifford VOA.

CONTENTS

1. Introduction 2
2. Fermionic theory of Ising model 3
2.1. Transfer matrix formalism in Ising model 3
2.2. Ising free fermions 4
2.3. Discrete holomorphicity and scaling limit of the correlation functions 5
3. Fermionic vertex operator algebra and CFT 7
3.1. Vertex operator algebra and fermionic Fock space of states 8
3.2. Fermionic correlation functions and VOA 9
3.3. Fermionic Fock space of fields F 12
3.4. Correlation functions and operator product expansion 13
3.5. Virasoro algebra representation of the CFT 15
4. Fermionic CFT/SLE3 correspondence 18
4.1. SLE3 and interfaces in Ising model 19
4.2. SLE3 Martingale generators and fermionic Fock space 20
4.3. SLE3 Martingale observables and fermion correlation functions 22
5. Conclusions 24
References 24

1



1. INTRODUCTION

The Ising model was introduced in 1925 by W. Lenz as a model describing a ferromagnet on lattice.
The Ising model consists of spins σα = ±1, on the vertices α of the lattice, interacting by short range
neighborhood self-interactions as well as interactions with the external magnetic field B. In the case of
B = 0, in contrast to the one-dimensional model, two-dimensional Ising model in Z2 possesses a second
order phase transition at critical inverse temperature (β = 1

kBT
), βc = 1

2 ln (
√

2− 1), as shown in the
pioneering works by Peierls, Kramers, Wannier and Onsager, [Pe36], [KrWa41], [Ons44] and [KaOn49]. At
β = βc specific heat and magnetic susceptibility diverge to infinity and for β > βc spontaneous breaking
of the symmetry leads to a nonzero magnetization. Moreover, due to infinite dimensional symmetry, many
physical properties of the 2d Ising model such as free energy and spin correlations atB = 0 can be computed
exactly.

The transfer matrix formalism is one of the approaches toward the exact results in Ising model, [Ba08].
Specially the free fermion operators play an essential role in this formalism, [Kau49]. Moreover, the Fock
space representations of the transfer matrix formalism and free fermions have been studied extensively, for a
review see [Pal07]. In this paper, we study the connections between the discrete fermionic formalism of the
Ising model and the rigorous aspects of a fermionic conformal field theory that describes the scaling limit of
the model.

There is a common belief that the scaling limit of the lattice models such as Ising model at criticality are
described by a field theory with the conformal symmetry. However, it is known that the spin operator is
not enough to describe the continuum limit of the theory. In fact, it is believed that the critical Ising model
in the continuum limit is described by a conformal field theory, namely the theory of free fermionic fields.
Roughly speaking, the fermionic field is identified with the scaling limit of the fermionic operator on the
lattice. However, there were no exact proofs about the scaling limit of the Ising model free fermions and
their correlation functions. Recently, the rigorous methods from discrete analysis and probability theory have
provided exact proofs about the conformal invariance in the scaling limit of the Ising model at criticality, for
a good review on general aspects of discrete holomorphicity see [Car09] and [DuSm11]. We have used
these techniques to obtain the scaling limit of the correlation functions of Ising free fermions with specific
boundary conditions, rigorously. The continuum correlation functions are obtained from the scaling limit of
the lattice correlation functions obtained in [HKZ12]. By means of these methods, we find a proof of the
Pfaffian formula for the correlation functions of free fermionic fields, in the scaling limit.

Moreover, a new rigorous formulation of the continuum Fock space of fields and their properties; CFTs
on domains with boundaries in the case of Gaussian free fields is proposed in [KaMa11]. We have extended
and adopted a similar formulation to obtain a formulation of the conformal field theory on bounded domains
in the case of free fermion fields of the Ising model. In this approach, we have obtained the characteristic
features of fermionic conformal field theory on a bounded domain such as transformation rules for fields and
their correlation functions, the operator product expansion of fields, Virasoro algebra representation and the
Ward identity.

On the other hand, vertex operator algebra (VOA) provides a concrete mathematical language for CFT,
[Ka98]. The vertex operator algebra is an algebraic construction for conformal field theory in terms of formal
power series. The general VOA has been adopted in different cases for different purposes such as VOA for
bosonic and fermionic fields. In this paper we have used the Clifford VOA for fermionic fields which has the
Clifford algebra symmetry in addition to Virasoro algebra symmetry. The Clifford VOA, as an equivalent
algebraic formalism to fermionic conformal field theory, turns out to be useful in study of scaling limit of the
Ising model at criticality. Specially, we have obtained the Fock space of fermionic states in terms of VOA
vector space.

From a different perspective, Schramm Loewner evolution plays a crucial role in this picture. The SLE
is a stochastic process that is defined by a stochastic differential equation, the Loewner equation with the
Brownian motion as a driving force. In general, SLE curves explain the scaling limit of the interfaces of the
statistical lattice models on domains with boundary, at critical temperature. Specially, it has been proved in
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[CDHKS12], that the scaling limit of the interfaces in 2d critical Ising model is described by a Schramm
Loewner evolution, SLE3. In SLE, the probability measures of the interface curves satisfy the conformal
symmetry and the Markov property. These are physically expected conditions that the scaling limit of the
interfaces should satisfy.

In this paper we combine the approach of Clifford VOA and the Fock space of conformal fermionic fields
in order to obtain a unified picture of a conformal field theory describing the scaling limit of the critical Ising
model. To have a unified picture, we need a mapping between the Clifford VOA and correlation functions of
the Fock space fields which satisfies the axioms that are reflecting the analytic and algebraic aspects of the
underlying conformal symmetry in the scaling limit of Ising model at criticality. This has been done through
the main theorem of this paper.

Another aspect of this study refers to the well-known CFT/SLE correspondence, [BaBe06]. We employ
the aforementioned framework of the VOA and Fock space fields approach to CFT, and their inter-relation in
order to concretely investigate an example of the CFT/SLE correspondence in the case of Ising model. We
have obtained the results indicating a rigorous realization of the fermionic CFT/SLE3 in terms of Clifford
VOA and Fock space of fermionic conformal fields. The Clifford VOA provides a fermionic Fock space
for the SLE3 martingale generators and furthermore, a large collection of SLE3 martingale observables are
explicitly written in terms of the correlation functions of the Fock space fields that are corresponding fields
to the states of the Clifford VOA.

2. FERMIONIC THEORY OF ISING MODEL

In this section we explain first the transfer matrix formalism which is an approach towards an exact
solution of two-dimensional Ising model on a rectangle with specific boundary conditions. Specifically, we
express the correlation functions of any operators in this formalism. Then, we introduce the notion of the
free fermions in Ising model and their correlation functions on the lattice. Eventually, by using methods
from discrete complex analysis the scaling limit of the fermionic correlation functions on the half plane and
other conformally equivalent domains are obtained. These are CFT correlation functions in the Fock space
construction of the free fermionic fields.

2.1. Transfer matrix formalism in Ising model. The Ising model on the domain ΛM,N = {(j, i) ∈ Z2 |
|j| ≤ M, |i| ≤ N}, consists of spins σα = ±1, on the vertices α of the lattice in the domain ΛM,N . The
model is parameterized by the inverse temperature β and nearest neighbor interaction coupling J between
< α,α′ >, the pairs of sites that are nearest neighbors. The Ising model is defined by its partition function
which contains all the physical and geometrical information of the model via the Hamiltonian and the domain
geometry and its boundary conditions,

(1) ZΛ(β) =
∑
σ∈CΛ

exp

β ∑
<α,α′>⊂Λ

Jσασα′

,
where the sum is over spin configurations σ in CΛ = {±1}ΛM,N which satisfy the boundary conditions. For
simplicity we can set J = 1.

As we mentioned, the transfer matrix formalism can be used to calculate the partition function and corre-
lation functions of operators such as spin, energy etc. in planar Ising model on the rectangle with the specific
boundary conditions. In order to calculate the partition function and correlation functions in transfer matrix
formalism, the sums over all configurations in partition function and correlation functions are divided into
the multiple sums over the configurations of the rows, CΛ(row) = {±1}2M+1.

Let us define the transfer matrix of the 2d Ising model. The transfer matrix VM : H → H is a linear

transformation on the Hilbert space H =
⊗M

j=−M C2
j . The transfer matrix is defined as VM = V

1
2

1 V2V
1
2

1
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where the action of V1 on the basis of the Hilbert space eσ =
⊗M

j=−M

[
1+σj

2
1−σj

2

]
, is defined by

(2) V1eσ = exp

β M−1∑
j=−M

σ̂j σ̂j+1

eσ,
where σ̂j = 1 ⊗ ... ⊗ 1 ⊗

[
1 0
0 −1

]
⊗ 1 ⊗ ... ⊗ 1 =

[
1 0
0 −1

]
j

is the spin operator and also suppose that

b ∈ R and σ and ρ ∈ CΛ(row), then we define the matrix elements of V2 as

(3) (V2)ρσ = e−2b exp

 M∑
j=−M

β(j)ρjσj

,
where ρj and σj are the row configurations evaluated at j − th column and β(j) is

(4) β(j) =

{
b for |j| = M

β for |j| 6= M
.

Moreover the action of V2 on the Hilbert space is computed by V2eσ =
∑

ρ V2eρ. We are interested in the
action of V2 in the limit b→∞; limb→∞ V2eσ =

∑
ρ,ρ±M=σ±M

V2eρ.

It has been discussed in proposition (1.1.1) in [Pal07], that the correlation function of OA =
∏
i∈AOi as

a product of linear operators Oi such as spin etc. in a subset A of the domain Λ, a finite collection of sites,
with specific boundary conditions, in the limit b→∞, is given by

(5) < OA >Λ=
< eNσ |V

1
2

1 VMOAN−1
VMOAN−2

...OA−N+1
VMV

1
2

1 |e−Nσ >

ZΛ
,

where OAi denotes the restriction of OA to the i−th row, ZΛ =< eNσ |V
1
2

1 V
2N
M V

1
2

1 |e−Nσ > is the partition
function and e±Nσ is the Hilbert space representation of the ±N − th row configuration. We take eq. (5) as
a definition of the correlation functions.

