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Introduction

1 Motivation

The theory of random graphs has a wide range of applications in real life networks. It is
a useful tool when studying the world wide web, neural networks or social networks. To
explain what a graph is, we can take a basic example of a social network like affinities in
a class. We model each student as a vertex and if the students are friends then there is an
edge between the two vertices assigned to the students to show the connection. When
studying such a graph, questions arise like:
Are there any isolated student?
Are they all connected to anyone else through a path of friends or are there disconnected
groups?
Who’s the most popular student?
Is there a big group of friends that outnumbers other groups?

These questions are part of the study of the structure of the graph. They all seem very
simple but become much more complicated when one deals with large networks such as
internet where there are billions of web pages linked in a large network. These questions
can even become crucial in epidemiology studies, for example if one wants to know how
to contain the spread of a virus with a limited stock of vaccine. Who should we vaccinate
to stop the contamination?

2 Definition and terminology

Let us introduce some notations to study the structure of the graphs rigorously. We
emphasise each definition with an example in real life networks to avoid a heavy accumu-
lation of concepts without explanation of their purpose and illustrate definitions in figure
1.

Definition 1. A graph G is an ordered pair of disjoint sets G = (V , L) such that L, the set
of edges is a subset of the set V 2

= V × V of unordered pairs of the set of vertices V .

In the modelling of a network, the vertices often represent the entity and the edges
are the connections or acquaintances if one thinks about a social network.

If u and v are two vertices of the graph then we denote the edge between these two
vertices by (u, v). If (u, v) ∈ L (i.e. we have an edge between the vertices u and v) then
we say that the vertices u and v are connected through the edge (u, v). If a vertex w is
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Introduction

connected to no other vertex, that is

w ∈ V , ∀v ∈ V , v 6= w, (w, v) /∈ L

then it is isolated.
In modelling a network of acquaintance by a random graph as above, we assume

that the fact to know someone is mutual. This assumption is not always true. Another
example of a network where the connections are oriented is the graph of the streets of a
city. Some streets are two ways which corresponds to an edge and some are only one way.
Therefore we must introduce the notion of orientation in a graph.

If the graph is directed (i.e. the edges are directed) then the pair (−→u, v) denotes that
there is an edge from the vertex u to the vertex v.

Consider that two vertices are connected through an edge if the persons modelled by
those vertices are close enough to exchange germs. Someone ill might give the sickness
to anyone with which it is connected. This person might in turn give the infection
to its contacts and so on. If a virus appears in a very dense place then it’s more likely
to spread than in a scarcely inhabited one. This example allows us to introduce two
important notions: the connected component and the degree of a vertex.We define the
connected components as the sets of vertices linked by a chain of edges. An isolated vertex
is the smallest possible component. The largest connected component is denoted C1. If you
are in a component disconnected from the original place of the infection then you can’t
be infected.

In a graph, the vertices can be linked to several other vertices. The vertices which are
linked to u are called the neighbours of u and their set is denoted G (u). The number of
edges to which u is an endpoint is the degree of the vertex u which we denote

d(u) =

∣∣∣{(u, v), v ∈ V }
∣∣∣.

In a densely populated city you encounter more people and exchange more germs than in
an unpopulated countryside. You are connected to more people which translates in terms
of graphs as a vertex with a high degree.

In the case of directed graphs, we make a distinction between edges (−→v, u) and (−→u, v).
Thus we make the same distinction by considering the in-degree din and the out-degree
dout of the vertex where the in-degree is the number of incoming edges

din(u) =

∣∣∣{(−→v, u), v ∈ V }
∣∣∣

and the out-degree is the number of out-coming edges. We define the degree of a vertex
u as

d(u) = din(u) + dout (u)

In the figure 1 we consider an example of a non-directed graph to visualise the notions
introduced in this section. Circles represent vertices V = {1, 2, ..., 10} and the couple
(u, v) where u, v ∈ V indicates the edge connecting vertices u and v.
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2. Definition and terminology
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(1,2)

(1,3)

(1,4)

(3,10)

(4,7)

(4,8)

(6,9)

(7,8)

(9,9)

The neighbourhood of the vertex 1 is G (1) = {2, 3, 4}.
The degree of the vertex 1 is 3, d (1) = 3.
The vertex 5 is isolated.
There’s a loop on vertex 9.
The vertices {1, 2, 3, 4, 7, 8, 10} form a connected component.

Figure 1: Example of graph.
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3 The degree sequence

The study of the degree sequence gives indications on the homogeneity of the graph. If
the degrees are concentrated around a certain value then we can consider that the vertices
are hardly distinguishable. If instead we have a very wide range of degrees then we will
have highly connected vertices and not highly connected ones.

3.1 The degree sequence in classical random graph

The results given in this introduction about classical random graphs are taken from the
book Random Graphs by Janson, Łuczak and Ruciński (2000) (13) and from the book
with the same name by Bollobás (1985) (5).

The classical model of random graph denoted Gn,p was introduced by Gilbert (1959)
in (11) but it is commonly called Erdös-Rényi random graph since they first set the basis
of the probabilistic treatment of Gn,p in a series of papers in the 60’s (see (9)).

Definition 2. The model Gn,p consists of all graphs with vertex set V = {1, ..., n} in which
all possible edges are chosen independently and with a probability p where p ∈ [0, 1].

Consider a vertex vi which is connected to any vertex independently from the other
connections with probability p. Let ki denote the degree of the vertex vi , the probability
that the vertex vi has degree k in the graph Gn,p is binomial (n − 1, p)

P{ki = k} =

(
n − 1

k

)
pk(1 − p)n−1−k (3.1)

where pk is the probability that the vertex has k edges,
(1 − p)n−1−k is the probability of absence of further edges
and

(
n−1

k

)
is the number of ways of selecting the neighbouring of vi.

The events {ki = k} and {kj = l} are not independent. It is for example impossible
that a vertex has a strictly positive degree while the others have degree 0. The distribution
of the number of vertices with degree k doesn’t follow straightforward from (3.1).

Let Xk be the number of vertices of degree k in the graph then for a large range of
probability p we have the following.

Theorem 3.1 (see (5)). Let e > 0 be fixed and let en− 3
2 ≤ p = p(n) ≤ 1 − en− 3

2 . Letlk = n
(

n−1
k

)
pk(1− p)n−1−k then Xk has asymptotically a Poisson distribution with mean lk

P{Xk = r} ∼ e−lk
lr

k

r!
(3.2)

for every fixed r, where ∼ means asymptotically distributed.
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3. The degree sequence

However, in real life networks we see a totally different type of behaviour. It has been
found over the last decade that many different networks such as the citation patterns
where each manuscript is a vertex and edges represent citations (i.e. there exists and
edge directed from u to v if the manuscript u cites the manuscript v) have a power law
distribution of the degrees. In the real life networks, the proportion of vertices with degree
k is best described as a power law:

P(k) ∼ k−g. (3.3)

Redner (1998) (17) showed that g = 3 for the network of citations. In the internet where
a vertex represents a web page and the edges are links pointing from one page to another,
the proportion of vertices with degree k follows a power law with g = 2, 1 ± 0, 1 (3).

3.2 Preferential attachment model

Recently, many new models of random graphs have been introduced motivated by the
power law sequence explained above. Barabási and Albert (1999) (3) introduced the
preferential attachment model based on two observations:

1. Most real world networks are open and continuously incorporate new vertices to
the system. An example is internet where new pages appear on the web everyday.

2. Attachment is not uniform but is preferentially to vertices that already have a large
number of connections. Such as in the citation network mentioned above where a
new manuscript is more likely to cite a well known and thus much cited paper. As
an example, have a look at the bibliography of this thesis.

In this model, at each time step t a new vertex vt is introduced with m edges linking vt

to the previous vertices with probabilities proportional to their degrees or attractiveness.
Note that the same principle has been previously introduced in the little cited paper by
Szymański (1987) (21).

Start with G1, the graph with one vertex and one loop. Given Gt−1 we form Gt

by adding a vertex t together with a single edge
(−−−→
t, g(t)

)
, where g(t) is a random vertex

chosen as follows. Let Di(t) denote the degree of vertex i at time t .

P

(
g(t) = i|Di(t − 1) = di

)
=

{
di

2t−1 , if 1 ≤ i ≤ t − 1 ,
1

2t−1
, if i = t .

Barabási, Albert and Jeong (1999) (4) showed by heuristic arguments supported by sim-
ulations that the degree distribution is proportional to d−3. Rigorous proof of the power
law distribution of degrees was given in (7). Here we give the Theorem where the number
of edges introduced at each step is 1.
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Theorem 3.2 (Bollobás, Riordan, Spencer, Tusnády (2001)). Let ♯n(d) denote the number
of vertices with in-degree equal to d (i.e. with total degree d + 1). Leta(d) =

4

(d + 1)(d + 2)(d + 3)

and let e > 0 be fixed. Then with probability tending to 1 as n → ∞ we have

(1 − e)a(d) ≤ ♯n(d)

n
≤ (1 + e)a(d)

for every d in the range 0 ≤ d ≤ n
1

15

By construction vertices with a high degree attract more edges and therefore become
even more attractive. This phenomenom leads to a graph which accumulates most of the
edges on the first vertices. The expected degree at time t of the vertex i introduced at time
i is given by

E
(
Di(t)

)
=

t∏

j=i

2j

2j − 1
∼
√

t/i.

This leads to a graph where the first vertices maintain the structure of the graph. Thus
the model is robust against random deletion of vertices and edges but is vulnerable to an
attack on the first vertices. This is explained by Bollobás and Riordan (2003) (8). The
introduction of the deletion has another purpose but just checking the strength of the
network. In the preferential attachment model, vertices and edges are added at each time
step but never deleted. However replacement is a natural rule in a network. A social
network increases by the introduction of new arrivals but also evolves in a manner that
connections can disappear. Using this premise, we consider the graph where an edge is
deleted a time D after its introduction. We prove in paper A that for any fixed time D the

expected degree is uniformly bounded by a constant e
1
2 . This shows a phase transition atD = ∞ and proves that the preferential attachment is not robust against the ageing of

edges. Moreover we prove that for any fixed D, the degree of any vertex goes to 0 with
time.

Similar deletion was studied by Turova in (22), (23), (24) and (25). Moreover, there
the life time D of any edge is exponentially distributed. We consider in paper A a life time
of any edge to be a constant just for mathematical tractability. However, it is clear that our
model admits generalisations. Allowing some freedom on the deletion of edges would be a
closer fit to reality. If for example, the deletion happens randomly on an interval of a fixed
length d centred on D, then our results are still valid. Consider now a few examples of
real-world networks which topological or dynamical properties are similar to our model.

Biological networks
Our model fits the description of evolution where each vertex is a species and the in-degree

6



3. The degree sequence

quantifies the influence of the species in nature. Each species rise up to a climax and fi-
nally fade away until extinction. The growth phase refers to the period after each great
extinction event when there’s little or no competition between species until new species
evolve better adaptations increasing come. Our model fulfils conditions of an evolution
model stated by Newman (1996) in (16). “Constant change is a natural feature of evolu-
tion, on a sufficiently large scale in time, there’s nothing remotely stable about evolution.”
It is also noted that “one billion species have inhabited the planet since Cambrian (∼ -500
millions years), only a few million are still living and most species become extinct about
10 millions years after their first appearance.” Our model is in good agreement with that
observation. It is also assumed (16) that “the number of species the ecosystem can sustain
is roughly constant over time” which is verified in our model where the number of acti-
vated vertices for m = 1 is between 3

2
D and 2D (making the natural assumption that old

vertices are connected by only one edge).

Neural networks
We may say that the vertex “dies” as soon as its degree becomes zero, and the entire graph
is being renewed and evolves over time. Hence our model is also in good agreement with
the models of neural networks (see, Iglesias et al. (2005) (12) for a relevant description
and citations). Roughly, it is often assumed that the synaptic connection is lost if it was
not activated by an impulse for some time. Also, in a neural network a new edge (impulse)
from some vertex is created if this vertex receives enough energy from other vertices. This
resembles a preferential attachment: a probability of sending out a new edge is increasing
with in-degree.

Social Networks
Jin, Girvan and Newman (2001) (14) consider a model of social networks where acquain-
tances between pairs of individuals who rarely meet decay over time. They find an upper
limit on the number of friendships (links) an individual can maintain. Our model agrees
with this result: the links are deleted after a while and any vertex can maintain only a
finite number of connections.

Our model can be applied to other networks evolving in time in which competition
occurs. The same analysis can be also done for the model of Antal and Krapivsky (2005)
(1) where edges carry a weight and the vertices’ weight is the sum of the weight of the
adjacent edges. Assigning the same weight to every edge, we recover the Preferential
Attachment model. If we introduce deletion in this model, one can show that with time
the weight and therefore the degree converges to 0 when time goes to infinity. If the
weight assigned to newly introduced edges converges with time to a constant different
from 0 then the degree is also uniformly bounded in D.

In the Growing Network by Copying model of Krapivsky and Redner (2005) (15),
every new vertex attaches uniformly to a previously attached one and to those, the “target
vertex” already points to. If one introduces deletion then the vertices incorporated before
t − D have out-degree 0. The probability that the new vertex is connected to a vertex
with out-degree 0 goes to one when t goes to infinity and the expected number of links

7
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goes to D. This incites us to add the condition that the target vertex has a strictly positive
out-degree (which is not a condition with the inner model since all the vertices have out-
degree strictly positive). With this assumption, the total number of links is increasing and
is concentrated on the D last vertices. Hence, the maximal expected degree increases too
in this model.

4 The largest connected component

The size of the largest connected component is a major study in the theory of random
graphs. A simple application is to know whether or not a virus might spread to a large part
of the population. Since the celebrated paper by Erdös and Rényi (1960) (9) the size of
the largest connected component is well known in the classical random graph according
to the probability p. We are mainly interested in the range when the size of the largest
connected component abruptly jumps from a size of order log n to a positive part of the
graph (order n).

4.1 The largest connected component in classical random graph

Consider a graph Gn,p. When p = 0 then with probability 1 there is no edge. The
graph is totally disconnected and consists of isolated vertices. Conversely, if p = 1 then
with a probability 1 any vertex is connected to all other vertices and the graph is fully
connected. In the intermediary cases, we have very different structures depending on the
value of p. In the study of random graphs, we consider p as a function of the number
of vertices p = p(n). When we increase p, the properties of the random graph change as
the graph becomes denser in the sense that we have more edges. It is striking to see that
the changing are sudden. The probability that a property holds can rapidly change from
0 to 1 as we increase p(n). The range of the probability where this occurs is called the
threshold function.

Definition 3. (see (13)) We define the threshold function f (n) of a property P by

P(P) =

{
0 if

p(n)
f (n) → 0 as n → ∞

1 if
p(n)
f (n) → ∞ as n → ∞

A monotone increasing property is a property that still holds by addition of new
edges.

For every monotone property, the threshold function exists. As an example, the prop-
erty that the graph is connected is an increasing property since addition of new edges
cannot disconnect the graph. The size of the largest connected component can only in-
crease by addition of new edges. Moreover, the addition of new edges can merge together
two components into one big component. The increase of p implies the introduction of
new edges which are more likely to link large components together than small ones. That

8



4. The largest connected component

way, the largest connected components increase their size. For p(n) sufficiently large, the
largest connected components merge into a giant component. This phase is called phase
transition. The threshold function for the property that the largest connected compo-
nent contains a positive part of the graph which corresponds to the phase transition is
f (n) =

1
n . This result has been proved in a Theorem by Erdös and Rényi (1960)

Theorem 4.1 (Erdös, Rényi (1960)). Let p(n) =
c
n , where c > 0 is a constant.

• If c < 1 then

lim
n→∞

P

{
|C1| ≤

1

1 − c − log c
log n

}
= 1.

• If c > 1, let b(c) ∈ (0, 1) be uniquely defined by the equationb(c) + e−cb(c)
= 1. (4.4)

Then for any e > 0

lim
n→∞

P

{∣∣∣∣
|C1|

n
− b(c)

∣∣∣∣ > e} = 0.

See (13) for a proof of the supercritical case using a branching process argument.

4.2 Infinite component in percolation

The results from this section can be found in the book Percolation (1999) (10) by G.
Grimmett. Conversely to the classical random graph, in percolation theory, the graph
has a geometric structure. In bond percolation theory, the vertices are located on a square
lattice and there is an open edge with the nearest neighbours with a probability p. In
dimension 1 the vertices are ordered on a line and can have a link with the previous
and the next vertices. In dimension d the neighbourhood is composed of the 2d vertices
surrounding the vertex. To give an example in nature of an environment that can be nicely
modelled by percolation, consider a volcanic stone that you immerge into water. Water
goes through the holes modelled by open edges. Will the water reach the centre of the
stone? We can consider the problem the other way around, start from the centre and want
to know with which probability there is a path of open edges to the borders. Considering
an infinite lattice the question comes down to ask if with a positive probability there is
an infinite connected cluster of open edges. In dimension 1, the critical probability above
which there exists an infinite connected cluster is obviously pc = 1 because if p < 1
then the probability that the cluster has a size larger than k decreases exponentially fast
to 0. This problem is for higher dimension as simple to state as it is complex to study.
Actually, only the critical probability in dimension 2 is exactly known pc(2) =

1
2

while for
higher dimension, we can approximate the value of pc(d) through algorithm supported by
computers. Denote the lattice in dimension d by Z

d , we can restate the previous remark.

9
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Theorem 4.2. (see (10))
The critical probability of bond percolation on Z

2 equals 1
2
:

pc(2) =
1

2
.

If p < pc(2) =
1
2

then the lattice is composed by finite open clusters separated by an
infinite closed cluster.
For p =

1
2

then the probability of having an open and a closed edge is equal. The graph
is composed of finite open and closed clusters.
If p > 1

2 then conversely to the first case there is a infinite open cluster. Moreover, this
cluster is with probability 1 unique.

Theorem 4.3. (see (10))
If p > pc , then

Pp(there exists exactly one infinite open cluster) = 1.

The percolation transition is markedly similar to the phase transition in random
graph. They both show a phase transition where the size of the largest connected compo-
nent suddenly increases from something negligible with respect to the whole graph to a
unique giant connected component which contains a positive part of the graph.

However, the models are very different in nature since there is no distance between
the vertices in the classical random graph model while the geometry is fundamental in
percolation. By not incorporating distance between vertices, the classical model misses
properties of real world networks. On the other hand, the restriction to the nearest
neighbours in percolation is not in agreement with observations. In a social networks for
instance we are more likely to have acquaintance with neighbours or colleagues but we
do not restrict our relations to such a narrow selection. A model that would capture the
feature of both classical random graph model and percolation model would better model
the connections in networks.

4.3 A model merging classical random graph and percolation

The model introduced in the paper B incorporates the classical model of random graphs
and percolation. It is highly motivated by the model designed to study biological neural
networks and introduced by Turova and Villa (2007) in (26) where vertices correspond
to neurons which are connected by axons represented by edges. In papers B and C, we do
not concentrate on the spread of the activation in the neural networks but on the structure
of the networks and more precisely on the phase transition. The exact formulation of the
model is as follows.

10



4. The largest connected component

We consider a graph on the set of vertices V d
N := {1, . . . , N}d in Z

d , where the edges
between any two different vertices i and j are presented independently with probabilities

pij =

{
p, if |i − j| = 1,
c/N d , if |i − j| > 1,

where 0 ≤ p ≤ 1 and 0 < c < N are constants. This graph, call it Gd
N (p, c) is a mixture

of percolation model, where each pair of neighbours in Z
d is connected with probability

p, and a random graph model, where each vertex is connected to any other vertex with
probability c

|N d | .

This model can be seen as an attempt to generalise classical models into a single
model. A generalisation of the classical random graph into an inhomogeneous random
graph for which the classical model is a special case has been introduced and studied by
Söderberg (2002) in (18), (19) and (20). It was later extended in the manuscript by
Bollobás, Janson and Riordan (2007) (6).

We prove in paper B that in the case when the dimension of the lattice is 1 there is a
phase transition along both parameters c related to the classical random graph model and
p for the percolation model. Suppose that 0 ≤ p ≤ 1 is fixed then there exists a critical c
denoted by

ccr(p) =
1 − p

1 + p
.

such that if c < ccr(p), we are in the subcritical case when the largest connected com-
ponent denoted by C1

(
G
)

has a size of order log N with a probability tending to 1 as

N → ∞. If c > ccr(p) then we are in the supercritical case when C1

(
G
)

spans over a
positive part of the graph and

|C1

(
GN (p, c)

)
|

N

P→ b
as N → ∞, with b = b(q, c) defined as the maximal solution tob = 1 − 1

EX
E
{

Xe−cX b} . (4.5)

In paper C, we extend the results above to any dimension d . Let C denote an open
cluster containing the origin of Z

d in the bond percolation model and B(N ) be the box
of length N then

ccr(p) =
1

E|C | .

If c < ccr(p) then with a probability tending to 1 as n → ∞ we have |C1

(
G
)
| ≤a log |B(N )| with a given in paper C.

If c ≥ ccr(p) then
|C1

(
GN (p, c)

)
|

|B(N )|
P→ b

11
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p

c

ccr
=

1−p
1+p

|C1| = bn

|C1| = a log n

0

1

1

Figure 2: Phase diagram in dimension 1.

as N → ∞, with b = b(p, c) defined as the maximal solution tob = 1 − E

{
e−c b |C |

}
. (4.6)

Even if given in terms of ccr for p fixed, it is possible to state the same result for pcr

with a fixed c. The phase transition happens along both parameters. The duality of the
parameter p and c is manifest in dimension 1(see figure 2), where

ccr(p) =
1 − p

1 + p
and pcr(c) =

1 − c

1 + c

Notice that if we choose p = 0 then we do not have anymore influence from the
percolation model and the model is equivalent to a classical random graph then equations
(4.6) and (4.5) become (4.4).

This model is the combination of two homogeneous random graph models in the
sense that the probability law of connection is the same for any vertex. It is itself an
homogeneous random graph model. However, we use the theory of inhomogeneous
random graph developed in (6) to tackle this problem. We consider the clusters formed
by percolation (we know that for p < pc their size is finite) and consider each cluster as
a macro-vertex. We build a graph on macro-vertices where each macro-vertex is of type
k if the cluster contains k vertices and clusters are connected if there exists at least one
edge between two vertices belonging to each macro-vertex. We derive size of the giant
connected component in equations (4.5) and (4.6) directly from (6) while the subcritical
case requires an entire treatment.

12



5. Process of activation on random graphs

5 Process of activation on random graphs

The last manuscript (paper D) of this thesis is dedicated to the spread of activation on
a classical random graph. In the paper B and C, we studied the structure of the graph
proposed in (26) to model neural connections. Here we focus on the activation aspect and
study the conditions under which the activation starting from a random set of activated
vertices An(0) at time 0 on a graph of n vertices spreads through the graph. In terms of
biological network, it corresponds to an information that spreads in the neural network.
It is known that a neuron needs several excitory impulses to become in turn excited. In
paper D, we consider a simple process of activation where any vertex becomes activated
if it has a link with at least two activated vertices. This model resembles a contact process
and fits definition of a probabilistic cellular automata given in (2).

Definition 4. Let A be a finite set of state. A probabilistic cellular automaton on Z
d is a

stochastic process giving rise to a sequence of configurationsFt : Z
d → A

where the stateFt(x) of x ∈ Z
d at time t is determined randomly with probabilities dependent

on the states of the points of the neighbourhood of x at time t − 1.

In our model, the neighbourhood as stated in the definition 4 is the entire set of
vertices which can take two different states, activated or non-activated. A vertex changes
from non-activated to activated with a probability depending on the probability of con-
nection p of the vertices and the number of activated vertices.

We show that if the probability of connections is p(n) =
c
n where c is some constant

and n is the number of vertices then the activation can’t spread from a negligible part
of the graph to a positive part of the graph. Taking p(n) to be larger, we exhibit two
different phases depending on the size of the original set of activated vertices |An(0)|.
With probability tending to 1 as n → ∞ we have the following

• If |An(0)| = o( 1
np2(n)

) then the activation doesn’t spread and the limiting set of

activation has a size negligible with respect to n

• If for any n > 0, we have |An(0)| > 1+n
np2(n)

then the activation spreads through the

entire graph.

Both the connections and the size of the inner set of activated vertices play a role in the
transition.

This phenomenon is very natural. For instance, either you manage to contain virus
or the infection expands faster and faster as the number of infected people increases. If
the disease spreads to a positive part of the population, it is more likely that almost all the
population will be infected leaving a few healthy people. This picture is fully described
in the model of paper D. We summarise the results in the figure 3. This gives the size of

13
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|An(0)|
o
(

1
np2(n)

)
1−n

np2(n)
1+n

np2(n)
a(n)

np2(n)

c
n o(n) † † √

p(n) c
n ≪ w(n)

n ≪ 1√
n

o(n) ? n
(
1 − o(1)

)
n
(
1 − o(1)

)

c√
n

√ ∗n
(
1 − o(1)

)
n
(
1 − o(1)

)w(n)√
n

√ √ √
n
(
1 − o(1)

)

Figure 3: The results are given with a probability tending to 1 as n → ∞ except for
the case marked with ∗ where the event happens with a positive probability. In the cases
marked with † we already have |A0(n)| > en for some e > 0. The case marked with

√
have no sense since either |A0(n)| = o(1) or |A0(n)| > n.

the limiting set of activated vertices An(n) with respect to the probability of connections
p(n) and the size of the inner set of activated vertices An(0).

