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LOEWNER EVOLUTION IN ISING MODEL

ALI ZAHABI

ABSTRACT. We study the algebraic construction of the conformal field theory (CFT) and its relation to the
Schramm Loewner evolution (SLE) in an example of the Ising model. We first obtain the rigorous scaling limit
of the correlation functions of Ising free fermions on an arbitrary simply connected two-dimensional domain
D in the explicit form of Pfaffians. Then, we study the algebraic and analytic aspects of the fermionic confor-
mal field theory on D in terms of the Clifford vertex operator algebra (VOA). This construction leads to the
fermionic Fock space of states and conformal field theory of the Fock space fields of the Ising free fermions.
Furthermore, we investigate the conformal structure of the fermionic Fock space fields, namely their operator
product expansions, correlation functions and differential equations. Finally, by using the Clifford VOA con-
struction and the fermionic CFT, we investigate a rigorous realization of C F'T'/SLE correspondence in the case
of the fermionic C F'T'/SLEs in two directions: operator formalism and correlation functions. By studying the
relation between the operator formalism in VOA and S L F3 martingale generators, we found an explicit Fock
space for the S L E'3s martingale generators. Also we obtain a large collection of S L E'5 martingale observables in
terms of the correlation functions of fermionic Fock space fields which are constructed from the Clifford VOA.
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1. INTRODUCTION

The Ising model was introduced in 1925 by W. Lenz as a model describing a ferromagnet on lattice.
The Ising model consists of spins o0, = %1, on the vertices « of the lattice, interacting by short range
neighborhood self-interactions as well as interactions with the external magnetic field B. In the case of
B = 0, in contrast to the one-dimensional model, two-dimensional Ising model in Z? possesses a second
order phase transition at critical inverse temperature (8 = kBLT), Be = %ln (\/§ — 1), as shown in the
pioneering works by Peierls, Kramers, Wannier and Onsager, [Pe36], [KrWa41], [Ons44] and [KaOn49]. At
B = p. specific heat and magnetic susceptibility diverge to infinity and for 5 > . spontaneous breaking
of the symmetry leads to a nonzero magnetization. Moreover, due to infinite dimensional symmetry, many
physical properties of the 2d Ising model such as free energy and spin correlations at B = 0 can be computed
exactly.

The transfer matrix formalism is one of the approaches toward the exact results in Ising model, [Ba08].
Specially the free fermion operators play an essential role in this formalism, [Kau49]. Moreover, the Fock
space representations of the transfer matrix formalism and free fermions have been studied extensively, for a
review see [Pal07]. In this paper, we study the connections between the discrete fermionic formalism of the
Ising model and the rigorous aspects of a fermionic conformal field theory that describes the scaling limit of
the model.

There is a common belief that the scaling limit of the lattice models such as Ising model at criticality are
described by a field theory with the conformal symmetry. However, it is known that the spin operator is
not enough to describe the continuum limit of the theory. In fact, it is believed that the critical Ising model
in the continuum limit is described by a conformal field theory, namely the theory of free fermionic fields.
Roughly speaking, the fermionic field is identified with the scaling limit of the fermionic operator on the
lattice. However, there were no exact proofs about the scaling limit of the Ising model free fermions and
their correlation functions. Recently, the rigorous methods from discrete analysis and probability theory have
provided exact proofs about the conformal invariance in the scaling limit of the Ising model at criticality, for
a good review on general aspects of discrete holomorphicity see [Car09] and [DuSm11]. We have used
these techniques to obtain the scaling limit of the correlation functions of Ising free fermions with specific
boundary conditions, rigorously. The continuum correlation functions are obtained from the scaling limit of
the lattice correlation functions obtained in [HKZ12]. By means of these methods, we find a proof of the
Pfaffian formula for the correlation functions of free fermionic fields, in the scaling limit.

Moreover, a new rigorous formulation of the continuum Fock space of fields and their properties; CFTs
on domains with boundaries in the case of Gaussian free fields is proposed in [KaMal1]. We have extended
and adopted a similar formulation to obtain a formulation of the conformal field theory on bounded domains
in the case of free fermion fields of the Ising model. In this approach, we have obtained the characteristic
features of fermionic conformal field theory on a bounded domain such as transformation rules for fields and
their correlation functions, the operator product expansion of fields, Virasoro algebra representation and the
Ward identity.

On the other hand, vertex operator algebra (VOA) provides a concrete mathematical language for CFT,
[Ka98]. The vertex operator algebra is an algebraic construction for conformal field theory in terms of formal
power series. The general VOA has been adopted in different cases for different purposes such as VOA for
bosonic and fermionic fields. In this paper we have used the Clifford VOA for fermionic fields which has the
Clifford algebra symmetry in addition to Virasoro algebra symmetry. The Clifford VOA, as an equivalent
algebraic formalism to fermionic conformal field theory, turns out to be useful in study of scaling limit of the
Ising model at criticality. Specially, we have obtained the Fock space of fermionic states in terms of VOA
vector space.

From a different perspective, Schramm Loewner evolution plays a crucial role in this picture. The SLE
is a stochastic process that is defined by a stochastic differential equation, the Loewner equation with the
Brownian motion as a driving force. In general, SLE curves explain the scaling limit of the interfaces of the
statistical lattice models on domains with boundary, at critical temperature. Specially, it has been proved in
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[CDHKS12], that the scaling limit of the interfaces in 2d critical Ising model is described by a Schramm
Loewner evolution, SLE3. In SLE, the probability measures of the interface curves satisfy the conformal
symmetry and the Markov property. These are physically expected conditions that the scaling limit of the
interfaces should satisfy.

In this paper we combine the approach of Clifford VOA and the Fock space of conformal fermionic fields
in order to obtain a unified picture of a conformal field theory describing the scaling limit of the critical Ising
model. To have a unified picture, we need a mapping between the Clifford VOA and correlation functions of
the Fock space fields which satisfies the axioms that are reflecting the analytic and algebraic aspects of the
underlying conformal symmetry in the scaling limit of Ising model at criticality. This has been done through
the main theorem of this paper.

Another aspect of this study refers to the well-known CFT/SLE correspondence, [BaBe06]. We employ
the aforementioned framework of the VOA and Fock space fields approach to CFT, and their inter-relation in
order to concretely investigate an example of the CFT/SLE correspondence in the case of Ising model. We
have obtained the results indicating a rigorous realization of the fermionic CFT/SLFEs3 in terms of Clifford
VOA and Fock space of fermionic conformal fields. The Clifford VOA provides a fermionic Fock space
for the S L F'5 martingale generators and furthermore, a large collection of .S L F'3 martingale observables are
explicitly written in terms of the correlation functions of the Fock space fields that are corresponding fields
to the states of the Clifford VOA.

2. FERMIONIC THEORY OF ISING MODEL

In this section we explain first the transfer matrix formalism which is an approach towards an exact
solution of two-dimensional Ising model on a rectangle with specific boundary conditions. Specifically, we
express the correlation functions of any operators in this formalism. Then, we introduce the notion of the
free fermions in Ising model and their correlation functions on the lattice. Eventually, by using methods
from discrete complex analysis the scaling limit of the fermionic correlation functions on the half plane and
other conformally equivalent domains are obtained. These are CFT correlation functions in the Fock space
construction of the free fermionic fields.

2.1. Transfer matrix formalism in Ising model. The Ising model on the domain Ay, ny = {(j,1) € Z? |
7] < M,|i| < N}, consists of spins 0, = %1, on the vertices « of the lattice in the domain Ay y. The
model is parameterized by the inverse temperature 5 and nearest neighbor interaction coupling J between
< a,a’ >, the pairs of sites that are nearest neighbors. The Ising model is defined by its partition function
which contains all the physical and geometrical information of the model via the Hamiltonian and the domain
geometry and its boundary conditions,

(1) ZNB) =) _exp (B D Josow |,

oeCp <a,a’>CA

where the sum is over spin configurations o in Cy = {£1}*.~ which satisfy the boundary conditions. For
simplicity we can set J = 1.

As we mentioned, the transfer matrix formalism can be used to calculate the partition function and corre-
lation functions of operators such as spin, energy etc. in planar Ising model on the rectangle with the specific
boundary conditions. In order to calculate the partition function and correlation functions in transfer matrix
formalism, the sums over all configurations in partition function and correlation functions are divided into
the multiple sums over the configurations of the rows, Cx(row) = {+1}2M+1,

Let us define the transfer matrix of the 2d Ising model. The transfer matrix Vj; : H — H is a linear

1 1
transformation on the Hilbert space H = ®J]Vif M (C?. The transfer matrix is defined as Vy; = V> Vo V)?