2.2. Ising free fermions. The method of free fermions was introduced in 1949 by Kaufman in order to
compute the free energy of the Ising model. This is one of the powerful methods besides other methods such
as combinatorial methods, that have led to the integrability paradigm in the Ising model, [Ba08].

In order to discuss the free fermions in Ising model we introduce a representation of the Clifford algebra
in Ising model. Suppose that W is a finite-dimensional complex vector space with a nondegenerate complex
bilinear form denoted by (·, ·). A Clifford algebra Cliff(W ) on the vector space W is defined as an
associative algebra with unit e and set of generators in W satisfying ab+ ba = (a, b)e.

We define a finite-dimensional, irreducible spin representation of Clifford algebra Cliff(W ′M ), so called
Brauer-Weyl representation, acting on

⊗M
j=−M C2

j space, with generators

(6) pk =


k− 1

2∏
j=−M

[
0 1
1 0

]
j


[
1 0
0 −1

]
k+ 1

2

, qk =


k− 3

2∏
j=−M

[
0 1
1 0

]
j


[
0 −i
i 0

]
k− 1

2

,

where for pk, k ∈ IM − 1
2 , and for qk, k ∈ IM + 1

2 and IM = {−M,−M + 1, ...,M}. The Clifford
algebra generators of this representation with some normalization factors, { pk√

2
, qk√

2
}, are orthonormal basis

of a complex vector space W ′M ,

(7) W ′M = Span({pk|k ∈ IM −
1

2
} ∪ {qk|k ∈ IM +

1

2
}) = WM ⊕ (Cp−M− 1

2

+ Cq
M+ 1

2

).
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It can be easily checked that pk and qk satisfy the anti-commutation Clifford relations

(8) pkpl + plpk = 2δkl, qkql + qlqk = 2δkl, pkql + qlpk = 0.

Then, the lattice fermion ψk and anti-fermion ψ̄k operators are defined on the mid-points of horizontal
edges of two-dimensional rectangular lattice as

(9) ψk = Aψ(qk + pk), ψ̄k = Aψ̄(−qk + pk),

where Aψ and Aψ̄ are normalization factors.
In order to simplify the notation we define time-dependent fermion operators by using the transfer matrix

VM in the domain ΛM,N as

(10) ψ(k + im) = V −mM ψkV
m
M .

Furthermore, the transfer matrix can be written in terms of Clifford algebra generators pk and qk and thus
the time evolution of the free fermions can be explicitly calculated via the conjugation by the transfer matrix,
[HKZ12]. This conjugation is called induced rotation and it is denoted by T (VM ). The induced rotation is a
linear transformation, T (VM ) : W ′M →W ′M such that for all v ∈W ′M
(11) T (VM )v = V −1

M vVM .

Note that the induced rotation preserves the bilinear form, (T (VM )a, T (VM )b) = (a, b) for a, b ∈W .
Moreover, the normalized lattice correlation functions of fermion operators in the domain Λ (for simplicity

we write the domain ΛM,N as Λ) with plus boundary conditions, <
∏2n
i=1 ψ(zi) >

(+)
Λ , in the transfer matrix

formalism can be defined from eq. (5) as

(12) <
∏
i

ψ(zi) >
(+)
Λ =

1

Z
< + + |

∏
i

ψ(zi)|+ + >,

with zi = ki + imi, Z =< + + |+ + > is the partition function and

|+ + >= V N
M V

1
2

1 |e
−N
(+) >, < + + | =< eN(+)|V

1
2

1 V
N
M ,

where e(+) corresponds to a row configuration in which all the spins are plus.
It has been discussed in section (1.3) and (4.2) in [Pal07], that the naive scaling limit of the transfer matrix

formalism for the free fermions leads to the Dirac equation and at critical temperature, one can observe that
the free fermions (anti-fermions) are holomorphic (anti-holomorphic) functions.

In next section, we explain a rigorous approach to derive the scaling limit of the lattice fermion correlation
functions.

2.3. Discrete holomorphicity and scaling limit of the correlation functions. The methods of discrete
complex analysis and discrete holomorphic functions [Smi06], [Smi10a], [Smi10b], [ChSm09] [ChSm11],
[IkCa09] and [RaCa07] provide the possibility to perform the rigorous scaling limit of the s-holomorphic
functions and observables as well as other advantages. Thus, by using the relations between s-holomorphic
functions and fermion correlation functions we can obtain the scaling limit of the correlation functions,
rigorously. The obtained results from this method coincide with the vacuum correlation functions of free
fermions in conformal field theory which is believed for a long time that it describes the continuum limit of
the free fermions of the Ising model, [McWu73] and [DMS96].

In a naive sense, the scaling limit of the fermion correlation functions in critical Ising model on a strip
with lattice mesh size δ is defined by taking first the semi-infinite volume limit N →∞ and then taking the
continuum limit, M → ∞, δ → 0, while the width of the strip Mδ is kept fixed. For example, the scaling

limit of boundary state | + + > is expected to behave like | + + >
N→∞−→ |0 >M

M→∞,δ→0−→ |0 >, in which
|0 > is a CFT vacuum.

The first step towards the rigorous scaling limit of the Ising free fermions is to find the scaling limit of the
lattice fermion correlation functions. In order to that, we have obtained the relations between s-holomorphic
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functions and fermions correlation functions in [HKZ12], then we need to obtain the scaling limit of s-
holomorphic functions F ↑z′(z) and F ↓z′(z) which will be defined in the next sentence. These functions are
parafermionic observables in the Ising model. They are solutions of the Riemann boundary value problems
(the explicit form of the Riemann boundary conditions in the case of rectangle for the scaling limit of the
functions can be found in eq. (14). For a general definition of Riemann boundary value problems see section
(2) of [HKZ12]) with a discrete singularity at z = z′. In other words, they are s-holomorphic functions and
they satisfy the Riemann boundary conditions,

(13) F ↑z′(z) =
1

Z

∑
σ∈C

z′↑

αL(σ)
c e−

i
2

w(z′ z), F ↓z′(z) =
1

Z

∑
σ∈C

z′↓

αL(σ)
c e−

i
2

w(z′ z),

where Z =
∑

σ∈C+ α
L(σ)
c is a partition function with plus boundary conditions, and the sum in F ↑z′(z)

(F ↓z′(z)) is over collections of dual edges in all graphical expansions σ ∈ Cz′↑ (σ ∈ Cz′↓) consisting of loops
and a path stars at z′ upward (downward) and ends at z either from above or below, αc = e−2βc , L(σ) is the
total number of edges in the configuration σ and w is the winding number of directed path starting at z′ and
ending at z. The points z, z′ are midpoints of horizontal edges of the lattice.

So far we have discussed only the rectangular domain but the parafermionic observables can be defined
similarly in any square lattice domain [HoSm10b]. However, we want to study the scaling limit of the
parafermionic observables on the rectangle at the critical point, β = βc. In general, a continuous domain Λ
can be approximated with the discrete domain Λδ, as a subgraph of the square lattice δZ2, when the small
lattice mesh size δ tends to zero, δ → 0.

It has been shown that scaling limit of the s-holomorphic functions which satisfy the Riemann boundary
conditions exists and the convergence of the parafermionic observables as δ → 0 can be controlled by the
methods of discrete complex and harmonic analysis, [HoSm10b, Hon10a]. The result of these studies can be

summarized as follow: the functions
F ↑
z′ (z)

δ ,
F ↓
z′ (z)

δ converge uniformly on compact subsets of Λ \ {z′} to the

unique holomorphic functions with Riemann boundary values and the appropriate residue, limδ→0
F ↑
z′ (z)

δ =

f↑z′(z) and limδ→0
F ↓
z′ (z)

δ = f↓z′(z).
Then, similar to the discrete case, we have the Riemann boundary value problem for the scaling limit of the

Ising parafermionic observables. The residue calculations on the lattice are performed by considering couple
of combinatorial cases and using the fact that the contour integral of s-holomorphic function is zero. Then,
with the help of lattice residue calculations and Riemann boundary value problem we obtain the following
statement in the scaling limit,

(14)


f↑z′(z) and f

↓
z′(z) are holomorphic on rectangle \ {z

′}
2πi Resz=z′f

↑
z′(z) = −1, 2πi Resz=z′f

↓
z′(z) = 1

For z ∈ ∂rectangle, f↑z′(z) ‖
1√
−νz

, f↓z′(z) ‖
1√
−νz

,

where ∂rectangle is the boundary of the rectangle and νz is the counter clock-wise tangent vector at point z on
the boundary of rectangle. These conditions determine a unique function on the rectangle which transform
conformally covariant under the conformal transformations between the rectangle and any other domains.
We start with the scaling limit of the correlation functions of Ising fermions on the upper-half plane H :=
{z ∈ C|=z > 0}. The holomorphic functions on the half-plane which satisfy eq. (14) can be obtained as

(15) f↑;Hz′ (z) =
i

2π

(
1

z − z′
+

1

z − z̄′

)
, f↓;Hz′ (z) =

i

2π

(
−1

z − z′
+

1

z − z̄′

)
.
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As we mentioned, the relations between fermionic correlation functions and parafermionic observables
are obtained in theorem (22) in [HKZ12]. In slightly different notation they are as follow:

< + + |ψ(z)ψ(z′)|+ + > = 2A2
ψZ(F ↑z′(z)− F

↓
z′(z)),

< + + |ψ(z)ψ̄(z̄′)|+ + > = 2iAψAψ̄Z(F ↑z′(z) + F ↓z′(z)),

< + + |ψ̄(z̄)ψ̄(z̄′)|+ + > = 2A2
ψ̄Z(F ↑z′(z)− F

↓
z′(z)).(16)

By using the above relations between correlation functions and parafermionic observables, we can deduce
also the convergence of the scaling limit of the fermion correlation functions limδ→0

1
δ < ++ |ψ(z)ψ(z′)|+

+ >. In this spirit, the correlation functions on the half-plane, such as< ψ(z)ψ(z′) >H= 2A2
ψZ
′(f↑;Hz′ (z)−

f↓;Hz′ (z)) etc. with the choice of parameters Aψ = 1√
2
(−i− 1), Aψ̄ = Aψ and Z ′ = −π

2 can be obtained as

(17) < ψ(z)ψ(z′) >H=

(
1

z − z′

)
, < ψ(z)ψ̄(z̄′) >H=

(
1

z − z̄′

)
, < ψ̄(z̄)ψ̄(z̄′) >H=

(
1

z̄ − z̄′

)
.