Notice that in the two cases marked with a †, we can have |An(0)| > n depending on
the constant c.

5.1 Further research

The properties of the model for |An(0)| =
1−n

np2(n)
(1 + o(1)) with 0 ≤ n < 1 are not yet

known. This implies a lack of knowledge on the type of phase transition. The analysis
of the model can be extended to the case when the vertices need k ≥ 2 connections with
already activated vertices to become activated. From that, it would be possible to consider
a model closer to the one exposed in (26).

Each vertex is given a random potential Xv(0) ∈ [0, 1]. A vertex is activated if its
potential is 1. Start with a set of activated An(0), each activated vertex sends a potential w
through the edges to its neighbours. This increases the potential of the targeted vertex

Xv(t) = min{1, Xv(0) + kw}
where k is the number of activated vertices at time t − 1 which share an edge with the
vertex v. The vertex v in turn becomes activated if its potential reaches 1. The study of
such a process would be of great interest in modelisation of neural networks.
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Chapter A

Robustness of Preferential Attachment
under Deletion of Edges

T. Vallier

Centre for Mathematical Sciences, Lund University, Sweden

Abstract

We study the effect of deletion of old edges in the preferential attachment model intro-
duced by Barabási and Albert (1). We consider a model where every edge is deleted after a
time D. The resulting graph has onlyD edges and with a high probability (1+c)D nodes
for some positive c. However, its structure doesn’t resemble the structure of the former
model even for large D. In particular, we prove that the expected degrees of the resulting
graph are uniformly bounded by a constant which does not depend on D. We discuss
applications of our model for the evolution of networks where competition occurs.

Key words: Preferential attachment, degree sequence
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1 Introduction

Recently many new random graph models have been introduced, inspired by certain fea-
tures observed in large-scale real-world networks such as the world wide web, interactions
between proteins, genetic networks or social and business networks (see, e.g., (2), (6) for
a survey or (10) ). The main observation is that in many real-world networks, the fraction
P(d) of vertices with degree d is proportional to d−g where g is a constant independent
of the size of the network. The study of these so-called scale-free random graphs is highly
motivated by the model of preferential attachment introduced in (1). Barabási and Albert
showed by approximate arguments supported by simulation that this model leads to a
graph with degree distribution proportional to d−3. Rigorous proof of the power law
distribution of degrees was given in (3). In this model, at each time step t a new vertex vt

is introduced with m edges linking vt to the previous vertices with probabilities propor-
tional to their degrees or attractiveness. Note that the same principle has been previously
introduced in the little cited paper by Szymański (15). This concept models real networks
where the attractive components are more likely to receive new connections (as frequently
visited sites are likely to get links from new sites). This process was rigorously redefined
in (5).

Start with G1, the graph with one vertex and one loop. Given Gt−1 we form Gt

by adding a vertex t together with a single edge
(
t, g(t)

)
, where g(t) is a random vertex

chosen as follows. Let Di(t) denote the degree of vertex i at time t . The degree is the
number of edges incident to the vertex.

P
(

g(t) = i|Di(t − 1) = di

)
=

{
di

2t−1
, if 1 ≤ i ≤ t − 1 ,

1
2t−1 , if i = t .

Thus closed loops are allowed to occur when new vertices are nucleated, although in such
cases the new sites are disconnected from the existing graph. Apart from short loops
resulting from the connection of a site to itself, all connected components of the graph
are essentially tree-like. However if we introduce several connections (m) from a single
vertex then the graph features will differ and cycles may occur but the essential property
of the graph will remain i.e. the degree distribution follows a power law (3).

In the preferential attachment model, vertices and edges are added at each time step
but never deleted. However an evolving graph model incorporating deletion may model
the evolution of the web graph more accurately. In this view, Cooper, Frieze and Vera
introduced random deletion of vertices and edges to the process (7) to model networks
such as P2P. Their model yields g ∈]2;∞[ according to the parameters of accumulation
and deletion.

The first paper on the deletion of vertices in the preferential attachment model is
(4). The authors raised the following question: “How robust and vulnerable are scale free
graphs ?” The robustness of a graph is defined in (4) as the stability of its properties under
a random deletion of vertices. The vulnerability is defined as the stability of the properties
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1. Introduction

of a graph but under a malicious attack, i.e., when a specific part of the graph is deleted.
It was proved in (4) that a scale-free random graph is more robust than a classical random
graph but is also more vulnerable. Due to the definition of the preferential attachment
process, vertices with a high degree attract more edges and therefore become even more
attractive. This phenomenom leads to a graph which accumulates most of the edges on
the first vertices. This observation incites the authors of (4) to delete the first (or the
oldest) vertices in order to change the structure of the graph.

The introduction of deletion can allow the generalization of a model. Slater et al.
introduced death of vertices with a rate either constant or proportionnal to their degree
on a continuous time model of stochastically evolving networks (14).

The growth-deletion model introduced in (8) incorporates deletion of both vertices
and edges which are chosen uniformly at random. In another model of duplication-
deletion (9) describing genes, vertices are again deleted uniformly at random.

In this paper, we introduce another growth-deletion model where the choice of dele-
tion is not made uniformly at random conversely to (8) and (9). Note that need for such
models is discussed in (6). Instead of considering deletion of the vertices, we will consider
the effect of deletion of the first edges. More precisely, we delete any edge at time D after
its introduction in the graph. Thus each edge is given a lifetime of D. The choice of
this attack is natural if one thinks about social, biological or in particular neural networks
where the connections (impulses) are temporal in their nature (see, e.g., (11) for a relevant
description and citations).

One typical property of the preferential attachment model is the accumulation of
most edges on the first vertices. The deletion introduced in our model thwarts this effect.
We prove that for any fixed D, the degree of any vertex will reach zero with time. Fur-
thermore, when the degree of a vertex becomes zero it remains at zero forever (Theorem
3.1).

Our mechanism of deletion of edges is similar to the one introduced in (16). It was
shown in (16) that if old connections are abandoned, it is still possible to keep some
macro-properties of the original graph (uniformly grown in the case of (16)) almost un-
changed.

Here, we observe totally different behaviour. The main result of our study shows that
the expected degree of any vertex is uniformly bounded in D. To be more precise, no
matter how large one chooses D the expectation of the degree in the resulting graph is

bounded by a constant me
1
2 (Corollary 3.1). On the other hand, if D = ∞ we recover the

model of preferential attachment where the expected degree is unbounded. This yields a
sharp transition at D = ∞ proving that the preferential attachment model is not robust
against the ageing of edges. All results are still valid if instead of considering the lifetime
of any edge to be constant, we allow the deletion to happen randomly on an interval
of fixed length centered on D. Here, unlike in the previous study (16), abandoning
old connections leads to a loss of original properties. But as a result of the introduced
dynamics our graph becomes more homogeneous and in turn less vulnerable than the
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original preferential attachment model. Examples of possible applications of our model
are given in the conclusion.

2 Model

We denote by Gt
= (V t , Lt ) the graph at time t = {1, 2, ...} where V t

= {1, ..., t} is
the set of vertices and Lt is the set of edges. Set G1 to be the graph with one vertex and
one loop. Fix D > 0 to be the life-time of any edge in the graph. This means that an
edge introduced at time t is no longer present in the graph at time s ≥ t + D. Then as
long as t ≤ D, the graph evolves as in the preferential attachment model (5). Namely,
given Gt−1 we form Gt by adding a vertex t together with a single edge

(
t, g(t)

)
, where

g(t) is a random vertex chosen as follows.
Let DD

i (t) denote the degree of vertex i at time t . The degree is the number of edges
incident to the vertex.

P
(

g(t) = i|DD
i (t − 1) = di

)
=

{
di

2t−1
, if 1 ≤ i ≤ t − 1 ,

1
2t−1 , if i = t .

Hence Lt
= Lt−1 ∪ {

(
t, g(t)

)
}.

The graph first accumulates vertices and edges (the growth phase) until it reaches its
maximum capacity of D edges. Then the oldest edge is deleted to make way for the new
one.

When t > D, we define

Lt
= Lt−1 ∪ {(t, g(t))} \ {(t −D, g(t −D))},

i.e.,
Lt

= {(s, g(s)), t −D < s ≤ t}.
Clearly, if D = +∞, we recover the model of preferential attachment

(1). From this point on, we will denote D∞
i the degree of the vertex i in this case.

For all t > D we have |Lt | = D since every time one edge is introduced one edge is
deleted. This implies that for all t > D,

t∑

i=1

DD
i (t) = 2D,

and the transition probabilities are

P
(
g(t) = i|DD

i (t − 1) = di

)
=

{
di

2D+1
, if i < t ,

1
2D+1 , if i = t .
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3. Results

We can consider an extension of the previous model where each new vertex is in-
troduced together with m edges (i.e it has out-degree m). Each new edge attaches to
previous vertices independently to the other edges introduced at the same time. Thus
multiple edges are allowed and for each edge, the probability law is

P
(
g(t) = i|DD

i (t − 1) = di

)
=

{
di

(2D+1)m , if i < t ,
1

(2D+1)m , if i = t .

3 Results

When D = ∞ (model of preferential attachment (3)) the vertices with the highest degree
are first. The deletion of edges in our model leads to the opposite situation. Namely, with
probability one, every vertex introduced in the graph will have degree 0 after some time
as it is stated in Theorem 3.1.

Theorem 3.1. For any out-degree m ≥ 1 and any i ≥ 1

lim
t→∞

P{DD
i (t) = 0} = 1.

Recall that when D = ∞, the expected degree has the following formula (3) for
m = 1

E
(
D∞

i (t)
)

=

t∏

j=i

2j

2j − 1
∼
√

t/i, (3.1)

i.e. the expectation is unbounded in t .
In our case the expected degree of a vertex is no longer a monotone increasing function

of time. In Theorem 3.2 below we give the time when the expected degree of a fixed vertex
reaches its maximum.

Theorem 3.2. Let m ≥ 1. For any i ≥ 1

max
t≥1

E
(
DD

i (t)
)

= E
(
DD

i (i +D− 1)
)
, (3.2)

and for any t ≥ D
max

1≤i≤t
E
(
DD

i (t)
)

= E
(
DD

t−D+1(t)
)
. (3.3)

Next corollary shows that the expectations of the degrees in our graph are uniformly
bounded unlike in the corresponding model without deletion (3).

Corollary 3.1. Let m ≥ 1. For any t ≥ 2D
max

1≤i≤t
E
(
DD

i (t)
)

= m
(
1 +

1

2D+ 1

)D
, (3.4)
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and

limD→∞
lim

t→∞
max

1≤i≤t
E
(
DD

i (t)
)

= me
1
2 . (3.5)

One should remark that in the model of preferential attachment,

lim
t→∞

limD→∞
max

1≤i≤t
E
(
DD

i (t)
)

= lim
t→∞

max
1≤i≤t

E
(
D∞

i (t)
)

= ∞. (3.6)

Relations (3.1), (3.5) and (3.6) show that the transition of the expected degree be-
tween the model with ephemeral edges and the model with infinite-lived connection is
not continuous.

Remark 3.1. Using the bound (3.5) in Corollary 3.1 and the fact that for i > D, t > i+D,

we have E
(
Di(t + kD)

)
≤
(

1
2

)k

E
(
Di(t)

)
, one can prove that the variance is also bounded

independently of D.

Remark 3.2. It is clear that our model admits generalizations. Allowing some freedom on the
deletion of edges would fit reality even more. If for example the deletion happens randomly on
an interval of a fixed length d centered on D then our results are still valid.

4 Proofs

4.1 Proof of Theorem 3.1

Without loss of generality, here we consider the case m = 1.

Let us fix a vertex i and consider DD
i (t), t ≥ i. We introduce a Markov chain

{X(t)}t≥i with

X(t) = (X0(t), X1(t), ..., XD(t)) ∈ {0, 1}D+1.

X0(t) is deterministic

X0(t) =

{
1 if i ≤ t < i +D,

0 if t ≥ i +D,

and

Xk(t) =

{
0 if (i, t − k + 1) /∈ Lt ,

1 if (i, t − k + 1) ∈ Lt .

Xk(t), 1 ≤ k ≤ D is the number of edges introduced at time t − k + 1 incident
with i. According to the definition of our model at each time t ≥ i a new vertex is added
together with an edge

(
t, g(t)

)
. If g(t) = i then X1(t) = 1 and X1(t) = 0 otherwise.
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At time t + 1, the value X1(t) is translated to the next coordinate : X2(t + 1) = X1(t)
and Xk+1(t + 1) = Xk(t), 1 ≤ k ≤ D− 1. ThenD∑

k=0

Xk(t) = DD
i (t), for all t ≥ i.

Set

X(i) =

{
(1, 0, 0, ..., 0) with probability 1 − 1

2D+1 ,

(1, 1, 0, ..., 0) with probability 1
2D+1

.

The endpoint g(t) of the edge
(
t, g(t)

)
introduced at time t is chosen according to the

transition probability

P
(

g(t) = i|DD
i (t − 1) = di

)
=

di

min{2D+ 1, 2t − 1}

= P
(

X1(t) = 1|X(t − 1) = X
)

=

∑D
k=0 X k

min{2D+ 1, 2t − 1} . (4.7)

To prove the statement of Theorem 3.1, we need to show that the vector (0,...,0) is
absorbing and reachable from every state. Indeed, according to the transition probability
(4.7) we have

P(X(t + 1) = (0, ..., 0)|X(t) = (0, ..., 0)) = 1,

i.e. (0, ..., 0) is an absorbing state.

Now, we show that (0, ..., 0) is reachable from any state. For any X ∈ {0, 1}D+1,
there exists with a positive probability a sequence of states from X to (0,...,0).

Assume that X(t) = X ∈ {0, 1}D+1 and at each time s, t ≤ s ≤ t + D enforce
X1(s) = 0. After D steps, it reaches (0,...,0).

P(X(t +D) = (0, ..., 0)|X(t) = X) ≥
∏D−1

i=−1(D+ i)

(2D+ 1)D =
2D!

(D− 1)!(2D− 1)(2D+ 1)D ≥ 1

2D .

This implies that the limit distribution is concentrated on the point (0, ..., 0),

lim
t→∞

P
(
X (t) = (0, ..., 0)

)
= 1.

Hence limt→∞ P{DD
i (t) = 0} = 1 as stated in Theorem 3.1.
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4.2 Recursive formula for the expectation

From now, we fix 1 ≤ m and 0 < D < ∞ arbitrarily and write DD
i (t) = Di(t).

In order to prove Theorem 3.2 and Corollary 3.1, we first need the following propo-
sition.

Proposition 4.1. For all i > D > 0, we have the following recursive formulas:

E
(
Di(t)

)
=





0, t < i,

m +
m

2D+1
, t = i,

(1 +
1

2D+1
)E
(
Di(t − 1)

)
, i + 1 ≤ t ≤ i +D− 1,

(1 +
1

2D+1
)E
(
Di(t − 1)

)
− (m +

m
2D+1

), t = i +D,

(1 +
1

2D+1 )E
(
Di(t − 1)

)
− 1

2D+1 E
(
Di(t −D− 1)

)
, t > i +D.

Proof of proposition 4.1. Let t ≥ i > D. Given Di(s) = di(s), t −D ≤ s < t we have

Di(i) = m + mI{g(t)=i},

and

Di(t) = Di(t − 1) + mI{g(t)=i} −





0, if i < t < i +D,

1 + mI{g(t−D)=i}, if t = i +D,

mI{g(t−D)=i}, if t > i +D.

We prove here only the last case when t > i + D. The rest can be found in the same
way.

E
(
Di(t)|Di(t − 1), Di(t −D− 1)

)

= Di(t − 1) + E
(
I{g(t)=i}|Di(t − 1)

)
− E

(
I{g(t−D)=i}|Di(t −D− 1)

)

= (1 +
1

2D+ 1
)Di(t − 1) − Di(t −D− 1)

2D+ 1
.

Taking the expectation of both sides we derive

E
(
Di(t)

)
= (1 +

1

2D+ 1
)E
(
Di(t − 1)

)
− 1

2D+ 1
E
(
Di(t −D− 1)

)
,

as required.
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4.3 Maximum of expectation

Proof of theorem 3.2 and corollary 3.1.
Consider E

(
Di(i + n)

)
. We may refer to n ≥ 0 as the age of the vertex i.

Then if n ≤ D− 1 we have

E
(
Di(i + n)

)
= m(1 +

1

2D+ 1
)n+1.

The right hand side is obviously increasing in n and reaches its maximum value for
n = D− 1.

To prove that m
(
1 +

1
2D+1

)D
is the maximum of the expected degree we need the

following lemma.

Lemma 4.1. Set k ≥ 1. If E
(
Di(i + n + 1)

)
≤ E

(
Di(i + n)

)
for k ≤ n ≤ k + D then

E
(
Di(i + n + 1)

)
≤ E

(
Di(i + n)

)
for n ≥ k.

Thanks to this lemma, we will only need to prove that the sequence E
(
Di(i + n)

)
is

decreasing for D− 1 ≤ n ≤ 2D− 1 to prove that it’s decreasing for n ≥ D− 1.

Proof of lemma 4.1.
For k ≥ D+ 1, the expectation follows the recursive formula

E
(
Di(i + k + 1)

)
= E

(
Di(i + k)

)
+

1
2D+1

(
E
(
Di(i + k)

)
− E

(
Di(i + k −D)

))
.

We deduce that E
(
Di(i+k)

)
≤ E

(
Di(i+k−D)

)
implies E

(
Di(i+k)

)
≤ E

(
Di(i+k)

)
.

Finally, if

E
(
Di(i + k −D)

)
≥ E

(
Di(i + k −D + 1)

)
≥ ... ≥ E

(
Di(i + k)

)
,

then

E
(
Di(i + n)

)
≥ E

(
Di(i + n + 1)

)
for any n ≥ k

Let D ≤ n ≤ 2D − 1. We are going to show that the expectation of the degree is
monotone decreasing. One can find by induction that

E
(
Di(i + n)

)
= m(1 +

1

2D+ 1
)n+1

(
1 − 1

2D+ 1
(1 +

1

2D+ 1
)−D(n +D+ 2)

)

= men+1 ln(1+ 1
2D+1 )

(
1 − C (n +D + 2)

)
,

with C =
1

2D+1
(1 +

1
2D+1

)−D.

Let f (x), D ≤ x ≤ 2D−1 be the extension to R of E
(
Di(i +n)

)
,D ≤ n ≤ 2D−1.

We differentiate this function and prove that for every x, it has the same sign.
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f ′(x) = m(1 +
1

2D+ 1
)x+1

(
ln(1 +

1

2D+ 1
)
(
1 − C (x +D + 2)

)
− C

)
.

It vanishes for x0 =
1−C (D+2)

C − 1
ln(1+ 1

2D+1 )
but x0 < D for any D > 0 which

contradicts D ≤ x ≤ 2D− 1.
So f ′(x) 6= 0 ∀ x ∈ [D; 2D − 1] and is continuous which implies that all the

derivatives have the same sign.
We now show that the derivative is negative for one precise n and with this result, we

know that the expectation decreases for D ≤ n ≤ 2D− 1.

sgn(f ′(x)) = sgn(f ′(x))|x=D+1

= sgn
(

ln(1 +
1

2D+ 1
)(1 +

1

2D+ 1
)D − 4

2D+ 1

)
< 0 ∀D > 0.

To use the Lemma 4.1, we need a D+ 1st consecutive point for which it’s decreasing.

E
(
Di(i +D− 1)

)
− E

(
Di(i +D)

)

= m(1 +
1

2D+ 1
)D − m

(
(1 +

1

2D+ 1
)D+1 − (1 +

1

2D+ 1
)
)

> 0.

One may remark that if we consider the in-degree then the inequality is reversed and
the maximal in-degree is attained at time i +D.

As we have D+ 1 consecutive points for which the expectation is monotone decreas-
ing, we can conclude that

E
(
Di(i +D− 1)

)
≥ E

(
Di(i + n)

)
∀n.

This proves Equation (3.2) of Theorem 3.2 .
Even if for convenience, the proof has been done for i ≥ D, it is also true for i < D

since then edges are more intensively deleted.
The formula (3.3) of Theorem 3.2 and the Corollary 3.1 follow immediately.

max
t≥1

E
(
Di(t)

)
= E

(
Di(i +D− 1)

)
, ∀i,

= m
(
1 +

1

2D+ 1

)D
, ∀i > 2D.

As a consequence:

limD→∞
lim

t→∞
max

1≤i≤t
E
(
DD

i (t)
)

= me
1
2 .
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5 Conclusion

We examined the impact of deletion of edges in the Preferential Attachment model. We
showed that the transition of the expected degree between the model with ephemeral
edges and the model with infinite-lived connection is not continuous. Our results (Theo-
rem 3.1) show that the deletion of edges implies that with a high probability, the vertices
are renewed too. In our model, the connections are not static and the system is more
applicable to the real world.

The model is separated into two phases. The first is the growth phase when the
graph follows the rules of the model of preferential attachment. In this phase, the graph
accumulates vertices and edges until it reaches a maximum size D. Once reached the
graph can’t continue to grow. This is followed by the renewal phase where competition
occurs. In this phase, the oldest edge is deleted so as to be replaced by a new one.

The model captures essential features of social networks: people with multiple con-
nections are more likely to acquire new frienships but there is ultimately a limit on the
number of friendships that one individual can maintain (12). Our model fulfills con-
ditions of an evolution model stated in (13) ("Constant change is a natural feature of
evolution, on a sufficiently large time scale, there’s nothing remotely stable about evolu-
tion.") and is in good agreement with observations such as the number of species, their
lifetime and renewal. In particular, our model fits the description of neural networks

We proved that the property of accumulating edges on the first vertices is removed
by the concept of lifetime for edges. However, by keeping the principle of preferential
attachment for the newly introduced edges our graph is still robust to random deletion as
it has a part with high degree vertices but is also much less vulnerable than the preferential
attachment model as the attractive vertices are numerous. Moreover, by changing the
parameter m which is the number of edges introduced into the graph with every vertex,
we control the connectivity of the limiting graph.
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Chapter B

Merging percolation and classical
random graphs: Phase transition in
dimension 1

T. S. Turova, T. Vallier

Centre for Mathematical Sciences, Lund University, Sweden

Abstract

We study a random graph model which combines properties of the edge percolation
model on Z d and a classical random graph G(n, c/n). We show that this model, be-
ing a homogeneous random graph, has a natural relation to the so-called "rank 1 case" of
inhomogeneous random graphs. This allows us to use the newly developed theory of inho-
mogeneous random graphs to describe completely the phase diagram in the case d = 1.
The phase transition is similar to the classical random graph, it is of the second order. We
also find the scaled size of the largest connected component above the phase transition.

Key words: Classical random graphs, phase transition, percolation.
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1 Introduction.

We consider a graph on the set of vertices V d
N := {1, . . . , N}d in Z d , where the edges

between any two different vertices i and j are presented independently with probabilities

pij =

{
q, if |i − j| = 1,
c/N d , if |i − j| > 1,

where 0 ≤ q ≤ 1 and 0 < c < N are constants. This graph, call it Gd
N (q, c) is a mixture

of percolation model, where each pair of neighbours in Z d is connected with probability
q, and a random graph model, where each vertex is connected to any other vertex with
probability c/|V d

N |.
The introduced model is a simplification of the most common graphs designed to

study natural phenomena, in particular, biological neural networks (8). Observe the
difference between this and the so-called "small-world" models intensively studied after
(9). In the "small-world" models where edges from the grid may be kept or removed, only
finite number (often at most 2d) of the long-range edges may come out of each vertex,
and the probability of those is a fixed number.

We are interested in the limiting behaviour of the introduced graph Gd
N (q, c) as N →

∞. One can consider this model as a graph on Z d or on a torus, in the limit the results
are the same. The one-dimensional case which we study here, is exactly solvable. We shall
write GN 1(q, c) = GN (q, c).

Let X be a random variable with Fs(1 − q)-distribution, i.e.,

P {X = k} = (1 − q)qk−1, k = 1, 2, . . . , (1.1)

with

EX =
1

1 − q
.

Let further C1

(
G
)

denote the size of the largest connected component in a graph G.

Theorem 1.1. For any 0 ≤ q < 1 define

ccr(q) =
EX

EX 2
=

1 − q

1 + q
. (1.2)

i) If c < ccr(q) then there exists a constant a = a(q, c) > 1
| log q| such that

P
{

C1

(
GN (q, c)

)
> a log N

}
→ 0, (1.3)

and for any a1 < 1
| log q|

P
{

C1

(
GN (q, c)

)
< a1 log N

}
→ 0, (1.4)
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as N → ∞.

ii) If c ≥ ccr(q) then

C1

(
GN (q, c)

)

N

P→ b (1.5)

as N → ∞, with b = b(q, c) defined as the maximal solution tob = 1 − 1

EX
E
{

Xe−cX b} . (1.6)

Observe the following duality of this result. For any c < 1 we know that the subgraph
induced in our model by the long-range edges may have at most O(log N ) vertices in a
connected component. According to Theorem 1.1, for any c < 1 there is

qcr(c) =
1 − c

1 + c

such that for all qcr(c) < q < 1 our model will have a giant component with a size of
order N , while any q < qcr(c) is insufficient to produce a giant component in GN (q, c)
. Hence, Theorem 1.1 may also tell us something about the "distances" between the
components of a random graph when it is considered on the vertices of Z.