1+O'j
where the action of 1 on the basis of the Hilbert space e, = ®]Ai_ M [120].] , 1s defined by
2

M—-1
) Vies =exp | 8 ) 6,651 |eo,
j=—M

0 —1 0
b € Rand o and p € Cp(row), then we define the matrix elements of V5 as

where5; = 1® .. ®1® [1 0 } R1IR..®1= {1 _OJ is the spin operator and also suppose that

M
3) (Va)po =€ Pexp [ Y BG)pjoy |,
j=—M
where p; and o; are the row configurations evaluated at j — th column and 5(j) is
) b for|j|l=M
@) 805) = JI=Aar
B for|j| # M

Moreover the action of V5 on the Hilbert space is computed by Vae, = > p Vae,. We are interested in the
action of V5 in the limit b — oo; limy_,oo Vo€, = Z/&piM:tfiM Vae,.

It has been discussed in proposition (1.1.1) in [Pal07], that the correlation function of O 4 = Hie 4 0; as
a product of linear operators O; such as spin etc. in a subset A of the domain A, a finite collection of sites,
with specific boundary conditions, in the limit b — oo, is given by

1 1
< eNViEVaOay VarOuy .04y, ViViZ eV >

&) < Ogq >p= Zn )

1 1
where O 4, denotes the restriction of O to the i—th row, Zy =< e)|[V2VEVV2le; N > is the partition
function and eX? is the Hilbert space representation of the =N — th row configuration. We take eq. (5) as
a definition of the correlation functions.

2.2. Ising free fermions. The method of free fermions was introduced in 1949 by Kaufman in order to
compute the free energy of the Ising model. This is one of the powerful methods besides other methods such
as combinatorial methods, that have led to the integrability paradigm in the Ising model, [BaOS].

In order to discuss the free fermions in Ising model we introduce a representation of the Clifford algebra
in Ising model. Suppose that IV is a finite-dimensional complex vector space with a nondegenerate complex
bilinear form denoted by (-,-). A Clifford algebra Clif f(W) on the vector space W is defined as an
associative algebra with unit e and set of generators in W satisfying ab + ba = (a, b)e.

We define a finite-dimensional, irreducible spin representation of Clifford algebra Clif f(W7},), so called

Brauer-Weyl representation, acting on ®jj\i M (CJQ- space, with generators

kz—% k—%
0 1 1 0 H 01 0 —i
(6) Pk = | | [1 O] ) [0 _1:| L Tk = |:1 O:| . |:i 0:| 1
j=—M J k+3 j=—M J k—3

where for py, k € Ipr — %, and for qi, k € Ip + % and Iy = {—M,—M + 1,..., M}. The Clifford
algebra generators of this representation with some normalization factors, {24 q—\/’%}, are orthonormal basis

V2

of a complex vector space W},

1 1
(7) Wy = Span({px|k € Ins — 5} U{qklk € Ins + 5}) =Wy ® (CP,M,% +C
4
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It can be easily checked that p;, and g;, satisfy the anti-commutation Clifford relations

(8) PPl + DDk = 20k, Qe + k= 20k, PR+ qpk = 0.

Then, the lattice fermion v, and anti-fermion 1)y, operators are defined on the mid-points of horizontal
edges of two-dimensional rectangular lattice as

&) Y= Ay(qe + 1), U = Ag(—ar + i),

where A, and A are normalization factors.
In order to simplify the notation we define time-dependent fermion operators by using the transfer matrix
Vs in the domain Ajps v as

(10) Y(k +im) = V" Vif

Furthermore, the transfer matrix can be written in terms of Clifford algebra generators p; and g and thus
the time evolution of the free fermions can be explicitly calculated via the conjugation by the transfer matrix,
[HKZ12]. This conjugation is called induced rotation and it is denoted by T'(V};). The induced rotation is a
linear transformation, T'(Viy) : Wy, — W}, such that for all v € W},

(11) T(Var)v = Vi oV

Note that the induced rotation preserves the bilinear form, (7'(Vys)a, T'(Var)b) = (a, b) fora,b € W.
Moreover, the normalized lattice correlation functions of fermion operators in the domain A (for simplicity

we write the domain A7,y as A) with plus boundary conditions, < H1221 (2) >§\+), in the transfer matrix
formalism can be defined from eq. (5) as

(12) <szz l<++\1—[¢a|++>

with z; = k; +im;, Z =< + + | + 4+ > is the partition function and
1
!++>:VMV1 \e >, <4+ =<ely V2V,

where e corresponds to a row configuration in which all the spins are plus.

It has been discussed in section (1.3) and (4.2) in [Pal07], that the naive scaling limit of the transfer matrix
formalism for the free fermions leads to the Dirac equation and at critical temperature, one can observe that
the free fermions (anti-fermions) are holomorphic (anti-holomorphic) functions.

In next section, we explain a rigorous approach to derive the scaling limit of the lattice fermion correlation
functions.

2.3. Discrete holomorphicity and scaling limit of the correlation functions. The methods of discrete
complex analysis and discrete holomorphic functions [Smi06], [SmilOa], [Smil0b], [ChSm09] [ChSm11],
[IkCa09] and [RaCa07] provide the possibility to perform the rigorous scaling limit of the s-holomorphic
functions and observables as well as other advantages. Thus, by using the relations between s-holomorphic
functions and fermion correlation functions we can obtain the scaling limit of the correlation functions,
rigorously. The obtained results from this method coincide with the vacuum correlation functions of free
fermions in conformal field theory which is believed for a long time that it describes the continuum limit of
the free fermions of the Ising model, [McWu73] and [DMS96].

In a naive sense, the scaling limit of the fermion correlation functions in critical Ising model on a strip
with lattice mesh size ¢ is defined by taking first the semi-infinite volume limit N — oo and then taking the
continuum limit, M — oo, § — 0, while the width of the strip M ¢ is kept fixed. For example, the scaling

limit of boundary state | + + > is expected to behave like | + + >N M=r00,0250 |0 >, in which
|0 > is a CFT vacuum.
The first step towards the rigorous scaling limit of the Ising free fermions is to find the scaling limit of the

lattice fermion correlation functions. In order to that, we have obtained the relations between s-holomorphic
5
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functions and fermions correlation functions in [HKZ12], then we need to obtain the scaling limit of s-
holomorphic functions FZT,(z) and Fj,(z) which will be defined in the next sentence. These functions are
parafermionic observables in the Ising model. They are solutions of the Riemann boundary value problems
(the explicit form of the Riemann boundary conditions in the case of rectangle for the scaling limit of the
functions can be found in eq. (14). For a general definition of Riemann boundary value problems see section
(2) of [HKZ12]) with a discrete singularity at z = 2’. In other words, they are s-holomorphic functions and
they satisfy the Riemann boundary conditions,

(13) Fﬁ(z):% 3 alem i), Fj(z):% 3 bz,
oeC, o€C,y

where Z = Y o+ ol is a partition function with plus boundary conditions, and the sum in Fj,(z)
(Fj, (2)) is over collections of dual edges in all graphical expansions o € C,;; (0 € C,,,) consisting of loops
and a path stars at 2’ upward (downward) and ends at  either from above or below, o, = €25, L (o) is the
total number of edges in the configuration o and w is the winding number of directed path starting at z’ and
ending at z. The points z, 2’ are midpoints of horizontal edges of the lattice.

So far we have discussed only the rectangular domain but the parafermionic observables can be defined
similarly in any square lattice domain [HoSm10b]. However, we want to study the scaling limit of the
parafermionic observables on the rectangle at the critical point, 3 = (.. In general, a continuous domain A
can be approximated with the discrete domain Ag, as a subgraph of the square lattice 6Z2, when the small
lattice mesh size 6 tends to zero, 6 — O.

It has been shown that scaling limit of the s-holomorphic functions which satisfy the Riemann boundary
conditions exists and the convergence of the parafermionic observables as 9 — 0 can be controlled by the

methods of discrete complex and harmonic analysis, [HoSm10b, Hon10a]. The result of these studies can be
Fl,(z) Fl(2)

summarized as follow: the functions ——, —=— converge uniformly on compact subsets of A\ {2’} to the
unique holomorphic functions with Riemann boundary values and the appropriate residue, lims_,q Z’(S(Z) =

0
£1(2) and lim; ¢ Fz/(s(z) = f4(2).

Then, similar to the discrete case, we have the Riemann boundary value problem for the scaling limit of the
Ising parafermionic observables. The residue calculations on the lattice are performed by considering couple
of combinatorial cases and using the fact that the contour integral of s-holomorphic function is zero. Then,
with the help of lattice residue calculations and Riemann boundary value problem we obtain the following
statement in the scaling limit,

f;(z) and fj,(z) are holomorphic on rectangle \ {z'}
(14) 27i Res,—. f1,(2) = —1, 2miRes,—./ f5(2) = 1
For z € Orectangies J3(2) | A=, f5(2) || 2

71,27

where Oy.cctangie 18 the boundary of the rectangle and v, is the counter clock-wise tangent vector at point 2 on
the boundary of rectangle. These conditions determine a unique function on the rectangle which transform
conformally covariant under the conformal transformations between the rectangle and any other domains.
We start with the scaling limit of the correlation functions of Ising fermions on the upper-half plane H :=
{z € C|¥z > 0}. The holomorphic functions on the half-plane which satisfy eq. (14) can be obtained as

as) () = i( L, 1_), FHE ) = 2 ( L 1_).
6
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As we mentioned, the relations between fermionic correlation functions and parafermionic observables
are obtained in theorem (22) in [HKZ12]. In slightly different notation they are as follow:

<H+ )W) ++ > = 243Z(F)(2) - F)(2)),
<+ WP ++ > = 2043A5Z(Fl(2) + F(2)),
(16) <HFPERPE) ++ > = 2432(F)(2) - Fi(2)).

