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ABSTRACT: We study a random graph model which is a superposition of bond percolation on
Zd with parameter p, and a classical random graph G(n, c/n). We show that this model, being a
homogeneous random graph, has a natural relation to the so-called “rank 1 case” of inhomogeneous
random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs
to describe the phase diagram on the set of parameters c ≥ 0 and 0 ≤ p < pc, where pc = pc(d) is the
critical probability for the bond percolation on Zd . The phase transition is of second order as in the
classical random graph. We find the scaled size of the largest connected component in the supercritical
regime. We also provide a sharp upper bound for the largest connected component in the subcritical
regime. The latter is a new result for inhomogeneous random graphs with unbounded kernels. © 2009
Wiley Periodicals, Inc. Random Struct. Alg., 36, 185–217, 2010
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1. INTRODUCTION

1.1. Model

We shall begin by constructing for each integer N ≥ 1 a random graph GN(p, c) on the set
of vertices B(N) := {−N , . . . , N}d in Zd , d ≥ 1. Consider the two sets of edges

SN = {{u, v} : u, v ∈ B(N), ‖u − v‖ = 1}
and

LN = {{u, v} : u, v ∈ B(N), ‖u − v‖ ≥ 1}.
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We assume that each edge from SN is present in graph GN(p, c) with probability p indepen-
dent of other edges, and also each edge from LN is present in graph GN(p, c) with probability
c/|B(N)| independent of other edges. (Here, for any set A we denote |A| the number of the
elements in A.)

Call the edges from set SN short-range edges and the edges from set LN long-range
edges. By this definition, if ‖u − v‖ = 1 then with probability p there is a short-range edge
between u and v, whereas with probability c/|B(N)| there is a long-range edge between any
two vertices in graph GN(p, c). Clearly, there can be at most two edges between any two
vertices in the graph GN(p, c).

The random graph GN(p, c) is a superposition of the bond percolation model restricted
to B(N) (see, e.g., [3]), where each pair of neighbors in B(N) is connected with probability
p, and the random graph model Gn,c/n (see, e.g., [5]) on n = |B(N)| vertices, where each
vertex is connected to any other vertex with probability c/n. All of the edges in both models
are independent.

Our model is a simplification of the most common graphs that have been designed to study
natural phenomena such as biological neural networks [12]. Our random graph GN(p, c)
is different to the so-called “small-world” models, intensively studied starting with [13].
In “small-world” models, the edges of the grid may be kept or removed, and only a finite
number (often at most 2d) of the long-range edges may emerge from each vertex, and the
probability of those is a fixed number.

We are interested in the connectivity of the introduced graph GN(p, c) as N → ∞. We
say that two vertices are connected if there is a path of edges, independent of the type,
between them. Clearly, if c = 0, we have a purely bond percolation model on Zd , where
any edge from the grid is kept (i.e., “is open” in the terminology of percolation theory) with
a probability p, or, alternatively, removed with a probability 1 − p. Let us recall some basic
facts from percolation theory which we need here.

Let C denote an open cluster containing the origin of Zd in the bond percolation model.
Clearly, the distribution of |C| depends on the parameter p. It is known (see, e.g., [3]) that
for any d ≥ 1 there is pc = pc(d) such that

P{|C| = ∞}
{= 0, if p < pc,
> 0, if p > pc,

where 0 < pc < 1, unless d = 1, in which case pc = 1. We shall assume here that
0 < p < pc, and thus the connected components formed by the short-range edges are finite
with probability one. Recall also that for all 0 < p < pc the limit

ζ(p) = lim
n→∞

(
−1

n
log P{|C| = n}

)
(1.1)

exists and satisfies ζ(p) > 0 (Theorem (6.78) from [3]).

1.2. Results

Let C1(G) denote the size (i.e., the number of vertices) of the largest connected component
in a graph G.
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Theorem 1.1. Assume, d ≥ 1 and 0 ≤ p < pc(d). Let

ccr(p) = 1

E|C| . (1.2)

i. For c < ccr(p) define

y =
{

the root of Ec|C|ec|C|y = 1, if Ec|C|e|C|ζ(p) ≥ 1,
ζ(p)/c, otherwise,

and set

α(p, c) := (c + cy − Ecec|C|y)−1. (1.3)

If c < ccr(p), then for any α > α(p, c)

P{C1(GN(p, c)) > α log |B(N)|} → 0. (1.4)

as N → ∞.
ii. If c ≥ ccr(p), then

C1(GN(p, c))

|B(N)|
P→ β (1.5)

as N → ∞, with β = β(p, c) defined as the maximal solution to

β = 1 − E{e−cβ|C|}. (1.6)

Remark 1.1. Only when d = 1 do we know the exact distribution of |C| (see (1.7) later),
in which case E|C|e|C|ζ(p) = ∞. This obviously yields for d = 1 that the constant y in
Theorem 1.1 is defined simply as the root of E c|C|ec|C|y = 1 for any c < ccr(p).

In view of (1.1) it is obvious that χ(p) := E|C| < ∞ for all 0 ≤ p < pc. It is also known
(see Theorem (6.108) and (6.52) in [3]) that χ(p) is an analytic function of p on [0, pc) and
χ(p) → ∞ as p ↑ pc. This implies that ccr(p) is a continuous, strictly decreasing function
on [0, pc) with ccr(0) = 1 and ccr(p) → 0 as p ↑ pc. Hence, ccr has an inverse, i.e., for any
0 < c < 1 there is a unique 0 < pcr(c) < pc = pc(d) such that ccr(pcr(c)) = c. This leads
to the following duality of Theorem 1.1.

Corollary 1.1. For any 0 < c < 1 there is a unique 0 < pcr(c) < pc such that for any
pcr(c) < p < pc graph GN(p, c) has a giant component with size �(|B(N)|) whp (i.e., with
probability tending to one as N → ∞), whereas for any p < pcr(c) the size of the largest
connected component in GN(p, c) is O(log |B(N)|) whp.

Hence, Theorem 1.1 tells us something about the “distances” between the components
of a random graph if it is considered on the vertices of Zd .

It is worth mentioning that the symmetry between ccr and pcr is most spectacular in
dimension one, when pc(1) = 1. Notice, that if d = 1 this case is exactly solvable, and we
know the distribution of |C|:

P{|C| = k} = (1 − p)2kpk−1, k ≥ 1. (1.7)
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Hence, if d = 1 we compute for all 0 ≤ p < 1 = pc(1)

ccr(p) = 1 − p

1 + p
, (1.8)

which yields

pcr(c) = 1 − c

1 + c
,

for all 0 ≤ c < 1. (For more details on d = 1 case we refer to [11].)

Remark 1.2. For any fixed c function β(p, c) is continuous at p = 0. If p = 0, i.e., when
our graph is merely a classical Gn,c/n random graph, then |C| ≡ 1 and (1.6) becomes a
well-known relation.

Furthermore, for any fixed c < 1, if p = 0, it is not difficult to derive from (1.3) that

α(0, c) = 1

c − 1 + | log c| . (1.9)

But log n/(c − 1 + | log c|) is known (see Theorem 7a in [2]) to be the principal term in the
asymptotics (in probability) of the largest connected component of Gn,c/n when c < 1. This
leads to the following conjecture.

Conjecture 1.1. For all α1 < α(p, c) when 0 < p < pc and c < ccr(p)

P{C1(GN(p, c)) < α1 log |B(N)|} → 0 as N → ∞. (1.10)

It is easy to check that if c ≤ ccr(p) then Eq. (1.6) does not have a strictly positive
solution, whereas β = 0 is always a solution to (1.6). Indeed, let c ≤ ccr(p) and consider
the right-hand side of (1.6) as a function of β ∈ [0, 1]. It is an increasing concave function,
whose right derivative at β = 0 is cE|C|. Hence, if c ≤ ccr(p) = 1/E|C| the only solution
to (1.6) is β = 0. We conjecture that

∂

∂c
β(p, c) | c↓ccr (p) = 2

(E|C|)3

E(|C|2) . (1.11)

This would confirm that the phase transition remains to be of second order for any p < pc,
as it is for p = 0, i.e., in the case of classical random graphs.

One heuristic argument for the equality in (1.11) is the following. Compute a second
derivative β ′′ = ∂2

∂c2 β(p, c), which by (1.6) is

β ′′ = E[(2β ′ + cβ ′′) − (β + cβ ′)2|C|]|C|e−cβ|C|,

and pass to the limit c ↓ ccr(p) = (E|C|)−1 on both sides, taking into account that
β(p, c) | c↓ccr (p)= 0 for all p < pc(d):

β ′′ | c↓ccr (p) = 2β ′ | c↓ccr (p) E|C| + β ′′ | c↓ccr (p) ccr(p)E|C| − (β ′ | c↓ccr (p))
2(ccr(p))2E(|C|2)

= β ′′ | c↓ccr (p) + β ′ | c↓ccr (p) (E|C|)(2 − β ′ | c↓ccr (p) (ccr(p))3E(|C|2)).
Then (1.11) may follow from here by the fact that β is the maximal solution to (1.6).