Moreover, we can obtain the correlation functions in an arbitrary domain D by using the fermion transfor-
mation rule ψ(z) = g′(z)

1
2ψ(g(z)), as a defining rule for fermions, under a conformal map g : D → H,

as
(18)

< ψ(z)ψ(z′) >D=
g′(z)

1
2 g′(z′)

1
2

g(z)− g(z′)
, < ψ(z)ψ̄(z̄′) >D=

g′(z)
1
2 g′(z′)

1
2

g(z)− g(z′)
, < ψ̄(z̄)ψ̄(z̄′) >D=

g′(z)
1
2 g′(z′)

1
2

g(z)− g(z′)
,

where g′(z) is the derivative of g(z) with respect to z.
In the scaling limit on the upper-half plane, by using the two-point correlation functions of fermions ψ(z),

any 2n-point correlation function can be written in terms of two-point functions, via the Wick’s theorem,

(19) < ψ(z1)...ψ(z2n) >H= Pf

([
1

zi − zj

]2n

i,j=1

)
,

where definition of the Pfaffian of an anti-symmetric matrix A ∈ Cn×n is

Pf(A) =

{
1

2kk!

∑
P Sgn(P )

∏k
i=1AP (2i−1),P (2i) for n = 2k

0 for n = 2k − 1
.

where P is any permutation of {1, 2, ..., 2n} and Sgn(P ) is the sign of the permutation. This is called the
Pfaffian formula. This result can be proved by using the Pfaffian formula for the lattice fermion correlation
function (section (4.4) in [HKZ12]) and then taking the scaling limit. Furthermore, by using the above Pfaf-
fian formula and eq. (18) we have the following equation for the multi-point fermion correlation functions
on the domain D

(20) <
2n∏
i=1

ψ(zi) >D= Pf

[√g′(zi)√g′(zj)
g(zi)− g(zj)

]2n

i,j=1

 .

There are similar formulas for correlation functions of anti-fermions.

3. FERMIONIC VERTEX OPERATOR ALGEBRA AND CFT

In this section, the vertex operator algebra and conformal field theory of the Ising free fermions are studied.
The Fock space of fermionic states and fields are constructed in explicit forms and furthermore, the relation
between them has been investigated.

7



3.1. Vertex operator algebra and fermionic Fock space of states. In this part, the basic definitions of
vertex operator algebra as a rigorous algebraic approach to CFT is reviewed. The vertex operator algebra
(VOA) was introduced by R. Borcherds in order to provide a rigorous mathematical definition of the chiral
algebra, the symmetry of the two-dimensional CFT and its ingredients such as operator product expansion
[Bo86]. We start with the definition of the axioms of a general vertex algebra and a restriction of the ver-
tex algebra into a conformal vertex operator algebra [Ka98], [Ga06] and [Scht08]. The discussion will be
continued by an explicit example of VOA which has Clifford algebra symmetry, the VOA of free fermions
(FVOA or Clifford VOA). The Clifford VOA leads to the Fock space of fermionic states.

The Fock space of states is defined as a graded vector space V =
⊕∞

n=−∞ Vn consisting of vacuum state
1 ∈ V and other states which are generated from the vacuum state and we denote them by small letter such as
a, b, ... ∈ V . A field operator a(z) is a formal power series a(z) =

∑
n∈Z a(n)z

−n−1 where a(n) ∈ End(V )
and for each v ∈ V we have

(21) a(n)v = 0,

for n � 0. Moreover, we can define the vertex operator subalgebras by a Z2-grading of V = V0 + V1 into
even (p = 1) and odd (p = 0) parity subspaces. Moreover, we assume that the fields have a definite parity.
Then we can define a vertex algebra.

Vertex operator algebra. A quadruple (V, Y, ∂, 1) is called vertex algebra if for all a ∈ V there exists a
mapping Y : V → End(V )

[
[z, z−1]

]
, Y (a, z) =

∑
n∈Z a(n)z

−n−1 satisfying the following axioms:
• Vacuum: Y (1, z) = IV is the identity;
• State-field correspondence:

(22) Y (a, z)1|z=0 = a,⇒ a(n)1 = 0 for n ≥ 0 and a(−1)1 = a;

• Translation:

(23) [T, Y (a, z)] = ∂zY (a, z), [T, a(n)] = −na(n−1);

where T ∈ End(V ) is defined by T (a) = a(−2)1.
• Locality: (z−w)N [Y (a, z), Y (b, w)] = 0 for some largeN ; where [Y (a, z), Y (b, w)] = Y (a, z)Y (b, w)+

(−1)p(a)p(b)Y (b, w)Y (a, z) and p(a) is parity of field a(z).
• Regularity: There is an M such that a(n)b = 0, for all n ≥M ;
The mapping Y (a, z) =

∑
n∈Z a(n)z

−n−1 as a formal power series with operator modes a(n) is called
vertex operator.

In order the state the main theorem of this part we need some definitions and properties in VOA. For a
moment, let us briefly introduce the Virasoro operator L(z) and the operator product expansion of operators
in VOA. We will explain these topics in the following sections, more carefully. The Virasoro field L(z) =∑

m∈Z Lmz
−m−2 as an even formal power series is defined such that it satisfies the following OPE

(24) L(z)L(w) ∼ 1/2C

(z − w)4
+

2L(w)

(z − w)2
+

∂L(w)

(z − w)
,

where C = cI and c is a central charge. Furthermore, We will define the conformal vertex operator algebra
in the following sections.

Furthermore, the j−th OPE product a(z) ∗j b(w) of the OPE between two fields a(z) and b(w) can be
obtained form the following formula

(25) a(z)b(w) ∼
N∑
j=0

a(z) ∗j b(w)

(z − w)j+1
.

We will explain further the OPE product later in the next section.
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3.2. Fermionic correlation functions and VOA. In previous section, the Fock space of states, V is con-
structed in the context of VOA. We will define the fermionic Fock space of states later in this section. In
order to make contact of the space V to the Fock space of fields F and the correlation functions of fields we
introduce a map χ in the following theorem.

(F ! V ) theorem. There exist a unique collection of maps indexed by domain and the number of points
from a tensor powers of fermionic Fock space of states to the correlation functions of fermions in any domain
D; χ(D)

(z1,...zn)(v1 ⊗ ...⊗ vn) : V ⊗n → C, for z1, ..., zn ∈ D, such that it satisfies the following properties:
1)

χ
(D)
(z1,...,zn)(ψ ⊗ ...⊗ ψ) = Pf

[√g′(zi)√g′(zj)
g(zi)− g(zj)

]n
i,j=1

 ,

2)

χ
(D)
(z1,...,zn)(v1 ⊗ ...⊗ L−1vi ⊗ ...⊗ vn) =

∂

∂zi
χ

(D)
(z1,...,zn)(v1 ⊗ ...⊗ vn),

3)

χ
(D)
(z1,...,zn)(v1 ⊗ ...⊗ vm ⊗ vm+1 ⊗ ...⊗ vn) ∼

(26)
N−1∑
j=0

1

(zm − zm+1)j+1
χ

(D)
(z1,...,ẑm,zm+1,...,zn)(v1 ⊗ ...⊗ vm ∗j vm+1 ⊗ ...⊗ vn),

where the Pf is the Pfaffian, g : D → H is a conformal map, L−1 is the mode m = −1 of the Virasoro field
L(z), ẑm is removed and vm ∗j vm+1 is the j−th OPE of the vectors vm and vm+1.

This theorem provides a mathematically rigorous approach to the Fock space of the fermionic fields
and their correlation functions from the VOA. We will explicitly construct the Fock space of the fermionic
conformal fields in section (3.3). Moreover, we will see in section (4) that the theorem provides us with a
rigorous realization of fermionic CFT/SLE3 correspondence at the level of correlation functions and SLE
martingale observables.

In order to prove the theorem we need basically two results, namely the Wick’s and reconstruction theo-
rems in VOA and in CFT on domain D. In the following we review the results in VOA without proofs.

Normal order product in VOA. [Ka98] (Theorem 2.3) Let us introduce the following notations,

(27) a(z)− =
∑
n≥0

a(n)z
−n−1, a(z)+ =

∑
n<0

a(n)z
−n−1.

Then, the normal order product of two fields is defined by

(28) : a(z)b(w) := a(z)+b(w) + (−1)p(a)p(b)b(w)a(z)− = a(z)b(w)− [a(z)−, b(w)].

The normal order product of more than two fields is defined inductively from right to left as follow :
a1(z)a2(z)...aN (z) :=: a1(z)... : aN−1(z)aN (z) : ... :.

Furthermore, as we have seen in the axioms of the VOA, two fields a(z) and b(z) are called mutually local
if they satisfy (z − w)N [a(z), b(w)] = 0 for N � 0.