By using the above relations between correlation functions and parafermionic observables, we can deduce
also the convergence of the scaling limit of the fermion correlation functions lims_,o 3 < ++[¢(2)¥(2)| +

+ >. In this spirit, the correlation functions on the half-plane, such as < ¥ (z)y(2") >g= 2A12/) Z'( fZTiH(z) -

fiﬁH(z)) etc. with the choice of parameters A, = %(—i —1),Aj; = Ay and Z' = —7 can be obtained as

(7)< 6@ 2= (2 ) <9I 2a= () < HEIHE) 2a= ()

Moreover, we can obtain the correlation functions in an arbitrary domain D by using the fermion transfor-

mation rule ¢(z) = ¢ (z)%@b(g(z)), as a defining rule for fermions, under a conformal map g : D — H,
as

(18)
<p(2)P(2') >p=

P N 6 7/ C L PO &7 ol
R TR By 9G) - 9)

where ¢'(2) is the derivative of g(z) with respect to z.
In the scaling limit on the upper-half plane, by using the two-point correlation functions of fermions v (z),
any 2n-point correlation function can be written in terms of two-point functions, via the Wick’s theorem,

2n
(19) < w(zl)w(zm) >H= Pf <|: 1 :| ) ,

Fi T Zj =1
where definition of the Pfaffian of an anti-symmetric matrix A € C"*" is

Pf(A) _ {QICIMZP Sgn(P) Hle Ap(gi_1)7p(2i) forn = 2k ‘

0 forn=2k—-1
where P is any permutation of {1,2,...,2n} and Sgn(P) is the sign of the permutation. This is called the
Pfaffian formula. This result can be proved by using the Pfaffian formula for the lattice fermion correlation
function (section (4.4) in [HKZ12]) and then taking the scaling limit. Furthermore, by using the above Pfaf-
fian formula and eq. (18) we have the following equation for the multi-point fermion correlation functions
on the domain D

2n (o e 2n
(20) <][v() >p=Pf mm
i=1 9(zi) — 9(zj) L

There are similar formulas for correlation functions of anti-fermions.

3. FERMIONIC VERTEX OPERATOR ALGEBRA AND CFT

In this section, the vertex operator algebra and conformal field theory of the Ising free fermions are studied.
The Fock space of fermionic states and fields are constructed in explicit forms and furthermore, the relation

between them has been investigated.
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3.1. Vertex operator algebra and fermionic Fock space of states. In this part, the basic definitions of
vertex operator algebra as a rigorous algebraic approach to CFT is reviewed. The vertex operator algebra
(VOA) was introduced by R. Borcherds in order to provide a rigorous mathematical definition of the chiral
algebra, the symmetry of the two-dimensional CFT and its ingredients such as operator product expansion
[Bo86]. We start with the definition of the axioms of a general vertex algebra and a restriction of the ver-
tex algebra into a conformal vertex operator algebra [Ka98], [Ga06] and [Scht08]. The discussion will be
continued by an explicit example of VOA which has Clifford algebra symmetry, the VOA of free fermions
(FVOA or Clifford VOA). The Clifford VOA leads to the Fock space of fermionic states.

The Fock space of states is defined as a graded vector space V = @, __V,, consisting of vacuum state
1 € V and other states which are generated from the vacuum state and we denote them by small letter such as
a,b, ... € V. A field operator a(z) is a formal power series a(z) = Y, oy a2z~ """ where a(,) € End(V)
and for each v € V we have

(21) a(n)v = 0,

for n > 0. Moreover, we can define the vertex operator subalgebras by a Zs-grading of V' = Vj + Vj into
even (p = 1) and odd (p = 0) parity subspaces. Moreover, we assume that the fields have a definite parity.
Then we can define a vertex algebra.

Vertex operator algebra. A quadruple (V,Y,0,1) is called vertex algebra if for all a € V there exists a
mapping Y : V — End(V) [[z,27Y]]. Y (a,2) = 3, e a2z~ """ satisfying the following axioms:

e Vacuum: Y (1, z) = Iy is the identity;

e State-field correspondence:

(22) Y(a,2)1|:=0 = a,= a1 =0 forn > 0and a_)1 = a;
e Translation:
(23) [T7 Y(a7 z)] = 0.Y (a, 2), [Tv a’(n)] = —Na(n-1);

where T € End(V) is defined by T'(a) = a(_y)1.

e Locality: (z—w)™[Y (a, 2),Y (b, w)] = 0 for some large N'; where [Y (a, 2), Y (b, w)] = Y (a, 2)Y (b, w)+
(—1)P@PO)Y (b, w)Y (a, z) and p(a) is parity of field a(z).

e Regularity: There is an M such that a(,,)b = 0, for all n > M;

The mapping Y (a,2) = >, o7 a(n)z_”_l as a formal power series with operator modes a ;) is called
vertex operator.

In order the state the main theorem of this part we need some definitions and properties in VOA. For a
moment, let us briefly introduce the Virasoro operator L(z) and the operator product expansion of operators
in VOA. We will explain these topics in the following sections, more carefully. The Virasoro field L(z) =
> ez Lmz~™"2 as an even formal power series is defined such that it satisfies the following OPE

1/2C |, 2U(w) | OL(w)

4) L(z)L(w) ~ )

(z —w) (z —w) (z —w)’

where C' = cI and c is a central charge. Furthermore, We will define the conformal vertex operator algebra
in the following sections.

Furthermore, the j—th OPE product a(z) *; b(w) of the OPE between two fields a(z) and b(w) can be
obtained form the following formula

N (Z
25) w)~ Y ]+1

J=0

We will explain further the OPE product later in the next section.
8



3.2. Fermionic correlation functions and VOA. In previous section, the Fock space of states, V' is con-
structed in the context of VOA. We will define the fermionic Fock space of states later in this section. In
order to make contact of the space V' to the Fock space of fields F and the correlation functions of fields we
introduce a map x in the following theorem.

(F «~ V) theorem. There exist a unique collection of maps indexed by domain and the number of points
from a tensor powers of fermionic Fock space of states to the correlation functions of fermions in any domain

D; Xgi),...zn)(vl R ... Qvy) : VO — C, for 21, ..., 2, € D, such that it satisfies the following properties:
1y
n
(D) _ AN
X (Y ®..0¢9)=Pf ’
(21,12n) 9(zi) — g(zj) N
1,7=1
2)
() (U® QR L_1v; ® ®1})—i (D) (’U® ®U)
X(217~~-,Zn) 1 —17U4 n) — 8ZZ‘ X(Zl,--.,Zn) 1 n)s
3)
Xg:i),..‘,zﬂ,)(vl X . QU QU1 Q... @ Un) ~
N-1
1
(26) (D) (V1 ® ... @ Uy *j U1 @ ... @ Up),

— (Zm _ Zm+1)j+1 (215 ZmsZm+1y-32n)

<

where the P f is the Pfaffian, g : D — H is a conformal map, L_; is the mode m = —1 of the Virasoro field
L(z), Zp, is removed and vy, *j V1 is the j—th OPE of the vectors vy, and vy, 41.

This theorem provides a mathematically rigorous approach to the Fock space of the fermionic fields
and their correlation functions from the VOA. We will explicitly construct the Fock space of the fermionic
conformal fields in section (3.3). Moreover, we will see in section (4) that the theorem provides us with a
rigorous realization of fermionic CFT/S L E5 correspondence at the level of correlation functions and SLE
martingale observables.

In order to prove the theorem we need basically two results, namely the Wick’s and reconstruction theo-
rems in VOA and in CFT on domain D. In the following we review the results in VOA without proofs.

Normal order product in VOA. [Ka98] (Theorem 2.3) Let us introduce the following notations,

(27) a(z)— = Z a(n)zfnfl, a(z)y = Z a(n)zfnfl.

n>0 n<0
Then, the normal order product of two fields is defined by
(28) a(2)b(w) = a(2)+b(w) + (1) POb(w)a(z)- = a(z)b(w) - [a(2)-, b(w)].
The normal order product of more than two fields is defined inductively from right to left as follow :
a'(2)a?(2)...aV (z) :==: a*(2)... : AN (2)aN (2) ¢ ... -

Furthermore, as we have seen in the axioms of the VOA, two fields a(z) and b(z) are called mutually local
if they satisfy (2 — w)™[a(2), b(w)] = 0 for N > 0.