For the proofs of similar to (1.11) statements one can consult [1], Section 16.4.
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1.3. Methods

Although our model (it can be considered on a torus, in the limit the result is the same) is a
perfectly homogeneous random graph, in the sense that the degree distribution is the same
for any vertex, we study it via inhomogeneous random graphs, making use of the recently
developed theory from [1]. The idea is the following. First, we consider the subgraph
induced by the short-range edges, i.e., the edges which connect two neighboring nodes
with probability p. It is composed of connected clusters (which may consist just of one
single vertex) in B(N). Define a macrovertex to be a connected component of this subgraph.
We say that a macrovertex is of type k, if k is the number of vertices in it. Note also that
the distribution of a size of a cluster is given (approximately) by the distribution of |C|.
Conditionally on the set of macrovertices, we consider a graph on these macrovertices
induced by the long-range connections. Two macrovertices are said to be connected if
there is at least one (long-range type) edge between two vertices belonging to different
macrovertices. Thus, the probability of an edge between two macrovertices vi and vj of
types x and y, correspondingly, is

p̃xy(N) := 1 −
(

1 − c

|B(N)|
)xy

≈ c

|B(N)|xy (1.12)

for large N . Later, we show that this graph on macrovertices fits the conditions of a general
inhomogeneous graph model defined in [1], with a kernel proportional to xy (which is
unbounded for x, y ≥ 1). Then, formula (1.2) for the critical parameters follows in an
almost straightforward fashion by [1].

The size of a component in our original model is the sum of the types of the macrovertices
of the correspondent component in the inhomogeneous model. We still use essentially the
results from [1] to derive (1.6). Notice, however, that (1.6) is no longer an equation for a
survival probability as in [1].

The result in the subcritical phase (part i of Theorem 1.1) is new, it does not follow from
the theory in [1]. The essential feature of the derived inhomogeneous model is that it has
an unbounded kernel function. Up until now, the size of the largest connected component
in an inhomogeneous random graph below the phase transition has been studied only for
uniformly bounded kernels, for which it was proved to be O(log n) whp (see Theorem 3.12,
[1]). Our method, which is based on the moment generating functions, not only allows us
to treat unbounded kernels but also yields a sharp bound for the size of the component. We
discuss this in more detail in the end of Section 2.4.

Notice also that to analyze the introduced model, we derive here some results on the
joint distribution of the sizes of clusters in the percolation model (see Lemma 2.1 later),
which may be of interest on its own.

The principle of treating some local structures in a graph as new vertices (macrovertices),
and then considering a graph induced by the original model on these vertices appears to be
rather general. For example, in [4] a different graph model was also put into a framework
of inhomogeneous graphs theory by certain restructuring. This method should be useful for
analysis of a broad class of complex structures, whenever one can identify local and global
connections. Some examples of such models one can find in [6].

Finally, we comment that our result should help to study a model for the propagation of
the neuronal activity introduced in [12]. Here, we show that a giant component in the graph
can emerge from two sources, neither of which can be neglected, but each of which may
be in the subcritical phase, i.e., even when both p < pc and c < 1. In particular, for any
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0 < c < 1 we can find p < pc, which allows with positive probability the propagation of
impulses through the large part of the network due to the local activity.

2. MODEL GN (p, c) AS AN INHOMOGENEOUS RANDOM GRAPH

2.1. Bond Percolation Model

Consider the subgraph on B(N) induced by the short-range edges only, which is a purely
bond percolation model. By the construction this subgraph, call it G(s)

N (p), is composed of
a random number of clusters (of connected vertices) of random sizes. We call the size of
a cluster the number of its vertices (it may be just one). We recall here more results from
percolation theory, which we shall use later on.

Let KN denote the number of the connected components (clusters) in G(s)
N (p), and let

X = {X1, X2, . . . , XKN } (2.1)

denote the collection of all connected clusters Xi in G(s)
N (p). We shall also use Xi to denote

the set of vertices in the i−th cluster. By this definition
∑KN

i=1 |Xi| = |B(N)|.

Theorem ([3], (4.2) Theorem, p. 77).

KN

|B(N)| → κ(p) := E
1

|C| (2.2)

a.s. and in L1 as N → ∞.

Note (see, e.g., [3]) that κ(p) is strictly positive and finite for all 0 < p < pc. Next, we
cite the large deviations property of KN from [14].

Theorem ([14], Theorem 2). Given κ(p) > ε > 0, there exists σj(ε, p) > 0 for j = 1, 2
such that

lim
N→∞

−1

|B(N)| log P
(

KN

|B(N)| ≥ κ(p) + ε

)
= σ1(ε, p)

and

lim
N→∞

−1

|B(N)| log P
(

KN

|B(N)| ≤ κ(p) − ε

)
= σ2(ε, p).

This theorem immediately implies the following.

Corollary 2.1. Define for any 0 < δ < κ(p) = E(|C|−1) an event

Aδ,N =
{∣∣∣∣ KN

|B(N)| − E(|C|−1)

∣∣∣∣ ≤ δ

}
. (2.3)

There exists a positive constant σ = σ(δ, p) such that for all large N

P(Aδ,N) ≥ 1 − e−σ |B(N)|. (2.4)

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPHS ON Z d 191

Next, we define for any k ≥ 1 and x ≥ 0 an indicator function:

Ik(x) =
{

1, if x = k,
0, otherwise.

Proposition 2.1. For any fixed k ≥ 1

1

KN

KN∑
i=1

Ik(|Xi|) → 1

κ(p)

P{|C| = k}
k

=: µ(k) (2.5)

a.s. and in L1 as N → ∞.

Proof. Let CN(z), z ∈ B(N), denote the connected cluster in B(N), which contains vertex
z, and let C(z) denote the open cluster in Zd , which contains vertex z. We write

1

KN

KN∑
i=1

Ik(|Xi|) = |B(N)|
KN

1

k

1

|B(N)|
∑

z∈B(N)

Ik(|CN(z)|). (2.6)

Observe that∑
z∈B(N)

Ik(|CN(z)|) =
∑

z∈B(N)

Ik(|C(z)|) +
∑

z∈B(N)

(Ik(|CN(z)|) − Ik(|C(z)|))

=
∑

z∈B(N)

Ik(|C(z)|) +
∑

z↔∂B(N)

(Ik(|CN(z)|) − Ik(|C(z)|)), (2.7)

where the last summation is over all vertices z of B(N) which are connected to the surface

∂B(N) = {
x ∈ B(N) : max

1≤i≤d
|xi| = N

}
,

and hence the last sum in (2.7) contains at most k|∂B(N)| nonzero terms. Now, we can
rewrite (2.6) as follows

1

KN

KN∑
i=1

Ik(|Xi|) = |B(N)|
KN

1

k

1

|B(N)|
∑

z∈B(N)

Ik(|C(z)|) + |B(N)|
KN

�N

|B(N)| , (2.8)

where

|�N | ≤ |∂B(N)|.
Taking into account (2.2), we conclude

|B(N)|
KN

�N

|B(N)| → 0 (2.9)

in L1 and a.s. By the ergodic theorem

1

|B(N)|
∑

z∈B(N)

Ik(|C(z)|) →P{|C| = k} (2.10)

Random Structures and Algorithms DOI 10.1002/rsa
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a.s. as N → ∞, and in L1 as well, since

0 ≤ 1

|B(N)|
∑

z∈B(N)

Ik(|C(z)|) ≤ 1.

Hence, statement (2.5) follows by (2.8), (2.9), and (2.10) combined with (2.2).

Finally, we mention here one more helpful result.

Proposition 2.2. Let p < pc(d). Then for all L > 0 and all N > 1

P
{

max
1≤i≤KN

|Xi| > L

}
≤ |B(N)| P{|C| > L}, (2.11)

and in particular

P
{

max
1≤i≤KN

|Xi| >
2

ζ(p)
log |B(N)|

}
→ 0 (2.12)

as N → ∞.

Proof. First, we observe that

P
{

max
1≤i≤KN

|Xi| > L

}
≤ P

{
max
z∈B(N)

|C(z)| > L

}
≤ |B(N)| P{|C| > L},

where C(z) is the open cluster containing z. This proves (2.11).
By (1.1) for any 0 < α < ζ(p) there is constant b > 0 such that

P{|C| ≥ L} ≤ be−αL

for all L ≥ 1, which together with (2.11) implies (2.12).

2.2. Random Graph on Macrovertices

Given a collection of clusters X = {X1, . . . , XKN } defined in (2.1), we introduce another
graph G̃N(X, p, c) as follows. The vertices of graph G̃N(X, p, c) are the sets X1, . . . , XKN . We
write

vi = Xi, 1 ≤ i ≤ KN , (2.13)

and call a vertex vi of G̃N(X, p, c) a macrovertex. Each vertex vi is said to be of type |Xi|,
which means that the type of a macrovertex vi is simply its cardinality. The set of types of
macrovertices is {1, 2, . . .}.