Remark 1.1. In the proof of (1.3) we will show how to obtain a(q, c), and will discuss how
optimal this value is. Statement (1.4) is rather trivial (and far from being optimal): it follows
from a simple observation (see the details below) that

P

{
C1

(
GN (q, c)

)
<

1

| log q| log N

}
≤ P

{
C1

(
GN (q, 0)

)
<

1

| log q| log N

}
→ 0.

Remark 1.2. For any fixed c function b(q, c) is continuous at q = 0: if q = 0, i.e., when our
graph is merely a classical Gn,c/n random graph, then X ≡ 1 and (1.6) becomes a well-known
relation. Equation (1.6) can be written in an exact form:b = 1 − ecb

(
ecb − q

)
2

(1 − q)2 .

It is easy to check that if c ≤ ccr then the equation (1.6) does not have a strictly
positive solution, while b = 0 is always a solution to (1.6). Therefore one can deriveb ′

c | c↓ccr = 2

(
E(X 2)

)
3(

EX
)
2E(X 3)

= 2
(1 − q2)2

q2 + 4q + 1
. (1.7)

35



B

This shows that the emergence of the giant component at critical parameter c = ccr

becomes slower as q increases, but the phase transition remains of the second order (ex-
ponent 1) for any q < 1.

We conjecture that similar results hold in the higher dimensions if q < Q cr(d), where
Q cr(d) is the percolation threshold in the dimension d . More exactly, Theorem 1.1 (as
well as the first equality in (1.7)) should hold with X replaced by another random variable,
which is stochastically not larger than the size of the open cluster at the origin in the edge
percolation model with a probability of edge q. It is known from the percolation theory
(see, e.g., (3)) that the tail of the distribution of the size of an open cluster in the subcritical
phase decays exponentially. This should make possible to extend our arguments (where
we use essentially the distribution of X ) to the general case.

Our result in the supercritical case, namely equation (1.6) looks somewhat similar to
the equation obtained in (2) for the "volume" (the sum of degrees of the involved vertices)
of the giant component in the graph with a given sequence of the expected degrees. Note,
however, that the model in (2) (as well as the derivations of the results) differs essentially
from the one studied here. In particular, in our model the critical mean degree when
c = ccr and N → ∞ is given by

2q + ccr
= 2q +

1 − q

1 + q
= 1 +

2q2

1 + q
(1.8)

which is strictly greater than 1 for all positive q. This is in a contrast with the model
studied in (2), where the critical expected average degree is still 1 as in the classical random
graph.

Although our model (when considered on the ring or torus in higher dimensions) is a
perfectly homogeneous random graph, in the sense that the degree distribution is the same
for any vertex, we study it via inhomogeneous random graphs, making use of the recently
developed theory from (1). The idea is the following. First, we consider the subgraph
induced by the short-range edges, i.e., the edges which connect two neighbouring nodes
with probability q. It is composed of the consecutive connected paths (which may consist
just of one single vertex) on VN = {1, . . . , N}. Call a macro-vertex each of the com-
ponent of this subgraph. We say that a macro-vertex is of type k, if k is the number of
vertices in it. Conditionally on the set of macro-vertices, we consider a graph on these
macro-vertices induced by the long-range connections. Two macro-vertices are said to be
connected if there is at least one (long-range type) edge between two vertices belonging
to different macro-vertices. Thus the probability of an edge between two macro-vertices
vi and vj of types x and y correspondingly, is

p̃xy(N ) := 1 −
(

1 − c

N

)xy

. (1.9)

Below we argue that this model fits the conditions of a general inhomogeneous graph
model defined in (1), find the critical parameters and characteristics for the graph on
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macro-vertices, and then we turn back to the original model. We use essentially the results
from (1) to derive (1.6), while in the subcritical case our approach somewhat differs from
the one in (1); we discuss this in the end of Section 2.4. We shall also note that our graph
on macro-vertices is similar to the model studied in (5), and our results on the critical
value agree with those in (5).

Finally we comment that our result should help to study more general model for
the propagation of the neuronal activity introduced in (8). Here we show that a giant
component in the graph can emerge from two sources, none of which can be neglected,
but each of which may be in the subcritical phase, i.e., even when both q < 1 and
c < 1. In particular, for any 0 < c < 1 we can find q < 1 which allows with a positive
probability the propagation of impulses through the large part of the network due to the
local activity.

2 Proof

2.1 Random graph on macro-vertices.

Denote X a random number of the vertices connected through short-range edges to the
vertex 1 on V 1

∞ = {1, 2, . . .}. Clearly, X has the First success distribution defined in
(1.1). Let X1, X2, . . . , be independent copies of X , and define for any N > 1

T (N ) := min{n ≥ 0 :

n∑

i=1

Xi ≤ N ,

n+1∑

i=1

Xi > N},

where we assume that a sum over an empty set equals zero.

Consider now the subgraph on VN = {1, . . . , N} induced by the short-range edges.
This means that any two vertices i and i + 1 from VN are connected with probability q

independent of the rest. By the construction this subgraph, call it G(s)
N (q), is composed of

a random number of connected paths of random sizes. We call here the size of a path the
number of its vertices. Clearly, there is a probability space (W ,F , P) where the number

of paths in G(s)
N (q) equals T (N ) if

∑T (N )
i=1 Xi = N , or T (N ) + 1 if

∑T (N )
i=1 Xi < N .

Correspondingly, the sizes of the paths follow the distribution of

X = (X1, X2, . . . , XT (N ), N −
T (N )∑

i=1

Xi) (2.1)

(where the last entry may take zero value).

On the other hand, the number of the connected components of G(s)
N (q) exceeds

exactly by one the number of "missed" short edges on VN . This means that on the same
probability space (W ,F , P) there is a random variable YN distributed as Bin(N−1, 1−q),

37



B

such that either T (N ) = YN + 1 or T (N ) + 1 = YN + 1, and in any case

0 ≤ T (N ) − YN ≤ 1. (2.2)

This together with the Strong Law of Large Numbers implies

Proposition 2.1.
T (N )

N

a.s.→ 1 − q =
1

EX

as N → ∞. 2

Also the relation (2.2) allows us to use the large deviation inequality from (4) (formula
(2.9), p.27 in (4)) for the binomial random variables in order to obtain the following rate
of convergence

P

{∣∣∣∣
T (N )

N
− 1

EX

∣∣∣∣ > d} ≤ 2 exp

(
− d2

12(1 − q)
N

)
(2.3)

for all d > 0 and N > 2/d.
Define for any k ≥ 1 an indicator function

Ik(x) =

{
1, if x = k,
0, otherwise.

As an immediate corollary of Proposition 2.1 and the Law of Large Numbers we also get
the following result.

Proposition 2.2. For any fixed k ≥ 1

1

T (N )

T (N )∑

i=1

Ik(Xi)
P→ P{X = k} = (1 − q)qk−1

=: m(k) (2.4)

as N → ∞. 2

Given a vector of paths X defined in (2.1), we introduce another graph G̃N (X, q, c)

as follows. The set of vertices of G̃N (X, q, c) we denote {v1, . . . , vT (N )}. Each vertex vi is
said to be of type Xi, which means that vi corresponds to the set of Xi connected vertices

on VN . We shall also call any vertex vi of G̃N (X, q, c) a macro-vertex, and write

vi =





{1, . . . , X1}, if i = 1;

{∑i−1
j=1 Xj + 1, . . . ,

∑i−1
j=1 Xj + Xi}, if i > 1.

(2.5)

With this notation the type of a vertex vi is simply the cardinality of set vi. The space of
the types of macro-vertices is S = {1, 2, . . .}. According to (2.4) the distribution of type
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of a (macro-)vertex in graph G̃N (X, q, c) converges to measure m on S. The edges between

the vertices of G̃N (X, q, c) are presented independently with probabilities induced by the
original graph GN (q, c). More precisely, the probability of an edge between any two ver-
tices vi and vj of types x and y correspondingly, is p̃xy(N ) introduced in (1.9). Clearly, this
construction provides a one-to-one correspondence between the connected components

in the graphs G̃N (X, q, c) and GN (q, c): the number of the connected components is the
same for both graphs, as well as the number of the involved vertices from VN in two cor-

responding components. In fact, considering conditionally on X graph G̃N (X, q, c) we
neglect only those long-range edges from GN (q, c), which connect vertices within each vi,
i.e., the vertices which are already connected through the short-range edges.

Consider now

p̃xy(N ) = 1 −
(

1 − c

N

)xy

=:
k′N (x, y)

N
. (2.6)

Observe that if x(N ) → x and y(N ) → y thenk′N (x(N ), y(N )) → cxy (2.7)

for all x, y ∈ S. In order to place our model into the framework of the inhomogeneous
random graphs from (1) let us introduce another (random) kernelkT (N )(x, y) =

T (N )

N
k′N (x, y),

so that we can rewrite the probability p̃xy(N ) in a graph G̃N (X, q, c) taking into account
the size of the graph:

p̃xy(N ) =
kT (N )(x, y)

T (N )
. (2.8)

(We use notations from (1) whenever it is appropriate.) According to Proposition 2.1 and
(2.7), if x(N ) → x and y(N ) → y thenkT (N )(x(N ), y(N )) → k(x, y) :=

c

EX
xy a.s. (2.9)

as N → ∞ for all x, y ∈ S .
Hence, in view of Proposition 2.2 we conclude that conditionally on T (N ) = t(N ),

where t(N )/N → 1/EX , our model falls into the so-called "rank 1 case" of the gen-
eral inhomogeneous random graph model GV (t(N ), kt(N )) with a vertex space V =

(S, m, (X1, . . . , Xt(N ))N≥1) from (1) (Chapter 16.4). Furthermore, it is not difficult to
verify with a help of the Propositions 2.1 and 2.2 thatk ∈ L1(S × S, m× m), (2.10)

since ∞∑

y=1

∞∑

x=1

(1 − q)xqx−1(1 − q)yqy−1
=

( 1

1 − q

)
2,
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and for any t(N ) such that t(N )/N → 1/EX

1

t(N )
E{e(G̃N (X, q, c))|T (N ) = t(N )} → 1

2

∞∑

y=1

∞∑

x=1

k(x, y)m(x)m(y), (2.11)

where e(G) denotes the number of edges in a graph G. According to Definition 2.7 from
(1), under the conditions (2.11), (2.10) and (2.9) the sequence of kernels kt(N ) (on the
countable space S × S) is called graphical on V with limit k.

2.2 A branching process related to G̃N (X, q, c).

Here we closely follow the approach from (1). We shall use a well-known technique

of branching processes to reveal the connected component in graph G̃N (X, q, c). Recall
first the usual algorithm of finding a connected component. Conditionally on the set of
macro-vertices, take any vertex vi to be the root. Find all the vertices {v1i1 , v1i2 , ..., v1in}
connected to this vertex vi in the graph G̃N (X, q, c), call them the first generation of vi,
and then mark vi as "saturated". Then for each non-saturated but already revealed vertex,
we find all the vertices connected to them but which have not been used previously. We
continue this process until we end up with a tree of saturated vertices.

Denote tN (x) the set of the macro-vertices in the tree constructed according to the
above algorithm with the root at a vertex of type x.

It is plausible to think (and in our case it is correct, as will be seen below) that this
algorithm with a high probability as N → ∞ reveals a tree of the offspring of the fol-
lowing multi-type Galton-Watson process with type space S = {1, 2, . . .}: at any step,
a particle of type x ∈ S is replaced in the next generation by a set of particles where the
number of particles of type y has a Poisson distribution Po(k(x, y)m(y)). Let r(k; x) denote
the probability that a particle of type x produces an infinite population.

Proposition 2.3. The function r(k; x), x ∈ S, is the maximum solution tor(k; x) = 1 − e−
P

∞

y=1 k(x,y)m(y)r(k;y). (2.12)

Proof. We have ∞∑

y=1

k(x, y)m(y) =
c

EX

x

1 − q
< ∞ for any x,

which together with (2.10) verifies that the conditions of Theorem 6.1 from (1) are satis-
fied, and the result (2.12) follows by this theorem. 2

Notice that it also follows by the same Theorem 6.1 from (1) that r(k; x) > 0 for all
x ∈ S if and only if

c

EX

∞∑

y=1

y2m(y) = c
EX 2

EX
= c

1 + q

1 − q
> 1; (2.13)
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otherwise, r(k; x) = 0 for all x ∈ S. Hence, the formula (1.2) for the critical value follows
from (2.13).

As we showed above, conditionally on T (N ) (so that T (N )/N → 1/EX ) the se-
quence kT (N ) is graphical on V . Hence, the conditions of Theorem 3.1 from (1) are
satisfied and we derive (first, conditionally on T (N ), and therefore unconditionally) that

C1(G̃N (X, q, c))

T (N )

P→ r(k),

where r(k) =
∑∞

x=1 r(k; x)m(x). This together with Proposition 2.1 on the a.s. conver-
gence of T (N ) implies

C1(G̃N (X, q, c))

N

P→ (1 − q)r(k). (2.14)

Notice that here C1(G̃N (X, q, c)) is the number of macro-vertices in G̃N (X, q, c).

2.3 On the distribution of types of vertices in G̃N (X, q, c).

Given a vector of paths X (see (2.1)) we define a random sequence

N = {N1, . . .NN},

where

Nk = Nk(X) =

T (N )∑

i=1

Ik(Xi).

In words, Nk is the number of (macro-)vertices of type k in the set of vertices of graph

G̃N (X, q, c). We shall prove here a useful result on the distribution of N (which is stronger
than Proposition 2.2).

Lemma 2.1. For any fixed e > 0

P{|Nk/T (N ) − m(k)| > e km(k) for some 1 ≤ k ≤ N} = o(1) (2.15)

as N → ∞.

Proof. Let us fix e > 0 arbitrarily. Observe that for any K > 1/e
P{|Nk/T (N ) − m(k)| > e km(k) for some 1 ≤ k ≤ N} (2.16)

≤ P{ max
1≤i≤T (N )

Xi > K }

+P{|Nk/T (N ) − m(k)| > e km(k) for some 1 ≤ k ≤ K }.
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Next we shall choose an appropriate K = K (N ) so that we will be able to bound from
above by o(1) (as N → ∞) each of the summands on the right in (2.16).

Let us fix d > 0 arbitrarily, and define an event

Ad,N =

{∣∣∣∣
T (N )

N
− 1

EX

∣∣∣∣ ≤ d} . (2.17)

Recall that according to (2.3)

P(Ad,N ) ≥ 1 − 2 exp

(
− d2

12(1 − q)
N

)
= 1 − o(1) (2.18)

as N → ∞. Now we derive

P{ max
1≤i≤T (N )

Xi > K } ≤ P{ max
1≤i≤T (N )

Xi > K | Ad,N}P(Ad,N ) + P{Ad,N} (2.19)

≤
(

1

EX
+ d)N P{X1 > K | Ad,N}P(Ad,N ) + P{Ad,N}
≤
(

1

EX
+ d)N P{X1 > K } + P{Ad,N}

as N → ∞. Making use of the formula (1.1) for the distribution of X1 we obtain from
(2.19) and (2.18)

P{ max
1≤i≤T (N )

≥ K } ≤ CNqK
+ 2 exp

(
− d2

12(1 − q)
N

)
(2.20)

as N → ∞, where C = C (d, q) is some finite positive constant. Let now w1(N ) < N be
any function tending to infinity with N , and set

K (N ) =
1

| log q| log N + w1(N ). (2.21)

Clearly, bound (2.20) with K replaced by K (N ) implies

P{ max
1≤i≤T (N )

Xi ≥ K (N )} = o(1) (2.22)

as N → ∞.
Now we consider the last term in (2.16). Let us define

k0 := max

{[
1e] ,

[
1

| log q|

]}
+ 2. (2.23)

Then we obtain making use of (2.18)

P{|Nk/T (N ) − m(k)| > e km(k) for some 1 ≤ k ≤ K (N )} (2.24)
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≤
k0∑

k=1

P{| 1

T (N )

T (N )∑

i=1

Ik(Xi) − m(k)| > e km(k)}

+

K (N )∑

k=k0+1

P{| 1

T (N )

T (N )∑

i=1

Ik(Xi) − m(k)| > e km(k) | Ad,N}P(Ad,N ) + o(1)

=

K (N )∑

k=k0+1

P{| 1

T (N )

T (N )∑

i=1

Ik(Xi) − m(k)| > e km(k) | Ad,N}P(Ad,N ) + o(1)

as N → ∞, where the last equality is due to Proposition 2.2. Notice that for each k > k0

we have e k > 1 and therefore

P

{∣∣∣∣∣
1

T (N )

T (N )∑

i=1

Ik(Xi) − m(k)

∣∣∣∣∣ > e km(k) | Ad,N} (2.25)

= P

{
1

T (N )

T (N )∑

i=1

Ik(Xi) − m(k) > e km(k) | Ad,N}
≤ P





1(

1
EX − d)N

[( 1
EX +d)N]+1∑

i=1

Ik(Xi) > m(k) + e km(k) | Ad,N =: P(k).

Set t(N ) =
[(

1
EX + d)N

]
+ 1. Then using the bound

(
1

EX − d)N

t(N )
> 1 − 5

2
EX d

for all N > 2/d, we derive

P(k) ≤ P

{
1

t(N )

t(N )∑

i=1

Ik(Xi) > m(k)(1 + e k)(1 − 5EX

2
d) | Ad,N} (2.26)

for all N > 2/d. Now for all k > k0 and 0 < d < 1
10EX we have (1 + e k)(1 − 5EX

2
d) ≥

1 +
e
2 k, and therefore

P(k) ≤ P

{
1

t(N )

t(N )∑

i=1

Ik(Xi) > m(k)(1 +
e
2

k) | Ad,N} (2.27)

≤ P

{
1

t(N )

t(N )∑

i=1

Ik(Xi) > m(k)(1 +
e
2

k)

}
/ P(Ad,N ).
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Note that
∑t(N )

i=1 Ik(Xi) follows the binomial distribution Bin(t(N ), m(k)). This allows us
to use the large deviation inequality from (4) (see (2.5), p.26 in (4)) and derive

P

{
1

t(N )

t(N )∑

i=1

Ik(Xi) > m(k)(1 +
e
2

k)

}
(2.28)

≤ exp

(
− ( e2 km(k)t(N ))2

1
3ekm(k)t(N ) + 2m(k)t(N )

)
≤ exp

(
− 1

10
ekm(k)t(N )

)

for all k > k0. Substituting this into (2.27) we obtain

P(k) ≤ exp
(
− 1

10
ekm(k)t(N )

)
/ P(Ad,N ) (2.29)

for all k > k0. The last bound combined with (2.25) and (2.24) leads to

P{|Nk/T (N ) − m(k)| > e km(k) for some 1 ≤ k ≤ K (N )}

≤
K (N )∑

k=k0+1

exp
(
− 1

10
ekm(k)t(N )

)
+ o(1),

as N → ∞. Taking into account that function km(k) is decreasing for k > k0 we derive
from the last bound:

P{|Nk/T (N ) − m(k)| > e km(k) for some 1 ≤ k ≤ K (N )} (2.30)

≤ exp
(
− 1

10
eK (N )m(K (N ))t(N ) + log K (N )

)
+ o(1),

as N → ∞.

Setting now w1(N ) = log log log N in (2.21), it is easy to check that for

K (N ) =
1

| log q| log N + log log log N

the entire right-hand side of the inequality (2.30) is o(1) as N → ∞. This together with
the previous bound (2.22) and inequality (2.16) finishes the proof of lemma. 2

2.4 Proof of Theorem 1.1 in the subcritical case c < ccr(q) .

Let us fix 0 ≤ q < 1 and then c < ccr(q) arbitrarily. Given X let again vi denote the

macro-vertices with types Xi, i = 1, 2, . . . , respectively, and let L̃ denote a connected
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component in G̃N (X, q, c). Firstly, for any K > 0 and 0 < d < 1/EX we derive with
help of (2.18)

P
{

C1

(
GN (q, c)

)
< K

}
≤ P

{
C1

(
GN (q, 0)

)
< K

}
= P

{
max

1≤i≤T (N )
Xi < K

}

(2.31)

≤ P

{
max

1≤i≤T (N )
Xi < K | Ad,N}+ o(1) ≤

(
1 − P {X ≥ K }

)N( 1
EX −d)

+ o(1),

as N → ∞, where X has the Fs(1 − q)-distribution. Since

P {X ≥ K } = qK−1,

we derive from (2.31) for any a1 < 1
| log q| and K = a1 log N

P
{

C1

(
GN (q, c)

)
< a1 log N

}
= o(1),

which proves statement (1.4).
Consider now for any positive constant a and a function w = w(N ) ≥ log N

P

{
C1

(
GN (q, c)

)
> aw

}
= P

{
max

eL

∑

vi∈eL

Xi > aw

}
. (2.32)

We know already from (2.14) that in the subcritical case the size (the number of macro-

vertices) of any L̃ is whp o(N ). Note that when the kernel k(x, y) is not bounded uni-
formly in both arguments, which is our case, it is not granted that the largest component
in the subcritical case is at most of order log N (see, e.g., discussion of Theorem 3.1 in
(1)). Therefore first we shall prove the following intermediate result.

Lemma 2.2. If c < ccr(q) then

P
{

C1

(
G̃N (X, q, c)

)
> N 1/2

}
= o(1). (2.33)

Proof. Let us fix e > 0 and d > 0 arbitrarily and introduce the following event

BN := Ad,N∩( max
1≤i≤T (N )

Xi ≤
2

| log q| log N

)
∩
(
∩N

k=1

{∣∣∣∣
Nk

T (N )
− m(k)

∣∣∣∣ ≤ ekm(k)

})
.

(2.34)
According to (2.18), (2.22) and (2.15) we have

P {BN} = 1 − o(1) (2.35)

as N → ∞.
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Recall that tN (x) denotes the set of the macro-vertices in the tree constructed accord-
ing to the algorithm of revealing of connected component described above. Let |tN (x)|
denotes the number of macro-vertices in tN (x). Then we easily derive

P
{

C1

(
G̃N (X, q, c)

)
> N 1/2

}
≤ P

{
max

1≤i≤T (N )
|tN (Xi)| > N 1/2 | BN

}
+ o(1) (2.36)

≤ N

N∑

k=1

(1 + ek)m(k)
(d + 1/EX

)
P
{
|tN (k)| > N 1/2 | BN

}
+ o(1)

as N → ∞. We shall use the multi-type branching process introduced above (Section
2.2) to approximate the distribution of |tN (k)|. Let further X c,q(k) denote the number
of the particles (including the initial one) in the branching process starting with a single
particle of type k. Observe that at each step of the exploration algorithm, the number of
new neighbours of x of type y has a binomial distribution Bin(N ′

y , p̃xy(N )) where N ′
y is

the number of remaining vertices of type y, so that N ′
y ≤ Ny.

We shall explore the following obvious relation between the Poisson and the binomial
distributions. Let Yn,p ∈ Bin(n, p) and Za ∈ Po(a), where 0 < p < 1/4 and a > 0. Then
for all k ≥ 0

P{Yn,p = k} ≤ (1 + Cp2)n P{Zn
p

1−p
= k}, (2.37)

where C is some positive constant (independent of n and p). Notice that for all x, y ≤
2

| log q| log N

p̃xy(N ) = 1 −
(

1 − c

N

)xy

=
c

N
xy (1 + o(1)), (2.38)

and clearly, p̃xy(N ) ≤ 1/4 for all large N . Therefore for any fixed positive e1 we can
choose small e and d in (2.34) so that conditionally on BN we have

N ′
y

p̃xy(N )

1 − p̃xy(N )
≤ (1 + ye1)m(y)k(x, y) (2.39)

for all large N . Let us write furtherm(y) = mq(y), mq =

∑

y≥1

ymq(y) (= EX ), k(x, y) = kc,q(x, y)

emphasizing dependence on q and c. Then for any e2 > 0 and any q′ > q such that
1−q

q
q′

1−q′ < 1 + e2 we can choose e1 < log(q′/q), and derive from (2.39)

N ′
y

p̃xy(N )

1 − p̃xy(N )
≤ (1 + e2)mq′ (y)kc,q(x, y) = mq′ (y)

(1 + e2) cmq
xy. (2.40)
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Setting now c′ := (1 + e2)
mq′mq

c we rewrite (2.40) as follows

N ′
y

p̃xy(N )

1 − p̃xy(N )
≤ mq′ (y)kc′,q′(x, y). (2.41)

Recall that above we fixed q and c < ccr(q), where ccr(q) is decreasing and continuous in

q. Hence, we can choose q′ > q and c′ := (1 + e2)
mq′mq

c so that

c < c′ < ccr(q′) < ccr(q), (2.42)

and moreover c′ and q′ can be chosen arbitrarily close to c and q, respectively.
Now conditionally on BN we can replace according to (2.37) at each (of at most N )

step of the exploration algorithm the Bin(N ′
y , p̃xy(N )) variable with Po(N ′

y
epxy (N )

1−epxy (N )
), and

further replace the last variables with the stochastically larger ones Po(mq′(y)kc′,q′ (x, y))
(recall (2.41)). As a result we get the following bound using branching process:

P
{
|tN (k)| > N 1/2 | BN

}
(2.43)

≤
(

1 + C

(
max

x,y≤2 log N/| log q|
p̃xy(N )

)
2

)N2

P
{
X c′,q′(k) > N 1/2

}
.