OPE theorem in VOA. [Ka98] (Theorem 2.3) It has been shown that the operator product expansion (OPE)
of two mutually local fields a(z) and b(w) in VOA is given by
N-1

(29) a(z2)b(w) = 3 (Zc_j(;"))jﬂ+ L a(2)b(w)
=0
9



where ¢;(w) € End(V) [[w,w™!]]. In fact, it has been proved that above OPE product is equivalent to the
locality axiom for the a(z) and b(w) fields; (z — w)™ [a(z), b(w)] = 0 for N > 0. Moreover, the singular
part of the OPE is often written as

N-1
~ Z j+1
_]ZU
And, the j—th product a(w) *; b(w) of OPE a(z)b(w) is defined as follow
a(w) = a(w
(30) a(2)b(w) =Y = oo ]+1 ]H + :a(z)b(w) : .
JEZ 7=0

The Wick’s theorem in VOA. [Ka98] (Theorem 3.3) Let a'(z), ...,a"(z) and b'(2), ..., b™(z) be two collec-
tions of fields such that the following properties hold:

D [[a*(z)_, b (w)], cF(2)] = O for all i, j, k, and ¢ = a or b.

2) [a'(2) + ,bj( )+] = 0 forall 4, 5.

let < a't? >:= [a*(2)_, b/ (w)] denotes the contraction of a*(z) and b’ (w). Then the following equality
holds in the domain |z| > |w|:

cal(2)..a™(2) = b (w).. 0™ (w) =

Z (£ < Al > < a e > al(z)...a"(z)bl(w)...bm(w) :(i1,...,is;j1,...,js))’

s=0 i1<...<i57j1;£...§£j5

where the sign =+ is obtained by the rule that each permutation of the adjacent odd fields changes the sign
and subscript (i1, ..., is; j1, ..., Js) means that the fields a" (2), ..., a’ (z) and &' (w), ..., o’s (w) are removed.

Clifford vertex algebra for Ising free fermions. The goal of this part is to construct the fermionic Fock space
for states in VOA and their corresponding fields of the Ising model.
The set of generators {¢,,} forn € Z + % with the following algebra,

(32) {wny wm} = 5n+m,07

are the generators of the fermionic Fock space and by acting them on the vacuum state one can generate the
basis elements of a fermionic Fock space which is a vector space V.

The Clifford vertex operator algebra is a vector space V' consisting of fermionic states including the
vacuum state |0 >, and fermionic vertex operator,

(33) V(1[0 >.2) =Y g d

neZ+x 5

which is an odd formal power series with ¢, = 2m C n—3 1 (z)d(. This Clifford VOA satisfies the axioms

of the VOA. The generator 1,, actson V as a hnear operator such that for any v € V, ¢,v = 0 for n > 0.
An example of field/state correspondence in the case of fermions is |¢p >=¢_1]0 >= ¢(0)|0 >.
2

Furthermore, fermion fields satisfy the conditions of the Wick’s theorem and they are mutually local fields
with the following OPE

(34) Y(2)p(w) ~
10
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Conformal vertex algebra for Ising free fermions. [Ka98] (Theorem 4.10) A conformal vector v € V is an
even vector such that the corresponding vertex operator Y (v, z) = L(z) = Y., ., L,z~" "2 is a Virasoro
field of the central charge c with the following properties

35) L_y =T, and Ly is diagonalizable on V.

The vertex algebra (V,Y,0,1) is called conformal vertex algebra if it has a conformal vector v € V5.
According to the theorem (4.10) in [Ka98], Y (v, z) is a Virasoro field with central charge c if

(36) L 1=T, Lyw= §|0 >, Lyv=0forn>2, Lov=2v,

Moreover, v € V5 is conformal vector if it satisfies the above properties and the property that Lg is diago-
nalizable on V.
In the fermionic case, v = %w_ 31_1]0 > is a conformal vector and the Virasoro vertex operator is given
2 2
by
1 —m—2
(37) V(5 sv 110 >,2) = L(z) = > Lz ™2

meZ

where the modes are given by L,, = 51 55(0) ¢™*1L(z)d(. The conformal vector v = $t)_3t)_1]|0 > and
2 2

2mi
Y (3%_stp_1|0 >, z) satisfy all the conditions for the conformal vertex algebra with ¢ = 1/2. The explicit
2 2
form of the Virasoro operator L,, for Ising fermions that satisfies the VOA axioms can be obtained in the
Sugawara construction of the FVOA as

1 1
(38) L=—5 > (kt5) : vmertios : +50m.

16
keZ+1

where the normal order means that

39) S Pt = {wnwm forn <m

— b, forn >m’

The Wick’s theorem and the Taylor expansion can be used to obtain the OPE between L(z) and 1(w) as

1
L(2)Y(w) ~ éf%é + aﬁfg”) which is equivalent to the following commutation relations

40) (Lt = ~Gm )i, [Lor, 0(2)] = 0:0().

Notice that the fermionic Virasoro operator (38) satisfies the above commutation relation.
Furthermore, the OPE of Virasoro fields eq. (24) implies the following commutation relation,

(41 [Lin: Ln] = (m =) Lingn + 75

One can check that the explicit form of the fermionic Virasoro operator (38) satisfies the above commutation
relation with the central charge ¢ = %
Moreover, a fermionic singular state at level two is defined as an state |y > which satisfies

m(m2 — 1)0m4n,0-

5
(42) Lo|lx >= 5]){ >, Ly|x >=0,

for n > 0. Using the commutation relation (41), a fermionic singular state at level two can be constructed
from the state ¢/_1|0 > as follow
2

3
(43) X >=(Loa+ 2 L2)0 1[0 >.

By using the fermionic representation of L, in eq. (38) and the left hand commutation relation in eq. (40),

one can check that |x >= 0.
11



Reconstruction theorem for fermion fields. [Ka98] (Theorem 4.5) As we mentioned, the fermionic Fock
space is the vector space V' including an even vector, the vacuum |0 >€ V/, and it satisfies the following
properties: 1) for the fermion fields ¢)(z) we have [T, v¢(z)] = 0¢¥(z), 2) T|0 >= 0 and 3) vectors of the
following form span V,

(44) Vg1t 1 10>,

for k, > ... > k2 > ki > 0. Then by reconstruction theorem, for any state in V, there is a corresponding
field or a vertex operator of the following form

45) Yy 10 1ty 10 1[0 >,2) = (0() (001 9(2)).-(0"246(2)) (0719(2)) -
where 9% = ﬁ 5?712:' It defines a unique structure of a vertex algebra on V' such that |0 > is the vacuum
vector, 7' is the infinitesimal translation operator and Y (¢/_1|0 >, z) = ().
2
In the next section we will explain the necessary construction of fermionic Fock space of fields and its

conformal structure which will be used in the proof of the theorem and in relation between CFT and Schramm
Loewner evolution in the Ising model.

3.3. Fermionic Fock space of fields 7. In this section we study the analytic and algebraic aspects of a
field theory which describes the scaling limit of free fermions of Ising model on domains with boundaries, a
two-dimensional boundary conformal field theory. The goal of this chapter is to construct a fermionic Fock
space of fields and to study their properties which will be used in the CFT/SLE correspondence for the Ising
model. We study the holomorphic part of the theory but the anti-holomorphic part can be studied similarly.

We define the scaling limit of the Ising fermions, the free fermion fields ¢/(z), and other fermionic fields
which are called descendant fields, as Fock space fields in domain D C C. All the descendant fields are con-
structed by normally ordered product of derivatives of free fermion field, for example : 921 (2)0(2)(z) :.

In general, a finite Fock space field X (2) =: 9Fna)(2)0%—14)(2)...0%24p(2) 0% 4p(2) :€ F for z € D is
defined by

2 0Fap(2)0Fn=14h(2)...0M 0 (2) MY (2) i= 0P ap(2)OFn—19h(2)...0M 0 (2)0MY(2) —  lim

Zipgy %G 7R

- 1 1
>, > ( xomo——].0M0 [——]
s=1i1<...<is,j1%. . F]s Zi T A Zis = s
(46) $ 0" (2) 0" (2). 0 (2) 0 P(2) 2 iais o))
form=1,...,s.
As a special example of the general definition of Fock space fields we define a Fock space field of special
interest, the fermionic Virasoro field 7'(z),

7 T() = 5 9(2)0:6(z) = T [ 2 ($() 0t (w) — Du

We will explain the role of Virasoro field in the Virasoro representation of the CFT.