The edges between the vertices of G̃N(X, p, c) are presented independently with proba-
bilities induced by the original graph GN(p, c). We say that two macrovertices are connected
if there is at least one (long-range type) edge between two vertices belonging to different
macrovertices. Then, the probability of an edge between any two vertices vi and vj of types
x and y, correspondingly, is p̃xy(N) introduced in (1.12). Clearly, this construction provides
a one-to-one correspondence between the connected components in the graphs G̃N(X, p, c)
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and GN(p, c): the number of the connected components is the same for both graphs, as
well as the number of the involved vertices from B(N) in two corresponding components.
In fact, considering conditionally on X the graph G̃N(X, p, c) we neglect only those long-
range edges from GN(p, c), which connect vertices within each vi, i.e., the vertices which
are already connected through the short-range edges.

Now the aim is to place our model into the framework of inhomogeneous random graphs
from [1]. First, we recall some basic definitions from [1].

Let S be a separable metric space andµbe a Borel probability measure on S. A generalized
vertex space is a triple V = (S, µ, (xn)n≥1), where xn = (x1, . . . , xvn) for each n is a random
sequence of random length vn of points of S such that for any µ-continuity set A ⊆ S

#{i : xi ∈ A}
vn

P→ µ(A) (2.14)

as n → ∞. Given the sequence x1, . . . , xvn , we let GV(n, κn) be the random graph on vertices
{1, . . . , vn}, such that any two vertices i and j are connected by an edge independently of
the others and with probability

pxixj (n) = min

{
κn(xi, xj)

vn
, 1

}
, (2.15)

where the kernel κn is a symmetric non-negative measurable function on S × S.

Definition A. A kernel κ is graphical on V if the following conditions hold:

(i) κ is continuous a.s. on S × S;
(ii) κ ∈ L1(S × S, µ × µ);

(iii)

1

n
Ee(GV(n, κ)) → 1

2

∫
S

∫
S
κ(x, y)dµ(x)dµ(y),

where e(G) denotes the number of edges in a graph G.

Definition B. A sequence (κn) of kernels on S × S is graphical on V with limit κ if for
a.e. (y, z) ∈ S × S

yn → y and zn → z imply that κn(yn, zn) → κ(y, z), (2.16)

κ satisfies conditions (i) and (ii) from Definition A, and also

1

n
Ee

(
GV(n, κn)

) → 1

2

∫
S

∫
S
κ(x, y)dµ(x)dµ(y). (2.17)

Now consider the graph G̃N(X, p, c). Let us rewrite probabilities p̃xy(N) for the edges in
this model taking into account the size of the graph:

p̃xy(N) = 1 −
(

1 − c

|B(N)|
)xy

=:
κN(x, y)

KN
. (2.18)

Random Structures and Algorithms DOI 10.1002/rsa
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By (2.2) and (2.18) for every x, y ∈ {1, 2, . . .} we have: if x(N) → x and y(N) → y (which
in our case simply means that x(N) = x and y(N) = y for all large N) then

κN(x(N), y(N)) = KN

|BN | (|BN |p̃x(N)y(N)(N))
a.s.→ κ(p) cxy =: κ(x, y) (2.19)

as N → ∞. This confirms condition (2.16) for our model. Also, by Proposition 2.1 for all
k ∈ {1, 2, . . .}

#{i : |Xi| = k}
KN

P→ µ(k) := 1

κ(p)

P{|C| = k}
k

, (2.20)

as N → ∞ which gives us condition (2.14) for our model.
Note that because of (1.1) the function µ(k) decays exponentially. This implies that

κ ∈ L1(S × S, µ × µ). (2.21)

Finally, one can verify with the help of (2.2) and Proposition 2.1 that for any t(N) such that
t(N)/|B(N)| → E{|C|−1}

1

t(N)
E{e(G̃N(X, p, c))|KN = t(N)} → 1

2

∞∑
y=1

∞∑
x=1

κ(x, y)µ(x)µ(y), (2.22)

and the convergence in (2.17) follows.
Hence, we conclude that our model G̃N(X, p, c) is the particular case of the general

inhomogeneous random graph model, which we denote GV(n,κ n) with the vertex space

V = (S, µ, (v1, . . . , vt(n))n≥1),

where (here and in the rest of this article)

S = {1, 2, . . .},
µ is a probability on S defined by (2.20), and the sequence of kernels κ n is graphical on V
with limit

κ(x, y) = κ(p) cxy.

Notice here that kernels of this type, i.e., when κ(x, y) = ψ(x)ψ(y), fall into the “rank 1
case” (see [1], Chapter 16.4).

2.3. A Branching Process Related to G̃N (X , p, c)

Here, we follow closely the approach in [1]. We shall use a well-known technique of
branching processes to reveal the connected component in the graph G̃N(X, p, c). Recall first
the usual exploration algorithm of finding a connected component. Conditionally on the set
of macrovertices, take any vertex vi to be the root. Reveal all the vertices {v1

i1
, v1

i2
, . . . , v1

in
}

connected to this vertex vi in the graph G̃N(X, p, c), call them the offspring of vi, and then
mark vi as “saturated.” Then for each nonsaturated but already revealed vertex, we find all
the vertices connected to them but which have not been used previously. We continue this
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process until we end up with a tree of saturated macrovertices whose types are in the set
S = {1, 2, . . .}.

Denote τN(v) the set of the macrovertices in the tree constructed according to the explo-
ration algorithm with the root at a vertex v. It is plausible to think (and in our case it is
correct, as will be seen later) that τN(v) is well approximated by the following multitype
Galton-Watson process. Let x ∈ S and let Bc,p

x = {Bc,p
x (n), n ≥ 0}, where Bc,p

x (n) for each
n ≥ 0 denotes a set of particles, each of which is assigned some type, a value from the set
S. We assume that initially Bc,p

x (0) consists of a single particle of type x, and then at any
step, a particle of type x′ ∈ S is replaced in the next generation by a set of particles where
the number of particles of type y has a Poisson distribution

Po(κ(x′, y)µ(y)).

We shall study now the properties of the process Bc,p
x . Let ρ(x) denote the probability that

a particle of type x produces by this process an infinite population. First, we state a general
result on ρ(x), which was proved in [1]. Define

Tκ f (x) =
∫

S
κ(x, y)f (y)dµ(y),

and

‖Tκ ‖ = sup{‖Tκ f ‖2 : f ≥ 0, ‖ f ‖2 ≤ 1}.

Theorem A ([1], Theorem 6.1). Suppose that κ is the kernel on (S, µ), that κ ∈ L1, and∫
S
κ(x, y)dµ(y) < ∞

for every x ∈ S. Then ρ(x) is the maximal solution to

f (x) = 1 − exp{−Tκ f (x)}. (2.23)

Furthermore:

(i) If ‖Tκ ‖ ≤ 1 then ρ(x) = 0 for every x, and (2.23) has only the zero solution.
(ii) If 1 < ‖Tκ ‖ ≤ ∞ then ρ(x) > 0 on a set of a positive measure. If, in addition, κ is

irreducible then ρ(x) > 0 for a.e. x, and ρ(x) is the only nonzero solution of (2.23).

(Notice that f = 0 is always a solution to (2.23) independent of value ‖Tκ ‖.)
Let us verify the conditions of this theorem for our model. Recall that a kernel κ on a

ground space (S, µ) is called irreducible if

A ⊆ S and κ = 0 a.e. on A × (S \ A) implies µ(A) or µ(S \ A) = 0.

This condition trivially holds in our case since κ(x, y) > 0 for all (x, y) ∈ S × S. Also, it
is straightforward to derive

∞∑
y=1

κ(x, y)µ(y) =
∞∑

y=1

κ(p)cxy
1

κ(p)

P{|C| = y}
y

= cx < ∞
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for any x. This together with (2.21) confirms that the conditions of Theorem A hold for our
model. Hence, in our case function ρ(x), x ∈ S, is the maximum solution to

ρ(x) = 1 − e− ∑∞
y=1 κ(x,y)µ(y)ρ(y). (2.24)

We remark that in the rank 1 case of the kernel, i.e., when κ(x, y) = ψ(x)ψ(y), we have

‖Tκ ‖ =
(∫

S

∫
S
κ 2(x, y)dµ(x)dµ(y)

)1/2

=
∫

S
ψ2(x)dµ(x). (2.25)

(For further details refer [1].) Therefore, in the case of our model, whenκ(x, y) = cκ(p)xy =
ψ(x)ψ(y) with ψ(x) = √

cκ(p) x, and µ is a probability on a countable space S, we find
by (2.25) that

‖Tκ ‖ = cκ(p)

∞∑
y=1

y2µ(y) = c κ(p)

∞∑
y=1

y2 1

κ(p)

P{|C| = y}
y

= c E|C|.

Hence, by the cited above Theorem A we have for our model ρ(x) > 0 for all x ∈ S if and
only if

‖Tκ ‖ = cE|C| > 1; (2.26)

otherwise, ρ(x) = 0 for all x ∈ S.
Let us state another general result from [1], which we need here. Let ρ(x) be the maximum

solution to (2.23), and define

ρ =
∫

S
ρ(x)dµ(x).

Theorem B ([1], Theorem 3.1). Let (κ n) be a graphical sequence of kernels on a
generalized vertex space V with limit κ .