OPE theorem in VOA. [Ka98] (Theorem 2.3) It has been shown that the operator product expansion (OPE)
of two mutually local fields a(z) and b(w) in VOA is given by

(29) a(z)b(w) =
N−1∑
j=0

cj(w)

(z − w)j+1
+ : a(z)b(w) :,

9



where cj(w) ∈ End(V )
[
[w,w−1]

]
. In fact, it has been proved that above OPE product is equivalent to the

locality axiom for the a(z) and b(w) fields; (z − w)N [a(z), b(w)] = 0 for N � 0. Moreover, the singular
part of the OPE is often written as

a(z)b(w) ∼
N−1∑
j=0

cj(w)

(z − w)j+1
.

And, the j−th product a(w) ∗j b(w) of OPE a(z)b(w) is defined as follow

(30) a(z)b(w) =
∑
j∈Z

a(w) ∗j b(w)

(z − w)j+1
=

N−1∑
j=0

a(w) ∗j b(w)

(z − w)j+1
+ : a(z)b(w) : .

The Wick’s theorem in VOA. [Ka98] (Theorem 3.3) Let a1(z), ..., an(z) and b1(z), ..., bm(z) be two collec-
tions of fields such that the following properties hold:

1) [[ai(z)−, b
j(w)], ck(z)] = 0 for all i, j, k, and c = a or b.

2) [ai(z)±, b
j(w)±] = 0 for all i, j.

let < aibj >:= [ai(z)−, b
j(w)] denotes the contraction of ai(z) and bj(w). Then the following equality

holds in the domain |z| > |w|:
: a1(z)...an(z) :: b1(w)...bm(w) :=

(31)
min(n,m)∑

s=0

∑
i1<...<is,j1 6=... 6=js

(± < ai1bj1 > ... < aisbjs >: a1(z)...an(z)b1(w)...bm(w) :(i1,...,is;j1,...,js)),

where the sign ± is obtained by the rule that each permutation of the adjacent odd fields changes the sign
and subscript (i1, ..., is; j1, ..., js) means that the fields ai1(z), ..., ais(z) and bj1(w), ..., bjs(w) are removed.

Clifford vertex algebra for Ising free fermions. The goal of this part is to construct the fermionic Fock space
for states in VOA and their corresponding fields of the Ising model.

The set of generators {ψn} for n ∈ Z + 1
2 with the following algebra,

(32) {ψn, ψm} = δn+m,0,

are the generators of the fermionic Fock space and by acting them on the vacuum state one can generate the
basis elements of a fermionic Fock space which is a vector space V .

The Clifford vertex operator algebra is a vector space V consisting of fermionic states including the
vacuum state |0 >, and fermionic vertex operator,

(33) Y (ψ− 1
2
|0 >, z) = ψ(z) =

∑
n∈Z+ 1

2

ψnz
−n− 1

2 ,

which is an odd formal power series with ψn = 1
2πi

¸
(0) ζ

n− 1
2ψ(z)dζ. This Clifford VOA satisfies the axioms

of the VOA. The generator ψn acts on V as a linear operator such that for any v ∈ V , ψnv = 0 for n � 0.
An example of field/state correspondence in the case of fermions is |ψ >= ψ− 1

2
|0 >= ψ(0)|0 >.

Furthermore, fermion fields satisfy the conditions of the Wick’s theorem and they are mutually local fields
with the following OPE

(34) ψ(z)ψ(w) ∼ 1

z − w
.
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Conformal vertex algebra for Ising free fermions. [Ka98] (Theorem 4.10) A conformal vector ν ∈ V is an
even vector such that the corresponding vertex operator Y (ν, z) = L(z) =

∑
n∈Z Lnz

−n−2 is a Virasoro
field of the central charge c with the following properties

(35) L−1 = T, and L0 is diagonalizable on V.

The vertex algebra (V, Y, ∂, 1) is called conformal vertex algebra if it has a conformal vector ν ∈ V2.
According to the theorem (4.10) in [Ka98], Y (ν, z) is a Virasoro field with central charge c if

(36) L−1 = T, L2ν =
c

2
|0 >, Lnν = 0 for n > 2, L0ν = 2ν,

Moreover, ν ∈ V2 is conformal vector if it satisfies the above properties and the property that L0 is diago-
nalizable on V .

In the fermionic case, ν = 1
2ψ− 3

2
ψ− 1

2
|0 > is a conformal vector and the Virasoro vertex operator is given

by

(37) Y (
1

2
ψ− 3

2
ψ− 1

2
|0 >, z) = L(z) =

∑
m∈Z

Lmz
−m−2,

where the modes are given by Lm = 1
2πi

¸
(0) ζ

m+1L(z)dζ. The conformal vector ν = 1
2ψ− 3

2
ψ− 1

2
|0 > and

Y (1
2ψ− 3

2
ψ− 1

2
|0 >, z) satisfy all the conditions for the conformal vertex algebra with c = 1/2. The explicit

form of the Virasoro operator Lm for Ising fermions that satisfies the VOA axioms can be obtained in the
Sugawara construction of the FVOA as

(38) Lm = −1

2

∑
k∈Z+ 1

2

(k +
m

2
) : ψm+kψ−k : +

1

16
δm,

where the normal order means that

(39) : ψnψm :=

{
ψnψm for n ≤ m
−ψmψn for n > m

.

The Wick’s theorem and the Taylor expansion can be used to obtain the OPE between L(z) and ψ(w) as

L(z)ψ(w) ∼
1
2
ψ(w)

(z−w)2 + ∂wψ(w)
z−w which is equivalent to the following commutation relations

(40) [Lm, ψn] = −(
1

2
m+ n)ψm+n, [L−1, ψ(z)] = ∂zψ(z).

Notice that the fermionic Virasoro operator (38) satisfies the above commutation relation.
Furthermore, the OPE of Virasoro fields eq. (24) implies the following commutation relation,

(41) [Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0.

One can check that the explicit form of the fermionic Virasoro operator (38) satisfies the above commutation
relation with the central charge c = 1

2 .
Moreover, a fermionic singular state at level two is defined as an state |χ > which satisfies

(42) L0|χ >=
5

2
|χ >, Ln|χ >= 0,

for n > 0. Using the commutation relation (41), a fermionic singular state at level two can be constructed
from the state ψ− 1

2
|0 > as follow

(43) |χ >= (L−2 +
3

4
L2
−1)ψ− 1

2
|0 > .

By using the fermionic representation of Lm in eq. (38) and the left hand commutation relation in eq. (40),
one can check that |χ >= 0.
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Reconstruction theorem for fermion fields. [Ka98] (Theorem 4.5) As we mentioned, the fermionic Fock
space is the vector space V including an even vector, the vacuum |0 >∈ V , and it satisfies the following
properties: 1) for the fermion fields ψ(z) we have [T, ψ(z)] = ∂ψ(z), 2) T |0 >= 0 and 3) vectors of the
following form span V ,

(44) ψ−kn− 1
2
ψ−kn−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 >,

for kn > ... > k2 > k1 > 0. Then by reconstruction theorem, for any state in V , there is a corresponding
field or a vertex operator of the following form

(45) Y (ψ−kn− 1
2
ψ−kn−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 >, z) =: (∂knψ(z))(∂kn−1ψ(z))...(∂k2ψ(z))(∂k1ψ(z)) :,

where ∂ki = 1
(ki+1)!

∂ki

∂zki
. It defines a unique structure of a vertex algebra on V such that |0 > is the vacuum

vector, T is the infinitesimal translation operator and Y (ψ− 1
2
|0 >, z) = ψ(z).

In the next section we will explain the necessary construction of fermionic Fock space of fields and its
conformal structure which will be used in the proof of the theorem and in relation between CFT and Schramm
Loewner evolution in the Ising model.

3.3. Fermionic Fock space of fields F . In this section we study the analytic and algebraic aspects of a
field theory which describes the scaling limit of free fermions of Ising model on domains with boundaries, a
two-dimensional boundary conformal field theory. The goal of this chapter is to construct a fermionic Fock
space of fields and to study their properties which will be used in the CFT/SLE correspondence for the Ising
model. We study the holomorphic part of the theory but the anti-holomorphic part can be studied similarly.

We define the scaling limit of the Ising fermions, the free fermion fields ψ(z), and other fermionic fields
which are called descendant fields, as Fock space fields in domain D ⊂ C. All the descendant fields are con-
structed by normally ordered product of derivatives of free fermion field, for example : ∂2ψ(z)∂ψ(z)ψ(z) :.

In general, a finite Fock space field Xk(z) =: ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z) :∈ F for z ∈ D is
defined by

: ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z) := ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z)− lim
zim→zjm→z

n∑
s=1

∑
i1<...<is,j1 6=... 6=js

( ±∂ki1∂kj1 [
1

zi1 − zj1
]...∂kis∂kjs [

1

zis − zjs
]

: ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z) :(i1,...,is;j1,...,js)),(46)

for m = 1, ..., s.
As a special example of the general definition of Fock space fields we define a Fock space field of special

interest, the fermionic Virasoro field T (z),

(47) T (z) = −1

2
: ψ(z)∂zψ(z) := lim

w→z
[−1

2
(ψ(z)∂wψ(w)− ∂w(

1

z − w
))].

We will explain the role of Virasoro field in the Virasoro representation of the CFT.

Conformal transformations. In field theories which are relevant for studies about statistical mechanics, do-
main conformal transformation h : D → D′ is useful to study. Roughly speaking, the values of the fields on
domain D, ψ(z) for z ∈ D conformally transform to values of fields on domain D′, ψ(h(z)) for h(z) ∈ D′.
By definition, the fermion field ψ(z) is a conformal primary field of dimension 1/2 that satisfies

(48) ψ(z) = h′(z)
1
2ψ(h(z)),

where h′(z) is derivative of h(z) with respect to z. Furthermore, the Virasoro field is called conformal
quasi-primary field and it satisfies

(49) T (z) = h′(z)2T (h(z)) +
1

24
Sh(z),
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where Sh(z) = h′′′(z)
h′(z) −

3
2(h

′′(z)
h′(z) )2 is the Schwarzian derivative of function h(z). Moreover, ψ(z) is called a

differential form of order 1/2 and T (z) is called a Schwarzian form of order 1/24, [KaMa11].
However, the transformation rules for general conformal Fock space fields are much more complicated

than for free fermion field and Virasoro field,

(50) X(z) = h′(z)λXX(h(z)) + ...,

where λX is the conformal dimension ofX and ... represents complicated function of higher order derivatives
of h(z).