1
z—w

)l

Conformal transformations. In field theories which are relevant for studies about statistical mechanics, do-
main conformal transformation h : D — D' is useful to study. Roughly speaking, the values of the fields on
domain D, v(z) for z € D conformally transform to values of fields on domain D', ¢)(h(z)) for h(z) € D'.
By definition, the fermion field ¢)(z) is a conformal primary field of dimension 1/2 that satisfies

1
(48) b(z) = W(2)29(h(2)),
where h/(z) is derivative of h(z) with respect to z. Furthermore, the Virasoro field is called conformal
quasi-primary field and it satisfies

(49) T(:) = W (2PT((=) + 55h(2)
12



where Sp,(z) = };;7((;)) - %(Z,/((ZZ)) )2 is the Schwarzian derivative of function h(z). Moreover, 1/(z) is called a
differential form of order 1/2 and T'(z) is called a Schwarzian form of order 1/24, [KaMall].

However, the transformation rules for general conformal Fock space fields are much more complicated
than for free fermion field and Virasoro field,

(50) X(2) =W)X (W) + ...,
where ) x is the conformal dimension of X and ... represents complicated function of higher order derivatives
of h(z).

3.4. Correlation functions and operator product expansion.

Correlation functions. A CFT correlation function of the general Fock space fields is denoted by < X7 (21)... X, (25) > D,
where 21, ..., z, € D. Using the discrete holomorphicity results, the correlation functions of free fermion

fields 1/ (z) are obtained rigorously in section (2.3). The n—point correlation functions of free fermion fields

¥ (z) in z; € D as the special case of the general Fock space fields are obtained as

G (215 -y 20) =< ¥(21).-P(2n) >p= PF((< P(2:)¥(2) >D)i'j=1),

where < ¢(2;) (%) >p= % Vg(gzlfj). The correlation function of derivatives of fermion fields is simply
i j

given by

o o ot [\/9’(71') V9 (%) ] '
1

(52) < (Wﬁ/}(le)(azmn W’(Zn) >D= az;nl 92 g(z) _ g(z)
i ...0zZn i i

All the other correlation functions of fermionic Fock space fields X (z) can be obtained from the correlation
functions of free fermion fields ¢/(z) by using the Wick’s theorem and taking the derivatives of the two-point
fermion correlation functions.

In this part, we find asymptotic results for the correlation functions of fermions on domain D by using
the Laurent expansion of the function g(z) : D — H and its derivative up to some fixed order. Up to a fixed
order, one can check that

B " 1 1 B eg”(w) B 629,”(10) 629//2(w)
9(2) =9l = 50 0 gtw) ~ og(w) T dgP(w) )
53) J ()t = )1+ LW O T,

2g/(w)  dg'(w) 8¢ (w)
where € = z — w. These expansions lead to an asymptotic formula for the two-point function of fermions in
the domain D,

<Y(2)Y(w) >p=

VIV _ 1 (Lot Ly

9(z) —g(w)  z-w 12 g'(w) 8" g'(w)

(z — w)

(54) =< (2)p(w) >m + 5

Sg(w) + ...,

where Sy(w) = gg/i/((ww)) — %(‘; /,/((Zj)) )2 is the Schwarzian derivative of function g.

About the higher point correlation functions, by using the Pfaffian formula we can obtain that

(55) < P(21)- W (2n) >p~< W(21)- 0 (20) >H,

just hold for n < 4 and it does not hold in general and ~ means that the two sides have the same divergent
terms in the limit z — w.

13



The operator product expansion. The OPE between two Fock space fields is an expansion of the Wick’s
formula on domain D, (see lectures (1) and (2) in [KaMal1]), when the positions of two fields become
close. Notice that, in general the OPE is domain dependent. Thus, OPE is an asymptotic expansion of
X (2)Y (w) on domain D as z — w,

(56) X(2)Y(w) = Z Cp(w)(z —w)"; as z — w,
neL

where the OPE coefficients C,, (usually denoted by X *,, Y") are also Fock space fields, for further description
see lecture (2) in [KaMall]. We define a OPE product as X * Y where xg = *. Moreover the singular part
of the OPE is defined by

(57) X(2)Y (w) ~ Y C(w)(z — w)™.
n<0

By using the definition of OPE product one can check that the Virasoro field can be written as 7'(z) =

—% (2) * 0Y(z).

In the case of fermionic CFT, the formal OPE between free fermions is

(58) Y(E)Y(w) = ealw)(z — w)".

nez

This can be explicitly written by means of Wick’s formula on domain D,

59 D) =< PEHW) >0 +HHE) O () = —— + () 0 b(w) + reg(D),

where ¢(z) ® ¥ (w) is called normal order product in domain D and reg(D) denotes the terms which do not
diverge in the limit z — w. So the singular part of the OPE is given by the first term since the other terms
vanish as z — w and we have 9 (2)1h(w) ~ L.

By simple calculations using the definition of the Virasoro field, Wick’s formula on domain D and Taylor
expansion, the OPE of fermion fields and Virasoro fields for z,w € D can be obtained as

(60) VW) = ——+ .

(61) T(w) = o) + 2 Ou(w) + 3050(w) +
Y 2 oo 1 .

(62) T W) = o+ 0+ gy DT ) + -

where ... denote non-singular and domain dependent terms in the limit 2 — w. Therefore, by comparing the
above results and the known CFT results about the OPE on the half plane we observe that the OPE singular
parts of fermion and Virasoro fields are domain independent,

63) ()P ~ ()Y ()lm, T(2)y()|p ~ T(2)¥()la, T(2)T()|p ~T()T()]s
Using the OPE results egs. (60)-(62), the singular parts of the correlation functions of an arbitrary operator
O, fermion fields and Virasoro fields on domain D are given by

< O0>p
(64) < YP(2)Y(w)O >p= m

_ 1/2 < ¢(w)O >p . < Op(w)O >p

+reg(D),

65 <T(2)Y(w)O >p + 2 < 85,1/1(10)(9 >p +reg(D),

(z — w)? z—w
6 <TETWO0>p= o+ 25O SO o),

14



The multiplication of the two general Fock space fields can be obtained by using the definition of the Fock
space fields in eq. (46) and the general Wick’s theorem in field theory [DMS96], as follow

: aknzb(z)ak"*lw(z)...akzl/)(z)aklw(z) : almi/)(w)almflw(w)...(?b@b(w)alld)(u;) =
min(n,m)
3 3 (£ < O (2)8 p(w) = ... < B ap(2)08 p(w) =

s=0 11<...<ls,J17-FJs

(67) 0" 4p(2)0F11h(2)...0%24(2) 0" h(2) " (w) D' (w)... 0P Y (W) O (W) 4y i)

where we define the contractions by < of isw(z)&{f}s P(w) == ks ol [-2-] for 2z, w € D. Notice that this

result is similar to the Wick’s theorem in VOA in section (3.2). We will use this similarity later in the proof
of the theorem.

3.5. Virasoro algebra representation of the CFT. The underlying algebraic structure of the CFT is Vira-
soro algebra. In fact, fermionic conformal field theory as a field theory is a representation of the Virasoro
algebra and Clifford algebra. In this section we review the Virasoro algebra and its representation for the
Virasoro generators and Virasoro fields, for further descriptions see lecture (5) in [KaMall].

So far we have defined the Virasoro field 7'(z) as a Schwarzian form. The Virasoro field in a CFT with
central charge c, satisfies the Virasoro operator product expansion,
c/2 2 1

. ST(w) + s 0uT(w)

(68) T(2)T (w) ~

(z—w)t (2 - w)

and we observe that the central charge can be defined by ¢ = 21lim,_,,(z — w)* < T(2)T(w) >p. Next,
for each point p € D and each local chart ¢ we define the Virasoro operator at point ¢(p) = z as

1 _Zl+n
yi)(c JHRT(C)d.

" 2ni

Virasoro operator represents the Virasoro algebra, and thus one can check that the above definition satisfies
the commutation relation
c
(70) [Lons Ln] = (m = 1) Lingon + 75m(m* = 1) sn o,
where ¢ = 12p and p is the order of T as a Schwarzian form.
In order to obtain a Virasoro algebra representation in the space of all Fock space fields in domain D, the
action of Virasoro operator L,, on Fock space fields such as X is defined as

(69) L,(2)

(71) Lpn X =T *(_p_9) X.
From the explicit form of the OPE of Virasoro field 7" and a primary field X, one can check that forn > —1,
(72) (LnX)(2) = (0,0, + M) X (2),

where v, (2) = ({ — 2)'*™, v/, is the derivative of v,, with respect to z and \ is the conformal dimension of
X. And for n < —2 we have

o~ 2T
73 Ly=-——=x.
A Fock space field X is called a primary field with the conformal dimension A if it satisfies
(74) L, X =0, LyX=XX, L_1X=0X,

for n > 1. For example, the free fermion field ¢ is a primary field of conformal dimension 1/2 in CFT with
central charge ¢ = 1/2. Furthermore, a Schwarzian form Y of order  in CFT with ¢ = 124 is defined by

(75) LY =0, LY =6ul, LiY =0, LoY =2Y, L_Y =Y,

for m > 3. For example, Virasoro field 7" is a Schwarzian form of order 1/24 in CFT with central charge

¢ =1/2 and it is called quasi-primary field.
15



In a conformal field theory with central charge ¢ = %(5 — 8)) and a primary field X with conformal

dimension ), the Fock space field X = (L_o — ngl)X is also a primary field and is called singular
vector at level two of the Virasoro algebra representations. The field X is called a primary field degenerate
(non-degenerate) at level two if X; = 0 (X # 0). Moreover, Lo X = (A + 2) X.