(i) If ‖Tκ ‖ ≤ 1, then C1(GV(n,κ n)) = oP(n), while if ‖Tκ ‖ > 1 , then C1(GV(n,κ n)) =
�(n) whp.

(ii) For any ε > 0, whp we have

1

n
C1(G

V(n,κ n)) ≤ ρ + ε.

(iii) If κ is quasi-irreducible, then

1

n
C1(G

V(n,κ n))
P→ ρ.

In all cases ρ > 0 if and only if ‖Tκ ‖ > 1.

Let us apply this general result to our model.

Corollary 2.2. (i) For all 0 ≤ p < pc and c ≥ 0

C1(G̃N(X, p, c))

KN

P→ ρ :=
∞∑

x=1

ρ(x)µ(x), (2.27)

where ρ(x) is the maximum solution to (2.24).
(ii) ρ > 0 if and only if cE|C| > 1, i.e., if and only if c > ccr(p); otherwise, ρ = 0.
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Proof. As we previously showed, conditionally on KN so that KN/|B(N)| → E(|C|−1),
the sequence κ n(x, y) is graphical on V . Hence, together with the fact that our kernel κ is
positive on S (hence, quasi-irreducible as well) the conditions of the cited Theorem B (iii)
are satisfied for our model G̃N(X, p, c). Therefore, Theorem B (iii) yields statement (i) of
the corollary.

Statement (ii) of the corollary follows by (2.26) and Theorem A.

Remark 2.1. Corollary 2.2 together with (2.2) implies

C1(G̃N(X, p, c))

|B(N)|
P→ E(|C|−1) ρ, (2.28)

where ρ > 0 if and only if c > ccr(p).

Notice, however, that here C1(G̃N(X, p, c)) is the number of macrovertices in the largest
connected component of G̃N(X, p, c), whereas our aim is to find the size of the largest
connected component in the original graph GN(p, c).

Finally, we quote a general result from [1] on the second largest component, which we
denote by C2(GV(n,κ n)).

Theorem C ([1], Theorem 12.6). Let (κ n) be a graphical sequence of kernels on a
generalized vertex space V with irreducible limit κ . If ‖Tκ ‖ > 1, and infn,x,y κ n(x, y) > 0
then

C2

(
GV(n,κ n)

) = O(log n)

whp.
This theorem together with the convergence in (2.2) implies for our case the following

result.

Corollary 2.3. For all 0 ≤ p < pc and c > ccr one has

C2(G̃N(X, p, c)) = O(log |B(N)|)
whp.

2.4. On the Distribution of Types of Vertices in G̃N (X , p, c)

Given a collection of clusters X (see (2.1)), we define for all 1 ≤ k ≤ |B(N)|

Nk = Nk(X) =
KN∑
i=1

Ik(|Xi|).

In words, Nk is the number of (macro)vertices of type k in the set of vertices of graph
G̃N(X, p, c).

First, we establish that Nk for all k and large N satisfies Talagrand’s inequality [8], which
we cite here from the book [5].

Theorem (Talagrand’s inequality [5, p. 40]). Suppose that Z1, . . . , Zn are independent
random variables taking their values in some sets �1, . . . , �n, respectively. Suppose further
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that W = f (Z1, . . . , Zn), where f : �1 × · · · × �n → R is a function such that, for some
constants ck, k = 1, . . . , n, and some function �, the following two conditions hold:

1) If z, z′ ∈ � = ∏n
1 �i differ only in the i-th coordinate, then |f (z) − f (z′)| ≤ ci.

2) If z ∈ � and r ∈ R with f (z) ≥ r, then there exists a set J ⊆ {1, . . . , n} with∑
i∈J c2

i ≤ �(r), such that for all y ∈ � with yi = zi when i ∈ J, we have f (y) ≥ r.
Then, for every r ∈ R and t ≥ 0,

P(W ≤ r − t)P(W ≥ r) ≤ e−t2/4�(r). (2.29)

Corollary 2.4. For every 0 < a ≤ r and all k ≥ 1

P{Nk ≤ a}P{Nk ≥ r} ≤ exp

{
− (r − a)2

32dkr

}
. (2.30)

Proof. We shall show that the function Nk satisfies the conditions of the cited theorem
on Talagrand’s inequality. Let {e1, . . . , en} be the set of all edges from the lattice Zd , which
have both end points in B(N). Define

Zi =
{

1, if ei is open in Gs
N(p),

0, if ei is closed in Gs
N(p).

According to the definition of our model, Zi ∈ Be(p), i = 1, . . . , n, are independent random
variables, and

Nk = Nk(Z1, . . . , Zn)

since the number of the components of size k (open k-clusters) in Gs
N(p) is defined com-

pletely by Z1, . . . , Zn. Furthermore, it is clear that removing or adding just one edge in
Gs

N(p) may increase or decrease by at most 2 the number of k-clusters. Hence, the first con-
dition of Talagrand’s inequality is satisfied with ci = 2 for all 1 ≤ i ≤ n: if configurations
z, z′ ∈ {0, 1}n differ only in the ith coordinate, then

|Nk(z) − Nk(z
′)| ≤ 2.

Next, we check that the second condition is fulfilled as well, and we shall determine
the function �. Assume, z ∈ {0, 1}n corresponds to such a configuration of the edges in
B(N) that Nk(z) ≥ r, for some r ∈ {1, 2, . . .}, i.e., there are at least r clusters of size k. Let
{ej, j ∈ J} ⊂ {e1, . . . , en} be a set of edges, which have at least one common vertex with a
set of exactly r (arbitrarily chosen out of Nk(z)) clusters of size k. Clearly, |J| ≤ 2dkr, and
for any z′ ∈ {0, 1}n with z′

j = zj if j ∈ J , we have

Nk(z
′) ≥ r.

Hence, the second condition of Talagrand’s inequality is satisfied with �(r) = 8dkr for
positive integers r, since ∑

i∈J

c2
i = 4|J| ≤ 8dkr. (2.31)
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The case when r is not an integer is treated as explained in Example 2.33, page 41, in [5].
Then, inequality (2.30) follows by (2.29).

Now we are able to prove a useful result on the distribution of the entire vector N /KN =
(N1/KN , . . . , N|B(N)|/KN). Recall that for each fixed k convergence of Nk/KN as N → ∞
was proved in Proposition 2.1.

Lemma 2.1. Assume, p < pc. Set

µ̃(k) =
∞∑

n=k

P{|C| = n} = P{|C| ≥ k}.

Then for any fixed ν > 2 and ε > 0

P{|Nk/KN − µ(k)| > ε kν µ̃(k) for some 1 ≤ k ≤ |B(N)|} → 0 (2.32)

as N → ∞.

Remark 2.2. Because of (1.1) kν µ̃(k) → 0 as k → ∞. Therefore, statement (2.32) does
not follow simply by Proposition 2.1.

Proof of Lemma 2.1. Let us fix ν > 2 and ε > 0 arbitrarily. Notice that for any 1 ≤ L0 <

L < |B(N)|, we have

P
{|Nk/KN − µ(k)| > ε kν µ̃(k) for some 1 ≤ k ≤ |B(N)|}
≤ P

{|Nk/KN − µ(k)| > ε kν µ̃(k) for some 1 ≤ k ≤ L0

}
+ P

{|Nk/KN − µ(k)| > ε kν µ̃(k) for some L0 < k ≤ L
}

+ P
{|Nk/KN − µ(k)| > ε kν µ̃(k) for some k > L

}
=: P1 + P2 + P3. (2.33)

We shall choose later on an appropriate constant L0 and an increasing function L = L(N)

so that we will be able to bound from above by o(1) (as N → ∞) each of three summands
on the right-hand side in (2.33). Notice here that the first and the last terms are the easiest
to estimate, while the main job concerns P2. We shall make it in two steps.

Step I: Preliminary bounds of P1, P2, P3. Consider the first term on the right-hand side
in (2.33). Observe that for any fixed constant L0 ≥ 1, we have by Proposition 2.1

P1 = P{|Nk/KN − µ(k)| > ε kν µ̃(k) for some 1 ≤ k ≤ L0} = o(1) (2.34)

as N → ∞.
To bound P3 we first choose a constant L0 so that

εLν
0 ≥ 1

E(|C|−1)
. (2.35)

Then for all k > L0

ε kν µ̃(k) ≥ µ̃(k)

E(|C|−1)
> µ(k), (2.36)
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and hence, inequality

|Nk/KN − µ(k)| > ε kν µ̃(k)

may hold only if Nk/KN > 0. This implies that for any L > L0

P3 = P{|Nk/KN − µ(k)| > ε kν µ̃(k) for some k > L}
≤ P

{
max

1≤i≤KN
|Xi| > L

}
. (2.37)

Making use of Proposition 2.2, we get from here

P3 ≤ |B(N)| P{|C| > L} ≤ |B(N)| µ̃(L). (2.38)

Consider now P2. Taking into account (2.36), we can write

P2 = P
{Nk

KN
− µ(k) > ε kν µ̃(k) for some L0 < k ≤ L

}
. (2.39)

Using the events Aδ,N from Corollary 2.1, we define

P(k) := P
{(Nk

KN
− µ(k) > ε kν µ̃(k)

)
∩ Aδ,N

}
. (2.40)

Then by Corollary 2.1 and (2.39), we have

P2 ≤
L∑

k=L0+1

P(k) + o(1), (2.41)

as N → ∞.