3.4. Correlation functions and operator product expansion.

Correlation functions. A CFT correlation function of the general Fock space fields is denoted by< X1(z1)...Xn(zn) >D,
where z1, ..., zn ∈ D. Using the discrete holomorphicity results, the correlation functions of free fermion
fields ψ(z) are obtained rigorously in section (2.3). The n−point correlation functions of free fermion fields
ψ(z) in zi ∈ D as the special case of the general Fock space fields are obtained as

(51) (z1, ..., zn) 7→< ψ(z1)...ψ(zn) >D= Pf((< ψ(zi)ψ(zj) >D)ni,j=1),

where< ψ(zi)ψ(zj) >D=

√
g′(zi)
√
g′(zj)

g(zi)−g(zj) . The correlation function of derivatives of fermion fields is simply
given by

(52) < (
∂m1

∂zm1
1

)ψ(z1)...(
∂mn

∂zmn
n

)ψ(zn) >D=
∂m1+...+mn

∂zm1
1 ...∂zmn

n
Pf

[√g′(zi)√g′(zj)
g(zi)− g(zj)

]n
i,j=1

 .

All the other correlation functions of fermionic Fock space fields X(z) can be obtained from the correlation
functions of free fermion fields ψ(z) by using the Wick’s theorem and taking the derivatives of the two-point
fermion correlation functions.

In this part, we find asymptotic results for the correlation functions of fermions on domain D by using
the Laurent expansion of the function g(z) : D → H and its derivative up to some fixed order. Up to a fixed
order, one can check that

[g(z)− g(w)]−1 =
1

εg′(w)
(1− εg′′(w)

2g′(w)
− ε2g′′′(w)

6g′(w)
+
ε2g′′2(w)

4g′2(w)
),

(53) g′(z)
1
2 g′(w)

1
2 = g′(w)(1 +

εg′′(w)

2g′(w)
+
ε2g′′′(w)

4g′(w)
− ε2g′′2(w)

8g′2(w)
),

where ε = z −w. These expansions lead to an asymptotic formula for the two-point function of fermions in
the domain D,

< ψ(z)ψ(w) >D=

√
g′(z)

√
g′(w)

g(z)− g(w)
=

1

z − w
+ (z − w)

(
1

12

g′′′(w)

g′(w)
− 1

8
(
g′′(w)

g′(w)
)2

)
+ ...

(54) =< ψ(z)ψ(w) >H +
(z − w)

12
Sg(w) + ...,

where Sg(w) = g′′′(w)
g′(w) −

3
2(g

′′(w)
g′(w) )2 is the Schwarzian derivative of function g.

About the higher point correlation functions, by using the Pfaffian formula we can obtain that

(55) < ψ(z1)...ψ(zn) >D∼< ψ(z1)...ψ(zn) >H,

just hold for n ≤ 4 and it does not hold in general and ∼ means that the two sides have the same divergent
terms in the limit z → w.
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The operator product expansion. The OPE between two Fock space fields is an expansion of the Wick’s
formula on domain D, (see lectures (1) and (2) in [KaMa11]), when the positions of two fields become
close. Notice that, in general the OPE is domain dependent. Thus, OPE is an asymptotic expansion of
X(z)Y (w) on domain D as z → w,

(56) X(z)Y (w) =
∑
n∈Z

Cn(w)(z − w)n; as z → w,

where the OPE coefficientsCn (usually denoted byX ∗nY ) are also Fock space fields, for further description
see lecture (2) in [KaMa11]. We define a OPE product as X ∗ Y where ∗0 = ∗. Moreover the singular part
of the OPE is defined by

(57) X(z)Y (w) ∼
∑
n<0

Cn(w)(z − w)n.

By using the definition of OPE product one can check that the Virasoro field can be written as T (z) =
−1

2ψ(z) ∗ ∂ψ(z).
In the case of fermionic CFT, the formal OPE between free fermions is

(58) ψ(z)ψ(w) =
∑
n∈Z

cn(w)(z − w)n.

This can be explicitly written by means of Wick’s formula on domain D,

(59) ψ(z)ψ(w) =< ψ(z)ψ(w) >D +ψ(z)� ψ(w) =
1

z − w
+ ψ(z)� ψ(w) + reg(D),

where ψ(z)�ψ(w) is called normal order product in domain D and reg(D) denotes the terms which do not
diverge in the limit z → w. So the singular part of the OPE is given by the first term since the other terms
vanish as z → w and we have ψ(z)ψ(w) ∼ 1

z−w .
By simple calculations using the definition of the Virasoro field, Wick’s formula on domain D and Taylor

expansion, the OPE of fermion fields and Virasoro fields for z, w ∈ D can be obtained as

(60) ψ(z)ψ(w) =
1

z − w
+ ...,

(61) T (z)ψ(w) =
1/2

(z − w)2
ψ(w) +

1

z − w
∂wψ(w) +

3

4
∂2
wψ(w) + ...,

(62) T (z)T (w) =
1/4

(z − w)4
+

2

(z − w)2
T (w) +

1

(z − w)
∂wT (w) + ...,

where ... denote non-singular and domain dependent terms in the limit z → w. Therefore, by comparing the
above results and the known CFT results about the OPE on the half plane we observe that the OPE singular
parts of fermion and Virasoro fields are domain independent,

(63) ψ(z)ψ(z′)|D ∼ ψ(z)ψ(z′)|H, T (z)ψ(z′)|D ∼ T (z)ψ(z′)|H, T (z)T (z′)|D ∼ T (z)T (z′)|H.
Using the OPE results eqs. (60)-(62), the singular parts of the correlation functions of an arbitrary operator

O, fermion fields and Virasoro fields on domain D are given by

(64) < ψ(z)ψ(w)O >D=
< O >D
(z − w)

+ reg(D),

(65) < T (z)ψ(w)O >D=
1/2 < ψ(w)O >D

(z − w)2
+
< ∂wψ(w)O >D

z − w
+

3

4
< ∂2

wψ(w)O >D +reg(D),

(66) < T (z)T (w)O >D=
1/4

(z − w)4
+

2 < T (w)O >D
(z − w)2

+
< ∂wT (w)O >D

(z − w)
+ reg(D).
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The multiplication of the two general Fock space fields can be obtained by using the definition of the Fock
space fields in eq. (46) and the general Wick’s theorem in field theory [DMS96], as follow

: ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z) :: ∂lmψ(w)∂lm−1ψ(w)...∂l2ψ(w)∂l1ψ(w) :=

min(n,m)∑
s=0

∑
i1<...<is,j1 6=... 6=js

(± ≺ ∂ki1z ψ(z)∂
lj1
w ψ(w) � ... ≺ ∂kisz ψ(z)∂

ljs
w ψ(w) �

(67) : ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z)∂lmψ(w)∂lm−1ψ(w)...∂l2ψ(w)∂l1ψ(w) :(i1,...,is;j1,...,js)),

where we define the contractions by ≺ ∂
kis
z ψ(z)∂

ljs
w ψ(w) �= ∂

kis
z ∂

ljs
w [ 1

z−w ] for z, w ∈ D. Notice that this
result is similar to the Wick’s theorem in VOA in section (3.2). We will use this similarity later in the proof
of the theorem.

3.5. Virasoro algebra representation of the CFT. The underlying algebraic structure of the CFT is Vira-
soro algebra. In fact, fermionic conformal field theory as a field theory is a representation of the Virasoro
algebra and Clifford algebra. In this section we review the Virasoro algebra and its representation for the
Virasoro generators and Virasoro fields, for further descriptions see lecture (5) in [KaMa11].

So far we have defined the Virasoro field T (z) as a Schwarzian form. The Virasoro field in a CFT with
central charge c, satisfies the Virasoro operator product expansion,

(68) T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

(z − w)
∂wT (w),

and we observe that the central charge can be defined by c = 2 limz→w(z − w)4 < T (z)T (w) >D. Next,
for each point p ∈ D and each local chart φ we define the Virasoro operator at point φ(p) = z as

(69) Ln(z) =
1

2πi

˛
(z)

(ζ − z)1+nT (ζ)dζ.

Virasoro operator represents the Virasoro algebra, and thus one can check that the above definition satisfies
the commutation relation

(70) [Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

where c = 12µ and µ is the order of T as a Schwarzian form.
In order to obtain a Virasoro algebra representation in the space of all Fock space fields in domain D, the

action of Virasoro operator Ln on Fock space fields such as X is defined as

(71) LnX = T ∗(−n−2) X.

From the explicit form of the OPE of Virasoro field T and a primary field X , one can check that for n ≥ −1,

(72) (LnX)(z) = (vn∂z + λv′n)X(z),

where vn(z) = (ζ − z)1+n, v′n is the derivative of vn with respect to z and λ is the conformal dimension of
X . And for n ≤ −2 we have

(73) Ln =
∂−n−2T

(−n− 2)!
∗ .

A Fock space field X is called a primary field with the conformal dimension λ if it satisfies

(74) LnX = 0, L0X = λX, L−1X = ∂X,

for n ≥ 1. For example, the free fermion field ψ is a primary field of conformal dimension 1/2 in CFT with
central charge c = 1/2. Furthermore, a Schwarzian form Y of order µ in CFT with c = 12µ is defined by

(75) LmY = 0, L2Y = 6µI, L1Y = 0, L0Y = 2Y, L−1Y = ∂Y,

for m ≥ 3. For example, Virasoro field T is a Schwarzian form of order 1/24 in CFT with central charge
c = 1/2 and it is called quasi-primary field.
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In a conformal field theory with central charge c = 2λ
2λ+1(5 − 8λ) and a primary field X with conformal

dimension λ, the Fock space field Xs = (L−2 − 3
2(2λ+1)L

2
−1)X is also a primary field and is called singular

vector at level two of the Virasoro algebra representations. The field X is called a primary field degenerate
(non-degenerate) at level two if Xs = 0 (Xs 6= 0). Moreover, L0Xs = (λ+ 2)Xs.