Free fermionic field theory of fermionic Fock space fields as a conformal field theory is a representation
of the Virasoro algebra and Clifford algebra. In fermionic CFT with ¢ = 1/2, the fermion field ¢(z) with

conformal dimension h = % is a primary field degenerate at level two since

3
(76) (Lz = SL21)0(2) = 0.
Ward identity and null field differential equation. In this section, we review the standard results in CFT, such
as Ward identity and null field differential equation. The Ward identity in H for the correlation functions of
Fock space fields with insertion of the stress tensor field (which on the half plane with identity chart is the

same as Virasoro field), is given by

N
[( 1/2 L 01 p(wn)tb(wn) 5 -

77 < T () (wn).ab(wn) >u=Y 5+

, z — w; Ow;
i=1

Z— w;)

For derivation of the Ward identity for Gaussian free fields see lecture (4) in [KaMall]. In the case of
fermionic Fock space fields, one can explicitly check the Ward identity by inserting the Pfaffian form of the
correlation functions of fermions in both sides of the above equation.

Using equation (76), one can insert the relation L_ot(z) = 2L%,9)(2) = T % ¢(2) in the Ward identity
(77) to obtain the null field differential equation on the half-plane H,

N

2
2512—2(( 2 10 )] < (w1 tb(wn) 5= 0.
1

z—wi)?  z—w; Ow;

(78)

=
Having introduced enough background from fermionic Fock space of conformal fields and their properties

and also the VOA structure of fermionic Fock space of states, we will give a proof of the theorem in the next
section.

Proof of the (F «~ V') theorem. In order to set up the stage for the proof, we need to associate to each vector
D) (1@ @V @ U1 ... OV

(214eee52n)

v; € V, aFock space field Y;(z;) € F, then we define the mapping x
for an even n as the correlation function of Fock space fields

(79) X (01 @ @ vn) =< Yi(21). Yalzn) > -

Then, the first axiom follows immediately

(80) XEZ)W’Z”)(zﬁ ® ... ®vY) =< P(21)..¥(2n) >p= Pf

\/9’(Zi)\/mr

9 -G |,

By our definition, the basis vectors vy, of Fock space of states V/,

81 Vk :w—k‘i—%w—ki_1—%"'w—kg—%w—k‘l—%’0>

are associated to Fock space fields at point z, € D, Yj(z) € F of the following form,

(82) Vii(zk) =t 0M14p(21) 0% -1 4b(2k)...0%20) (23,) 0" b (2 -

The second axiom can be checked by using the commutation relation [Ly,, ¥, = —(3m + 1)t 4n, which
leads to

(83) L_jvy, < 0, : OFiap(z1)0F=14h(21,)...0%24p (2) O ep (1) =,
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and so we obtain

XD 0@ @ L@ @) = < Yi(21).0sYi(2k)Yalzn) >p
= 8zk < Yl(zl)...Yn(zn) >pD
0 (p
(84) — T%XEQ)’M%)(M ® ... vp).

To prove the third axiom, let us first write the third axiom formally in terms of Fock space fields. The OPE
between two general Fock space fields can be written formally as

(85) V) = 3 {ZY}”(’Z]) TV () + Vi)Y () -

n=—oo T Z])

in which normal order is denoted by : Yj(z;)Y;(2;) = > >0 (Zi;'!zj)k D OMYY 1 (2), 0 LY s (7)) =
—_— - . )
{Y;Y;}o(z;) and contraction is denoted by Y;(z;)Yj(z;) = S0, % Replacing the OPE in the
12
third axiom and taking the limit z,, — 2,41 lead to

(D)

X(Zl,...,zn)(vl ® . @ Uy @ U1 @ oo Q) =

< Yl(zl)...Ym(zm)Ym+1(zm+1)...Yn(zn) >p

[ij

<Y1(2:1) {YmYm+1}n(2m+1)...Yn(Zn) >p =

— Z
n:l m+1

N
(D)
D oo et (01 8t st i .6 ),

(86)

In order to prove the third axiom explicitly, we have to obtain the explicit form of the OPE between two
general Fock space fields Y7 (z1) and Y2(z2) by using the Wick’s theorem for Fock space fields, and the OPE
between two vertex operator in VOA by using the Wick’s theorem in VOA and the reconstruction theorem.
If the OPEs in VOA and CFT match, then the third axiom holds.

The OPE between any two general Fock space fields can be obtained by taking the limit of the formula
(67) and keeping the singular terms when the points become close,

2 OFrap(2)OFn—14h(2)...0%24p (2)OF b (2) = M (w) O 14p(w)...0"2 0 (w) D4 (w) ~
min(n,m)
lim S @l ) ol ]

Z—w . — zZ—w Z—w
s=0 11<...<Us,J1F-FJs

(87) 1 9Frap(2)0Fn11h(2)...0" 1 (2) OF1h(2) 0 ah (w) D' (w)... 02 (W) Y (W) 2y ivjri))s

where in the above expression the singular terms in the limit 2 — w are kept.

Since the explicit form of Fock space fields in known, the OPE between them can be explicitly calculated.
As we explained, in order to find the OPE we first use the Wick’s formula and then write the Taylor expansion
of the fields around the second argument. The claim is that the eq. (87) can be formally written in terms of
the vertex operators in VOA as the following

i\f: Y (v1 %p v2, 22)

(88) Y(Ulpzl)Y(U%ZZ = (Zl 7Z2)p+1 :

p=0
In order to show that, the next step is to write down the OPE for vertex operators in VOA. As we have seen,

using the state/operator correspondence, any state in V' is associated to a vertex operator in End(V)[[z, z7]].
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Hence, to any basis vector v; there exists a vertex operator Y (v;, z;). Then, by reconstruction theorem we
have the assignment

89 YWy 1ty 1t 1ty 1]0>,2) = OFrap(2)0Fn=14(2)...0%(2)0*14(2) - .

Then, we need to obtain the OPE of two vertex operator of the above form. To obtain the OPE we need the
Wick’s formula for the product of two vertex operator of the above form and the Taylor expansion. This can
be done by assuming that the fields in Wick’s formula of VOA in eq. (31) are of the form a’(z) = d*i1)(z)
and b7(z) = 0%(z) and the OPE of fermion operators in eq. (34) which leads to < a(2)b/(w) >=

oki 81[5 [ﬁ} Then, the OPE in VOA is given by the same equation as for the Fock space fields eq. (87) but
with the correct interpretation of objects in VOA.

Without performing the combinatorics for the OPE in VOA and in CFT and just by using the fact that
the both sides ( OPEs in VOA and CFT) follow the same combinatorics because the OPE of ) (2)(2’) are
the same in both sides and contractions of fermion fields in VOA and contractions of fermionic Fock space
fields in F have the same form, thus we conclude the proof of the third axiom.

This theorem leads to an explicit constructions of fermionic correlation functions and differential equa-
tions that they satisfy from the fermionic Fock space of states in FVOA. Moreover, in the next section the
(F «~ V) theorem will be used to provide an explicit form for SLE3 martingale observables from the
correlation functions of fermionic Fock space fields which are rigorously written by using the theorem.

4. FERMIONIC CFT/SLE3 CORRESPONDENCE

In this section we introduce a rigorous approach to CFT/SLE correspondence, namely the VOA/SLE
correspondence. We demonstrate this correspondence in an explicit example, the FVOA/S L E3. We describe
the relation between SLE and the scaling limit of statistical lattice model, namely in a concrete example of
the Ising model. We provide an explicit realization of the CFT/SLE correspondence in the Ising model, first
by using the explicit Fock space of fermionic states and its relation to the martingale generators in the case
of chordal SLE3. And second, by using the correlation functions of fermions on the upper-half plane and
their differential equations, Ward identity and null field differential equation, we show that the correlation
functions of fermionic Fock space fields on domain D produce chordal n — S L F5 martingale observables.

Fermionic realization of CFT/SLE in Ising model. The relation between CFT and SLE have been studied
from different perspectives, for good reviews see [BaBe06], [Car05], [Gr06] and [KonO3]. In one perspec-
tive, the relation between the interfaces in the scaling limit of critical lattice models and the field theory
describing that limit is a natural question to study. The interfaces are classified by chordal SLE curves which
are characterized by a parameter . Moreover, the scaling limit of critical lattice models are usually described
by conformal field theory which is characterized by a central charge c. This classifying number, determines
the universality class of the scaling limit of the different lattice models such as Ising model.