This together with (2.38) implies

P
{
|tN (k)| > N 1/2 | BN

}
≤ eb(log N )4 P

{
X c′,q′ (k) > N 1/2

}
, (2.44)

where b is some positive constant. Substituting the last bound into (2.36) we derive

P
{

C1

(
G̃N (X, q, c)

)
> N 1/2

}
(2.45)

≤ b2Neb(log N )4
N∑

k=1

kmq′ (k)P
{
X c′,q′(k) > N 1/2

}
+ o(1)

as N → ∞, where b2 is some positive constant. By the Markov’s inequality

P{X c′,q′(k) > N 1/2} ≤ z−N 1/2

EzX
c′,q′ (k) (2.46)

for all z ≥ 1. Denote hz(k) = EzX
c′,q′ (k); then with a help of (2.46) we get from (2.45)

P
{

C1

(
G̃N (X, q, c)

)
> N 1/2

}
≤ b1Neb(log N )2z−N 1/2

N∑

k=1

kmq′ (k)hz(k) + o(1). (2.47)
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Now we will show that there exists z > 1 such that the series

Bz(c′, q′) =

∞∑

k=1

kmq′ (k)hz(k)

converge. This together with (2.47) will clearly imply the statement of the lemma.
Note that function hz(k) (as a generating function for a branching process) satisfies

the following equation

hz(k) = z exp
{∑∞

x=1 kc′,q′ (k, x)mq′(x)(hz(x) − 1)
}

= z exp
{

c′mq′
k
(∑∞

x=1 xmq′ (x)hz(x) − mq′
)}

= z exp
{

c′mq′
k(Bz(c′, q′) − mq′ )

}
.

Multiplying both sides by kmq′ (k) and summing up over k we find

Bz(c′, q′) =

∞∑

k=1

kmq′ (k)z exp

{
c′mq′

k(Bz(c′, q′) − mq′)

}
.

Let us write for simplicity Bz = Bz(c, q). Hence, as long as Bz is finite, it should satisfy
equation

Bz = zEX e
c

EX X (Bz−EX ), (2.48)

which implies in turn that Bz is finite for some z > 1 if and only if (2.48) has at least one
solution (for the same value of z). Notice that

Bz ≥ B1 = EX (2.49)

for z ≥ 1. Let us fix z > 1 and consider equation

y/z = EX e
c

EX X (y−EX )
=: F (y) (2.50)

for y ≥ EX . Using the properties of the distribution of X it is easy to derive that function

F (y) =
1

EX

ec(
y

EX −1)

(
1 − qec(

y
EX −1)

)
2

is increasing and has positive second derivative if EX ≤ y ≤ y0, where y0 is the root of
1 = q exp

{
c( y0

EX − 1)
}

. Compute now

∂

∂y
F (y)|y=EX =

c

EX
EX 2 =

c

ccr
. (2.51)
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Hence, if c < ccr then there exists z > 1 such that there is a finite solution y to (2.50).
Taking into account condition (2.42), we find that Bz(c′, q′) is also finite for some z > 1,
which finishes the proof of the lemma. 2

Now we are ready to complete the proof of (1.3), following almost the same argu-
ments as in the proof of the previous lemma. Let SN (x) =

∑
vi∈tN (x) Xi denote the

number of vertices from VN which compose the macro-vertices of tN (x). Denote

B′
N := BN ∩

(
max

1≤i≤T (N )
|tN (Xi)| < N 1/2

)
.

According to (2.35) and Lemma 2.2 we have

P {B′
N} = 1 − o(1).

This allows us to derive from (2.32)

P
{

C1

(
GN (q, c)

)
> aw

}
≤ P

{
max

1≤i≤T (N )
SN (Xi) > aw | B′

N

}
+ o(1) (2.52)

≤ N

N∑

k=1

(1 + ek)m(k)
(d + 1/EX

)
P {SN (k) > aw | B′

N} + o(1).

Let now Sc,q(y) denote the sum of types (including the one of the initial particle) in
the total progeny of the introduced above branching process starting with initial particle
of type y. Repeating the same argument which led to (2.43), we get the following bound
using the introduced branching process:

P {SN (k) > aw | B′
N} ≤

(
1 + C

(
max

x,y≤2 log N/| log q|
p̃xy(N )

)
2

)b1N
√

N

P
{

Sc′,q′(k) > aw
}

as N → ∞, where we take into account that we can perform at most
√

N steps of

exploration (the maximal possible number of macro-vertices in any L̃). This together
with (2.38) implies

P {tN (k) > aw | B′
N} ≤ (1 + o(1))P

{
Sc′,q′(k) > aw

}
(2.53)

as N → ∞. Substituting the last bound into (2.52) we derive

P
{

C1

(
GN (q, c)

)
> aw

}
≤ Nb

N∑

k=1

kmq′ (k)P
{

Sc′,q′ (k) > aw
}

+ o(1) (2.54)

49



B

as N → ∞, where b is some positive constant. Denote gz(k) = EzSc′,q′ (k); then similar to
(2.47) we derive from (2.54)

P
{

C1

(
GN (q, c)

)
> aw(N )

}
≤ bN

N∑

k=1

kmq′ (k)gz(k)z−aw(N )
+ o(1). (2.55)

We shall search for all z ≥ 1 for which the series

Az(c′, q′) =

∞∑

k=1

kmq′ (k)gz(k)

converge. Function gz(k) (as a generating function for a certain branching process) satis-
fies the following equation

gz(k) = zk exp
{∑∞

x=1 kc′,q′(k, x)mq′(x)(gz(x) − 1)
}

= zk exp
{

c′mq′
k
(∑∞

x=1 xmq′ (x)gz(x) − mq′
)}

= zk exp
{

c′mq′
k(Az(c′, q′) − mq′ )

}
.

Multiplying both sides by kmq′ (k) and summing up over k we find

Az(c′, q′) =

∞∑

k=1

kmq′ (k)zk exp

{
c′mq′

k(Az(c′, q′) − mq′)

}
. (2.56)

It follows from here (and the fact that Az(c′, q′) ≥ mq′ for all z ≥ 1) that if there exists
z > 1 for which the series Az(c′, q′) converge, it should satisfy

z <
1

q′
. (2.57)

According to (2.56), as long as Az = Az(c, q) is finite it satisfies the equation

Az = EXzX e
c

EX X (Az−EX ),

which implies that Az is finite for some z > 1 if and only if the last equation has at least
one solution

Az ≥ A1 = EX . (2.58)

Let us fix z > 1 and consider equation

y = EXzX e
c

EX X (y−EX )
=: f (y, z). (2.59)
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Using the properties of the distribution of X it is easy to derive that

f (y, z) =
1

EX

zec(
y

EX −1)

(
1 − qzec(

y
EX −1)

)
2
.

We shall consider f (y, z) for y ≥ EX and 1 ≤ z < 1
q e−c(

y
EX −1). It is easy to check that in

this area function f (y, z) is increasing, it has all the derivatives of the second order, and
∂2

∂y2
f (y, z) > 0. Compute now

∂

∂y
f (y, z)|y=1,z=1 =

c

EX
EX 2 =

c

ccr
. (2.60)

Hence, if c > ccr there is no solution y ≥ EX to (2.59) for any z > 1. On the other
hand, if c < ccr then there exists 1 < z0 < 1/q such that for all 1 ≤ z < z0 there is a
finite solution y ≥ EX to (2.59). One could find z0 for example, as the (unique!) value
for which function y is tangent to f (y, z0) if y ≥ EX .

Now taking into account that c′ > c and q′ > q can be chosen arbitrarily close to c
and q, respectively, we derive from (2.55) that for all 1 < z < z0

P
{

C1

(
GN (q, c)

)
> aw(N )

}
≤ b(z)Nz−aw(N )

+ o(1) (2.61)

as N → ∞, where b(z) < ∞. This implies that for any a > 1/ log z0 > 1/| log q|

P
{

C1

(
GN (q, c)

)
> a log N

}
= o(1) (2.62)

as N → ∞, which proves (1.3). 2

To conclude this section we comment on the methods used here. It is shown in (6)
that in the subcritical case of classical random graphs the same method of generating
functions combined with the Markov inequality leads to a constant which is known to
be the principal term for the asymptotics of the size of the largest component (scaled to
log N ). This gives us hope that a constant a chosen here to satisfy a > 1/ log z0 is close
to the minimal constant for which statement (2.62) still holds.

Similar methods were used in (7) for some class of inhomogeneous random graphs,
and in (1) for a general class of models. Note, however, some difference with the approach
in (1). It is assumed in (1), Section 12, that the generating function for the corresponding
branching process with the initial state k (e.g., our function gz(k), k ≥ 1) is bounded
uniformly in k. As we prove here this condition is not always necessary: we need only
convergence of the series Az , while gz(k) is unbounded in k in our case. Furthermore, our
approach allows one to construct constant a(q, c) as a function of the parameters of the
model.
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2.5 Proof of Theorem 1.1 in the supercritical case.

Let Ck denote the set of vertices in the k-th largest component in graph GN (q, c), and

conditionally on X let C̃k denote the set of macro-vertices in the k-th largest component

in graph G̃N (X, q, c) (ordered in any way if there are ties). Let also Ck and C̃k denote
correspondingly, their sizes. According to our construction for any connected component

L̃ in G̃N (X, q, c) there is a unique component L in GN (q, c) such that they are composed
of the same vertices from VN , i.e., in the notations (2.5)

L = ∪v∈eL ∪k∈v {k} =: V (L̃).

Next we prove that with a high probability the largest components in both graphs consist
of the same vertices.

Lemma 2.3. For any 0 ≤ q < 1 if c > ccr(q) then

P{C1 = V (C̃1)} = 1 − o(1) (2.63)

as N → ∞.

Proof. In a view of the argument preceeding this lemma we have

P{C1 6= V (C̃1)} = P{C1 = V (C̃k) for some k ≥ 2}.

According to Theorem 12.6 from (1), conditions of which are satisfied here, in the
supercritical case conditionally on T (N ) such that T (N )/N → 1/EX , we have whp

C̃2 = O(log(T (N ))), which by Proposition 2.1 implies C̃2 = O(log N ) whp . Also we

know already from (2.14) that in the supercritical case C̃1 = O(N ) whp, and therefore
C1 = O(N ) whp. Hence, for some positive constants a and b

P{C1 6= V (C̃1)} = P{C1 = V (C̃k) for some k ≥ 2} (2.64)

≤ P

{(
max
k≥2

|V (C̃k)| > bN

)
∩
(

max
k≥2

C̃k < a log N

)}
+ o(1).

Define now for any K = K (N ) a set

BN := {∃Xi ≥ K for some 1 ≤ i ≤ T (N )}.

According to (2.20)
P(BN ) ≤ CNqK

+ o(1)

as N → ∞ for some constant C independent of K and N . Setting from now on K =√
N we have P(BN ) = o(1) as N → ∞. Then we derive

P

{(
max
k≥2

|V (C̃k)| > bN

)
∩
(

max
k≥2

C̃k < a log N

)}
(2.65)
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≤ P

{(
max
k≥2

|V (C̃k)| > bN

)
∩
(

max
k≥2

C̃k < a log N

)
∩
(

max
1≤i≤T (N )

Xi <
√

N

)}
+o(1)

≤ P
{√

N a log N > bN
}

+ o(1) = o(1).

Substituting this bound into (2.64) we immediately get (2.63). 2

Conditionally on C1 = V (C̃1) we have

C1

N =
1
N

∑T (N )
i=1 Xi1{vi ∈ C̃1}

=
1
N

∑T (N )
i=1

∑N
k=1 k1{Xi = k}1{vi ∈ C̃1}

=
T (N )

N

∑N
k=1 k 1

T (N )
#{vi ∈ C̃1 : Xi = k}.

(2.66)

Note that Theorem 9.10 from (1) (together with Proposition 2.1 in our case) implies thatnN (k) :=
1

T (N )
#{vi ∈ C̃1(N ) : Xi = k} P→ r(k; k)m(k) (2.67)

for each k ≥ 1.
We shall prove below that also

WN :=

N∑

k=1

knN (k)
P→

∞∑

k=1

kr(k; k)m(k) =: b EX . (2.68)

Observe that r(k; k) is the maximal solution to (2.12), therefore b is the maximal solution
to b =

1

EX

∞∑

k=1

kr(k; k)m(k) =
1

EX

∞∑

k=1

k
(

1 − e−
P

∞

y=1 k(k,y)m(y)r(k;y)
) m(k)

= 1 − 1

EX
E
(

Xe−cXb).
This proves that b is the maximal root of (1.6). Then (2.68) together with Proposition

2.1, which states that T (N )/N
a.s.→ 1/EX , will allow us to derive from (2.66) that for any

positive e
P
{
|
C1

(
GN (c, q)

)

N
− b | > e | C1 = V (C̃1)

}
→ 0

as N → ∞. This combined with Lemma 2.3 would immediately imply

C1

(
GN (c, q)

)

N

P→ b , (2.69)
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and hence the statement of the theorem follows.
Now we are left with proving (2.68). For any 1 ≤ R < N write WN := W R

N + wR
N ,

where

W R
N :=

R∑

k=1

knN (k), wR
N :=

N∑

k=R+1

knN (k).

By (2.67) we have for any fixed R ≥ 1

W R
N

P→
R∑

k=1

kr(k; k)m(k) (2.70)

as N → ∞. Consider wR
N . Note that for any k ≥ 1

EnN (k) = EE
{nN (k) | T (N )

}
≤ E

1

T (N )

T (N )∑

i=1

P{Xi = k | T (N )}. (2.71)

Using events Ad,N with bound (2.18) and Proposition 2.1 we obtain from (2.71) for any
fixed 0 < d < 1/(2EX )

EnN (k) ≤ E
1

T (N )

T (N )∑

i=1

P{Xi = k | T (N )}1{Ad,N} + P{Ad,N}
≤ (1 + dEX )

(1 − dEX )
P{X1 = k}(1 + o(1)) + P{Ad,N}.

Bound (2.18) allows us to derive from here that

EnN (k) ≤ A1(m(k) + e−a1N ) (2.72)

for some positive constants A1 and a1 independent of k and N . This yields

EwR
N =

N∑

k=R+1

kEnN (k) ≤ A2e−a2R (2.73)

for some positive constants A2 and a2.
Now for any e > 0 we can choose R so that

∞∑

k=R+1

kr(k; k)m(k) < e/3,

and then we have

P{|WN −
∞∑

k=1

kr(k; k)m(k)| > e} (2.74)
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= P{|(W R
N −

R∑

k=1

kr(k; k)m(k)) + wR
N −

∞∑

k=R+1

kr(k; k)m(k)| > e}
≤ P{|W R

N −
R∑

k=1

kr(k; k)m(k)| > e/3}+ P{wR
N > e/3}.

Markov’s inequality together with bound (2.73) gives us

P{wR
N > e/3} ≤ 3EwR

Ne ≤ 3A2e−a2Re . (2.75)

Making use of (2.75) and (2.70) we immediately derive from (2.74)

P{|WN −
∞∑

k=1

kr(k; k)m(k)| > e} ≤ o(1) +
3A2e−a2Re (2.76)

as N → ∞. Hence, for any given positive e and e0 we can choose finite R so large that

lim
N→∞

P{|WN −
∞∑

k=1

kr(k; k)m(k)| > e} < e0. (2.77)

This clearly proves statement (2.68), and therefore finishes the proof of the theorem. 2
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Chapter C

Merging percolation on Z d and classical
random graphs: Phase transition

T. S. Turova, T. Vallier

Centre for Mathematical Sciences, Lund University, Sweden

Abstract

We study a random graph model which is a superposition of the bond percolation model
on Z d with probability p of an edge, and a classical random graph G(n, c/n). We show
that this model, being a homogeneous random graph, has a natural relation to the so-
called "rank 1 case" of inhomogeneous random graphs. This allows us to use the newly
developed theory of inhomogeneous random graphs to describe the phase diagram on the
set of parameters c ≥ 0 and 0 ≤ p < pc , where pc = pc(d) is the critical probability for
the bond percolation on Z d . The phase transition is similar to the classical random graph,
it is of the second order. We also find the scaled size of the largest connected component
above the phase transition.

Key words: Classical random graphs, phase transition, percolation.
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1 Introduction.

We consider a graph on the set of vertices B(N ) := {−N , . . . , N}d in Z d , d ≥ 1, with
two types of edges: the short-range edges connect independently with probability p each
pair u and v if |u − v| = 1, and the long-range edges connect independently any pair of
two vertices with probability c/|B(N )|. (Here for any set A we denote |A| the number of
the elements in A.) This graph, call it GN (p, c) is a superposition of the bond percolation
model (see, e.g., (4)), where each pair of neighbours in Z d is connected with probability
p, and a random graph model Gn,c/n (see, e.g., (6)) on n = |B(N )| vertices, where each
vertex is connected to any other vertex with probability c/n; all the edges in both models
are independent. By this definition there can be none, one or two edges between two
vertices in graph GN (p, c), and in the last case the edges are of different types.

The introduced model is a simplification of the most common graphs designed to
study natural phenomena, in particular, biological neural networks (12). Notice the dif-
ference between GN (p, c) and the so-called "small-world" models intensively studied after
(13). In the "small-world" models where edges from the grid may be kept or removed,
only finite number (often at most 2d) of the long-range edges may come out of each
vertex, and the probability of those is a fixed number.

We are interested in the connectivity of the introduced graph GN (p, c) as N → ∞.
We say that two vertices are connected, if there is a path of edges, no matter of which
types, between them. Clearly, if c = 0, we have a purely bond percolation model on Z d ,
where any edge from the grid is kept (i.e., "is open" in the terminology of percolation
theory) with a probability p, or, alternatively, removed with a probability 1 − p. Let us
recall some basic facts from the percolation theory which we need here. Denote C an
open cluster containing the origin of Z d in the bond percolation model. It is known (see,
e.g., (4)) that for any d ≥ 1 there is pc = pc(d) such that

P{|C | = ∞}






= 0, if p < pc,

> 0, if p > pc,

where 0 < pc < 1, unless d = 1, in which case, obviously, pc = 1. We shall assume here
that 0 < p < pc , and thus the connected components formed by the short-range edges
only are finite with probability one. Recall also that for all 0 < p < pc the limitz(p) = limn→∞

(
−1

n
log P {|C | = n}

)
(1.1)

exists and satisfies z(p) > 0 (Theorem (6.78) from (4)).

Let further C1

(
G
)

denote the size (the number of vertices) of the largest connected

component in a graph G.
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Theorem 1.1. Assume, that d ≥ 1 and 0 ≤ p < pc(d). Define

ccr(p) =
1

E|C | . (1.2)

i) If c < ccr(p) define

y =






the root of E c|C |ec|C |y
= 1, if E c|C |e|C |z(p) ≥ 1,z(p)/c, otherwise,

and set a(p, c) :=
(

c + cy − E cec|C |y
)−1

. (1.3)

Then for any a > a(p, c)

P
{

C1

(
GN (p, c)

)
> a log |B(N )|

}
→ 0. (1.4)

as N → ∞.

ii) If c ≥ ccr(p) then

C1

(
GN (p, c)

)

|B(N )|
P→ b (1.5)

as N → ∞, with b = b(p, c) defined as the maximal solution tob = 1 − E
{

e−c b |C |
}

. (1.6)

Remark 1.1. Only when d = 1 we know the exact distribution of |C | (see (1.7) below),
in which case E|C |e|C |z(p)

= ∞. This obviously yields (for d = 1) that the constant y in
Theorem 1.1 is defined as the root of E c|C |ec|C |y

= 1 for any c < ccr(p).

In view of (1.1) it is obvious that q(p) := E|C | < ∞ for all 0 ≤ p < pc . It is also
known (see Theorem (6.108) and (6.52) in (4)) that q(p) is analytic function of p on
[0, pc) and q(p) → ∞ as p ↑ pc . This implies that ccr(p) is continuous, strictly decreasing
function on [0, pc) with ccr(0) = 1 and ccr(pc) = 0. Hence, ccr has inverse, i.e., for any
0 < c < 1 there is a unique 0 < pcr(c) < pc = pc(d) such that ccr

(
pcr(c)

)
= c. This

leads to the following duality of the result in Theorem 1.1.

Corollary 1.1. For any 0 < c < 1 there is a unique 0 < pcr(c) < pc such that for any
pcr(c) < p < pc graph GN (p, c) has a giant component with a size O(|B(N )|) whp (i.e.,
with probability tending to one as N → ∞), but for any p < pcr(c) the size of the largest
connected component in GN (p, c) whp is at most O(log |B(N )|). 2
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Hence, Theorem 1.1 may also tell us something about the "distances" between the
components of a random graph when it is considered on the vertices of Zd .

It is worth mentioning that the symmetry between ccr and pcr is most spectacular in
the dimension one case, when pc(1) = 1. Notice, that d = 1 case is exactly solvable, and
this is the only case when we know the distribution of |C |:

P {|C | = k} = (1 − p)2kpk−1, k ≥ 1. (1.7)

Hence, if d = 1 we compute for all 0 ≤ p < 1 = pc(1)

ccr(p) =
1 − p

1 + p
, (1.8)

which also yields

pcr(c) =
1 − c

1 + c
,

for all 0 ≤ c < 1. (For more details on d = 1 case we refer to (11).)

Remark 1.2. For any fixed c function b(p, c) is continuous at p = 0: if p = 0, i.e., when
our graph is merely a classical Gn,c/n random graph, then |C | ≡ 1 and (1.6) becomes a
well-known relation.

Furthermore, for any fixed c < 1, if p = 0, it is not difficult to derive from (1.3) thata(0, c) =
1

c − 1 + | log c| . (1.9)

But log n/(c − 1 + | log c|) is known (see Theorem 7a in (3)) to be the principal term
in the asymptotics (in probability) of the largest connected component of Gn,c/n when
c < 1. This inevitably leads to the following (open) question. Will

P
{

C1

(
GN (p, c)

)
< a1 log |B(N )|

}
→ 0 as N → ∞, (1.10)

hold also for all a1 < a(p, c) when 0 < p < pc and c < ccr(p)?

It is easy to check that if c ≤ ccr(p) then the equation (1.6) does not have a strictly
positive solution, while b = 0 is always a solution to (1.6). Therefore we derive for all
0 ≤ p ≤ pc

∂

∂c
b(p, c) | c↓ccr (p)= 2

(
E|C |

)3

E(|C |2)
> 0. (1.11)

This confirms that the phase transition remains to be of the second order for any p < pc ,
as it is for p = 0, i.e., in the case of classical random graph.
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More similarities and differences between our model and the "mean-field" case one
can see in the following example. Let d = 1, in which case (1.7) holds. Introducing a
random variable X with the first-success distribution

P {X = k} = (1 − p)pk−1, k = 1, 2, . . . ,

one can rewrite (1.6) as follows (see the details in (11))b = 1 − 1

EX
E
{

Xe−cXb} .

This equation looks somewhat similar to the equation obtained in (2) for the "volume"
(the sum of degrees of the involved vertices) of the giant component in the graph with
a given sequence of the expected degrees. Note, however, that in our model the critical
mean degree when c = ccr(p) and N → ∞ is given according to (1.8) by

2p + ccr(p) = 2p +
1 − p

1 + p
= 1 +

2p2

1 + p
(1.12)

which is strictly greater than 1 for all positive p < 1. This is in a contrast with the
model studied in (2), where the critical expected average degree is still 1 as in the classical
random graph.

Although our model (it can be considered on a torus, in the limit the result is the
same) is a perfectly homogeneous random graph, in the sense that the degree distribution
is the same for any vertex, we study it via inhomogeneous random graphs, making use
of the recently developed theory from (1). The idea is the following. First, we consider
the subgraph induced by the short-range edges, i.e., the edges which connect two neigh-
bouring nodes with probability p. It is composed of the connected clusters (which may
consist just of one single vertex) in B(N ). Call a macro-vertex each of the connected com-
ponents of this subgraph. We say that a macro-vertex is of type k, if k is the number of
vertices in it. Conditionally on the set of macro-vertices, we consider a graph on these
macro-vertices induced by the long-range connections. Two macro-vertices are said to be
connected if there is at least one (long-range type) edge between two vertices belonging
to different macro-vertices. Thus the probability of an edge between two macro-vertices
vi and vj of types x and y correspondingly, is

p̃xy(N ) := 1 −
(

1 − c

|B(N )|

)xy

. (1.13)

Below we argue that this model fits the conditions of a general inhomogeneous graph
model defined in (1), find the critical parameters and characteristics for the graph on
macro-vertices, and then we turn back to the original model. We use essentially the
results from (1) to derive (1.6). The result in the subcritical phase (part i) of Theorem
1.1) does not follow by the theory in (1); we discuss this in the end of Section 2.4.
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Notice also that in order to analyze the introduced model, we derive here some result
on the joint distribution of the sizes of clusters in the percolation model (see Lemma 2.1
below), which may be of interest on its own.

The principle of treating some local structures in a graph as new vertices ("macro-
vertices"), and then considering a graph induced by the original model on these vertices
appears to be rather general. For example, in (5) a different graph model was also put
into a framework of inhomogeneous graphs theory by certain restructuring. This method
should be useful for analysis of a broad class of complex structures, whenever one can
identify local and global connections. Some examples of such models one can find in (7).

Finally we comment that our result should help to study a model for the propagation
of the neuronal activity introduced in (12). Here we show that a giant component in the
graph can emerge from two sources, none of which can be neglected, but each of which
may be in the subcritical phase, i.e., even when both p < pc and c < 1. In particular,
for any 0 < c < 1 we can find p < pc which allows with a positive probability the
propagation of impulses through the large part of the network due to the local activity.