Claim 1. For some b > 0

P(k) ≤ 4 exp{−b|B(N)|kν−1 µ̃(k)} (2.42)

uniformly in k > L0 and all large N.

Proof of Claim 1. Because of the definition of Aδ,N in Corollary 2.1, we have

P(k) ≤ P{Nk > (κ(p) − δ)|B(N)|(ε kν µ̃(k) + µ(k))}. (2.43)

Now set

kN = (κ(p) − δ)|B(N)|,
and consider Talagrand’s inequality (2.30) with

r = kN(ε kν µ̃(k) + µ(k)),

a = kN

(ε

2
kν µ̃(k) + µ(k)

)
. (2.44)
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By Markov’s inequality

P{Nk ≤ a} ≥ 1 − ENk

a
. (2.45)

Now write

Nk =
KN∑
i=1

Ik(|Xi|) = 1

k

∑
z∈B(N)

Ik(|CN(z)|), (2.46)

where CN(z) denotes an open cluster in B(N), which contains the vertex z. Further let C(z)
denote an open cluster in Zd , which contains the vertex z. Then by (2.7) we have that∑

z∈B(N)

Ik(|CN(z)|) ≤
∑

z∈B(N)

Ik(|C(z)|) +
∑

z↔∂B(N)

Ik(|CN(z)|), (2.47)

where the last sum contains at most k|∂B(N)| nonzero terms. Note also that for any z ↔
∂B(N)

P{|CN(z)| = k} ≤ P{|C(z)| ≥ k} = P{|C| ≥ k}.
Therefore, we derive from (2.46) and (2.47)

ENk ≤ 1

k
|B(N)|P{|C| = k} + |∂B(N)|P{|C| ≥ k}

= κ(p)µ(k)|B(N)| + |∂B(N)|µ̃(k). (2.48)

This yields that for any 0 < δ ≤ κ(p)/18, all k > L0 (in which case εkν µ̃(k) ≥ µ(k)) and
all large N

ENk

a
= ENk

(κ(p) − δ)|B(N)| ( ε

2 kν µ̃(k) + µ(k)
) ≤ 3/4,

which together with (2.45) implies

P{Nk ≤ a} ≥ 1

4
. (2.49)

Using (2.49) in Talagrand’s inequality (2.30) with r and a defined in (2.44), we derive for
all k > L0

P{Nk ≥ r} ≤ (P{Nk ≤ a})−1 exp

{
− (r − a)2

32dkr

}

≤ 4 exp

{
−

(
ε

2 kN kν µ̃(k)
)2

32dk(kN(ε kν µ̃(k) + µ(k)))

}

≤ 4 exp

{
−εkN kν µ̃(k)

28dk

}
= 4 exp

{
−ε(κ(p) − δ)

28d
|B(N)|kν−1 µ̃(k)

}
. (2.50)

Substituting (2.50) into (2.43) we get the bound (2.42), where

b := ε(κ(p) − δ)

28d
.

This finishes the proof of the claim.
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Step II: Final bound of P1 + P2 + P3. Combining all the preliminary bounds (2.34),
(2.38), and (2.41) together with (2.42), we obtain

P1 + P2 + P3 ≤ o(1) + 4
L∑

k=L0

exp
{−b|B(N)|kν−1 µ̃(k)

} + |B(N)| µ̃(L), (2.51)

as N → ∞ for any L ≥ L0.
From now on choose

L = L(N) = min

{
k ≥ 1 : kαµ̃(k) <

1

|B(N)|
}

, (2.52)

where

α = ν − 2

2
,

which is positive by the assumption of Lemma 2.1.

Claim 2. For any � > 0 one can choose a finite constant L0 so that

L(N)∑
k=L0

exp{−b|B(N)|kν−1 µ̃(k)} < �, (2.53)

for all large N, and

|B(N)| µ̃(L(N)) → 0, (2.54)

as N → ∞.

Before we proceed with the proof of our claim, we note that this claim together with
(2.51) implies that

P1 + P2 + P3 = o(1)

as N → ∞, which by (2.33) yields the statement of Lemma 2.1.

Proof of Claim 2. By the result (1.1) on the exponential tail of the distribution of the open
cluster, we have kαµ̃(k) → 0, as k → ∞ for any fixed α, but kαµ̃(k) > 0 for all k ≥ 1.
This yields that L(N) → ∞ as N → ∞, which in turn implies that there exists

lim
N→∞

µ̃(L(N))|B(N)| ≤ lim
N→∞

L(N)−α = 0,

and (2.54) follows.
To prove (2.53) we note first that by the definition (2.52) of L(N)

(L(N) − 1)αµ̃(L(N) − 1) ≥ 1

|B(N)| . (2.55)

Recall that by Lemma 6.102 from [3] (p. 139), for all n, m ≥ 0

1

m + n
P(|C| = n + m) ≥ p(1 − p)−2 1

m
P(|C| = m)

1

n
P(|C| = n). (2.56)
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When m = 1 inequality (2.56) implies that

P(|C| = n + 1) ≥ p(1 − p)2(d−1)P(|C| = n), (2.57)

for all n ≥ 0. This clearly yields

µ̃(n + 1) ≥ p(1 − p)2(d−1)µ̃(n)

for all n ≥ 0, and in particular

µ̃(L(N)) ≥ p(1 − p)2(d−1)µ̃(L(N) − 1). (2.58)

Notice that γ := p(1 − p)2(d−1) ≤ p < 1 for all d ≥ 1. Combining (2.55) with (2.58), we
immediately get

L(N)αµ̃(L(N)) ≥ γ

|B(N)| , (2.59)

and also by definition (2.52) for all k < L(N)

kαµ̃(k) ≥ 1

|B(N)| ≥ γ

|B(N)| . (2.60)

Making use of (2.59) and (2.60), we derive

L(N)∑
k=L0

exp
{−b|B(N)|kν−1 µ̃(k)

} ≤
L(N)∑
k=L0

exp
{−bγ kν−1−α

} ≤ a1 exp
{−bγ Lν−2−α

0

}
, (2.61)

where a1 is some positive constant independent of L0. Hence, for any � > 0 we can fix L0

so large that (2.61) implies (2.53), and in the same time L0 satisfies (2.35) and L0 < L(N).
This completes the proof of Claim 2 and, therefore, finishes the proof of Lemma 2.1.

Corollary 2.5. For any fixed ν > 2, ε > 0 and δ > 0 define an event

BN = Aδ,N ∩
(

max
1≤i≤KN

|Xi| ≤ 2

ζ(p)
log |B(N)|

)
∩

(
∩|B(N)|

k=1

{∣∣∣∣Nk

KN
− µ(k)

∣∣∣∣ ≤ εkνµ̃(k)

})
.

(2.62)

Then

P{BN} = 1 − o(1) (2.63)

as N → ∞.

Proof. Statement (2.63) follows immediately by Corollary 2.1, Proposition 2.2, and
Lemma 2.1.
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3. PROOF OF THEOREM 1.1 IN THE SUBCRITICAL CASE C < C CR(P )

Let us fix 0 ≤ p < pc and then c < ccr(p) arbitrarily. First, given X = (X1, . . . , XKN )

consider the graph G̃N(X, p, c) introduced in Section 2.2. Recall that we denote by Xi the
vertices (of types |Xi|) of this graph. Let L̃ denote a connected component in G̃N(X, p, c).
Observe that given X = (X1, . . . , XKN ), the size of a connected component in GN(p, c)
equals the sum of the types of the vertices in some component of G̃N(X, p, c). Therefore,
we have

C1(GN(p, c))|X = max
L̃

∑
Xi∈L̃

|Xi|,

where the maximum is taken over all components of G̃N(X, p, c). Using the exploration
algorithm defined in Section 2.3, we can rewrite the last formula as follows:

C1(GN(p, c))|X = max
L̃

∑
Xi∈L̃

|Xi| = max
1≤i≤KN

∑
Xj∈τN (Xi)

|Xj|, (3.1)

where τN(Xi) denotes the set of macrovertices in a component revealed by the exploration
algorithm starting with vertex Xi. Set

SN(Xi) =
∑

Xj∈τN (Xi)

|Xj|

to be the number of vertices from B(N), which compose the macrovertices of τN(Xi). Then
by (3.1) we have for any positive w

P{C1(GN(p, c)) > w} = P
{

max
1≤i≤KN

SN(Xi) > w

}
. (3.2)

Our aim is to show that if w = α log |B(N)| this probability tends to zero as N → ∞, and
then the statement (1.4) of Theorem 1.1 follows.

Observe that the distribution of SN(Xi) depends only on |Xi|, i.e.,

SN(Xi)||Xi |=k =d SN(Xj)||Xj |=k

for all k ≥ 1. Therefore, we shall use notation

SN(k) :=d SN(Xi)||Xi |=k .