Although, there is a common belief that a CFT with ¢ = % such as m = 3 minimal model describes
the scaling limit of the critical Ising model [DMS96] (chapter 12), but there were no systematic approach
proposed to CFT based on probability theory until recently. We study towards an algebraic construction of a
conformal quantum field theory of free fermions for Ising model based on probability theory, SLE. In fact,
in the Ising model example, we apply S L E3 and FVOA to construct and study fermionic CFT of the scaling
limit of the Ising model, rigorously.

On the one hand, we study the rigorous scaling limit of Ising model and its fermionic correlation functions
which lead to a fermionic conformal field theory. As we have seen in previous chapter, this is composed of
algebraic Fock space of states, local Fock space fields, their correlation functions and differential equations
that they satisfy. On the other hand, SLFEs curves and observables appear in the scaling limit of the Ising
model at criticality. We study the relation between these two distinct scaling limit of Ising model in different
aspects.

First, we study the algebraic operator formalism of fermionic Fock space of fields and states in CFT

and VOA and its relation to martingale generators of SLFs3. Second, we explain how a certain fermionic
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observable of 2d critical Ising model, which is obtained from the scaling limit of Ising fermion correlation
functions, is related to a martingale observable of SLEs.

In general, a CFT corresponds to a chordal SLE if the parameters of CFT, ¢ and h, and the parameter of
chordal SLE, « satisfy

(35 —8)(6 — k) _6—~k
(90) Co = o . h=

In our example the values of parameters, ¢ = %, h = % and k = 3, satisfy the above equations. The first
explicit realization of FCFT'/SLEj in the case of Ising model is the explicit form of the B.C.C. operator, a
Ising fermion field ¢(z) that is obtained from the scaling limit of the Ising lattice fermion operator. This is
an operator that changes the boundary conditions +/F on the lattice row configurations. As we have shown
in previous section, the state i_ 1 |0 > is a primary state and degenerate at level two. Therefore, this state can

be considered as an explicit B.C.C. state for the chordal SLE3 curve. In fact, the field ¢)(z) is a boundary
operator, inserted in a boundary point z, the starting point of the SL FE3 curve.

4.1. SLE3 and interfaces in Ising model. Schramm Loewner evolution is a conformally invariant stochas-
tic process introduced in 1999 by O. Schramm [Sch00], for further details see [La08]. It has been used
widely in the study of lattice models such as Ising model, percolation etc. The scaling limit of lattice model
interfaces at criticality is described by the SLE curves.

Let us start with an intuitive picture of how SLE curves emerge in the Ising model. A chordal SLE3
curve appears as the scaling limit of discrete interface or boundary between two boundary points where the
boundary conditions change. The interface separates two clusters of plus and minus spins in the Ising model.
The claim is that in the scaling limit, the interface converges to the chordal S L F3 curve. The convergence of
the interfaces in the Ising model to the S'L F'3 curves has been proved recently by Smirnov etal. [CDHKS12].

The probability measure of the spin configurations in the Ising model induces a probability measure on
the interfaces, in the following sense. Consider a domain D in complex plane with two boundary points a, b.
Approximate the domain and boundary points by square lattice domain D,, = %ZQ ND and a,, b, and define
a probability measure on interfaces in this domain, P,,(D,,, @y, by,). In the limit n — oo, P, converges to
p(D, a,b) which is the law of chordal SLE3 in the domain D from a to b. This procedure can be easily
generalized for the the case of several interfaces.

Let us briefly describe the simplest case of chordal SLE curves in domain (D, a, b). The chordal SLE,,
with k£ > 0 is conformally invariant random curve processes in domain D from a to b. It is described by the
Loewner equation with a one-dimensional Brownian motion B; as a driving force. Let g;(z) for z € D and
t < 7, € (0, 00] be the solution of the equation

2
dntz) _ By =0,

dt gi(z) — VKB

where go : (D, a,b) — (H,0,00) is a conformal map. Then, the function h.(2) := g:(z) — /xBy for all
t is a conformal map, h¢(z) : Dy — H from domain D, := {z € D : ¢t < 7.} onto H, where h;(z) at
t = 7, maps the tip of the curve to zero; lim;_,,, hi(z) = 0. The chordal SLE, curve 7 is defined by
y(t) == lim, 0 g; ' (2 + VEBY).

Let us consider the general case of chordal n — SLFEs3, where there are 2n source points and arbitrary
number of bulk points. The general picture of the chordal n — SLFEs3 consists of several interface curves,
growing by Loewner chain, a collection of g;, with random driving force, which connect the boundary points
in the critical Ising model. Moreover, in order to define a chordal n — SLEs we have to write down the
Loewner equation in H with explicit conditions. By using a hydrodynamically normalized conformal map

g¢, we can uniformize the complement of the several SLEs5 curves, labeled by integer ¢ with the starting
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point X;. This conformal map satisfies the Loewner equation
2n

2uidt
dgi(z) = ——
; g1(z) — Xi

1) go(z) = =z,

where v} is the speed of growth of i—th curve which can be set to v} = 1 and X are the images of the tips
of the curves under the map g;.

In order to define a martingale observable from the fermionic correlation functions for chordal n — SLE3
we claim that X} should satisfy

2dt

(92) dXt det + 3(8931 log Zn SLE3 dt + Z X’L Xl ’

1#1
where dB} are 2n independent Brownian motions, Z _sLE, 18 called the SLE}3 partition function which
will be defined in the following section and initial conditions are XO = X, and they are ordered as X; <

X9 < ... < Xgp. The claim will be proved in section (4.3). Moreover, the chordal n — S L FE3, by definition,
satisfies the domain Markov property and domain conformal invariance.

SLE5 partition function. In the simplest case, a partition function of the chordal SLF3 on the domain D
with two boundary points a, b € 0D can be written in terms of the two-point fermionic correlation function,

1

93) ZEms = Xep(¥ ® 1) =< ¢(a)p(b) >pr~ pa—

In the case of chordal n — SLFEj3 the partition function is given by the correlation functions of fermions
on domain D and it has the Pfafffian structure,

NI W(w»] o
7 1

2n
(94) ZP sim, = Xfl,m:xZn W ®.. @p)=< Hw(xi) >p=Pf o(x;) — o(z5)

where operators v’ s are inserted at source points, x1, ..., T2, € D at B.C.C. points +/F and ¢ : D — Hisa
conformal map. It can be checked that the chordal n — S L E3 partition function on the half-plane, Z —SLEs
as a CFT correlation function of fermion fields with Pfaffian form satisfies the homogeneity and scahng
equations,

(95) Za H orms =0, sz , spe, =0, Z Zn—s1p, =0,

’L

and null field differential equation,

3 0 19 1/2 .
n YY) Z =
©0) 4 ax? + ; [wl —z;0r; (27— xz)2} n—sLE; = 0,

for?s =1, ..., 2n. As it will be explained in the following section, this partition function can be used to define
the local martingales in chordal n — SLFj5.

4.2. SLFEs5; Martingale generators and fermionic Fock space. In this section we study the fermionic Fock
space of states of the chordal SLFs5 curves. By using the Clifford VOA, we want to construct explicitly
the Fock space of states of chordal SLFs5 curves, or the chordal SLFE3 martingale generators, in domain
Ht =H \ "}/[0, t]

Let us review construction of the operator formalism in SLE. It is known that, to any formal power series
in particular function f € z + C[[z7!]] of the form f(2) = 2+ >, . 1 fmz' ™™, one can associate an

operator G5 € U(vir_) = [[7,U(vir_)q. The algebra ¢/ (vir_) is a completion of the universal enveloping
algebra U (vit_) = ;7 U (vir_), of the Virasoro subalgebra viv_ generated by L, (n < 0), [BaBe04].
20



The fermionic Fock space of states V' consists of basis vectors of the form)_, 19 1 ...¢7k27 1 zl)fkl _1|0 >.
no2 n— 2 2 2

The fermionic descendant states in V' and descendant Fock space fields in F can be constructed by the action
of Virasoro generators on the state [¢) >=1)_1|0 > and its corresponding field (z), as follow
2

97) M =Uvic )y >CV, N =U(vit_)h(z) C F.

Since we have the explicit fermionic Fock space of states V' from the Clifford VOA, then by using the
intertwining operator Gy,, between domains H and Hy, associated to the conformal map h; = g — V3B,
where g, : H; — H, we can construct the S L F3 martingale generators and their Fock space in the domain
H,.