2 Proof

2.1 Random graph on macro-vertices.

Consider now the subgraph on B(N ) induced by the short-range edges only, which is

a purely bond percolation model. By the construction this subgraph, call it G(s)
N (p), is

composed of a random number of clusters (of connected vertices) of random sizes. We
call the size of a cluster the number of its vertices (it may be just one). We recall here
more results from percolation theory which we shall use later on.

Let KN denote the number of the connected components (clusters) in G(s)
N (p), and let

X = {X1, X2, . . . , XKN } (2.1)

denote the collection of all connected clusters Xi in G(s)
N (p). We shall also use Xi to denote

the set of vertices in the i−th cluster. By this definition
∑KN

i=1 |Xi| = |B(N )|.

Theorem [(4), (4.2) Theorem, p. 77]

KN

|B(N )| → k(p) := E
1

|C | (2.2)

a.s. and in L1 as N → ∞. 2

Note (see, e.g., (4)) that k(p) is strictly positive and finite for all 0 < p < pc . Next we
cite the large deviations property of KN from (14).
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Theorem [(14), Theorem 2] Given k(p) > e > 0, there exist sj(e, p) > 0 for j = 1, 2 such
that

lim
N→∞

−1

|B(N )| log P

(
KN

|B(N )| ≥ k(p) + e) = s1(e, p)

and

lim
N→∞

−1

|B(N )| log P

(
KN

|B(N )| ≤ k(p) − e) = s2(e, p).

This theorem implies that for any 0 < d < k(p) there is a positive constant s = s(d, p)
such that

P

{∣∣∣∣
KN

|B(N )| − k(p)

∣∣∣∣ > d} ≤ e−s |B(N )| (2.3)

for all large N . Define for any k ≥ 1 and x ≥ 0 an indicator function:

Ik(x) =

{
1, if x = k,
0, otherwise.

Proposition 2.1. For any fixed k ≥ 1

1

KN

KN∑

i=1

Ik(|Xi|) →
1k(p)

P{|C | = k}
k

=: m(k) (2.4)

a.s. and in L1 as N → ∞.

Proof. Let CN (z), z ∈ B(N ), denote a connected cluster in B(N ) which contains vertex
z, and let C (z) denote an open cluster in Zd which contains vertex z. Then we write

1

KN

KN∑

i=1

Ik(|Xi|) =
|B(N )|

KN

1

k

1

|B(N )|
∑

z∈B(N )

Ik(|CN (z)|). (2.5)

Observe, that

∑

z∈B(N )

Ik(|CN (z)|) =

∑

z∈B(N )

Ik(|C (z)|) +

∑

z∈B(N )

(Ik(|CN (z)|) − Ik(|C (z)|))

=

∑

z∈B(N )

Ik(|C (z)|) +

∑

z↔∂B(N )

(Ik(|CN (z)|) − Ik(|C (z)|)), (2.6)

where the last summation is over all vertices z of B(N ) which are connected to the surface

∂B(N ) = {x ∈ B(N ) : max
1≤i≤d

|xi| = N},
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and hence the last sum in (2.6) contains at most k|∂B(N )| non-zero terms. Now we can
rewrite (2.5) as follows

1

KN

KN∑

i=1

Ik(|Xi|) =
|B(N )|

KN

1

k

1

|B(N )|
∑

z∈B(N )

Ik(|C (z)|) +
|B(N )|

KN

DN

|B(N )| , (2.7)

where
|DN | ≤ |∂B(N )|.

Taking into account (2.2) it is easy to see that

|B(N )|
KN

DN

|B(N )| → 0 (2.8)

in L1 and a.s.. By the ergodic theorem

1

|B(N )|
∑

z∈B(N )

Ik(|C (z)|) → P{|C | = k} (2.9)

a.s. as N → ∞, and in L1 as well, since

0 ≤ 1

|B(N )|
∑

z∈B(N )

Ik(|C (z)|) ≤ 1.

Hence, statement (2.4) follows by (2.7), (2.8) and (2.9) combined with (2.2). 2

Given a collection of clusters X defined in (2.1), we introduce another graph G̃N (X, p, c)

as follows. The set of vertices of G̃N (X, p, c) we denote {v1, . . . , vKN }. Each vertex vi is
said to be of type |Xi|, which means that vi corresponds to the set of |Xi| connected ver-

tices in B(N ). We shall also call any vertex vi of G̃N (X, p, c) a macro-vertex, and write
sometimes

vi = Xi. (2.10)

With this notation the type of a macro-vertex vi is simply the cardinality of set vi = Xi.
The space of the types of macro-vertices is S = {1, 2, . . .}. According to (2.4) the dis-

tribution of type of a (macro-)vertex in graph G̃N (X, p, c) converges to measure m on S.

The edges between the vertices of G̃N (X, p, c) are presented independently with proba-
bilities induced by the original graph GN (p, c). More precisely, the probability of an edge
between any two vertices vi and vj of types x and y correspondingly, is p̃xy(N ) introduced
in (1.13). Clearly, this construction provides a one-to-one correspondence between the

connected components in the graphs G̃N (X, p, c) and GN (p, c): the number of the con-
nected components is the same for both graphs, as well as the number of the involved
vertices from B(N ) in two corresponding components. In fact, considering condition-

ally on X graph G̃N (X, p, c) we neglect only those long-range edges from GN (p, c), which
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connect vertices within each vi, i.e., the vertices which are already connected through the
short-range edges.

Consider now

p̃xy(N ) = 1 −
(

1 − c

|B(N )|

)xy

=:
k′N (x, y)

|B(N )| . (2.11)

Observe that if x(N ) → x and y(N ) → y thenk′N (x(N ), y(N )) → cxy (2.12)

for all x, y ∈ S. In order to place our model into the framework of the inhomogeneous
random graphs from (1) let us introduce another (random) kernelkKN (x, y) =

KN

|B(N )|k′N (x, y),

so that we can rewrite the probability p̃xy(N ) in a graph G̃N (X, p, c) taking into account
the size of the graph:

p̃xy(N ) =
kKN (x, y)

KN
. (2.13)

(We use notations from (1) whenever it is appropriate.) According to (2.2) and (2.12), if
x(N ) → x and y(N ) → y thenkKN (x(N ), y(N ))

a.s.→ k(x, y) := ck(p)xy (2.14)

as N → ∞ for all x, y ∈ S.
Hence, in view of Proposition 2.1 we conclude that conditionally on KN = t(N ),

where t(N )/|B(N )| → E(|C |−1), our model falls into the so-called "rank 1 case" of the
general inhomogeneous random graph model GV (t(N ), kt(N )) with a vertex space

V = (S, m, (v1, . . . , vt(N ))N≥1)

(see (1), Chapter 16.4). Note, that according to (1.1) function m(k) (defined in (2.4))
decays exponentially, which impliesk(x, y) ∈ L1(S × S, m× m). (2.15)

Furthermore, it is not difficult to verify with a help of (2.2) and Proposition 2.1 that for
any t(N ) such that t(N )/|B(N )| → E(|C |−1)

1

t(N )
E{e(G̃N (X, p, c))|KN = t(N )} → 1

2

∞∑

y=1

∞∑

x=1

k(x, y)m(x)m(y), (2.16)

where e(G) denotes the number of edges in a graph G. According to Definition 2.7 from
(1), under the conditions (2.16), (2.15) and (2.14) the sequence of kernels kt(N )(x, y) (on
the countable space S × S) is called graphical on V with limit k(x, y).
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2.2 A branching process related to G̃N (X, p, c).

Here we closely follow the approach from (1). We shall use a well-known technique

of branching processes to reveal the connected component in graph G̃N (X, p, c). Recall
first the usual algorithm of finding a connected component. Conditionally on the set of
macro-vertices, take any vertex vi to be the root. Find all the vertices {v1

i1 , v1
i2 , ..., v1

in}
connected to this vertex vi in the graph G̃N (X, p, c), call them the offspring of vi , and
then mark vi as "saturated". Then for each non-saturated but already revealed vertex,
we find all the vertices connected to them but which have not been used previously. We
continue this process until we end up with a tree of saturated vertices.

Denote tN (x) the set of the macro-vertices in the tree constructed according to the
above algorithm with the root at a vertex of type x.

It is plausible to think (and in our case it is correct, as will be seen below) that this
algorithm with a high probability as N → ∞ reveals a tree of the offspring of the fol-
lowing multi-type Galton-Watson process with type space S = {1, 2, . . .}: at any step,
a particle of type x ∈ S is replaced in the next generation by a set of particles where the
number of particles of type y has a Poisson distribution Po(k(x, y)m(y)). Let r(x) denote
the probability that a particle of type x produces an infinite population.

Proposition 2.2. The function r(x), x ∈ S, is the maximum solution tor(x) = 1 − e−
P

∞

y=1 k(x,y)m(y)r(y). (2.17)

Proof. We have

∞∑

y=1

k(x, y)m(y) = cE(|C |−1)x
1

E(|C |−1)
= cx < ∞

for any x. This together with (2.15) verifies the conditions of Theorem 6.1 from (1), by
which the result (2.17) follows. 2

Notice that it also follows by the same Theorem 6.1 from (1) that r(x) > 0 for all
x ∈ S if and only if

cE(|C |−1)

∞∑

y=1

y2m(y) = c E(|C |−1)

∞∑

y=1

y2 1

E(|C |−1)

P{|C | = y}
y

= c E|C | > 1;

(2.18)
otherwise, r(x) = 0 for all x ∈ S. Hence (2.18) yields formula (1.2) for the critical value
ccr(p).

As we showed above, conditionally on KN so that KN /|B(N )| → E(|C |−1), the
sequence kKN (x, y) is graphical on V . Hence, the conditions of Theorem 3.1 from (1) are
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satisfied and we derive (first, conditionally on KN , and therefore unconditionally) that

C1(G̃N (X, p, c))

KN

P→ r,
where r =

∑∞
x=1 r(x)m(x). This together with (2.2) implies

C1(G̃N (X, p, c))

|B(N )|
P→ E(|C |−1) r. (2.19)

Notice that here C1(G̃N (X, p, c)) is the number of macro-vertices in the largest connected

component of G̃N (X, p, c).

2.3 On the distribution of types of vertices in G̃N (X, p, c).

Given a collection of clusters X (see (2.1)) we define for all 1 ≤ k ≤ |B(N )|

Nk = Nk(X) =

KN∑

i=1

Ik(|Xi|).

In words, Nk is the number of (macro-)vertices of type k in the set of vertices of graph

G̃N (X, p, c). We shall prove here a useful result on the distribution of N = (N1, . . . ,N|B(N )|).

Lemma 2.1. Set m̃(k) =

∞∑

n=k

P{|C | = n}.

Then for any fixed n > 2 and e > 0

P
{
|Nk/KN − m(k)| > e kn m̃(k) for some 1 ≤ k ≤ |B(N )|

}
→ 0 (2.20)

as N → ∞.

Proof. Let us fix n > 2 and e > 0 arbitrarily. Fix also constant L0 arbitrarily but so thateLn0 ≥ E(|C |−1). (2.21)

Then for all k > L0 e kn m̃(k) > m(k),

and for any L > L0

P{|Nk/KN − m(k)| > e kn m̃(k) for some 1 ≤ k ≤ |B(N )|} (2.22)
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≤ P{ max
1≤i≤KN

|Xi| > L}

+P{|Nk/KN − m(k)| > e kn m̃(k) for some 1 ≤ k ≤ L}.
We shall choose later on an appropriate L = L(N ) so that we will be able to bound from
above by o(1) (as N → ∞) each of the summands on the right in (2.22).

First we derive

P{ max
1≤i≤KN

|Xi| > L} ≤ P{ max
z∈B(N )

|C (z)| > L} ≤ |B(N )|P{|C | > L}, (2.23)

where C (z) is an open cluster containing z. For a further reference we note here, that
according to (1.1) for any 0 < a < z(p) there is constant b > 0 such that

P{|C | ≥ L} ≤ be−aL (2.24)

for all L ≥ 1, which together with (2.23) implies, in particular, that

P{ max
1≤i≤KN

|Xi| >
2z(p)

log |B(N )|} → 0 (2.25)

as N → ∞.
Now we consider the last term in (2.22). Let us define for any 0 < d < E(|C |−1) an

event

Ad,N =

{∣∣∣∣
KN

|B(N )| − E(|C |−1)

∣∣∣∣ ≤ d} . (2.26)

Recall that according to (2.3)

P(Ad,N ) ≥ 1 − e−s|B(N )|
= 1 − o(1) (2.27)

as N → ∞. Then we can bound the last term in (2.22) as follows

P
{
|Nk/KN − m(k)| > e knm̃(k) for some 1 ≤ k ≤ L

}

≤ P
{
|Nk/KN − m(k)| > e knm̃(k) for some 1 ≤ k ≤ L0

}

+ P
{(

Nk/KN > e kn m̃(k) + m(k) for some L0 < k ≤ L
)
∩Ad,N}+ P{Ad,N}

≤ P
{(

Nk/KN > e kn m̃(k) + m(k) for some L0 < k ≤ L
)
∩ Ad,N}+ o(1), (2.28)

as N → ∞ where the last inequality follows by Proposition 2.1 and bound (2.27). Write

P(k) := P

{(Nk

KN
− m(k) > e kn m̃(k)

)
∩ Ad,N}. (2.29)
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Clearly, we have by (2.28):

P
{
|Nk/KN − m(k)| > e knm̃(k) for some 1 ≤ k ≤ L

}
≤

L∑

k=L0+1

P(k) + o(1), (2.30)

as N → ∞. Substituting now (2.30) and (2.23) into (2.22) we derive

P{|Nk/KN − m(k)| > e kn m̃(k) for some 1 ≤ k ≤ |B(N )|} (2.31)

≤ |B(N )|P{|C | > L} +

L∑

k=L0+1

P(k) + o(1) ≤ |B(N )|m̃(L) +

L∑

k=L0+1

P(k) + o(1)

as N → ∞.

Next we shall find an upper bound for P(k). Due to the definition (2.26) of Ad,N ,
we have

P(k) ≤ P

{
Nk > (k(p) − d)|B(N )|

(e kn m̃(k) + m(k)
)}

. (2.32)

We shall use the following special case of the Talagrand’s inequality.

Proposition 2.3. For every 0 < a ≤ r

P

{
Nk ≤ a

}
P

{
Nk ≥ r

}
≤ exp

{
− (r − a)2

32dkr

}
. (2.33)

Proof. We shall derive this result as a corollary to the Talagrand’s inequality (8) which we
cite here from the book (6).

Theorem. [(6), p. 40.] Suppose that Z1, ..., Zn are independent random variables taking
their values in some sets L1, ...,Ln, respectively. Suppose further that W = f (Z1, ..., Zn),
where f : L1 × ... × Ln → R is a function such that, for some constants ck, k = 1, ..., n,
and some function Y , the following two conditions hold:

1) If z, z′ ∈ L =
∏n

1 Li differ only in the i − th coordinate, then |f (z) − f (z′)| ≤ ci.

2) If z ∈ L and r ∈ R with f (z) ≥ r, then there exists a set J ⊆ {1, ..., n} with∑
i∈J c2

i ≤ Y(r), such that for all y ∈ L with yi = zi when i ∈ J , we have f (y) ≥ r.

Then, for every r ∈ R and t ≥ 0,

P(W ≤ r − t)P(W ≥ r) ≤ e−t2/4Y(r). (2.34)
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We shall show now that function Nk satisfies the conditions of this theorem. Let
{e1, . . . , en} be the set of all edges from the lattice Zd which have both end points in
B(N ). Define

Zi =

{
1, if ei is open in G s

N (p),
0, if ei is closed in G s

N (p) .

According to the definition of our model, Zi ∈ Be(p), i = 1, . . . , n, are independent
random variables, and

Nk = Nk(Z1, . . . , Zn)

since the number of the components of size k (open k-clusters) in G s
N (p) is defined com-

pletely by Z1, . . . , Zn. Furthermore, it is clear that removing or adding just one edge in
G s

N (p), may increase or decrease by at most 2 the number of k-clusters. Hence, the first
condition of the Talagrand’s inequality is satisfied with ci = 2 for all 1 ≤ i ≤ n: if
configurations z, z′ ∈ {0, 1}n differ only in the ith coordinate, then

|Nk(z) −Nk(z′)| ≤ 2.

Next we check that the second condition is fulfilled as well, and we shall determine
the function Y . Assume, z ∈ {0, 1}n corresponds such configuration of the edges in
B(N ) that Nk(z) ≥ r, for some r ∈ {1, 2, . . .}, i.e., there are at least r clusters of size
k. Let {ej, j ∈ J} ⊂ {e1, . . . , en} be a set of edges which have at least one common
vertex with a set of exactly r (arbitrarily chosen out of Nk(z)) clusters of size k. Clearly,
|J | ≤ 2dkr, and for any z′ ∈ {0, 1}n with z′j = zj if j ∈ J , we have

Nk(z′) ≥ r.

Hence, the second condition of the Talagrand’s inequality is satisfied with Y(r) = 8dkr
for positive integers r, since ∑

i∈J

c2
i = 4|J | ≤ 8dkr. (2.35)

The case when r is not integer is treated as explained in Example 2.33, page 41, in (6).
Then the inequality (2.33) follows by (2.34). 2

Set now

kN = (k(p) − d)|B(N )|,
and consider the inequality (2.33) with

r = kN

(e kn m̃(k) + m(k)
)
,

a = kN

( e
2

kn m̃(k) + m(k)
)
.

(2.36)
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By the Chebyshev’s inequality

P

{
Nk ≤ a

}
≥ 1 − ENk

a
. (2.37)

Consider now

Nk =

KN∑

i=1

Ik(|Xi|) =
1

k

∑

z∈B(N )

Ik(|CN (z)|), (2.38)

where CN (z) denote an open cluster in B(N ) which contains vertex z. Let further C (z)
denote an open cluster in Zd which contains vertex z. Then by (2.6) we have

∑

z∈B(N )

Ik(|CN (z)|) ≤
∑

z∈B(N )

Ik(|C (z)|) +

∑

z↔∂B(N )

Ik(|CN (z)|), (2.39)

where the last sum contains at most k|∂B(N )| non-zero terms. Note also that for any
z ↔ ∂B(N )

P{|CN (z)| = k} ≤ P{|C (z)| ≥ k} = P{|C | ≥ k}.
Therefore we derive from (2.38) and (2.39)

ENk ≤
1

k
|B(N )|P{|C | = k} + |∂B(N )|P{|C | ≥ k} (2.40)

= k(p)m(k)|B(N )|+ |∂B(N )|m̃(k).

This yields the following bound for all k > L0 (in which case ekn m̃(k) ≥ m(k))

ENk

a
=

ENk

(k(p) − d)|B(N )|
( e

2
kn m̃(k) + m(k)

)

≤ k(p)m(k)|B(N )|+ |∂B(N )|m̃(k)

(k(p) − d)|B(N )|
( e

2 kn m̃(k) + m(k)
)

≤ k(p)k(p) − d (2

3
+ 2

|∂B(N )|
|B(N )|e kn) .

Choosing 0 < d ≤ k(p)/18 we derive from the last bound that for all large N such that

2 |∂B(N )|
|B(N )|e < 1/24

ENk

a
≤ 3/4

uniformly in k ≥ L0, which together with (2.37) implies

P

{
Nk ≤ a

}
≥ 1

4
. (2.41)
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Using (2.41) in the Talagrand’s inequality (2.33) with r and a defined in (2.36), we derive
for all k > L0

P

{
Nk ≥ r

}
≤
(

P

{
Nk ≤ a

})−1

exp

{
− (r − a)2

32dkr

}
(2.42)

≤ 4 exp



−

( e
2
kN kn m̃(k)

)2

32dk
(

kN

(e kn m̃(k) + m(k)
))





≤ 4 exp

{
−ekN kn m̃(k)

28dk

}
= 4 exp

{
−e(k(p) − d)

28d
|B(N )|kn−1 m̃(k)

}
.

Substituting (2.42) into (2.32) we get

P(k) ≤ 4 exp
{
−b|B(N )|kn−1 m̃(k)

}
,

where

b :=
e(k(p) − d)

28d
.

The last bound combined with (2.31) yields

P
{
|Nk/KN − m(k)| > e knm̃(k) for some 1 ≤ k ≤ |B(N )|

}
(2.43)

≤ |B(N )| m̃(L) + 4

L∑

k=L0

exp
{
−b|B(N )|kn−1 m̃(k)

}
+ o(1),

as N → ∞ for any L ≥ L0.
Next we shall show that for any D > 0 one can choose a finite constant L0 and

numbers L = L(N ) so that

L(N )∑

k=L0

exp
{
−b|B(N )|kn−1 m̃(k)

}
< D, (2.44)

for all large N , and

|B(N )| m̃(L(N )) → 0, (2.45)

as N → ∞. This together with (2.43) will clearly imply the statement of Lemma.
We claim that both (2.44) and (2.45) hold with

L(N ) = min

{
k ≥ 1 : kam̃(k) <

1

|B(N )|

}
, (2.46)
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where a =
n− 2

2
,

which is positive by the assumption of Lemma.
Recall, that along with the result (1.1) it is also proved in (4) that for all 0 < p < pcz(p) = limn→∞

(
−1

n
log P {|C | ≥ n}

)
. (2.47)

For the further reference we note here that (1.1) and (2.47) immediately imply the exis-
tence and equality of the following limits for all 0 < p < pcz(p) = limn→∞

(
−1

n
log m(n)

)
= limn→∞

(
−1

n
log m̃(n)

)
, (2.48)

i.e., that both m(n) and m̃(n) decay exponentially fast, and moreover with the same expo-
nent in the limit.

Hence, kam̃(k) → 0, as k → ∞ for any fixed a, but kam̃(k) > 0 for all k ≥ 1. This
yields that L(N ) → ∞ as N → ∞, which in turn implies that there exists

lim
N→∞

m̃(L(N )
)
|B(N )| ≤ lim

N→∞
L(N )−a = 0,

and (2.45) follows.
To prove (2.44) first we note that by the definition (2.46) of L(N )

(L(N ) − 1)am̃(L(N ) − 1) ≥ 1

|B(N )| . (2.49)

Recall that according to Lemma 6.102 from (4) (p.139), for all n, m ≥ 0

1

m + n
P(|C | = n + m) ≥ p(1 − p)−2 1

m
P(|C | = m)

1

n
P(|C | = n). (2.50)

When m = 1 the inequality (2.50) implies

P(|C | = n + 1) ≥ p(1 − p)2(d−1)P(|C | = n), (2.51)

for all n ≥ 0. This clearly yieldsm̃(n + 1) ≥ p(1 − p)2(d−1)m̃(n)

for all n ≥ 0, and in particularm̃(L(N )) ≥ p(1 − p)2(d−1)m̃(L(N ) − 1). (2.52)
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Notice that g := p(1 − p)2(d−1) ≤ p < 1 for all d ≥ 1. Combining (2.49) with (2.52)
we immediately get

L(N )am̃(L(N )) ≥ g
|B(N )| , (2.53)

and also by the definition (2.46) for all k < L(N )

kam̃(k) ≥ 1

|B(N )| ≥
g

|B(N )| . (2.54)

Making use of (2.53) and (2.54) we derive

L(N )∑

k=L0

exp
{
−b|B(N )|kn−1 m̃(k)

}
(2.55)

≤
L(N )∑

k=L0

exp
{
−bgkn−1−a} ≤ a1 exp

{
−bgLn−2−a

0

}
,

where a1 is some positive constant independent of L0. It is clear now, that for any D > 0
we can fix L0 so large that (2.55) will imply (2.44), and in the same time L0 will satisfy
(2.21) and L0 < L(N ). This completes the proof of the lemma. 2

2.4 Proof of Theorem 1.1 in the subcritical case c < ccr(p) .

Let us fix 0 ≤ p < pc and then c < ccr(p) arbitrarily. Given X consider graph G̃N (X, p, c).

Recall that we denote vi the vertices of types |Xi|, i ≥ 1, of this graph. Let L̃ denote a

connected component in G̃N (X, p, c). Clearly, for any positive constant a and a function
w = w(N )

P
{

C1

(
GN (p, c)

)
> aw

}
= P




max
eL

∑

vi∈eL

|Xi| > aw




 . (2.56)

We know already from (2.19) that in the subcritical case the size (the number of macro-

vertices) of any L̃ is o(N ) with probability tending to one as N → ∞. Note that when
the kernel k(x, y) is not bounded uniformly in both arguments, which is our case, it is not
granted that the largest component in the subcritical case is at most of order log |B(N )|
(see, e.g., discussion of Theorem 3.1 in (1)). Therefore first we shall prove the following
intermediate result.

Lemma 2.2. If c < ccr(p) then

P
{

C1

(
G̃N (X, p, c)

)
> |B(N )|1/2

}
= o(1), (2.57)

as N → ∞.
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Proof. Let us fix n > 2, e > 0 and d > 0 arbitrarily and introduce the following event

BN = Ad,N ∩
(

max
1≤i≤KN

|Xi| ≤
2z(p)

log |B(N )|
)

(2.58)

∩
(
∩|B(N )|

k=1

{∣∣∣∣
Nk

KN
− m(k)

∣∣∣∣ ≤ eknm̃(k)

})
.