By (3.2) and Corollary 2.5, we have for all w > 0

P{C1(GN(p, c)) > w} = P
{

max
1≤i≤KN

SN(Xi) > w | BN

}
+ o(1)

≤ |B(N)|(δ + E(|C|−1))

|B(N)|∑
k=1

(µ(k) + εkνµ̃(k))P{SN(k) > w | BN} + o(1) (3.3)

as N → ∞.
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3.1. Approximation by Branching Processes

We shall approximate SN(k) using the branching process introduced in Section 2.3. Let
Sc,p(y) denote the sum of types including the one of the initial particle, in the total progeny
of the branching process Bc,p

y starting with initial particle of type y.

Proposition 3.1. For any c′ > c and p′ > p such that

c < c′ < ccr(p′) < ccr(p),

one has

P{SN(k) > w | BN} ≤ P{Sc′ ,p′
(k) > w} (3.4)

for all large N.

Proof. Observe that at each step of the exploration algorithm, the number of the type y
offspring of a particle of type x has a binomial distribution Bin(N ′

y, p̃xy(N)), where N ′
y is the

number of remaining vertices of type y. In particular, N ′
y ≤ Ny.

We shall explore the well-known fact that a binomial Bin(n, p) distribution is stochasti-
cally dominated by a Poisson distribution Po(−n log(1 − p)); denote this by

Bin(n, p) ≺ Po(−n log(1 − p)).

Hence, we have

Bin(N ′
y, p̃xy(N)) ≺ Po

( − N ′
y log(1 − p̃xy(N))

)
. (3.5)

Consider the parameter of the last distribution.

Claim. Conditionally on BN for any x, y ∈ {X1, . . . , XKN } we have

−N ′
y log(1 − p̃xy(N)) ≤ µp′(y)κ c′ ,p′(x, y) (3.6)

for all large N, where c′, p′ satisfy the conditions of Proposition 3.1.

Before we prove (3.6), let us derive the statement of Proposition 3.1 from here. Bound
(3.6) (and properties of the Poisson distribution) implies that

Po
( − N ′

y log(1 − p̃xy(N))
) ≺ Po(µp′(y)κ c′ ,p′(x, y)),

which together with (3.5) yields

Bin(N ′
y, p̃xy(N)) ≺ Po(µp′(y)κ c′ ,p′(x, y)).

Hence, Bin(N ′
y, p̃xy(N)), which is the distribution of the offspring in the exploration algo-

rithm, is stochastically dominated by Po(µp′(y)κ c′ ,p′(x, y)), which is the distribution of
offspring in the branching process Bc,p

y . Therefore, SN(k) is also stochastically dominated

by Sc′ ,p′
(k) for any k ≥ 1, and the statement of Proposition 3.1 follows.
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Proof of the Claim. Notice that for all 1 ≤ x, y ≤ 2
ζ(p)

log |B(N)|

p̃xy(N) = 1 −
(

1 − c

|B(N)|
)xy

= c

|B(N)|xy(1 + o(1)). (3.7)

Therefore, for any fixed positive ε1, we can choose small ε and δ in (2.62) so that
conditionally on BN we have

−N ′
y log (1 − p̃xy(N)) ≤ −Ny log (1 − p̃xy(N)) ≤ (µ(y) + yνε1µ̃(y))κ(x, y)(1 + o(1))

(3.8)

for all large N .
Let us write further

µ(y) = µp(y) = 1

κ(p)

Pp{|C| = y}
y

, µ̃(y) = µ̃p(y), κ(x, y) = κ c,p(x, y) = cκ(p)xy,

emphasizing dependence on p and c. Recall that along with the result (1.1), it is also proved
in [3] that for all 0 < p < pc

ζ(p) = limn→∞

(
−1

n
log P{|C| ≥ n}

)
. (3.9)

Then (1.1) and (3.9) immediately imply the existence and equality of the following limits
for all 0 < p < pc

ζ(p) = limn→∞

(
−1

n
log µ(n)

)
= limn→∞

(
−1

n
log µ̃(n)

)
, (3.10)

i.e., that both µ(n) and µ̃(n) decay exponentially fast, and moreover with the same exponent
in the limit. This allows us to find for any p < p′ < pc positive constants ε2 and ε1 = ε1(ε2, p′)
such that

µp(y) + yνε1µ̃p(y) ≤ (1 + ε2)µp′(y), (3.11)

and moreover ε2 ↓ 0 as p′ ↓ p. Setting now

c′ =
(

1 + 3

2
ε2

)
κ(p)

κ(p′)
c

we derive from (3.8) with the help of (3.11) that conditionally on BN with an appropriate
choice of constants

−N ′
y log (1 − p̃xy(N)) ≤

(
1 + 3

2
ε2

)
µp′(y)κ c,p(x, y) = µp′(y)κ c′ ,p′(x, y) (3.12)

for all large N . Recall that above we fixed p and c < ccr(p), where ccr(p) is strictly decreasing
and continuous in p. Furthermore, the function κ(p) is analytic on [0, pc). Hence, we can
choose p′ > p and c′ = (1 + 3

2ε2)
κ(p)

κ(p′) c so that

c < c′ < ccr(p′) < ccr(p), (3.13)

and moreover c′ and p′ can be chosen arbitrarily close to c and p, respectively. Hence, bound
(3.6) follows, and this finishes the proof of the Proposition.

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPHS ON Z d 207

3.2. Proof of (1.4)

Using Proposition 3.1 and bound (3.11) in (3.3), we derive for all c′, p′, which satisfy
conditions of Proposition 3.1 that

P{C1(GN(p, c)) > w} ≤ b|B(N)|
|B(N)|∑
k=1

kµp′(k)P{Sc′ ,p′
(k) > w} + o(1) (3.14)

as N → ∞, where b is some positive constant. Now, using Markov’s inequality for a
non-negative random variable X

P{X > w} ≤ z−wEzX ,

we derive from (3.14) with w = a log |B(N)| that for any z ≥ 1

P{C1(GN(p, c)) > a log |B(N)|} ≤ b|B(N)|z−a log |B(N)|Az(c
′, p′) + o(1), (3.15)

where

Az(c, p) =
∞∑

k=1

kµp(k)EzSc,p(k). (3.16)

It is clear that if Az(c′, p′) < ∞ for some z ≥ 1, then for any a > (log z)−1 the right-hand
part of (3.15) tends to zero as N → ∞. Therefore, we search for all z ≥ 1 for which the
series Az(c, p) converge.

Proposition 3.2. Let 0 ≤ p < pc and c < ccr(p). Then, Az(c, p) < ∞ for all

1 < z ≤ z0(c, p) := exp
{
c
(
1 + y0 − E ec|C|y0

)}
,

where

y0 =
{

the root of E c|C|e|C|x = 1, if E c|C|e|C|ζ(p) ≥ 1,
ζ(p)/c, otherwise.

Before we proceed with the proof of this proposition, let us derive the statement (1.4) of
Theorem 1.1 from (3.15) and Proposition 3.2. By Proposition 3.2 for any 1 < z ≤ z0(c′, p′)
we have Az(c′, p′) < ∞ in (3.15). Therefore, if

a > (log z)−1 ≥ (log z0(c
′, p′))−1 > 0, (3.17)

then the right-hand part of (3.15) tends to zero as N → ∞. Note that function z0(c, p) is
continuous at any (c, p), such that 0 ≤ p < pc and c < ccr(p). Hence, for any

a > (log z0(c, p))−1 = (
c + cy0 − cE ec|C|y0

)−1

we can choose c′ and p′ (satisfying the conditions of Proposition 3.1) so that also

a > (log z0(c
′, p′))−1 > 0.

With these c′ and p′, and with z = z0(c′, p′) condition (3.17) is satisfied, and therefore the
right-hand part of (3.15) is o(1). This proves (1.4).
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Proof of Proposition 3.2. We shall study first function gz(k) = EzSc,p(k). (Refer, e.g., a
book [7] on the theory of multitype branching process.) Recall that Sc,p(k) denotes the sum
of types in the total progeny of the branching process Bc,p

k starting with initial particle of
type k. To simplify further notations, we shall omit here indices c, p. Let Sn(k) = Sc,p

n (k)

denote for all n ≥ 0 the sum of types of the particles in the first n generations. In particular,
S0(k) = k. It is clear that

Sn(k) ↑ Sc,p(k)

as n → ∞. By the definition of branching process Bc,p
k , we have

S1(k) =d k +
∞∑

x=1

xNkx, (3.18)

where Nkx is the number of the offspring of type x. By the definition of the process Bc,p
k

random variables Nkx ∈ Po(κ c,p(k, x)µp(x)) are independent for different x, k. It also follows
that

Sn+1(k) =d k +
∞∑

x=1

Nkx∑
i=1

Si
n(x) (3.19)

for all n ≥ 0, where Si
n(x), i = 1, . . . , are independent copies of Sn(x), independent for

different x as well.
Let

gn,z(k) = EzSn(k)

for n ≥ 0. The generating function for a Poisson random variable Y ∈ Po(m) is

φY (z) = EzY = em(z−1).