The Fock space of states in H; (the states of SL Fs3 curves) and the Fock space of fields in H; are obtained
from the corresponding Fock spaces in H by means of the action of the transformation operator GG, as follow

(98) GhtWJ >, Gﬁtlw(Z)th
and therefore,
(99) My = GpU(viv)|y >, Ny = G (U(vie))(2)) G,

The elements of M are of the form G, v_; _17_, 1 ...¢7k27y/)7k17; |0 >.
no2 n— 2 2 2
Using the grading of V = P, . IN Vp,, for VR we can write explicitly the vector valued graded martingale
generators M}, of the chordal SLFE3 as

1 _
(100) Z Gl >= > MyeV,
hesN
where Z is the chordal S L Ej3 partition function on the half plane and in fact Z =< ¢/(c0)%(0) >g= 1, and
V = [I,e1y Vh is the completion of V.
2
As we observed, the state [1) >€ V is a primary state degenerate at level two with singular descendant

state at level two, (L_s + 2L2)[¢) >= 0. Using that, it can be shown that the state Gy, |1/ > is a local
martingale of chordal S L E3, which roughly means that < v|Gp, |[¢) > is conserved in mean for any < v|,

(101) E[<v|Gh, | > {Gh, buss] =< 0|Gh, |4 >,

fort > s.

In order to prove the local martingale property for Gp,,[1¢) > we need to show that the drift term in Ito

derivative of this state vanishes. Since (G, is an intertwining operator corresponding to the conformal map
h¢, it satisfies the Ito differential equation, see section (5.3.3) in [BaBe06],
3
2
Then, if we apply both sides of above equation to the state 1) > and use the level two singular vector equation
then we obtain

(103) dGht‘lﬂ >= GhtL_l‘lﬁ > dft,

(102) G ldGy, = dt(—2L_o + —L*,) — d& L.

which makes perfect sense in V and shows that the drift term in the It6 derivative vanishes and thus G, [¢) >
is a local martingale of chordal SLE35.

Since that is a local martingale, all the fermionic correlation functions of CFT in the domain H; which are
SLE3 observable on the domain H;, and are constructed from the vector G, [ty > will be local martingale
observables of chordal SLE3. Therefore, G, |t) > is called a generating function of local martingales of
chordal SLEj5.

In general, the scaling limit of the interfaces in Ising model are related to the scaling limit of correlation
functions of local operators and fields and physical observables in the Ising model. We will elaborate on this

point in the following section.
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4.3. SLEs Martingale observables and fermion correlation functions. Let us first describe the martin-
gale observables. It is easy to show that an observable is a local martingale if the drift term in its Ito derivative
vanishes. The general claim of this part is that a large collection of SLE3 martingale observables can be
constructed systematically by using the rigorously constructed correlation functions of fermionic Fock space
fields in (F «~» V') theorem. It is known that all the correlation functions of descendant Fock space fields can
be reduced to correlation functions of primary Fock space fields through the action of differential operators
in Ward-like identities, [DMS96],

N N
(104) < ¢(_k"’_k"71'"_k2’_k1)(Z) Hw(wz) >=L g, . L <P(2) Hw(wz) >,
=1 =1

where (~Fn=Fnt kRO (o) = Ly Loy, Lo $(2) = g § dw gy T(w) (Log, g Loy $(2))
and L, is defined by
N

1 (n—1 1
(105 Lan=D, {2 (%(Uz' - Z;" (wi— Z)”_lawi} '

i=1

The correlation functions including more than one descendant fields can be explicitly calculated similarly.
This means that the correlation functions of descendant fields can be reduced to the correlation functions of
primary fields. We will use this observation later.

In this section we present an explicit form of some chordal n — SLFs5 martingale observables as the
correlation functions of free fermion fields and descendant fermionic Fock space fields. Furthermore, we
will see that basic S L F3 martingale observables have an explicit Pfaffian structure. We study the relations
between fermionic null field differential equation (78) and vanishing of the drift term in the It6 formula for
the S L E'3 martingale observables.

Let us construct an example of chordal n — SLFE3 martingale observable, see [BBKO05]. Consider an
operator of the form O = [[;", ¥(W}). A martingale observable of this operator in the domain H;, where
the 2n S'LE3 curves are removed from H and the tips of the S L E3 curves are 1, ..., Yan, is claimed to be

1
(106) <O>g=—g—X o (®. Y)Y .. @),

----------

where ij SLE; = Xﬁt,...nzn (¥ ®...®1)) is a partition function of chordal n — SLF3 in domain H;. In this

case, the explicit form of the correlation function X'I)ity--w“/Qn;Wlw-an (v®..99Y)® (Y ®...®1)) and the
partition function are known as Pfaffian formulas. In the following, we prove the claim that eq. (106) gives
a local martingale observable of the chordal n — SLFE3.

The observable < O >y, can be transformed to H by using the mapping g; : H; — H as follow

(107) <O >p= IXor .. coniwry (V@ . @V) @ (¥ ® ... ®Y)),

ZEI—SLEg

1
where ZEI_SLEB = X];ﬂhm’x% (Y®...29), xi = g+(Vi), wi, = g¢(W)) and the Jacobianis J; = [~ 922 (Wg).
Above chordal n — SLEs3 observable is a local martingale if the drift term in the It6 derivative of the
observable vanishes. To show that the drift term vanishes, we need Ito6 formula for the 1 (X}), which is
dyp(X}) = ¢'(X}))dX] + 3¢"(X})dt, and Loewner equation for g;(W}) and its derivative with respect to
W) which lead to,

% _ 2 wl(wk) _ %w(wk‘)
(108) d(P(wi)w,?) = wy, Z 2dt (wk X (s XW) .

In addition, we need the null field differential equation for the chordal n — S L E5 partition function on H,
eq. (96), and for the correlation function of fermions on H,

(109) Dﬂhw%meAW®5§wwww®m®w»:&



where operator D is

3 02 1/2
D=2
(4 Ox? + Z [wl —x; 8:):1 (xl — $1)2]

10 1/2
(110) + z[wk—xiﬁwk — 2}).
k=1

(wi — ;)
Then, let us write the Ito derivative of the numerator of eq. (107)

ATXe oo (W ® . @Y)® (P ... ®1Y))) =

19 1/2
Ji [ZdXtax‘+Zdt<482+Z[wk—x28wk / 2D]

el (wg — ;)

(1) Xat, o zmiws,eon (P ® - ®P) @ (Y ® ... © ).
Then, by using the null differential eq. (109), the Ito derivative becomes

AT X .. agsoron (V@ . RV (W ®...®Y))) =

; 1 0 1/2
ZdXta Z2dt Z[xl_xlam—(xl_/xi)Q]

(112) X, amiwor o (@ o ©Y) @ (P ® ... @ V).
As an special case, the above equation implies that
1 0 1/2 H
113 dz2 dX!o 2dt _— - Z, .
(1) SLEs Z ! Z ; Ll —z;0r; (21 — »”Ez')z} noSkEs

Finally, by using the above equations the Ito derivative of < O >y, becomes

d<O>p= Jtz dX] — (30, log ZE g1 5, + 2; o xl)dt O,
1
(114) (GHXo1, e amiun oo (P © . @ P) ® (P ® ... @ 9))).

Thus, we observe that if the process X} satisfies

(115) dX] = \/3dB} + (30, 10g Z} g1, +2>
I#i
then the drift term in Ito formula for < O >y, vanishes and we have

; 1
(116)  d <O >p=V31) dBiw | _——Xa...0mmmn i (P © - V) O (W © . @ P))].
7 ’I’L—SLE3

)dt,

Ty — X

To summarize, we observe that 7?({ w,, (V@ .. ®9Y)@(Y®..®1Y))is amartingale

Y2n; Wi,
n—SLE3
observable of chordal n — SLFE3 with the condition (1 15)
Without explicit calculations, but because of the fact that < v|Gjy,|¢) > (for any arbitrary < v| which

can be obtained from the action of descendant fields on the < |) are local martingales, we claim that the
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correlation functions of arbitrary Fock space fields can be used to write the following expression as a chordal
n — SLE3 martingale observable

1

(117) fozixﬁt,m,m;wl,.“,wm (Y @..0Y)® (0@ .. ®vnm)),

n—SLE3

where v;’s are arbitrary vectors in Fock space. Moreover, we claim that all the S L E3 observables obtained
from the fermionic correlation functions are reducible to the basic ones by using the generalization of eq.
(104). By basic SLFE3 observables we mean those that are obtained from the correlation functions of free
fermion fields.

5. CONCLUSIONS

In this article we have studied a concrete and explicit realization of the C F'T'/SLE correspondence in the
case of Ising model. We obtained the correlation functions of free fermionic fields on domain D by taking
the scaling limit of the lattice correlation functions of the Ising free fermions. These results are obtained
by using the rigorous methods of discrete holomorphicity and Riemann boundary value problem introduced
in [Hon10a]. We investigated the algebraic and analytic fermionic conformal field theory by studying the
correlation functions of fermion fields and differential equations that they satisfy such as Ward identity
and singular vector differential equations. Moreover, we developed the algebraic aspects of the fermionic
Fock space and fermionic vertex operator algebra and especially we found a mapping between the Fock
space of states and the correlation functions of the fermionic fields which respects the conformal structure
of the theory. The relation between these results and the probability theory of martingale generators and
observables in chordal SL E3 are studied and we have worked out all these relations explicitly in a concrete
example of the Ising model.
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