According to (2.27), (2.25) and (2.20) we have

P {BN} = 1 − o(1) (2.59)

as N → ∞.
Recall that tN (x) denote the set of the macro-vertices in the tree constructed accord-

ing to the algorithm of revealing of connected component described above. Let |tN (x)|
denote the number of macro-vertices in tN (x). Then we easily derive

P
{

C1

(
G̃N (X, p, c)

)
> |B(N )|1/2

}
≤ P

{
max

1≤i≤KN

|tN (|Xi|)| > |B(N )|1/2 | BN

}
+ o(1)

(2.60)

≤ |B(N )|
(d+ E(|C |−1)

) |B(N )|∑

k=1

(m(k) + eknm̃(k))P
{
|tN (k)| > |B(N )|1/2 | BN

}
+ o(1)

as N → ∞. We shall use the multi-type branching process introduced above (Section
2.2) to approximate the distribution of |tN (k)|. Let further X c,p(k) denote the total
number of the particles (including the initial one) produced by the branching process
starting with a single particle of type k (see the definition of this branching process in
Section 2.2).

Proposition 2.4. For any p < pc and c < ccr(p) one can find p < p′ < pc and c < c′ <
ccr(p′) arbitrarily close to p and c, correspondingly, such that for all k ≥ 1 and all large N

P
{
|tN (k)| > |B(N )|1/2 | BN

}
≤ eb1(log|B(N )|)4

P
{
X c′,p′ (k) > |B(N )|1/2

}
, (2.61)

where b1 is some positive constant independent of k and N .

Proof. Observe that at each step of the exploration algorithm, the number of the type y
offspring of a particle of type x has a binomial distribution Bin(N ′

y , p̃xy(N )) where N ′
y is

the number of remaining vertices of type y, so that N ′
y ≤ Ny.

We shall explore the following obvious relation between the Poisson and the binomial
distributions. Let Yn,p ∈ Bin(n, p) and Za ∈ Po(a), where 0 < p < 1/4 and a > 0. Then
for all k ≥ 0

P{Yn,p = k} ≤ (1 + gp2)n P{Zn
p

1−p
= k}, (2.62)

77



C

where g is some positive constant (independent of n, k and p). Notice that for all 1 ≤
x, y ≤ 2z(p)

log |B(N )|

p̃xy(N ) = 1 −
(

1 − c

|B(N )|

)xy

=
c

|B(N )| xy (1 + o(1)), (2.63)

and clearly, p̃xy(N ) ≤ 1/4 for all large N . Therefore for any fixed positive e1 we can
choose small e and d in (2.58) so that conditionally on BN we have

N ′
y

p̃xy(N )

1 − p̃xy(N )
≤ (m(y) + yne1m̃(y))k(x, y) (2.64)

for all large N .
Let us write furtherm(y) = mp(y) =

1k(p)

Pp{|C | = y}
y

, m̃(y) = m̃p(y), k(x, y) = kc,p(x, y) = ck(p)xy,

emphasizing dependence on p and c. The result (2.48) allows us to find for any p < p′ <
pc positive constants e2 and e1 = e1(e2, p′) such thatmp(y) + yne1m̃p(y) ≤ (1 + e2)mp′ (y), (2.65)

and moreover e2 ↓ 0 as p′ ↓ p. Setting now

c′ = (1 + e2)
k(p)k(p′)

c

we derive from (2.64) with a help of (2.65) that conditionally on BN with an appropriate
choice of constants

N ′
y

p̃xy(N )

1 − p̃xy(N )
≤ (1 + e2)mp′(y)kc,p(x, y) = mp′ (y)kc′,p′(x, y). (2.66)

Recall that above we fixed p and c < ccr(p), where ccr(p) is strictly decreasing and contin-
uous in p. Furthermore, function k(p) is analytic on [0, pc). Hence, we can choose p′ > p

and c′ = (1 + e2)
k(p)k(p′) c so that

c < c′ < ccr(p′) < ccr(p), (2.67)

and moreover c′ and p′ can be chosen arbitrarily close to c and p, respectively. Now
according to (2.62) and (2.66)

P{YN ′

y ,epxy (N ) ≥ k} ≤ (1 + gp̃xy(N )2)N ′

y P{Z
N ′

y

epxy (N )

1−epxy (N )

≥ k} (2.68)
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≤ (1 + gp̃xy(N )2)|B(N )|P{Zmp′ (y)kc′,p′ (x,y) ≥ k}.
Hence, if conditionally on BN at each (of at most |B(N )|) step of the exploration algo-
rithm which reveals tN (k), we replace the Bin(N ′

y , p̃xy(N )) variable with the Po
(mp′(y)kc′,p′(x, y)

)

one, we arrive at the following bound using branching process:

P
{
|tN (k)| > |B(N )|1/2 | BN

}
(2.69)

≤
(

1 + C

(
max

x,y≤2 log |B(N )|/z(p)
p̃xy(N )

)2
)|B(N )|2

P
{
X c′,p′ (k) > |B(N )|1/2

}
.

This together with (2.63) implies statement (2.61) of the Proposition. 2

Substituting (2.61) into (2.60) we derive with a help of (2.65)

P
{

C1

(
G̃N (X, p, c)

)
> |B(N )|1/2

}
(2.70)

≤ b2|B(N )|eb1(log |B(N )|)4

|B(N )|∑

k=1

kmp′ (k)P
{
X c′,p′(k) > |B(N )|1/2

}
+ o(1)

as N → ∞, where b2 is some positive constant. Using the Markov’s inequality we derive
from here

P
{

C1

(
G̃N (X, p, c)

)
> |B(N )|1/2

}
(2.71)

≤ b2|B(N )|eb1(log |B(N )|)4

z−|B(N )|1/2

Dz(c′, p′) + o(1),

where

Dz(c, p) =

∞∑

k=1

kmp(k)EzX
c,p(k).

It is clear now that if we can show that for some z > 1

Dz(c′, p′) < ∞, (2.72)

the right-hand part of (2.71) will go to zero as N → ∞, which will prove the statement
of Lemma 2.2.

Set
hz(k) = EzX

c,p(k)

and consider the series

Dz(c, p) =

∞∑

k=1

kmp(k)hz(k) = k(p)−1
∞∑

k=1

Pp{|C | = k}hz(k). (2.73)
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Note that function hz(k) (as a generating function for a branching process) satisfies the
following equation

hz(k) = z exp
{∑∞

x=1 kc,p(k, x)mp(x)(hz(x) − 1)
}

= z exp
{

ck(p)k(Dz(c, p) − k(p)−1)
}

.

Multiplying both sides by kmp(k) and summing up over k we find

Dz(c, p) =

∞∑

k=1

kmp(k)z exp
{

ck(p)k(Dz(c, p) − k(p)−1)
}

=

∞∑

k=1

k(p)−1Pp{|C | = k}z exp
{

ck(p)k(Dz(c, p) − k(p)−1)
}

.

Let us write for simplicity Dz = Dz(c, p). Hence, as long as Dz is finite, it should satisfy
equation

Dz = k(p)−1z Eec|C |(k(p)Dz−1), (2.74)

which implies in turn that Dz is finite for some z > 1 if and only if (2.74) has at least
one solution (for the same value of z). Notice that by the definition (2.73)

Dz ≥ D1 = k(p)−1
= (E(|C |−1))−1 (2.75)

for z ≥ 1. Let us fix z > 1 and consider equation

y/z = Eec|C |(y−1)
=: F (y) (2.76)

for y ≥ 1. Using the property (1.1) of the distribution of |C | it is easy to derive that
function F (y) is defined on [0, z(p)/c) where it is finite, increasing and has positive second
derivative. Compute now

∂

∂y
F (y)|y=1 = cE|C | =

c

ccr
. (2.77)

Hence, if c < ccr then there exists z > 1 such that there is a finite solution y to (2.76),
and therefore (2.74) also has at least one solution for some z > 1. Taking into account
condition (2.67), we find that Dz(c′, p′) is also finite for some z > 1, which confirms
(2.72) and therefore completes the proof of Lemma 2.2. 2

Now we are ready to complete the proof of (1.4), following almost the same argu-
ments as in the proof of the previous lemma. Let SN (x) =

∑
Xi∈tN (x) |Xi| denote the

number of vertices from B(N ) which compose the macro-vertices of tN (x). Denote

B′
N := BN ∩

(
C1

(
G̃N (X, p, c)

)
≤ |B(N )|1/2

)
.
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According to (2.59) and Lemma 2.2 we have

P {B′
N} = 1 − o(1).

This allows us to derive from (2.56)

P
{

C1

(
GN (p, c)

)
> aw

}
≤ P

{
max

1≤i≤KN

SN (Xi) > aw | B′
N

}
+ o(1) (2.78)

≤ |B(N )|
(d + E(|C |−1)

) |B(N )|∑

k=1

(m(k) + eknm̃(k))P {SN (k) > aw | B′
N} + o(1).

Let now Sc,p(y) denote the sum of types including the one of the initial particle, in
the total progeny of the introduced above (Section 2.2) branching process starting with
initial particle of type y. Repeating the same argument which led to (2.69), we get the
following bound using the introduced branching process:

P {SN (k) > aw | B′
N}

≤
(

1 + g( max
x,y≤2 log |B(N )|/z(p)

p̃xy(N )

)2
)b1|B(N )|

√
|B(N )|

P
{

Sc′,p′(k) > aw
}

as N → ∞, where we take into account that we can perform at most
√
|B(N )| steps of

exploration (the maximal possible number of macro-vertices in any L̃ conditioned on B′
N

). This together with (2.63) implies

P {tN (k) > aw | B′
N} ≤ (1 + o(1))P

{
Sc′,p′(k) > aw

}
(2.79)

as N → ∞. Substituting the last bound into (2.78) we derive

P
{

C1

(
GN (p, c)

)
> aw

}
≤ b|B(N )|

|B(N )|∑

k=1

kmp′ (k)P
{

Sc′,p′(k) > aw
}

+ o(1) (2.80)

as N → ∞, where b is some positive constant. Now similar to (2.71) we derive from
(2.80) with w = log |B(N )|

P
{

C1

(
GN (p, c)

)
> a log |B(N )|

}
≤ b|B(N )|z−a log |B(N )|Az(c′, p′) + o(1), (2.81)

where

Az(c, p) =

∞∑

k=1

kmp(k)EzSc,p(k).

It is clear that if Az(c′, p′) < ∞ for some z > 1, than for any a > 1
log z the right-hand

part of (2.81) goes to zero as N → ∞. Therefore we shall search for all z ≥ 1 for which
the series Az(c, p) converge.
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Proposition 2.5. Let 0 ≤ p < pc and c < ccr(p). Then Az(c, p) < ∞ for all

0 ≤ z ≤ z0 := exp{c(1 + y0 − E ec|C |y0)},

where

y0 =

{
y, if E c|C |e|C |z(p) ≥ 1,z(p)/c, otherwise,

Proof. Denote gz(k) = EzSc,p(k). Function gz(k) (as a generating function for a certain
branching process) satisfies the following equation

gz(k) = zk exp
{∑∞

x=1 kc,p(k, x)mp(x)(gz(x) − 1)
}

= zk exp {ck(k(p)Az(c, p) − 1)} .

Multiplying both sides by kmp(k) and summing up over k we find

Az(c, p) =

∞∑

k=1

kmp(k)zk exp {ck(k(p)Az(c, p) − 1)} .

Denoting for simplicity Az = Az(c, p), we can rewrite the last equation as follows:

Az =

∞∑

k=1

kmp(k)zk exp {ck(k(p)Az − 1)} . (2.82)

It follows from here (and the fact that Az ≥ 1/k(p) = A1 for all z ≥ 1) that if there exists
z > 1 for which the series Az converge, it should satisfy by (1.1)

z < ez(p). (2.83)

According to (2.82), as long as Az is finite it satisfies the equation

Az = (k(p))−1E
(

z|C | ec|C |(k(p)Az−1)
)

,

which implies that Az is finite for some z > 1 if and only if the last equation has at least
one solution

Az ≥ A1 = 1/k(p). (2.84)

Let us fix z > 1 and consider equation

y = E
(

z|C | ec|C |(y−1)
)

(2.85)

for y > 1. It is easy to check that at least for some y > 1 and z > 1 function

f (y, z) := E
(

z|C | ec|C |(y−1)
)
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is increasing, it has all the derivatives of the second order, and ∂2

∂y2 f (y, z) > 0. Compute
now

∂

∂y
f (y, z)|y=1,z=1 = cE|C | =

c

ccr
. (2.86)

Hence, if c > ccr there is no solution y ≥ 1 to (2.85) for any z > 1. On the other hand,
if c < ccr then there exists 1 < z0 < ez(p) such that for all 1 ≤ z ≤ z0 there is a finite
solution y ≥ 1 to (2.85).

Let us rewrite (2.85) as follows. Set

a =
1

c
log z,

then (2.85) is equivalent to

y = E ec|C |(y−1+a), (2.87)

which after the change x = y − 1 + a becomes

x + 1 − a = E ec|C |x. (2.88)

Here on the right we have a convex function with a positive second derivative (for all
x < z(p)/c). Hence, function

∂

∂x
E ec|C |x

= E
(

c|C |ec|C |x
)

is strictly increasing in x when x < z(p)/c, and continuous on the left at x = z(p)/c. By
the assumption

∂

∂x
E ec|C |x |x=0= E c|C | < 1.

Hence, if
∂

∂x
E ec|C |x |x=z(p)/c= E c|C |e|C |z(p) ≥ 1,

then there exists unique y > 0 such that

∂

∂x
E ec|C |x |x=y= E

(
c|C |ec|C |y

)
= 1. (2.89)

Define now

y0 =

{
y, if E c|C |e|C |z(p) ≥ 1,z(p)/c, otherwise,

and set

a0 := 1 + y0 − E ec|C |y0 , (2.90)
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which is strictly positive due to the preceeding argument. (Notice that function x+1−a0

is tangent to E ec|C |x.) Hence, for all a ≤ a0 equation (2.88) has at least one solution,
which implies due to (2.87) that for all

z ≤ z0 := eca0 = exp{c(1 + y0 − E ec|C |y0)} (2.91)

equation (2.85) has also at least one finite solution y > 1. This yields in turn that Az is
finite for all z ≤ z0. This finishes the proof of Proposition 2.5. 2

Now taking into account that c′ > c and p′ > p can be chosen arbitrarily close to c
and p, respectively, the statement (1.4) of Theorem 1.1 follows by (2.81) and Proposition
2.5. 2

To conclude this section we comment on the methods used here. It is shown in (9)
that in the subcritical case of the classical random graph model Gn,c/n (i.e., p = 0 in
terms of our model) the same method of generating functions leads to a constant which
is exactly a(0, c) (see (1.9)). The last constant is known to be the principal term for the
asymptotics of the size of the largest component (scaled to log n) in the subcritical case.
This gives us hope that the constant a(p, c) is close to the optimal one also for p > 0.

Similar methods were used in (10) for some class of inhomogeneous random graphs,
and in (1) for a general class of models. Note, however, some difference with the approach
in (1). It is assumed in (1), Section 12, that the generating function for the corresponding
branching process with the initial state k (e.g., our function gz(k), k ≥ 1) is bounded
uniformly in k. As we prove here this condition is not always necessary: we need only
convergence of the series Az , while gz(k) is unbounded in k in our case. Furthermore, our
approach allows one to construct constant a(p, c) as a function of the parameters of the
model.

2.5 Proof of Theorem 1.1 in the supercritical case.

Let Ck denote the set of vertices in the k-th largest component in graph GN (p, c), and

conditionally on X let C̃k denote the set of macro-vertices in the k-th largest component

in graph G̃N (X, p, c) (ordered in any way if there are ties). Let also Ck and C̃k denote
correspondingly, their sizes. According to our construction for any connected component

L̃ in G̃N (X, p, c) there is a unique component L in GN (p, c) such that they are composed
of the same vertices from B(N ), i.e., in the notations (2.10)

L = ∪Xi∈eL ∪z∈Xi {z} =: V (L̃).

Next we prove that with a high probability the largest components in both graphs consist
of the same vertices.
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Lemma 2.3. For any 0 ≤ p < pc if c > ccr(p) then

P{C1 = V (C̃1)} = 1 − o(1) (2.92)

as N → ∞.

Proof. In a view of the argument preceeding this lemma we have

P{C1 6= V (C̃1)} = P{C1 = V (C̃k) for some k ≥ 2}.

According to Theorem 12.6 from (1), conditions of which are satisfied here, in the su-
percritical case conditionally on KN such that KN /|B(N )| → E(|C |−1), we have whp

C̃2 = O(log(KN )), which by (2.2) implies C̃2 = O(log |B(N )|) whp. Also we know

already from (2.19) that in the supercritical case C̃1 = O(|B(N )|) whp, and therefore
C1 = O(|B(N )|) whp. Hence, for some positive constants a and b

P{C1 6= V (C̃1)} = P{C1 = V (C̃k) for some k ≥ 2} (2.93)

≤ P

{(
max
k≥2

|V (C̃k)| > b|B(N )|
)
∩
(

max
k≥2

C̃k < a log |B(N )|
)}

+ o(1).

It follows from (2.25) that

P{ max
1≤i≤KN

|Xi| ≥
√
|B(N )|} = o(1)

as N → ∞. Now we derive

P

{(
max
k≥2

|V (C̃k)| > b|B(N )|
)
∩
(

max
k≥2

C̃k < a log |B(N )|
)}

(2.94)

≤ P

{(
max
k≥2

|V (C̃k)| > b|B(N )|
)
∩
(

max
k≥2

C̃k < a log |B(N )|
)
∩
(

max
1≤i≤KN

|Xi| <
√
|B(N )|

)}

+o(1) ≤ P
{√

|B(N )| a log |B(N )| > b|B(N )|
}

+ o(1) = o(1).

Substituting this bound into (2.93) we immediately get (2.92). 2

Conditionally on C1 = V (C̃1) we have

C1

|B(N )| =
1

|B(N )|
∑KN

i=1 |Xi|1{Xi ∈ C̃1}

=
1

|B(N )|
∑KN

i=1

∑|B(N )|
k=1 k1{|Xi| = k}1{Xi ∈ C̃1}

=
KN

|B(N )|
∑|B(N )|

k=1 k 1
KN

#{Xi ∈ C̃1 : |Xi| = k}.

(2.95)

85



C

Note that Theorem 9.10 from (1) (together with (2.2) in our case) implies thatnN (k) :=
1

KN
#{Xi ∈ C̃1 : |Xi| = k} P→ r(k)m(k) (2.96)

for each k ≥ 1 as N → ∞, where r(k) is the maximal solution to (2.17).
We shall prove below that also

WN :=

|B(N )|∑

k=1

knN (k)
P→

∞∑

k=1

kr(k)m(k) =: b (E(|C |−1)
)−1

(2.97)

as N → ∞. Observe that according to (2.17) constant b defined above is the maximal
solution tob ≡ E(|C |−1)

∞∑

k=1

kr(k)m(k) = E(|C |−1)

∞∑

k=1

k
(

1 − e−
P

∞

y=1 k(k,y)m(y)r(y)
) m(k)

= 1 − E
(

e−c|C |b).
This proves that b is the maximal root of (1.6). Then (2.97) together with (2.2) will
allow us to derive from (2.95) that for any positive e

P
{∣∣∣

C1

(
GN (p, c)

)

|B(N )| − b∣∣∣ > e | C1 = V (C̃1)
}

= P
{∣∣∣

KN

|B(N )|WN − b∣∣∣ > e}→ 0

as N → ∞. This combined with Lemma 2.3 would immediately imply

C1

(
GN (p, c)

)

|B(N )|
P→ b , (2.98)

and hence the statement (1.5) of the theorem follows.
Now we are left with proving (2.97). For any 1 ≤ R < |B(N )| write WN :=

W R
N + wR

N , where

W R
N :=

R∑

k=1

knN (k), wR
N :=

|B(N )|∑

k=R+1

knN (k).

By (2.96) we have for any fixed R ≥ 1

W R
N

P→
R∑

k=1

kr(k)m(k) (2.99)
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as N → ∞. Consider wR
N . Note that for any k ≥ 1nN (k) ≤ 1

KN

KN∑

i=1

Ik(|Xi|) =
Nk

KN
. (2.100)

Using events Ad,N defined in (2.26), we obtain from (2.100) for any fixed 0 < d <
E(|C |−1)/2 and k ≥ 1

EnN (k) ≤ E

(Nk

KN
1{Ad,N})+ E

(Nk

KN
1{Ad,N})

≤ ENk(
E(|C |−1) − d) |B(N )| + |B(N )|P{Ad,N}.

Substituting bound (2.40) into the last formula we obtain

EnN (k) ≤ k(p)m(k)|B(N )|+ |∂B(N )|m̃(k)(
E(|C |−1) − d) |B(N )| + |B(N )|P{Ad,N}.

Bound (2.27) allows us to derive from here that

EnN (k) ≤ A1(m(k) + m̃(k) + e−a1|B(N )|) (2.101)

for some positive constants A1 and a1 independent of k and N . This together with (2.48)
yields

EwR
N =

|B(N )|∑

k=R+1

kEnN (k) ≤ A2e−a2R (2.102)

for some positive constants A2 and a2.
Clearly, for any e > 0 we can choose R0 so that for all R ≥ R0

∞∑

k=R+1

kr(k)m(k) < e/3,

and then we have

P{|WN −
∞∑

k=1

kr(k)m(k)| > e} (2.103)

= P{|(W R
N −

R∑

k=1

kr(k)m(k)) + wR
N −

∞∑

k=R+1

kr(k)m(k)| > e}
≤ P{|W R

N −
R∑

k=1

kr(k)m(k)| > e/3} + P{wR
N > e/3}.
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Markov’s inequality together with bound (2.102) gives us

P{wR
N > e/3} ≤ 3EwR

Ne ≤ 3A2e−a2Re . (2.104)

Making use of (2.104) and (2.99) we immediately derive from (2.103)

P{|WN −
∞∑

k=1

kr(k)m(k)| > e} ≤ o(1) +
3A2e−a2Re (2.105)

as N → ∞. Hence, for any given positive e and e0 we can choose finite R so large that

lim
N→∞

P{|WN −
∞∑

k=1

kr(k)m(k)| > e} < e0. (2.106)

This clearly proves statement (2.97), and therefore finishes the proof of the theorem. 2
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Chapter D

Spread of Activation on Random
Graphs

T. Vallier

Centre for Mathematical Sciences, Lund University, Sweden

Abstract

We consider the spread of activation in the Erdös-Rényi random graph Gn,p from a fixed
set of activated vertices An(0) with |An(0)| depending on n. Any vertex which is linked
to at least 2 activated vertices becomes activated. We describe and analyze the process
of activation. In particular, when p =

c
n and |An(0)| = o(n), the activation does not

spread through a positive part of the vertices (as n → ∞). When 1
p = o(n) we show that,

depending on |An(0)| the total number of activated vertices varies from o(n) to n − o(n).
This indicates existence of a phase transition along different parameters of the model.

Key words: Classical random graphs, phase transition, contact process.
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1 Introduction

In the last decade a number of models of random growth were introduced in probability
to study natural phenomena. Here we study a marginal case of a network designed to
study the spread of activity in a neural network and introduced in (5) . A special feature
of such a network is that a neuron often needs several incoming impulses to be activated.
To model this effect we introduce the following model.

Let Gn,p denote an Erdös-Rényi random graph on the set of vertices Vn = {1, ..., n}
where the edges between any two different vertices i and j are present independently with
probabilities

pij(n) = p(n).

Here we denote (i, j) as an edge between i and j in G. The set Vn is separated in two types
of vertices, the activated and the non activated. Let all the vertices with indices in

An(0) ⊆ Vn, |An(0)| ≥ 2.

be activated.
Any vertex v which is connected to at least two vertices in An(0) becomes activated and

is a vertex of the first generation which we denote v ∈ B1
n . The vertex v remains activated

and now contributes to the activation of other vertices through its edges. At each step, any
non activated vertex becomes activated if it is connected to at least 2 activated vertices.
Since the original set of activated vertices An(0) is not necessarily connected, the maximal
set obtained along the process of activation which we denote An(n) does not need to be
connected either. Thus |An(n)| has no connection with the size of the largest connected
component. However, any vertex of An(n) is connected through a path to a vertex of
An(0). Consider during the process of activation the link between activated and non
activated vertices as directed in the sense of activation, a vertex v is in the kth generation,
v ∈ Bk if the longest path through directed edges from An(0) to v has length k.

This model resembles contact processes (4), models of random growth (e.g., (2)). It
fits a general definition of a probabilistic cellular automata (1) (which are known to be
extremely difficult to analyse in a full generality), and is rather close to a "semi-totalistic"
mean-field model also defined in (1). However in the "semi-totalistic" mean-field model
the neighbourhood is deterministic while in this paper the neighbourhood is defined
through the links in the random graph.

2 Results

Theorem 2.1. Let p(n) ≥ c
n for some c > 0 arbitrarily fixed with limn→∞

√
np(n) = 0.

If limn→∞ |An(0)|np2(n) = 0 then

|An(n)|np2(n)
P−→ 0. (2.1)
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Corollary 2.1. Under conditions of Theorem 2.1

|An(n)|
n

P−→ 0. (2.2)

Theorem 2.2. Let p(n) =
w(n)

n for some w(n) such that limn→∞ w(n) = ∞ and
limn→∞ p(n)

√
n = 0. If |A(0)| ≥ 1+n

np2(n) where n > 0 then

|An(n)|
n

P−→ 1. (2.3)

Corollary 2.1 tells us that starting with a set of vertices of size |An(0)| = o
(

1
np2(n)

)
as

n → ∞, with a probability tending to 1 as n goes to infinity, the activation doesn’t spread
through a positive part of the graph. On the other hand, if we start with a set of size at least
1+n

np2(n) then the size of the set of activated vertices rescaled by 1
n converges in probability

to one. (We activate almost all vertices.) The change occurs when |An(0)| ∼ 1
np2(n) . We

study the case p(n) =
c√
n

separately where c > 0 for which the range of the threshold is

of order constant.