Using this formula, it is straightforward to derive from (3.18) the generating function of a
linear combination of independent Poisson random variables

g1,z(k) = EzS1(k) = zk
∏

x

φNkx (z
x) = zk exp

{ ∞∑
x=1

κ c,p(k, x)µp(x)(z
x − 1)

}
. (3.20)

Since

g0,z(k) = zk ,

we can rewrite (3.20) as

g1,z(k) = zk exp

{ ∞∑
x=1

κ c,p(k, x)µp(x)(g0,z(x) − 1)

}
=: �z[g0,z](k).

In the same fashion, we derive from (3.19)

gn+1,z(k) = �z[gn,z](k) (3.21)
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for all n ≥ 0. Observing that

�z[1](k) = zk = g0,z(k),

we get from (3.21) the following formula

gn,z(k) = �n+1
z [1](k) (3.22)

for all n ≥ 0 and k ≥ 1.

Lemma 3.1. For any z ≥ 1 function gz(k) = EzSc,p(k) is the minimal solution f ≥ 1 to
the equation

f = �z[f ]. (3.23)

Proof. Since Sn(k) ↑ Sc,p(k), by the Monotone Convergence Theorem we have for any
z ≥ 1

gz(x) = lim
n→∞ gn,z(x) = lim

n→∞ �n
z [1](x)

for all x, where the last equality is due to (3.22). Again using monotone convergence, we
derive

�z[gz](x) = �z

[
lim

n→∞ �n
z [1]](x) = lim

n→∞ �n+1
z [1](x) = gz(x). (3.24)

Hence, gz = limn→∞ �n
z [1] is a solution to (3.23), and by the definition gz(k) = EzSc,p(k) ≥ 1

for all z ≥ 1 and x ≥ 1.
Let us show that gz is the minimal solution f ≥ 1 to (3.23). Assume that there is a

solution f ≥ 1 such that 1 ≤ f (x) < gz(x) at least for some x ≥ 1. Then, because of the
monotonicity of �z, we have also

�k
z [1](x) ≤ �k

z [f ](x) = f (x) < gz(x) = lim
n→∞ �n

z [1](x)

for all k ≥ 1. Letting k → ∞ in the last formula, we come to the contradiction with the
strict inequality in the middle. Therefore, gz is the minimal solution f ≥ 1 to (3.23).

By Lemma 3.1 function gz is the minimal solution to

gz(k) = zk exp

{ ∞∑
x=1

κ c,p(k, x)µp(x)(gz(x) − 1)

}
. (3.25)

Recall that κ c,p(k, x) = κ(p)ckx and by the definition in (2.5)

µp(k) = 1

κ(p)

P{|C| = k}
k

.

Hence,

∞∑
x=1

κ c,p(k, x)µp(x) =
∞∑

x=1

κ(p)ckx
1

κ(p)

P{|C| = x}
x

= ck,

Random Structures and Algorithms DOI 10.1002/rsa



210 TUROVA AND VALLIER

and we can rewrite (3.25) as

gz(k) = zk exp

{
ck

( ∞∑
x=1

xµp(x)gz(x) − 1

)}
. (3.26)

More precisely, gz is the minimal solution to (3.26). This implies (multiply both sides of
(3.26) by kµp(k) and sum over k) that

Az = Az(c, p) =
∞∑

x=1

xµp(x)gz(x)

is the minimal solution to the equation

Az =
∞∑

k=1

kµp(k)zk exp{ck(κ(p)Az − 1)}, (3.27)

or, equivalently, to the equation

Az = (κ(p))−1E(z|C| ec|C|(κ(p)Az−1)). (3.28)

Hence, to establish Proposition 3.2, we are left to prove that Eq. (3.28) has a finite solution
for any z ≤ z0 and that z0 > 1.

Notice that by the definition (3.16)

Az ≥ A1 =
∞∑

k=1

kµp(k) =
∞∑

k=1

k
1

κ(p)

P{|C| = k}
k

= 1

κ(p)
.

Therefore, Eq. (3.28) after the change y = κ(p)Az becomes

y = E(z|C| ec|C|(y−1)) (3.29)

for y > 1. Note that since the distribution of |C| decays exponentially, at least for some
y > 1 and z > 1 the function on the right in (3.29)

f (y, z) := E(z|C| ec|C|(y−1))

is finite. Also, (wherever defined) it has all the derivatives of the second order, and ∂2

∂y2 f (y, z)
> 0. Now compute

∂

∂y
f (y, z)|y=1,z=1 = cE|C| = c

ccr
. (3.30)

Hence, if c > ccr there is no solution y ≥ 1 to (3.29) for any z > 1. On the other hand, if
c < ccr there exists 1 < z0 < eζ(p) such that for all 1 ≤ z ≤ z0 there is a finite solution
y ≥ 1 to (3.29).

Let us rewrite (3.29) as follows. Set

a = 1

c
log z.
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Then (3.29) is equivalent to

y = E ec|C|(y−1+a), (3.31)

which after the change x = y − 1 + a becomes

x + 1 − a = E ec|C|x. (3.32)

Here on the right-hand side, we have a convex function with positive second derivative (for
all x < ζ(p)/c). Hence, the function

∂

∂x
E ec|C|x = E (c|C|ec|C|x)

is strictly increasing in x when x < ζ(p)/c and continuous on the left at x = ζ(p)/c. As
c < ccr = 1/E|C| we have

∂

∂x
E ec|C|x|x=0 = E c|C| < 1. (3.33)

Therefore, if

∂

∂x
E ec|C|x|x=ζ(p)/c = E c|C|e|C|ζ(p) ≥ 1,

then there exists unique 0 < x0 ≤ ζ(p)/c such that

∂

∂x
E ec|C|x|x=x0 = E (c|C|ec|C|x0) = 1. (3.34)

Now define

y0 =
{

x0, if E c|C|e|C|ζ(p) ≥ 1,
ζ(p)/c, otherwise,

and set

a0 := 1 + y0 − E ec|C|y0 . (3.35)

Let us show that a0 is strictly positive. Consider function E ec|C|x. It is convex on x ≥ 0, and
by (3.33) its first derivative is less than 1 for all 0 ≤ x < y0. Hence, E ec|C|x < 1 + x for all
0 ≤ x ≤ y0. This implies that

a0 > 0. (3.36)

Notice that by the construction function 1+x−a0 is tangent to E ec|C|x with the tangency
point at x = y0. Hence, for all a ≤ a0 Eq. (3.32) has at least one solution. This implies due
to (3.31) and (3.36) that for all

1 < z ≤ z0 := eca0 = exp{c(1 + y0 − E ec|C|y0)}, (3.37)

Eq. (3.29) has also at least one finite solution y > 1, which yields in turn that Az is finite
for all 1 < z ≤ z0. This finishes the proof of Proposition 3.2 and completes the proof of
statement (1.4) of Theorem 1.1.
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To conclude this section, we comment on the methods used here. It is shown in [9] that
in the subcritical case of the classical random graph model Gn,c/n (i.e., p = 0 in terms of
our model) the same method of generating functions leads to a constant, which is exactly
α(0, c) [see (1.9)]. The last constant is known to be the principal term for the asymptotics
of the size of the largest component (scaled to log n) in the subcritical case. This gives us
hope that the constant α(p, c) is close to the optimal one also for p > 0.

Similar methods were used in [10] for some class of inhomogeneous random graphs, and
in [1] for a general class of models. Note, however, some difference with the approach in [1].
It is assumed in [1], Section 12, that the generating function for the corresponding branching
process with the initial state k (e.g., our function gz(k), k ≥ 1) is bounded uniformly in k.
As we prove here, this condition is not always necessary: we need only convergence of the
series Az, whereas gz(k) is unbounded in k in our case. Furthermore, our approach allows
one to construct constant α(p, c) as a function of the parameters of the model.

4. PROOF OF THEOREM 1.1 IN THE SUPERCRITICAL CASE

Let Ck denote the set of vertices in the k-th largest component in the graph GN(p, c), and
conditionally on X let C̃k denote the set of macrovertices in the k-th largest component in
the graph G̃N(X, p, c) (ordered in any way if there are ties). Let also Ck = |Ck| and C̃k = |C̃k|
denote correspondingly, their sizes.

According to our construction for any connected component L̃ in G̃N(X, p, c), there is a
unique component L in GN(p, c) such that L̃ and L are composed of the same vertices from
B(N), i.e., in the notations (2.13)

L = ∪Xi∈L̃ ∪z∈Xi {z} =: V(L̃). (4.38)

First, we shall prove that with a high probability the largest components in both graphs
consist of the same vertices.

Lemma 4.1. For any 0 ≤ p < pc if c > ccr(p) then

P{C1 = V(C̃1)} = 1 − o(1) (4.39)

as N → ∞.

Proof. By (4.38) there exists some component C̃k with k ≥ 1 such that C1 = C̃k . Hence,

P{C1 �= V(C̃1)} = P{C1 = V(C̃k) for some k ≥ 2}.