Free fermionic field theory of fermionic Fock space fields as a conformal field theory is a representation
of the Virasoro algebra and Clifford algebra. In fermionic CFT with c = 1/2, the fermion field ψ(z) with
conformal dimension h = 1

2 is a primary field degenerate at level two since

(76) (L−2 −
3

4
L2
−1)ψ(z) = 0.

Ward identity and null field differential equation. In this section, we review the standard results in CFT, such
as Ward identity and null field differential equation. The Ward identity in H for the correlation functions of
Fock space fields with insertion of the stress tensor field (which on the half plane with identity chart is the
same as Virasoro field), is given by

(77) < T (z)ψ(w1)...ψ(wn) >H=
N∑
i=1

[
1/2

(z − wi)2
+

1

z − wi
∂

∂wi

]
< ψ(w1)...ψ(wn) >H .

For derivation of the Ward identity for Gaussian free fields see lecture (4) in [KaMa11]. In the case of
fermionic Fock space fields, one can explicitly check the Ward identity by inserting the Pfaffian form of the
correlation functions of fermions in both sides of the above equation.

Using equation (76), one can insert the relation L−2ψ(z) = 3
4L

2
−1ψ(z) = T ∗ ψ(z) in the Ward identity

(77) to obtain the null field differential equation on the half-plane H,

(78)

[
3

4

∂2

∂z2
−

N∑
i=1

(
1/2

(z − wi)2
+

1

z − wi
∂

∂wi

)]
< ψ(z)ψ(w1)...ψ(wn) >H= 0.

Having introduced enough background from fermionic Fock space of conformal fields and their properties
and also the VOA structure of fermionic Fock space of states, we will give a proof of the theorem in the next
section.

Proof of the (F! V ) theorem. In order to set up the stage for the proof, we need to associate to each vector
vi ∈ V , a Fock space field Yi(zi) ∈ F , then we define the mapping χ(D)

(z1,...,zn)(v1⊗ ...⊗vm⊗vm+1⊗ ...⊗vn)

for an even n as the correlation function of Fock space fields

(79) χ
(D)
(z1,...,zn)(v1 ⊗ ...⊗ vn) =< Y1(z1)...Yn(zn) >D .

Then, the first axiom follows immediately

(80) χ
(D)
(z1,...,zn)(ψ ⊗ ...⊗ ψ) =< ψ(z1)...ψ(zn) >D= Pf

[√g′(zi)√g′(zj)
g(zi)− g(zj)

]n
i,j=1

 .

By our definition, the basis vectors vk of Fock space of states V ,

(81) vk = ψ−ki− 1
2
ψ−ki−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 >

are associated to Fock space fields at point zk ∈ D, Yk(zk) ∈ F of the following form,

(82) Yk(zk) =: ∂kiψ(zk)∂
ki−1ψ(zk)...∂

k2ψ(zk)∂
k1ψ(zk) : .

The second axiom can be checked by using the commutation relation [Lm, ψn] = −(1
2m+ n)ψm+n, which

leads to

(83) L−1vk ↔ ∂zk : ∂kiψ(zk)∂
ki−1ψ(zk)...∂

k2ψ(zk)∂
k1ψ(zk) :,
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and so we obtain

χ
(D)
(z1,...,zn)(v1 ⊗ ...⊗ L−1vk ⊗ ...⊗ vn) = < Y1(z1)...∂zkYk(zk)...Yn(zn) >D

= ∂zk < Y1(z1)...Yn(zn) >D

=
∂

∂zk
χ

(D)
(z1,...,zn)(v1 ⊗ ...⊗ vn).(84)

To prove the third axiom, let us first write the third axiom formally in terms of Fock space fields. The OPE
between two general Fock space fields can be written formally as

(85) Yi(zi)Yj(zj) =
N∑

n=−∞

{YiYj}n(zj)

(zi − zj)n
=
︷ ︸︸ ︷
Yi(zi)Yj(zj) + : Yi(zi)Yj(zj) :,

in which normal order is denoted by : Yi(zi)Yj(zj) :=
∑

k≥0
(zi−zj)k

k! : ∂kYiYj : (zj), : YiYj : (zj) =

{YiYj}0(zj) and contraction is denoted by
︷ ︸︸ ︷
Yi(zi)Yj(zj) =

∑N
n=1

{YiYj}n(zj)
(zi−zj)n . Replacing the OPE in the

third axiom and taking the limit zm → zm+1 lead to

χ
(D)
(z1,...,zn)(v1 ⊗ ...⊗ vm ⊗ vm+1 ⊗ ...⊗ vn) =

< Y1(z1)...Ym(zm)Ym+1(zm+1)...Yn(zn) >D ∼
N∑
n=1

1

(zm − zm+1)n
< Y1(z1)...{YmYm+1}n(zm+1)...Yn(zn) >D =

N∑
n=1

1

(zm − zm+1)n
χ

(D)
(z1,...,ẑm,zm+1,...,zn)(v1 ⊗ ...⊗ vm ∗n−1 vm+1 ⊗ ...⊗ vn).

(86)

In order to prove the third axiom explicitly, we have to obtain the explicit form of the OPE between two
general Fock space fields Y1(z1) and Y2(z2) by using the Wick’s theorem for Fock space fields, and the OPE
between two vertex operator in VOA by using the Wick’s theorem in VOA and the reconstruction theorem.
If the OPEs in VOA and CFT match, then the third axiom holds.

The OPE between any two general Fock space fields can be obtained by taking the limit of the formula
(67) and keeping the singular terms when the points become close,

: ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z) :: ∂lmψ(w)∂lm−1ψ(w)...∂l2ψ(w)∂l1ψ(w) :∼

lim
z→w

min(n,m)∑
s=0

∑
i1<...<is,j1 6=... 6=js

(±∂ki1z ∂
lj1
w [

1

z − w
]...∂

kis
z ∂

ljs
w [

1

z − w
]

(87) : ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z)∂lmψ(w)∂lm−1ψ(w)...∂l2ψ(w)∂l1ψ(w) :(i1,...,is;j1,...,js)),

where in the above expression the singular terms in the limit z → w are kept.
Since the explicit form of Fock space fields in known, the OPE between them can be explicitly calculated.

As we explained, in order to find the OPE we first use the Wick’s formula and then write the Taylor expansion
of the fields around the second argument. The claim is that the eq. (87) can be formally written in terms of
the vertex operators in VOA as the following

(88) Y (v1, z1)Y (v2, z2) =

N∑
p=0

Y (v1 ∗p v2, z2)

(z1 − z2)p+1
.

In order to show that, the next step is to write down the OPE for vertex operators in VOA. As we have seen,
using the state/operator correspondence, any state in V is associated to a vertex operator inEnd(V )[[z, z−1]].
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Hence, to any basis vector vi there exists a vertex operator Y (vi, zi). Then, by reconstruction theorem we
have the assignment

(89) Y (ψ−kn− 1
2
ψ−kn−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 >, z) =: ∂knψ(z)∂kn−1ψ(z)...∂k2ψ(z)∂k1ψ(z) : .

Then, we need to obtain the OPE of two vertex operator of the above form. To obtain the OPE we need the
Wick’s formula for the product of two vertex operator of the above form and the Taylor expansion. This can
be done by assuming that the fields in Wick’s formula of VOA in eq. (31) are of the form ai(z) = ∂kiψ(z)
and bj(z) = ∂ljψ(z) and the OPE of fermion operators in eq. (34) which leads to < ai(z)bj(w) >=

∂kiz ∂
lj
w [ 1

z−w ]. Then, the OPE in VOA is given by the same equation as for the Fock space fields eq. (87) but
with the correct interpretation of objects in VOA.

Without performing the combinatorics for the OPE in VOA and in CFT and just by using the fact that
the both sides ( OPEs in VOA and CFT) follow the same combinatorics because the OPE of ψ(z)ψ(z′) are
the same in both sides and contractions of fermion fields in VOA and contractions of fermionic Fock space
fields in F have the same form, thus we conclude the proof of the third axiom.

This theorem leads to an explicit constructions of fermionic correlation functions and differential equa-
tions that they satisfy from the fermionic Fock space of states in FVOA. Moreover, in the next section the
(F ! V ) theorem will be used to provide an explicit form for SLE3 martingale observables from the
correlation functions of fermionic Fock space fields which are rigorously written by using the theorem.

4. FERMIONIC CFT/SLE3 CORRESPONDENCE

In this section we introduce a rigorous approach to CFT/SLE correspondence, namely the VOA/SLE
correspondence. We demonstrate this correspondence in an explicit example, the FVOA/SLE3. We describe
the relation between SLE and the scaling limit of statistical lattice model, namely in a concrete example of
the Ising model. We provide an explicit realization of the CFT/SLE correspondence in the Ising model, first
by using the explicit Fock space of fermionic states and its relation to the martingale generators in the case
of chordal SLE3. And second, by using the correlation functions of fermions on the upper-half plane and
their differential equations, Ward identity and null field differential equation, we show that the correlation
functions of fermionic Fock space fields on domain D produce chordal n− SLE3 martingale observables.

Fermionic realization of CFT/SLE in Ising model. The relation between CFT and SLE have been studied
from different perspectives, for good reviews see [BaBe06], [Car05], [Gr06] and [Kon03]. In one perspec-
tive, the relation between the interfaces in the scaling limit of critical lattice models and the field theory
describing that limit is a natural question to study. The interfaces are classified by chordal SLE curves which
are characterized by a parameter κ. Moreover, the scaling limit of critical lattice models are usually described
by conformal field theory which is characterized by a central charge c. This classifying number, determines
the universality class of the scaling limit of the different lattice models such as Ising model.