Theorem 2.3. Let p(n) =
c√
n
.

1. If |An(0)| = k ≥ 2 then there exists z(k, c) > 0 such that for any e > 0

1 > lim
n→∞

P

{ |An(n)|
n

> 1 − e} ≥ z(k, c). (2.4)

2. If |An(0)| = a(n) where a(n) is such that limn→∞a(n) = ∞ then

|An(n)|
n

P−→ 1. (2.5)

If we start with a finite number of vertices with a positive probability lower than
1, we activate almost all the graph. If we start with a number of vertices a(n) where
limn→∞ a(n) = ∞ then with a probability tending to 1 as n goes to infinity we activate
almost all the graph.

In the case when the probability of connection is much larger than 1√
n
, even starting

with a finite number of vertices, the size of the set of activated vertices rescaled by 1
n

converges in probability to 1.

Theorem 2.4. Let p(n) =
w(n)√

n
for some w(n) where limn→∞ w(n) = ∞. If |A(0)| = k ≥

2 then
|A(n)|

n

P−→ 1. (2.6)
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3 Basics

3.1 The algorithm

To analyse the size of An(n) we shall introduce the following algorithm which uncovers
the vertices of An(n). This algorithm can be compared with the well-known algorithm of
finding a connected component in a random graph (see, e.g., (3)).

On a graph G ∈ Gn,p we construct a process
(
An(t),L(t)

)
, t = 0, ..., n, as follows.

The set Vn is separated in two types, the activated vertices and the non activated
vertices. Let An(t) denote the set of activated vertices at time t ∈ {0, 1, ...}. We start
with

An(0) ⊆ Vn, |An(0)| ≥ 2.

The spread of activation is defined according to the following algorithm.

• Step 0. Let u0 be a vertex chosen uniformly at random among the vertices of An(0).

Denote this distribution as u0 ∈ U
(
An(0)

)
.

1. Find all the neighbours of u0 in G (i.e. the vertices connected to u0 in G).
Call that set N (u0).

2. Set a directed edge from the vertex u0 to any vertex u ∈ N (u0) and denote it
(−−→u0, u). Call Ln(0) = {(−−→u0, u), u ∈ N (u0)} the set of directed edges at time
0.

3. Mark u0 as saturated. Denote Sn(0) = {u0} the set of saturated vertices at
time 0. Notice that the set of saturated vertices will always be included in the
set of activated vertices

Sn(t) ⊆ An(t) for any t ≥ 0.

• Step 1. Let u1 ∈ U
(
An(0) \ Sn(0)

)
.

1. Find all the neighbours of u1 in the graph G among the vertices Vn \ An(0).
Call them N (u1) = {u ∈ Vn \ An(0), (u1, u) ∈ G}.

2. Set directed edges (−−→u1, u) from u1 to u ∈ N (u1) and denote DLn(1) =

{(−−→u1, u), u ∈ N (u1)} the set of these edges. Then

Ln(1) = Ln(0) ∪DLn(1),

is the set of directed edges at time 1.

3. Mark u1 as saturated and set

Sn(1) = Sn(0) ∪ {u1}.

96



3. Basics

4. Find all the vertices among N (u1) with in-degree 2 (i.e, vertices u having two
incoming edges in Ln(1)). Call them DAn(1). The set of activated vertices at
the end of step 1 is

An(1) = An(0) ∪DAn(1).

Up to step k = |An(0)| − 1, we choose uk ∈ U
(
An(0) \ Sn(k − 1)

)
and follow the

same procedure as above, setting

Ln(k) = Ln(k − 1) ∪DLn(k),

Sn(k) = Sn(k − 1) ∪ {uk},
An(k) = An(k − 1) ∪DAn(k),

Then at time k0 = |An(0)| we have

Sn(k0) = An(0). (3.7)

Call
B1

n = An(k0) \ An(0),

the first generation of activated vertices. We shall say that An(0) is the generation 0
of activated vertices.

We now define recursively further generations as follows. Suppose we constructed

the l ≥ 1 first generations and at time kl = |An(0)| +∑l
i=1 |Bi

n| we have (as in
(3.7))

Sn(kl ) = An(0) ∪
l⋃

i=1

Bi
n.

Call

Bl+1
n = An(kl ) \

{
An(0) ∪

l⋃

i=1

Bi
n

}

the generation l + 1 of activated vertices. We can now define the algorithm at any
time k.

• Step k ≥ |An(0)|. Let uk ∈ U (B
j
n \ Sn(k)) where j = min{i ≥ 1 : Bi

n \ Sn(k− 1) 6=
∅}.

1. Find all the neighbours of uk in G among the vertices of Vn \ An(k − 1) and
call this set N (uk).

2. Set directed edges (−−→uk, u) from uk to u ∈ N (uk) and denote DLn(k) =

{(−−→uk, u), u ∈ N (uk)} the set of these edges. Define

Ln(k) = Ln(k − 1) ∪DLn(k),

which is the set of directed edges at time k.
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3. Mark uk as saturated and set

Sn(k) = Sn(k − 1) ∪ {uk}.

4. Find all the vertices among N (uk) with in-degree 2. Call them DAn(k). The
set of activated vertices at the end of the step k is

An(k) = An(k − 1) ∪DAn(k).

We denote An(n) the limiting set of activated vertices andLn(n) the limiting set of directed
between 2 vertices of An(n). The graph of activated vertices is thus

Ga(n) =
(
An(n),Ln(n)

)

The algorithm stops after step k ≤ n in two different cases: either all the vertices are
activated i.e.,

|An(k)| = n, (3.8)

or
An(k) = Sn(k), (3.9)

in which case we have explored the neighbourhood of all the activated vertices and
An(n) = An(k).

To simplify the notations, we will only write A(k) for An(k) omitting the index n.
The limiting set of activated vertices A(n) is function of the given graph G and the

original set of activated vertices A(0) where A(0) is chosen randomly. The order in which
we choose the vertices in the algorithm has no incidence on A(n). Similarly as in (1), the
only information of relevance is the number of activated and saturated vertices at time t
in the algorithm.

The following lemma implies that starting with a set A(0) of activated vertices and
picking the vertex ut in any order O = (u0, u1, ...) among the activated vertices at time t ,
we generate the same set of activated vertices An.

Lemma 3.1. Let A(0) ⊆ V and let A(n) and A′(n) be the limiting set of activated vertices
in the algorithm with an order O and respectively, O′ on a graph G ∈ Gn,p then

A(n) = A′(n).

Proof of lemma 3.1. By definition a vertex v ∈ A(n) if there exists a path of directed edges
from a vertex of A(0) to v:

A(n) =

{
v ∈ V : ∃u ∈ A(0), ∃u1, ..., ui ∈ V , (−−→u, ui), (−−−−→ui, ui−1), ..., (−−−→u2, u1), (−−→u1, v)

}
.

Suppose that there exists a vertex v ∈ A(n) such that v /∈ A′(n). Since v ∈ A(n) there

exists two vertices u1 and u′1 ∈ A(n) such that (−−→u1, v) ∈ L(n) and (
−−→
u′1, v) ∈ L(n) where

L(n)is the set of directed edges generated along the algorithm.
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If u1 ∈ A′(n) and u′1 ∈ A′(n) then v ∈ A′(n). This implies that either u1 /∈ A′
1 or

u′1 /∈ A′
1. Suppose that u1 /∈ A′(n), using the same argument as above, we show that at

least one of the vertices u2, u′2 with (−−−→u2, u1) ∈ L(n) and (
−−−→
u′2, u1) ∈ L(n) doesn’t belong to

A′(n). Say that u2 /∈ A′(n). Recursively, we find a vertex ui ∈ B1 is such that ui /∈ A(n)′.

If (−−→u0, ui) ∈ L(n) and (
−−→
u′0, ui) ∈ L(n) then u′0 /∈ A′(n) or u0 /∈ A′(n) which contradicts

the fact that u′0 and u0 ∈ A(0) ⊆ A′(n). Finally, for any v ∈ A(n) we have v ∈ A′(n) from
which it follows A′(n) = A(n).

Although unnecessary to find |A(n)|, we order the vertices in the algorithm in gen-
erations. This notion provides information on the spread of activation and allows us to
give a more extensive picture of the graph of activated vertices. It is however meaningless
to consider the limiting set of edges L(n) in the graph Ga(n) as the edges are directly
dependent of the order O in which we picked up the vertices in the algorithm. Suppose
for example that a vertex of the first generation is the neighbour via undirected edges with
at least 3 vertices of A(0), say u1, u2, u3. A vertex becomes activated if its in-degree is 2,
we see that picking first u1 and u2, then (−−→u3, u) /∈ L(n) while if we choose u2 and u3 first
then we will have (−−→u3, u) ∈ L(n) but (−−→u1, u) /∈ L(n).

3.2 Probability of activation

In the following, we call probability of activation at step t the probability that a non
activated vertex u /∈ A(t − 1) becomes activated at step t in the algorithm, u ∈ A(t).

Let u /∈ A(t − 1). The probability that at step t the vertex u becomes activated is

pa(t) = P{u ∈ A(t) \ A(t − 1)}
= P

{
(−−→ut , u) ∩ {∃!ui, i < t, (−−→ui, u)}

}

= P(−−→ut , u)

t−1∑

i=0

P{(−−→ui, u)}
∏

j 6=i,j<t

P{(−−→vj, u)c}

= p2(n)t
(
1 − p(n)

)t−1
.

4 Proofs

4.1 Proof of Theorem 2.1

In this part, we prove Theorem 2.1 which states that if we start with a number of activated
vertices |A(0)| =

1a(n)np2(n)
where limn→∞ a(n) = ∞ then with a probability tending to 1

as n goes to infinity, the size of the set of activated vertices remains in this region.
The following lemma states that if the size of A(0) is sufficiently small then with a

probability tending to 1 as n goes to infinity, no vertex is activated.
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Lemma 4.1. Let p(n) ≥ c
n for some c > 0 such that limn→∞ p(n)

√
n = 0. Let a(n) be a

function such that limn→∞ a(n) = ∞. If |A(0)| ≤ 1a(n)
√

np(n)
then

lim
n→∞

P{|A(n)| − |A(0)| ≥ 1} = 0. (4.10)

Proof of lemma 4.1. Suppose that |A(0)| =

⌊
1a(n)
√

np(n)

⌋
The probability that a vertex u

becomes activated at time s is pa(s) with

pa(s) = P{u ∈ A(s) \ A(s − 1)}
= p2(n)s

(
1 − p(n)

)s−1
.

The number of activated vertices at time s follows a binomial law

Y (s) = |A(s) \ A(s − 1)| ∈ Bin
(
n − |A(s − 1)|, pa(s)

)
.

The fact that

A(t) = A(0) ∪
t⋃

s=1

{A(s) \ A(s − 1)},

for any t ≥ 1 implies

|A(t)| = |A(0)|+
t∑

s=1

Y (s), (4.11)

for any t ≥ 1. The probability of activation of a vertex at time s is bounded from above
by

pa(s) ≤ p2(n)s.

The random variable Y (s) is stochastically dominated by the random variable U +(s) ∈
Bin(n, p2(n)s). Therefore

E

(|A(0)|−1∑

s=1

Y (s)

)
≤ E

(|A(0)|−1∑

s=1

U +(s)

)
.

with E
(
U +(s)

)
= np2(n)s. We deduce that

E

(|A(0)|−1∑

s=1

Y (s)

)
≤ np2(n)

|A(0)|−1∑

s=1

s

≤ np2(n)
1

2

(
|A(0)|2 − |A(0)|

)
. (4.12)
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By assumption |A(0)| =

⌊
1a(n)
√

np(n)

⌋
. Equation (4.12) implies

np2(n)
1

2

(
|A(0)|2 − |A(0)|

)
≤ 1a2(n)

,

from which we derive

E

(|A(0)|−1∑

s=1

Y (s)

)
≤ 1a2(n)

. (4.13)

Using Markov inequality

P{X ≥ e} ≤ EXe ,

where X is a nonnegative random variable and equation (4.13) we find that

lim
n→∞

P

{(|A(0)|−1∑

s=1

Y (s)

)
≥ 1

}
= 0.

which implies by (4.11) that

lim
n→∞

P

{
|A
(
|A(0)| − 1

)
| − |A(0)| ≥ 1

}
= 0 (4.14)

With a probability tending to one as n goes to infinity, the process of activation of the
vertices stops at time |A(0)| since all the activated vertices are saturated

lim
n→∞

P

{
|A
(
|A(0)|

)
| − |S

(
|A(0)| − 1

)
| = 0

}
= 1.

The condition (3.9) is fulfilled and

lim
n→∞

P

{
|A
(
|A(0)| − 1

)
| = |A(n)|

}
= 1. (4.15)

Together, (4.14) and (4.15) imply equation (4.10)

lim
n→∞

P

{
|A(n)| − |A(0)| ≥ 1

}
= 0.

which proves Lemma 4.1

If A(0) doesn’t fulfil the conditions of Lemma 4.1 then vertices are activated with a
positive probability. We show that if the number of activated vertices non-saturated is
of order constant then there is no further activations with probability tending to 1 as
n → ∞.
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Lemma 4.2. Let p(n) ≥ c
n for some c > 0 such that limn→∞ p(n)

√
n = 0. Let a(n) be

such that limn→∞ a(n) = ∞, t(n) =
1a(n)np2(n)

and C a positive constant. Then

lim
n→∞

P

{
|A(n)| − |A(t(n))| ≥ 1

∣∣∣|A
(
t(n)
)
| − t(n) ≤ C

}
= 0. (4.16)

Proof of lemma 4.2. By the definition of saturated vertices in the algorithm, we have
|S
(
t(n)
)
| = t(n) + 1 therefore the number of activated vertices which are non saturated

is
|A
(
t(n)
)
| − |S

(
t(n)
)
| = |A

(
t(n)
)
| − t(n) − 1.

For

t(n) =

⌊ 1a(n)np2(n)

⌋
(4.17)

we have in the condition in (4.16)

|A
(
t(n)
)
| = t(n) + C .

The expected number of vertices activated between time t(n) and |A
(
t(n)
)
| = t(n) + C is

E

( t(n)+C∑

s=t(n)+1

Y (s)

)
≤ E

( t(n)+C∑

s=t(n)+1

U +(s)

)

≤ np2(n)

t(n)+C∑

s=t(n)+1

s

≤ np2(n)
(

Ct(n) +
C2

+ C

2

)
.

By (4.17) we have

E

( t(n)+C∑

s=t(n)+1

Y (s)

)
≤ Ca(n)

+ np2(n)
C2

+ C

2
.

By assumption limn→∞ np2(n) = 0 and limn→∞ a(n) = ∞ therefore

lim
n→∞

E

( t(n)+C∑

s=t(n)+1

Y (s)

)
= 0. (4.18)

Using Markov inequality and equation (4.18) we find

lim
n→∞

P

{ t(n)+C∑

s=t(n)+1

Y (s) ≥ 1

}
= 0. (4.19)
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Similarly as in the proof of Lemma 4.1, (4.19) implies

lim
n→∞

P

{
|A
(
|A
(
t(n)
)
|
)
| − |A

(
t(n)
)
| ≥ 1

∣∣∣t(n) =

⌊ 1a(n)np2(n)

⌋}
= 0 (4.20)

This shows that with a probability tending to one as n goes to infinity, there is no further
activation after time |A

(
t(n)
)
|. Using (4.20) we deduce that if |A

(
t(n)
)
| = t(n) + C then

lim
n→∞

P

{
|A(n)| − |A

(
t(n)
)
| ≥ 1

∣∣∣∣t(n) =

⌊ 1a(n)np2(n)

⌋}
= 0.

Now that we know under which condition the process of activation stops we can
prove that the conditions of lemma 4.2 are fulfilled if limn→∞ |A(0)|np2(n) = 0.

Proof of theorem 2.1. Write

|A(0)| =

⌊ 1a(n)np2(n)

⌋
(4.21)

where a(n) is an arbitrary fixed function such that limn→∞ a(n) = ∞.
We study separate cases.
A. In the case when limn→∞

1a(n)
√

np(n)
= 0 which implies limn→∞ |A(0)|√np(n) = 0

then the condition of lemma 4.1 is fulfilled and

lim
n→∞

P{|A(n)| − |A(0)| ≥ 1} = 0.

B. Suppose now that there exists c > 0 such that a(n) ≤ c√
np(n)

. The expected size of

the first generation B1 is by (4.12)

E
(
|B1|
)
≤ np2(n)

1

2

(
|A(0)|2 − |A(0)|

)

≤ 1

2
np2(n)|A(0)|2

(
1 − 1

|A(0)|
)
.

Using (4.21) and the fact that |A(0)| ≥ 2, we have

E
(
|B1|
)
≤ 1

2

1a(n)
|A(0)|

(
1 − 1

|A(0)|
)

≤ 1a(n)
|A(0)|. (4.22)

Bi. Consider the subcase when a(n) =
c√

np(n)
, (4.23)
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for some c > 0. Equation (4.22) gives

E
(
|B1|
)
≤ C1, (4.24)

for some C1 > 0. Let e > 0 and let M = ⌊ 2C1e ⌋ + 1. Consider the event

D = {|B1| ≥ M}.

Then by definition of M and using equation (4.24), we find

P{D} ≤ P

{
|B1| ≥ E

(
|B1|
)e }

.

Using Markov inequality, we have

P{D} ≤ e. (4.25)

Under the condition that |B1| ≤ M and by (4.21) we deduce

lim
n→∞

P{|B2| ≥ 1|Dc} = 0,

where Dc
= {|B1| ≤ M}. We derive that for n large

P{|B2| ≥ 1} ≤ P{|B2| ≥ 1|Dc} + P{D}
≤ 2e. (4.26)

By the definition of the algorithm we have the equality of the following events

{|A(n)| > |A(0)| + |B1|} = {|B2| ≥ 1}.

By (4.26) for n large
P{|A(n)| > |A(0)|+ |B1|} ≤ 2e.

By the assumption (4.23) we have limn→∞ |A0| = ∞ and using (4.25) we find

lim
n→∞

P{|B1| > |A(0)|} = 0,

which together with (4.26) implies

lim
n→∞

P{|A(n)| ≥ 2|A(0)|} = 0.

By assumption limn→∞ |A(0)|np2(n) = 0, thus

lim
n→∞

P{|A(n)|np2(n) = 0} = 1.
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This proves Theorem 2.1 in the case a(n) =
c√

np(n)
.

Bii. From now on, suppose that limn→∞
a(n)√
np(n)

= 0.

Define for any i such that limn→∞
(

2a(n)

)i

|A(0)| = ∞, the event

Bi =

{
|Bi| ≤

( 2a(n)

)i

|A(0)|
}
.

We shall prove that for a certain k0

lim
n→∞

P

{k0−1⋂

k=1

Bk

}
= 1. (4.27)

This would imply that

P{|A(n)| ≥ 2|A(0)|} ≤ P

{
|A(n)| ≥ 2|A(0)|

∣∣∣
k0−1⋂

k=1

Bk

}
+ P

({k0−1⋂

k=1

Bk

}c)

≤ P

{
|A(n)| ≥ 2|A(0)|

∣∣∣
k0−1⋂

k=1

Bk

}
+ o(1) as n → ∞.

To prove (4.27), consider the conditional expectation

E

(
|Bk|

∣∣∣ |B1|, ..., |Bk−1|
)
≤

|A(0)|+
Pk−1

i=1 |Bi|∑

|A(0)|+Pk−2
i=1 |Bi|+1

np2(n)s

≤ np2(n)|Bk−1|1
2

(
2|A(0)|+ ... + 2|Bk−2| + |Bk−1|

)
.

(4.28)

The inequality (4.28) holds almost surely and for any Bi, we have

Bi ∈ s(Bi),

where s(Bi) is the sigma algebra generated by the random variable Bi. Hence we find

E

(
|Bk|
∣∣∣∣ B1, ...,Bk−1

)
≤ np2(n)

( 2a(n)

)k−1

|A(0)|2
(

1 + 2

k−1∑

i=1

( 2a(n)

)i
)

≤ 1a(n)

( 2a(n)

)k−1
(

1 + 2

k−1∑

i=1

( 2a(n)

)i
)
|A(0)|, (4.29)
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for any k such that limn→∞
(

2a(n)

)k

|A(0)| = ∞. Notice that for any e > 0 there exists

N such that for any n ≥ N we have

k−1∑

i=1

( 2a(n)

)i

< 1 + e, (4.30)

which implies

E

(
|Bk|
∣∣∣ B1, ...,Bk−1

)
≤ 2 + ea(n)

( 2a(n)

)k−1

|A(0)|. (4.31)

Define

k0 = min
{

k :
|A(0)|ak(n)

< C1

}
, (4.32)

for some C1 > 0. Consider the following

P

{
Bc

k

∣∣∣ B1, ...,Bk−1

}
= P

{
|Bk| >

( 2a(n)

)k

|A(0)|
∣∣∣B1, ...,Bk

}
.

Using (4.31) and Chebyshev inequality we find

P

{
|Bk| >

( 2a(n)

)k

|A(0)|
∣∣∣B1, ...,Bk

}
≤ 2

ak(n)

|A(0)| .

We can find the probability for the event B1 ∩ ... ∩ Bk0−1

P

{k0−1⋂

k=1

Bk

}
≥

k0−1∏

k=1

(
1 − 2

ak(n)

|A(0)|
)
,

which converges to 1 as n goes to infinity if

lim
n→∞

k0−1∑

k=1

ak(n)

|A(0)| = 0. (4.33)

The sum in (4.33) is bounded from above as follows

k0−1∑

k=1

ak(n)

|A(0)| ≤
1

|A(0)|2ak0−1(n).

By definition of k0 (see (4.32)) we have

lim
n→∞

1

|A(0)|2ak0−1(n) = 0.
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We find that

lim
n→∞

P

({k0−1⋂

k=1

Bk

}c)
= 0. (4.34)

For k = k0 there exists C such that

E

(
|Bk0 |

∣∣∣∣
k0−1⋂

k=1

Bk

)
≤ C .

By (4.34) and using Markov inequality we find that for any e > 0, there exists M such
that we have

P

{
|Bk0 | ≥ M

∣∣∣∣
k0−1⋂

k=1

Bk

}
≤ e

2
. (4.35)

Let t(n) = |A(0)| +
2a(n)
|A(0)|∑k0

k=1

(
2a(n)

)k

. Using Chebyshev inequality, equations

(4.29) and (4.34) we find for any e0 > 0 and n large

P

{
|A
(
|Bk0 |

)
| ≤ t(n)

}
≤ P

{
|A
(
|Bk0 |

)
| ≤ t(n)

∣∣∣
k0−1⋂

k=1

Bk

}
+ P

{k0−1⋂

k=1

Bk

}

≤ e0.

By (4.30), we have
t(n) ≤ 2|A(0)|.

By assumption, |A(0)| =
1a(n)np2(n) thus t(n) fulfils the conditions of Lemma 4.2. Similarly

to the case Bi. we find using (4.35) that

P

{
|Bk0+1| ≥ 1

}
≤ e.

With a probability tending to one as n goes to infinity the process doesn’t activate fur-
ther vertices after the generation k0. Using (4.29) we find that the expected number of
activated vertices is

E

(
|A(n)|

∣∣∣∣
k0−1⋂

k=1

Bk

)
≤ |A(0)|+ |A(0)|

∞∑

k=1

( 2a(n)

)k

≤ |A(0)|
(

1 +
2a(n)

1

1 − 2a(n)

)
.

We deduce using Chebyshev inequality that

lim
n→∞

P

{
|A(n)| ≥ 2|A(0)|

∣∣∣
k0−1⋂

k=1

Bk

}
= 0.
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By (4.34) we can conclude that

lim
n→∞

P{|A(n)| ≥ 2|A(0)|} = 0.

Since limn→∞ |A(0)|np2(n) = 0, we have for any e > 0

lim
n→∞

P{|A(n)|np2(n) > e} = 0.

which implies theorem 2.1.

4.2 Proof of Theorem 2.2

The proof of Theorem 2.2 is splitted in several propositions. We first prove that if we
activate a positive part of the graph then with a probability tending to 1 as n → ∞, we
activate almost all the graph. Then we find under which condition we activate a positive
part of the graph. In the Proposition 4.2, we show that it is sufficient that we can activate
at least c

p(n)
vertices with c > 0. Propositions 4.2, 4.3 and 4.4 give a chain of conditions

under which we activate at least c
p(n) vertices for some c > 0 coming off with the condition

|A(0)| ≥ 1+n
np2(n) , n > 0.

The following proposition implies that in a graph if the probability of connection
between the vertices is p(n) =

w(n)
n then if a positive part of the graph is activated, this

part will activate almost all the graph.

Proposition 4.1. Let p(n) =
w(n)

n for some w(n) with limn→∞ w(n) = ∞. Consider the
graph Gn,p = (V ,L). Let j > 0 and Sj ⊂ V with |Sj| = ⌊jn⌋. For any set S≥e with
|S≥e| ≥ en and Sj ∩ S≥e = ∅:

lim
n→∞

P

{
∃v ∈ S≥e, ∃u1, u2 ∈ Sj : (u1, v) ∈ L, (u2, v) ∈ L

}
= 1

With this lemma, we only need to show that we activate a positive part of the graph
to show that we activate almost all the graph.