We know already from Remark 2.1 that in the supercritical case C̃1 = �(|B(N)|) whp,
and therefore C1 = �(|B(N)|) whp. Also, by Corollary 2.3, we have C̃2 = O(log |B(N)|)
whp. Hence, for some positive constants a and b

P{C1 �= V(C̃1)} = P{C1 = V(C̃k) for some k ≥ 2}
≤ P

{(
max
k≥2

|V(C̃k)| > b|B(N)|
)

∩
(

max
k≥2

C̃k < a log |B(N)|
)}

+ o(1).

(4.40)
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It follows from Proposition 2.2 (part (2.12)) that

P
{

max
1≤i≤KN

|Xi| ≥ √|B(N)|
}

= o(1)

as N → ∞. Now, we derive

P
{(

max
k≥2

|V(C̃k)| > b|B(N)|
)

∩
(

max
k≥2

C̃k < a log |B(N)|
)}

≤ P
{(

max
k≥2

|V(C̃k)| > b|B(N)|
)

∩
(

max
k≥2

C̃k < a log |B(N)|
)

∩
(

max
1≤i≤KN

|Xi| <
√|B(N)|

)}

+ o(1) ≤ P
{√|B(N)| a log |B(N)| > b|B(N)|

}
+ o(1) = o(1). (4.41)

Substituting this bound into (4.40) we immediately get (4.39).

Now consider

C1 = C1(GN(p, c)) = |C1|

conditionally on event C1 = V(C̃1) = ∪Xi∈C̃1
∪z∈Xi {z}, which by Lemma 4.1 holds whp. We

derive

C1|C1=V(C̃1) =
KN∑
i=1

|Xi|1{Xi ∈ C̃1}

=
KN∑
i=1

|B(N)|∑
k=1

k1{|Xi| = k}1{Xi ∈ C̃1}

= KN

|B(N)|∑
k=1

k
1

KN
#{Xi ∈ C̃1 : |Xi| = k}. (4.42)

Let us denote

νN(k) := 1

KN
#{Xi ∈ C̃1 : |Xi| = k}.

Then, Lemma 4.1 together with (4.42) yields

P

{
C1 = KN

|B(N)|∑
k=1

kνN(k)

}
= 1 − o(1) (4.43)

as N → ∞.
The rest of the proof of part (ii) of Theorem 1.1 will follow by the convergence of the

sum

WN :=
|B(N)|∑
k=1

kνN(k),

which we shall establish later.
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Proposition 4.1. (i) For all p < pc(d) and c > ccr(p)

WN
P→

∞∑
k=1

kρ(k)µ(k) =: β (E(|C|−1))−1 (4.44)

as N → ∞.
(ii) Constant β defined in (4.44) is also the maximal solution to

β = 1 − E(e−c|C|β).

Before we proceed with the proof, let us show that Proposition 4.1 and formula (4.43)
imply part (ii) of Theorem 1.1. Indeed, for any positive ε

P
{∣∣∣∣C1(GN(p, c))

|B(N)| − β

∣∣∣∣ > ε

}
= P

{∣∣∣∣ KN

|B(N)|WN − β

∣∣∣∣ > ε

}
+ o(1) → 0,

as N → ∞, where the first equality is by (4.43), and the last convergence is by Propo-
sition 4.1 and result (2.2). Hence, the statement (1.5) follows from here, whereas (1.6) is
given directly by Proposition 4.1 part (ii). Therefore, we are left only with the proof of
Proposition 4.1.

The essential part of the proof presented later is due to a result from [1], which we shall
cite now.

Theorem (Theorem 9.10, [1]). Let (κ n) be a graphical sequence of kernels on a vertex
space V with quasi-irreducible limit κ . Then for every µ-continuity set A,

1

n
#

{
vi ∈ C1

(
GV(n,κ n)

)
: vi ∈ A

} P→
∫

A
ρ(x)dµ(x)

(ρ(x) in the last formula is defined by Theorem A).

This theorem implies for our model that for each k ≥ 1

νN(k) := 1

KN
#

{
Xi ∈ C̃1 : |Xi| = k

}
P→ ρ(k)µ(k) (4.45)

as N → ∞, where ρ(k) is the maximal solution to (2.24).

Proof of Proposition 4.1. First, we derive part (ii). Observe that according to (2.24) the
constant β defined in (4.44) is the maximal solution to

β ≡ E
(|C|−1

) ∞∑
k=1

kρ(k)µ(k) = E(|C|−1)

∞∑
k=1

k
(

1 − e− ∑∞
y=1 κ(k,y)µ(y)ρ(y)

)
µ(k)

= 1 − E(e−c|C|β).

This proves part (ii) of the proposition.
(i) For any 1 ≤ R < |B(N)| write WN := WR

N + wR
N , where

WR
N :=

R∑
k=1

kνN(k), wR
N :=

|B(N)|∑
k=R+1

kνN(k).

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPHS ON Z d 215

By (4.45) we have for any fixed R ≥ 1

WR
N

P→
R∑

k=1

kρ(k)µ(k) (4.46)

as N → ∞.
Note that for any ε > 0 we can choose R0 so that for all R ≥ R0

∞∑
k=R+1

kρ(k)µ(k) < ε/3.

Then, we derive

P{|WN −
∞∑

k=1

kρ(k)µ(k)| > ε}

= P

{∣∣∣∣∣
(

WR
N −

R∑
k=1

kρ(k)µ(k)

)
+ wR

N −
∞∑

k=R+1

kρ(k)µ(k)

∣∣∣∣∣ > ε

}

≤ P

{∣∣∣∣∣WR
N −

R∑
k=1

kρ(k)µ(k)

∣∣∣∣∣ > ε/3

}
+ P

{
wR

N > ε/3
}

≤ o(1) + 3EwR
N

ε
(4.47)

as N → ∞, where the last bound is due to (4.46) and the Markov’s inequality.

Claim. For some positive constants A2 and a2

EwR
N =

|B(N)|∑
k=R+1

kEνN(k) ≤ A2e−a2R. (4.48)

Proof of Claim. Note that for any k ≥ 1

νN(k) ≤ 1

KN

KN∑
i=1

Ik(|Xi|) = Nk

KN
≤ 1. (4.49)

Using the events Aδ,N defined in Corollary 2.1, we obtain from (4.49) that for any fixed
0 < δ < E(|C|−1)/2 and k ≥ 1

EνN(k) ≤ E
(Nk

KN
1{Aδ,N}

)
+ E

(Nk

KN
1{Aδ,N}

)

≤ ENk

(E(|C|−1) − δ)|B(N)| + P{Aδ,N}.

Substituting the bound from (2.48)

ENk ≤ κ(p)µ(k)|B(N)| + |∂B(N)|µ̃(k)
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into the last formula we obtain

EνN(k) ≤ κ(p)µ(k)|B(N)| + |∂B(N)|µ̃(k)

(E(|C|−1) − δ)|B(N)| + P{Aδ,N}.

Corollary 2.1 allows us to derive from here that

EνN(k) ≤ A1(µ(k) + µ̃(k) + e−a1|B(N)|) (4.50)

for some positive constants A1 and a1 independent of k and N . This together with the
exponential decay of µ and µ̃ yields (4.48).

Using (4.48) we immediately derive from (4.47)

P

{
|WN −

∞∑
k=1

kρ(k)µ(k)| > ε

}
≤ o(1) + 3A2e−a2R

ε
(4.51)

as N → ∞. Hence, for any given positive ε and ε0 we can choose a finite sufficiently large
number R that

lim
N→∞

P

{
|WN −

∞∑
k=1

kρ(k)µ(k)| > ε

}
< ε0. (4.52)

This proves statement (4.44) and, therefore, finishes the proof of Proposition 4.1 and
completes the proof of Theorem 1.1.
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[5] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience Series in Discrete
Mathematics and Optimization, Wiley-Interscience, New York, 2000.

[6] V. A. Malyshev, Random graphs and grammars on graphs, Discrete Math Appl 8 (1998),
247–262.

[7] C. J. Mode, Multitype branching processes. Theory and applications, Modern Analytic and
Computational Methods in Science and Mathematics, No. 34, American Elsevier Publishing
Co., Inc., New York, 1971.

Random Structures and Algorithms DOI 10.1002/rsa



RANDOM GRAPHS ON Z d 217

[8] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst
Hautes Etudes Sci Publ Math 81 (1995), 73–205.

[9] T. S. Turova, Note on the random graphs in the subcritical case, In A. Yu. Khrennikov, editor,
Dynamical systems from number theory to probability, Vol. 2, Växjö University Press, Växjö,
Sweden, 2003, pp. 187–192.

[10] T. S. Turova, Phase transitions in dynamical random graphs, J Stat Phys 123 (2006), 1007–1032.

[11] T. S. Turova and T. Vallier, Merging percolation and random graphs: Phase transition in dimen-
sion 1. arXiv:math/0609594v1[math.PR], Available at http://arxiv.org/abs/math/0609594.

[12] T. Turova and A. Villa, On a phase diagram for random neural networks with embedded spike
timing dependent plasticity, BioSystems 89 (2007), 280–286.

[13] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-world” networks, Nature 393
(1998), 440–442.

[14] Y. Zhang, A martingale approach in the study of percolation clusters on the Zd lattice, J Theor
Probab 14 (2001), 165–187.

Random Structures and Algorithms DOI 10.1002/rsa