Although, there is a common belief that a CFT with c = 1
2 such as m = 3 minimal model describes

the scaling limit of the critical Ising model [DMS96] (chapter 12), but there were no systematic approach
proposed to CFT based on probability theory until recently. We study towards an algebraic construction of a
conformal quantum field theory of free fermions for Ising model based on probability theory, SLE. In fact,
in the Ising model example, we apply SLE3 and FVOA to construct and study fermionic CFT of the scaling
limit of the Ising model, rigorously.

On the one hand, we study the rigorous scaling limit of Ising model and its fermionic correlation functions
which lead to a fermionic conformal field theory. As we have seen in previous chapter, this is composed of
algebraic Fock space of states, local Fock space fields, their correlation functions and differential equations
that they satisfy. On the other hand, SLE3 curves and observables appear in the scaling limit of the Ising
model at criticality. We study the relation between these two distinct scaling limit of Ising model in different
aspects.

First, we study the algebraic operator formalism of fermionic Fock space of fields and states in CFT
and VOA and its relation to martingale generators of SLE3. Second, we explain how a certain fermionic
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observable of 2d critical Ising model, which is obtained from the scaling limit of Ising fermion correlation
functions, is related to a martingale observable of SLE3.

In general, a CFT corresponds to a chordal SLE if the parameters of CFT, c and h, and the parameter of
chordal SLE, κ satisfy

(90) cκ =
(3κ− 8)(6− κ)

2κ
, h =

6− κ
2κ

.

In our example the values of parameters, c = 1
2 , h = 1

2 and κ = 3, satisfy the above equations. The first
explicit realization of FCFT/SLE3 in the case of Ising model is the explicit form of the B.C.C. operator, a
Ising fermion field ψ(z) that is obtained from the scaling limit of the Ising lattice fermion operator. This is
an operator that changes the boundary conditions ±/∓ on the lattice row configurations. As we have shown
in previous section, the state ψ− 1

2
|0 > is a primary state and degenerate at level two. Therefore, this state can

be considered as an explicit B.C.C. state for the chordal SLE3 curve. In fact, the field ψ(z) is a boundary
operator, inserted in a boundary point z, the starting point of the SLE3 curve.

4.1. SLE3 and interfaces in Ising model. Schramm Loewner evolution is a conformally invariant stochas-
tic process introduced in 1999 by O. Schramm [Sch00], for further details see [La08]. It has been used
widely in the study of lattice models such as Ising model, percolation etc. The scaling limit of lattice model
interfaces at criticality is described by the SLE curves.

Let us start with an intuitive picture of how SLE curves emerge in the Ising model. A chordal SLE3

curve appears as the scaling limit of discrete interface or boundary between two boundary points where the
boundary conditions change. The interface separates two clusters of plus and minus spins in the Ising model.
The claim is that in the scaling limit, the interface converges to the chordal SLE3 curve. The convergence of
the interfaces in the Ising model to the SLE3 curves has been proved recently by Smirnov etal. [CDHKS12].

The probability measure of the spin configurations in the Ising model induces a probability measure on
the interfaces, in the following sense. Consider a domain D in complex plane with two boundary points a, b.
Approximate the domain and boundary points by square lattice domainDn = 1

nZ
2∩D and an, bn and define

a probability measure on interfaces in this domain, Pn(Dn, an, bn). In the limit n → ∞, Pn converges to
µ(D, a, b) which is the law of chordal SLE3 in the domain D from a to b. This procedure can be easily
generalized for the the case of several interfaces.

Let us briefly describe the simplest case of chordal SLE curves in domain (D, a, b). The chordal SLEκ,
with κ ≥ 0 is conformally invariant random curve processes in domain D from a to b. It is described by the
Loewner equation with a one-dimensional Brownian motion Bt as a driving force. Let gt(z) for z ∈ D and
t < τz ∈ (0,∞] be the solution of the equation

dgt(z)

dt
=

2

gt(z)−
√
κBt

, B0 = 0,

where g0 : (D, a, b) → (H, 0,∞) is a conformal map. Then, the function ht(z) := gt(z) −
√
κBt for all

t is a conformal map, ht(z) : Dt → H from domain Dt := {z ∈ D : t < τz} onto H, where ht(z) at
t = τz maps the tip of the curve to zero; limt→τz ht(z) = 0. The chordal SLEκ curve γ is defined by
γ(t) := limz→0 g

−1
t (z +

√
κBt).

Let us consider the general case of chordal n − SLE3, where there are 2n source points and arbitrary
number of bulk points. The general picture of the chordal n − SLE3 consists of several interface curves,
growing by Loewner chain, a collection of gt, with random driving force, which connect the boundary points
in the critical Ising model. Moreover, in order to define a chordal n − SLE3 we have to write down the
Loewner equation in H with explicit conditions. By using a hydrodynamically normalized conformal map
gt, we can uniformize the complement of the several SLE3 curves, labeled by integer i with the starting
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point Xi. This conformal map satisfies the Loewner equation

dgt(z) =

2n∑
i=1

2vitdt

gt(z)−Xi
t

,

g0(z) = z,(91)

where vit is the speed of growth of i−th curve which can be set to vit = 1 and Xi
t are the images of the tips

of the curves under the map gt.
In order to define a martingale observable from the fermionic correlation functions for chordal n−SLE3

we claim that Xi
t should satisfy

(92) dXi
t =
√

3dBi
t + 3(∂xi logZH

n−SLE3
)dt+

∑
l 6=i

2dt

Xi
t −X l

t

,

where dBi
t are 2n independent Brownian motions, ZH

n−SLE3
is called the SLE3 partition function which

will be defined in the following section and initial conditions are Xi
0 = Xi, and they are ordered as X1 <

X2 < ... < X2n. The claim will be proved in section (4.3). Moreover, the chordal n− SLE3, by definition,
satisfies the domain Markov property and domain conformal invariance.

SLE3 partition function. In the simplest case, a partition function of the chordal SLE3 on the domain D
with two boundary points a, b ∈ ∂D can be written in terms of the two-point fermionic correlation function,

(93) ZDSLE3
= χDa,b(ψ ⊗ ψ) =< ψ(a)ψ(b) >D∼

1

a− b
.

In the case of chordal n − SLE3 the partition function is given by the correlation functions of fermions
on domain D and it has the Pfafffian structure,

(94) ZDn−SLE3
= χDx1,...,x2n

(ψ ⊗ ...⊗ ψ) =<
2n∏
i=1

ψ(xi) >D= Pf

[√ϕ′(xi)√ϕ′(xj)
ϕ(xi)− ϕ(xj)

]2n

i,j=1

 ,

where operators ψ′s are inserted at source points, x1, ..., x2n ∈ D at B.C.C. points±/∓ and ϕ : D → H is a
conformal map. It can be checked that the chordal n− SLE3 partition function on the half-plane, ZH

n−SLE3

as a CFT correlation function of fermion fields with Pfaffian form satisfies the homogeneity and scaling
equations,

(95)
∑
i

∂

∂xi
ZH
n−SLE3

= 0,
∑
i

(xi
∂

∂xi
+

1

2
)ZH

n−SLE3
= 0,

∑
i

(x2
i

∂

∂xi
+ xi)Z

H
n−SLE3

= 0,

and null field differential equation,

(96)

3

4

∂2

∂x2
i

+
∑
l 6=i

[
1

xl − xi
∂

∂xl
− 1/2

(xl − xi)2

]ZH
n−SLE3

= 0,

for i = 1, ..., 2n. As it will be explained in the following section, this partition function can be used to define
the local martingales in chordal n− SLE3.

4.2. SLE3 Martingale generators and fermionic Fock space. In this section we study the fermionic Fock
space of states of the chordal SLE3 curves. By using the Clifford VOA, we want to construct explicitly
the Fock space of states of chordal SLE3 curves, or the chordal SLE3 martingale generators, in domain
Ht := H \ γ[0, t].

Let us review construction of the operator formalism in SLE. It is known that, to any formal power series
in particular function f ∈ z + C[[z−1]] of the form f(z) = z +

∑
m≤−1 fmz

1+m, one can associate an
operatorGf ∈ U(vir−) =

∏∞
d=0 U(vir−)d. The algebra U(vir−) is a completion of the universal enveloping

algebra U(vir−) =
⊕∞

d=0 U(vir−)d of the Virasoro subalgebra vir− generated by Ln(n < 0), [BaBe04].
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The fermionic Fock space of states V consists of basis vectors of the formψ−kn− 1
2
ψ−kn−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 >.

The fermionic descendant states in V and descendant Fock space fields in F can be constructed by the action
of Virasoro generators on the state |ψ >= ψ− 1

2
|0 > and its corresponding field ψ(z), as follow

(97) M = U(vir−)|ψ >⊂ V, N = U(vir−)ψ(z) ⊂ F .

Since we have the explicit fermionic Fock space of states V from the Clifford VOA, then by using the
intertwining operator Ght , between domains H and Ht, associated to the conformal map ht = gt −

√
3Bt

where gt : Ht → H, we can construct the SLE3 martingale generators and their Fock space in the domain
Ht.

The Fock space of states inHt (the states of SLE3 curves) and the Fock space of fields inHt are obtained
from the corresponding Fock spaces in H by means of the action of the transformation operatorGht as follow

(98) Ght |ψ >, G−1
ht
ψ(z)Ght ,

and therefore,

(99) Mt = GhtU(vir)|ψ >, Nt = G−1
ht

(U(vir)ψ(z))Ght .

The elements ofMt are of the form Ghtψ−kn− 1
2
ψ−kn−1− 1

2
...ψ−k2− 1

2
ψ−k1− 1

2
|0 >.

Using the grading of V =
⊕

h∈ 1
2
N Vh, for ∀h we can write explicitly the vector valued graded martingale

generators Mh of the chordal SLE3 as

(100)
1

Z
Ght |ψ >=

∑
h∈ 1

2
N

Mh ∈ V̄ ,

where Z is the chordal SLE3 partition function on the half plane and in fact Z =< ψ(∞)ψ(0) >H= 1, and
V̄ =

∏
h∈ 1

2
N Vh is the completion of V .

As we observed, the state |ψ >∈ V is a primary state degenerate at level two with singular descendant
state at level two, (L−2 + 3

4L
2
−1)|ψ >= 0. Using that, it can be shown that the state Ght |ψ > is a local

martingale of chordal SLE3, which roughly means that < v|Ght |ψ > is conserved in mean for any < v|,

(101) E[< v|Ght |ψ > |{Ghu}u≤s] =< v|Ghs |ψ >,

for t ≥ s.
In order to prove the local martingale property for Ght |ψ > we need to show that the drift term in Itô

derivative of this state vanishes. Since Ght is an intertwining operator corresponding to the conformal map
ht, it satisfies the Itô differential equation, see section (5.3.3) in [BaBe06],

(102) G−1
ht
dGht = dt(−2L−2 +

3

2
L2
−1)− dξtL−1.

Then, if we apply both sides of above equation to the state |ψ > and use the level two singular vector equation
then we obtain

(103) dGht |ψ >= GhtL−1|ψ > dξt,

which makes perfect sense in V̄ and shows that the drift term in the Itô derivative vanishes and thusGht |ψ >
is a local martingale of chordal SLE3.

Since that is a local martingale, all the fermionic correlation functions of CFT in the domainHt which are
SLE3 observable on the domain Ht, and are constructed from the vector Ght |ψ > will be local martingale
observables of chordal SLE3. Therefore, Ght |ψ > is called a generating function of local martingales of
chordal SLE3.

In general, the scaling limit of the interfaces in Ising model are related to the scaling limit of correlation
functions of local operators and fields and physical observables in the Ising model. We will elaborate on this
point in the following section.
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4.3. SLE3 Martingale observables and fermion correlation functions. Let us first describe the martin-
gale observables. It is easy to show that an observable is a local martingale if the drift term in its Itô derivative
vanishes. The general claim of this part is that a large collection of SLE3 martingale observables can be
constructed systematically by using the rigorously constructed correlation functions of fermionic Fock space
fields in (F! V ) theorem. It is known that all the correlation functions of descendant Fock space fields can
be reduced to correlation functions of primary Fock space fields through the action of differential operators
in Ward-like identities, [DMS96],

(104) < ψ(−kn,−kn−1...−k2,−k1)(z)
N∏
i=1

ψ(wi) >= L−kn ...L−k1 < ψ(z)
N∏
i=1

ψ(wi) >,

whereψ(−kn,−kn−1...−k2,−k1)(z) = L−knL−kn−1 ...L−k1ψ(z) = 1
2πi

¸
dw 1

(w−z)n−1T (w)(L−kn−1 ...L−k1ψ(z))

and Ln is defined by

(105) L−n =
N∑
i=1

{
1

2

(n− 1)

(wi − z)n
− 1

(wi − z)n−1
∂wi

}
.

The correlation functions including more than one descendant fields can be explicitly calculated similarly.
This means that the correlation functions of descendant fields can be reduced to the correlation functions of
primary fields. We will use this observation later.

In this section we present an explicit form of some chordal n − SLE3 martingale observables as the
correlation functions of free fermion fields and descendant fermionic Fock space fields. Furthermore, we
will see that basic SLE3 martingale observables have an explicit Pfaffian structure. We study the relations
between fermionic null field differential equation (78) and vanishing of the drift term in the Itô formula for
the SLE3 martingale observables.

Let us construct an example of chordal n − SLE3 martingale observable, see [BBK05]. Consider an
operator of the form O =

∏m
k=1 ψ(Wk). A martingale observable of this operator in the domain Ht, where

the 2n SLE3 curves are removed from H and the tips of the SLE3 curves are γ1, ..., γ2n, is claimed to be

(106) < O >Ht=
1

ZHt
n−SLE3

χHt
γ1,...,γ2n;W1,...,Wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ)),

where ZHt
n−SLE3

= χHt
γ1,...,γ2n

(ψ⊗ ...⊗ψ) is a partition function of chordal n−SLE3 in domain Ht. In this
case, the explicit form of the correlation function χHt

γ1,...,γ2n;W1,...,Wm
((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ)) and the

partition function are known as Pfaffian formulas. In the following, we prove the claim that eq. (106) gives
a local martingale observable of the chordal n− SLE3.

The observable < O >Ht can be transformed to H by using the mapping gt : Ht → H as follow

(107) < O >Ht=
1

ZH
n−SLE3

Jtχ
H
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ)),

whereZH
n−SLE3

= χH
x1,...,x2n

(ψ⊗...⊗ψ), xi = gt(γi),wk = gt(Wk) and the Jacobian is Jt =
∏m
k=1 g

′ 1
2
t (Wk).

Above chordal n − SLE3 observable is a local martingale if the drift term in the Itô derivative of the
observable vanishes. To show that the drift term vanishes, we need Itô formula for the ψ(Xi

t), which is
dψ(Xi

t) = ψ′(Xi
t)dX

i
t + 3

2ψ
′′(Xi

t)dt, and Loewner equation for gt(Wk) and its derivative with respect to
Wk which lead to,

(108) d(ψ(wk)w
′ 1
2
k ) = w

′ 1
2
k

∑
i

2dt

(
ψ′(wk)

wk −Xi
t

−
1
2ψ(wk)

(wk −Xi
t)

2

)
.

In addition, we need the null field differential equation for the chordal n − SLE3 partition function on H,
eq. (96), and for the correlation function of fermions on H,

(109) DχH
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ)) = 0,
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where operator D is

D = (
3

4

∂2

∂x2
i

+
∑
l 6=i

[
1

xl − xi
∂

∂xl
− 1/2

(xl − xi)2

]

+

m∑
k=1

[
1

wk − xi
∂

∂wk
− 1/2

(wk − xi)2

]
).(110)

Then, let us write the Itô derivative of the numerator of eq. (107)

d(Jtχ
H
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ))) =

Jt

[∑
i

dXi
t∂xi +

∑
i

dt

(
3

4

∂2

∂x2
i

+
m∑
k=1

[
1

wk − xi
∂

∂wk
− 1/2

(wk − xi)2

])]

(111) χH
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ)).

Then, by using the null differential eq. (109), the Itô derivative becomes

d(Jtχ
H
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ))) =

Jt

∑
i

dXi
t∂xi −

∑
i

2dt

∑
l 6=i

[
1

xl − xi
∂

∂xl
− 1/2

(xl − xi)2

]
(112) χH

x1,...,x2n;w1,...,wm
((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ)).

As an special case, the above equation implies that

(113) dZH
n−SLE3

=

∑
i

dXi
t∂xi −

∑
i

2dt

∑
l 6=i

[
1

xl − xi
∂

∂xl
− 1/2

(xl − xi)2

]ZH
n−SLE3

.

Finally, by using the above equations the Itô derivative of < O >Ht becomes

d < O >Ht= Jt
∑
i

dXi
t − (3∂xi logZH

n−SLE3
+ 2

∑
l 6=i

1

xi − xl
)dt

 ∂xi
(114) (

1

ZH
n−SLE3

χH
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ))).

Thus, we observe that if the process Xi
t satisfies

(115) dXi
t =
√

3dBi
t + (3∂xi logZH

n−SLE3
+ 2

∑
l 6=i

1

xi − xl
)dt,

then the drift term in Itô formula for < O >Ht vanishes and we have

(116) d < O >Ht=
√

3Jt
∑
i

dBi
t∂xi [

1

ZH
n−SLE3

χH
x1,...,x2n;w1,...,wm

((ψ ⊗ ...⊗ ψ)⊗ (ψ ⊗ ...⊗ ψ))].

To summarize, we observe that 1

Z
Ht
n−SLE3

χHt
γ1,...,γ2n;W1,...,Wm

((ψ⊗ ...⊗ψ)⊗ (ψ⊗ ...⊗ψ)) is a martingale

observable of chordal n− SLE3 with the condition (115).
Without explicit calculations, but because of the fact that < v|Ght |ψ > (for any arbitrary < v| which

can be obtained from the action of descendant fields on the < ψ|) are local martingales, we claim that the
23



correlation functions of arbitrary Fock space fields can be used to write the following expression as a chordal
n− SLE3 martingale observable

(117)
1

ZHt
n−SLE3

χHt
γ1,...,γ2n;W1,...,Wm

((ψ ⊗ ...⊗ ψ)⊗ (v1 ⊗ ...⊗ vm)),

where vi’s are arbitrary vectors in Fock space. Moreover, we claim that all the SLE3 observables obtained
from the fermionic correlation functions are reducible to the basic ones by using the generalization of eq.
(104). By basic SLE3 observables we mean those that are obtained from the correlation functions of free
fermion fields.

5. CONCLUSIONS

In this article we have studied a concrete and explicit realization of the CFT/SLE correspondence in the
case of Ising model. We obtained the correlation functions of free fermionic fields on domain D by taking
the scaling limit of the lattice correlation functions of the Ising free fermions. These results are obtained
by using the rigorous methods of discrete holomorphicity and Riemann boundary value problem introduced
in [Hon10a]. We investigated the algebraic and analytic fermionic conformal field theory by studying the
correlation functions of fermion fields and differential equations that they satisfy such as Ward identity
and singular vector differential equations. Moreover, we developed the algebraic aspects of the fermionic
Fock space and fermionic vertex operator algebra and especially we found a mapping between the Fock
space of states and the correlation functions of the fermionic fields which respects the conformal structure
of the theory. The relation between these results and the probability theory of martingale generators and
observables in chordal SLE3 are studied and we have worked out all these relations explicitly in a concrete
example of the Ising model.
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