Proof of proposition 4.1. Consider a set Sj with |Sj| = ⌊jn⌋, the event that a vertex v1

has less than 2 connections (i.e. 0 or 1) with the vertices of Sj is

F1 =

{⌊jn⌋⋂

i=1

(v1, ui)
c ∪
{⌊jn⌋⋃

i=1

(v1, ui) ∩
⋂

l 6=i,l≤⌊jn⌋
(v1, ul )

c

}}
,

which has a probability

P{F1} = P

{⌊jn⌋⋂

i=1

(v1, ui)
c ∪
{⌊jn⌋⋃

i=1

(v1, ui) ∩
⋂

l 6=i,l≤jn

(v1, ul )
c

}}

=
(
1 − p(n)

)⌊jn⌋
+ ⌊j⌋np(n)

(
1 − p(n)

)⌊jn⌋−1
.
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By assumption p(n) =
w(n)

n with limn→∞ w(n) = ∞, then for any e0 > 0 there exists
N0 > 0 such that for any n ≥ N0

P{F1} ≤ e−jw(n)
+ jw(n)e−jw(n)(1 + e0).

The probability that any vertex v ∈ Se is connected to at most 1 vertex of Sj is

Pen =

(⌊(1 − j)n⌋
⌊en⌋ )

P

{⌊en⌋⋂

k=1

Fk

}

=

(⌊(1 − j)n⌋
⌊en⌋ )

P

{⌊en⌋⋂

k=1

⌊jn⌋⋂

i=1

(vk, ui)
c ∪
{⌊jn⌋⋃

i=1

(vk, ui) ∩
⋂

l 6=i,l≤⌊jn⌋
(vk, ul )

c

}}

≤
(⌊(1 − j)n⌋

⌊en⌋ )(
e−jw(n)

+ jw(n)e−jw(n)(1 + e0)
)en

(1 + e1). (4.36)

Using Stirling formula in (4.36), we find

Pen ≤ 1√
2p √

1 − j√e√1 − j− e 1√
n

( 1 − j
1 − j− e)(1−j)n

(1 − j− ee )en(
e−jw(n)

+ jw(n)e−jw(n)(1 + e0)
)en

(1 + e2)

and
lim

n→∞
Pen = 0. (4.37)

Considering Se as a subset of S≥e we can extend (4.37) to S≥e. This proves Lemma
4.1.

The following lemma states that at step t(n) such that limn→∞ t(n)p(n) = 0, then
up to time t(n), for any e > 0 the number of activated vertices is less than en with a
probability tending to 1 as n goes to infinity. This shows that the condition |A

(
s(n)
)
| >

c
p(n) for some c > 0 is the right one. More important, this implies that up to time

t(n) with limn→∞ t(n)p(n) = 0 then the number of vertices non activated is larger than
n(1 − e) for any e > 0. This condition will be used along the following proofs.

Lemma 4.3. Suppose that |A(0)| =
1a(n)n for some a(n) with limn→∞ a(n) = ∞. Let

p(n) ≥ c
n with c > 0 and limn→∞ p(n) = 0. For t(n) such that limn→∞ t(n)p(n) = 0

consider the event
Ae(t(n)

)
= {|A

(
t(n)
)
| ≤ en},

then
lim

n→∞
P

(
Ae(t(n)

))
= 1.
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Notice that we have Ae(s + 1) ⊆ Ae(s) which implies
⋂t(n)

s=1 Ae(s) = Ae(t(n)
)

Proof of lemma 4.3. Using the fact that the random variable Y (s) is stochastically domi-
nated by the random variable U +(s) ∈ Bin

(
n, p2(n)s

)
, we have

P

(
Ace(t(n)

))
≤ P

{ |A(0)|
n

+

∑t(n)
s=1 U +(s)

n
> e}.

By assumption limn→∞
|A(0)|

n = 0. Therefore, for n sufficiently large, we have

P

(
Ace(t(n)

))
≤ P

{∑t(n)
s=1 U +(s)

n
>

e
2

}
. (4.38)

Since U +(s) ∈ Bin
(
n, p2(n)s

)
, we have

E
(
U +(s)

)
= np2(n)s (4.39)

and Var
(
U +(s)

)
≤ E

(
U +(s)

)
. The random variables U +(s), s = 1, ..., t(n) are inde-

pendent. This gives

Var

( t(n)∑

s=1

U +(s)

)
=

t(n)∑

s=1

Var
(
U +(s)

)

≤
t(n)∑

s=1

E
(
U +(s)

)
. (4.40)

Using the result (4.40) and Chebyshev inequality, we find

P

{∣∣∣∣
t(n)∑

s=1

U +(s) −
t(n)∑

s=1

E
(
U +(s)

)∣∣∣∣ >
e
2

n

}
≤ Var

(∑t(n)
s=1 U +(s)

)

( e
2
)2n2

≤
∑t(n)

s=1 E
(
U +(s)

)

( e
2
)2n2

. (4.41)

By (4.39), we have
t(n)∑

s=1

E
(
U +(s)

)
= np2(n)

t2(n) + t(n)

2
. (4.42)

By assumption limn→∞ t(n)p(n) = 0 so for n large (4.42) implies

t(n)∑

s=1

E
(
U +(s)

)
≤ e

4
n (4.43)
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Using (4.43) in (4.41) we find

P

{ t(n)∑

s=1

E
(
U +(s)

)
≤ e

4
n

}
≤ 1en

Hence

lim
n→∞

P

{∑t(n)
s=1 U +(s)

n
>

e
2

}
= 0. (4.44)

By (4.38) and (4.44) we deduce that

lim
n→∞

P

(
Ae(t(n)

))
= 1. (4.45)

Lemma 4.4. Let p(n) =
w(n)

n for some w(n) such that limn→∞ w(n) = ∞ and

limn→∞ p(n) = 0. Suppose that limn→∞
|A(0)|

n = 0. Let t(n) = ⌊ b
p(n)

+ t(n)⌋ with b > 0

and limn→∞ p(n)t(n) = 0. Then for any 0 < d < 1, we have for n large

P

{
|A
(
t(n)
)
| ≥ n

(
1 − (b + 1)e−b)(1 + d)

)∣∣∣|A
(
t(n)
)
| > t(n)

}
≤ C (b)

n
.

where C (b) > 0 for any b > 0.

Prof of lemma 4.4. We first bound from above the expected number of activated vertices
and then using Chebyshev inequality, we find a bound on the probability.

The random variable Y (s) is stochastically dominated by the random variable

U +(s) ∈ Bin
(
n, p2(n)s

(
1 − p(n)

)s−1)
. Therefore

P

{
|A
(
t(n)
)
| ≥ n

(
1 − (b + 1)e−b)(1 + d)

)∣∣∣|A
(
t(n)
)
| > t(n)

}

≤ P

{
|A(0)|+

t(n)∑

s=1

U +(s) ≥ n
(
1 − (b + 1)e−b)(1 + d)

)∣∣∣|A
(
t(n)
)
| > t(n)

}
. (4.46)

We have

E
(
U +(s)

)
= np2(n)s

(
1 − p(n)

)s−1
.

We bound the sum in (4.46) using integrals. Consider the function g(s) = np2(n)s
(
1 −

p(n)
)s−1

for s ∈ R. It has a single maximum at s0 =
1

p(n) + o
(

1
p(n)

)
with

g(s0) = np(n)e−1
+ O

(
np2(n)

)
. (4.47)

111



D

We have

∫ t(n)−1

1

g(s)ds − g(s0) ≤
t(n)∑

s=1

E
(
U +(s)

)
≤
∫ t(n)+1

1

g(s)ds + g(s0). (4.48)

Suppose that t(n) =
b

p(n)
+ t(n), with limn→∞ p(n)t(n) = 0. We change the variable into

s =
x

p(n) , ds =
1

p(n) dx. The upper bound in (4.48) becomes

∫ t(n)+1

0

g(s)ds = n

∫ b+(t(n)+1)p(n)

0

x
(
(1 − p(n)

) 1
p(n)

)x−p(n)

dx.

Since
(
1 − p(n)

) 1
p(n) ≤ e−1 we have

∫ t(n)+1

0

g(s)ds ≤ n

∫ b+(t(n)+1)p(n)

0

xe−xdx

≤ n
(
−1 −

(b + (t(n) + 1)p(n)
)
e−b+(t(n)+1)p(n)

)
+ 1.

By assumption limn→∞ p(n) = 0 and limn→∞ p(n)t(n) = 0 so for any e0 > 0, there
exists N0 such that for any n > N0 we have

t(n)∑

s=1

EU +(s) ≤
∫ t(n)+1

0

g(s)ds + f (s0)

≤ (1 + e0)n
(
1 − (b + 1)e−b).

For the lower bound, we use the fact that for any e1, there exists N1 such that for any

n > N1 we have e−1(1 − e1) <
(
1 − p(n)

) 1
p(n) which gives

∫ t(n)−1

1

g(s)ds =

∫ b+(t(n)−1)p(n)

p(n)

x
(

(1 − p(n)
) 1

p(n)

)x−p(n)

dx

≥
∫ b+(t(n)−1)p(n)

x=p(n)

x
(

e−1(1 − e1)
)x

dx.

There exists N2 such that for any n > N2

∫ t(n)−1

1

g(s)ds − f (s0) ≥ (1 − 3e1)
(

1 − (1 + 2e1)(b + 1)e−b). (4.49)

Similarly to the proof of Lemma 4.3 equation (4.40), we use the fact that the random
variables U +(s) are independent, have a binomial distribution
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U +(s) ∈ Bin
(

n, p2(n)s
(
1 − p(n)

)s−1
)

and Var
(
U +(s)

)
≤ E

(
U +(s)

)
. Thus for anye > 0 we have

P

{ t(n)∑

s=1

U +(s) ≥ (1+e)n(1−(b+1)e−b)} ≤ 1e2

1

n

1

(1 − 3e1)
(

1 − (1 + 2e1)(b + 1)e−b) .

By assumption limn→∞
|A(0)|

n = 0, we have for any b > 0

P

{
|A
(
t(n)
)
| ≥ n

(
1 − (b + 1)e−b)(1 + e)∣∣∣∣|A(t(n)

)
| > t(n)

}
≤ C (b)

n
, (4.50)

where C (b) > 0 for any b > 0. Notice that C (b) is a decreasing function of b and

limb→0
C (b) = ∞. (4.51)

Lemma 4.4 gives us a lower bound on the number of non-activated vertices. Thanks
to this bound, we can find a lower bound on the number of activated vertices and prove
in the following proposition that if we have at least b

p(n) activated vertices with b > 0 then

we activate a positive part of the graph.

Proposition 4.2. Let p(n) =
w(n)

n for some w(n) with limn→∞ w(n) = ∞ and

limn→∞
|A(0)|

n = 0. Let t(n) = ⌊ b
p(n)+t(n)

⌋ with b > 0 and limn→∞ p(n)t(n) = 0 then for
any e > 0

lim
n→∞

P

{
|A
(
t(n)
)
| < n

(
1 −

(1

2
b2

+ b + 1
)

e−2b)(1 − e)∣∣∣∣|A(t(n)
)
| > t(n)

}
= 0.

(4.52)

Proof of proposition 4.2. We suppose that
{
|A
(
t(n)
)
| > t(n)

}
is fulfilled. We first notice

that for any s1 < s2 we have {|A(s1)| > s1} ⊆ {|A(s2)| > s2} since if we have {|A(s1)| =

s1} then the process of activation stops and {|A(s2)| = s1}. Thus {|A(s2)| > s2}c ⊆
{|A(s1)| > s1} and we have the required inclusion for s1 < s2

{|A(s1)| > s1} ⊆ {|A(s2)| > s2}.
Conditioning on {|A

(
t(n)
)
| > t(n)}, we have {|A(s)| > s} for any s ≤ t(n). Denote

f (b) = 1 −
(

1
2b2

+ b + 1
)

e−2b . Let d > 0, consider the following events.

• If ⌊s =
a

p(n) + t(n)⌋ with a < d and limn→∞ t(n)p(n) = 0, define

Ae(s) =

{
|A(s)| ≤ n

(
1 − (d+ 1)e−d)(1 +

e
2

)

∣∣∣∣|A(s)| > s

}
. (4.53)
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• If s = ⌊ a
p(n) + t(n)⌋ with a ≥ d define

Ae(s) =

{
|A(s)| ≤ n

(
1 − (a+ 1)e−a)(1 +

e
2

)

∣∣∣∣|A(s)| > s

}
. (4.54)

We fix d > 0 to avoid the problem of control on C (a) since by equation (4.51) we have
lima→0 C (a) = ∞.

We consider the following probability measure

Pt(n){X} = P

{
X
∣∣∣|A
(
t(n)
)
| > t(n)

}
.

We shall prove that

lim
n→∞

Pt(n)

{⌊ b
p(n) ⌋⋂

s=1

Ae(s)} = 0. (4.55)

This would imply that

P

{∣∣∣A
(
t(n)
)∣∣∣ < nf (b)(1 − e)∣∣∣∣|A(t(n)

)
| > t(n)

}

≤ Pt(n)

{∣∣∣A
(⌊ b

p(n)

⌋)∣∣∣ < nf (b)(1 − e)∣∣∣∣ ⌊ b
p(n) ⌋⋂

s=1

Ae(s)}+ Pt(n)

({⌊ b
p(n) ⌋⋂

s=1

Ae(s)}c)

≤ Pt(n)

{
∣∣∣A
(⌊ b

p(n)

⌋)∣∣∣
n

< nf (b)(1 − e)∣∣∣∣ ⌊ b
p(n) ⌋⋂

s=1

Ae(s)}+ o(1) as n → ∞. (4.56)

Let s = ⌊ a
p(n) + t(n)⌋ with a < d. The number of activated vertices is a monotone

increasing function of time thus

Pt(n)

(
Ace(s)) = Pt(n)

{
|A(s)| > n

(
1 − (d+ 1)e−d)(1 + e)}

≤ Pt(n)

{∣∣∣A
(⌊ d

p(n)

⌋)∣∣∣ > n
(

1 − (d + 1)e−d)(1 + e)}.

By (4.50) we have for any e3 > 0 and for n large

Pt(n)

(
Ace(s)) ≤ C (d)

n
(1 + e3).

Let s = ⌊ a
p(n)

+ t(n)⌋ with a ≥ d. By the same reasoning as above, we find

Pt(n)

(
Ace(s)) ≤ C (a)

n
(1 + e3).
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Since C (a) is a decreasing function of a, we have

Pt(n)

(
Ace(s)) ≤ C (d)

n
(1 + e3).

Summing up over the b
p(n)

first steps, we find

⌊ b
p(n)⌋∑

s=1

Pt(n)

(
Ace(s)) ≤ 2

bC (d)

np(n)
.

Hence

Pt(n)

({⌊ b
p(n) ⌋⋂

s=1

Ae(s)}c)
≤ 2

bC (d)

np(n)
.

By assumption limn→∞
1

np(n)
= 0. We can conclude that

lim
n→∞

Pt(n)

({⌊ b
p(n) ⌋⋂

s=1

Ae(s)}c)
= 0.

In the case (4.53) where ⌊s =
a

p(n)
+ t(n)⌋ with a < d the random variable

(
Y (s)|Ae(s))

stochastically dominates the independent random variable U−
1 (s) defined as

U−
1 (s) ∈ Bin

(⌊
n
(

1 − e
2

)
(d+ 1)e−d⌋, pa(s)

)
.

In the case (4.54) where s = ⌊ a
p(n)

+ t(n)⌋ with a ≥ d the random variable
(

Y (s)|Ae(s))
stochastically dominates the random variable U−

2 (s) defined as

U−
2 (s) ∈ Bin

(⌊
n
(

1 − e
2

)
(a+ 1)e−a⌋, pa(s)

)
.

Define

U−(s) =

{
U−

1 (s) if s = ⌊ a
p(n) + t(n)⌋ with a < d,

U−
2 (s) if s = ⌊ a

p(n) + t(n)⌋ with a ≥ d.
Suppose that t(n) = ⌊ a

p(n)
+ t(n)⌋. Changing the variable into s =

x
p(n)

, we find for anye1 > 0

t(n)∑

s=1

E
(
U−(s)

)
≥ (1 − e)(n(d+ 1)e−d ∫ d

p(n)

xe−xdx + n

∫ bd x(x + 1)e−2xdx

)
− g(s0),
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where g(s0) is given by (4.47). Notice that this inequality holds because x(x + 1)e−2x ≤
xe−x. Computations give

t(n)∑

s=1

E
(
U−(s)

)
≥ (1 − e)n((d+ 1)e−d((1 − p(n)

)
e−p(n) − (1 + d)e−d)

+

(1

2
d2

+ d + 1
)

e−2d − (1

2
b2

+ b + 1
)

e−2b)− g(s0). (4.57)

We can bound from below the right hand side of (4.57) as follows. For any e0 > 0 then
there exists d0 small enough such that for any d < d0 and n large we can bound from
below the right hand side of (4.57) by f (b)(1 − e0

2
). This gives that for n large

t(n)∑

s=1

E
(
U−(s)

)
≥ nf (b)(1 − e0).

The random variables U−(s), s = 1, ...t are binomial and independent. Therefore

Var

( t(n)∑

s=1

U−(s)

)
≤

t(n)∑

s=1

E
(
U−(s)

)
.

Let |A∗
(
t(n)
)
| = |A(0)| +∑t(n)

s=1 U−(s). Using Chebyshev inequality, we find for t(n) =

⌊ b
p(n)

+ t(n)⌋

lim
n→∞

P

{
|A∗
(
t(n)
)
| ≤ nf (b)(1 − 2e0)

∣∣∣∣|A
(
t(n)
)
| > t(n)

}
= 0. (4.58)

By equations (4.56) and (4.58) we have

lim
n→∞

P

{
|A
(
t(n)
)
| ≤ n

(
1 −

(1

2
b2

+ b + 1
)

e−2b)(1 − 2e0)

∣∣∣∣|A
(
t(n)
)
| > t(n)

}
= 0.

which proves Proposition 4.2.

This result implies that conditioned on the fact that we activate at least ⌊ b
p(n)

⌋ vertices

then when we reach the step ⌊ b
p(n)⌋ in the process of activation, we have already activated

a positive part of the graph. So for any x > 0 we will continue the process of activation
for any step x

p(n) and we will activate at least 1
2 n vertices. The following part is dedicated

to the investigation of the weakest conditions under which with a probability tending to
1 as n → ∞ we activate at least ⌊ b

p(n)⌋ vertices for some b > 0.

116



4. Proofs

We first prove that if we have |Bi| =
1

n
1− 1

2k p
2− 1

2k (n)
then with a probability tending

to 1 as n goes to infinity |Bi+k| =
b

p(n)
. In a second part, we prove that if we have t(n)

activated vertices such that t(n) np2(n) → ∞ as n goes to infinity which means that

t(n) =
a(n)

np2(n)
,

where limn→∞ a(n) = ∞, then with a probability tending to 1 as n goes to infinity
we activate at least 1

n
1− 1

2k p
2− 1

2k (n)
vertices. Finally, we prove using a branching process

argument that if we start with |A(0)| > 1
np2(n) (1+d) vertices then we activate t(n) vertices

with t(n) fulfilling the condition (4.2).

The following lemma implies that in our case, when the number of activated vertices
is |A

(
t(n)
)
| =

a(n)
np2(n) then with probability tending to 1 as n → ∞, the size of the new

generation is much larger than the set of previously activated vertices.

Lemma 4.5. Let p(n) =
w(n)

n with limn→∞ w(n) = ∞. Suppose that
limn→∞ t0(n)np2(n) = +∞ and limn→∞ t0(n)p(n) = 0 then

t0(n)
∑t0(n)

s=1 Y (s)

P−→ 0. (4.59)

Proof of Lemma 4.5. Suppose that t0(n) = ⌊ a(n)
np2(n)⌋ with limn→∞ a(n) = ∞. Sup-

pose that limn→∞
a(n)w(n)

= 0 so that limn→∞ p(n)t0(n) = 0. The random variable(
Y (s)|Ae(t0(n)

))
stochastically dominates the random variable Y∗(s) ∈ Bin(n(1−e), pa(s))

with e > 0. Write

P

{
t0(n)

∑t0(n)
s=1 Y (s)

> e1

}
≤ P

{
t0(n)

∑t0(n)
s=1 Y (s)

> e1

∣∣∣∣Ae(t0(n)
)}

+ P

{
Ace(t0(n)

)}
.

By equation (4.45) this gives

P

{
t0(n)

∑t0(n)
s=1 Y (s)

> e1

}
≤ P

{
t0(n)

∑t0(n)
s=1 Y (s)

e1

∣∣∣∣Ae(t0(n)
)}

+ o(1) as n → ∞

≤ P

{
t0(n)

∑t0(n)
s=1 Y∗(s)

e1

∣∣∣∣Ae(t0(n)
)}

+ o(1) as n → ∞. (4.60)

For n large, we have

E

(
Y∗(s)

)
≥ n(1 − 2e)p2(n)s.
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This implies for n large

E

( t0(n)∑

s=1

Y∗(s)

)
≥ n(1 − 2e)p2(n)

1

2
t2
0 (n)

(
1 +

1

t0(n)

)

≥ 1

2
n(1 − 3e)p2(n)t2

0 (n). (4.61)

By assumption t0(n) = ⌊ a(n)
np2(n)

⌋ which gives

E

( t0(n)∑

s=1

Y∗(s)

)
≥ 1

2
n(1 − 3e)a(n)t0(n).

We deduce
t0(n)

E

(∑t0(n)
s=1 Y∗(s)

) ≤ 2a(n)
.

By definition of a(n), we have limn→∞ a(n) = ∞. We find

lim
n→∞

t0(n)

E

(∑t0(n)
s=1 Y∗(s)

) = 0.

Using Markov inequality, we find that

P

{
t0(n)

∑t0(n)
s=1 Y∗(s)

> e1

}
≤ 1e1

E

(
t0∑t0(n)

s=1 Y∗(s)

)
. (4.62)

Using Jensen’s inequality in (4.62) we find

P

{
t0(n)

∑t0(n)
s=1 Y∗(s)

> e1

}
≤ 1e1

t0(n)

E

(∑t0(n)
s=1 Y∗(s)

)

≤ 1e1

2a(n)
.

By (4.60), we can conclude

lim
n→∞

P

{
t0(n)

∑t0(n)
s=1 Y (s)

> e1

}
= 0

which is equivalent to equation (4.59) from Lemma 4.5
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The Lemma 4.5 implies that when we compute the size of the next generation then
if we approximate it with the total number of activated vertices, we have a good approxi-
mation. We use this fact in the following proofs to simplify the computations. Moreover
by Lemma 4.5 we have for any e > 0

lim
n→∞

P

{ |A(0)|+ |B1| + ... + |Bi|
|B1| + ... + |Bi| + |Bi+1| > e} = 0,

or simply

lim
n→∞

P

{ |A(0)|+ |B1| + ... + |Bi|
|Bi+1| > e} = 0.

Proposition 4.3. Suppose that p(n) =
w(n)

n and there exists x > 0 such that p(n) ≤ x√
n

then there exists C > 0 such that for any i ≥ 0

lim
n→∞

P

{
|Bi+k| >

C

p(n)

∣∣∣∣|Bi| ≥ 1

n1− 1

2k p2− 1

2k (n)

}
= 1. (4.63)

Proof of proposition 4.3. Suppose that |Bi| = t0(n) =

⌊
1

n
1− 1

2k p
2− 1

2k (n)

⌋
. If we prove for

such |Bi| that we have limn→∞ P

{
|Bi+k| > C

p(n)

∣∣∣|Bi| = t0(n)
}

= 1 then proposition

4.3 is proved. If |Bi| ≥ 1

n
1− 1

2k p
2− 1

2k (n)
then the subset B′i of size

⌊
1

n
1− 1

2k p
2− 1

2k (n)

⌋
activates

vertices such that we have limn→∞ P

{
|B′i+k| > C

p(n)

∣∣∣|Bi| = t0(n)
}

= 1. Thus we have

it for |Bi+k| too.
We consider the following process which underlies the process of activation. We start

with a set of activated vertices of size |G0| = |Bi| = t0 =

⌊
1

n
1− 1

2k p
2− 1

2k (n)

⌋
. We explore as

in the algorithm the neighbourhood of the vertices, comparing it with the neighbourhood
of the previously activated vertices. When all the vertices of G0 are saturated, we have
the first generation of vertices G1. We do not consider anymore the vertices of G0. We
compare the neighbourhood of the vertices only among the vertices of G1 during the
process of activation. This process is dominated by the process of activation because we
do not consider the vertices activated by ancestors being from two different generations.
However, it is very close to the inner model because by Lemma 4.5 the size of the previous
generations is with a probability tending to 1 as n → ∞ negligible with respect to the size
of the last generation. The main contribution to the process of activation comes from the
last generation.

Define for any j ≤ k

tj+1(n) =
1

2
np2(n)t2

j (n).
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Hence

tj(n) =

(1

2

)2j−1 1

n
1− 1

2k−j p
2− 1

2k−j (n)
. (4.64)

We notice that tk−1(n) =

(
1
2

)2k−1
1

n
1
2 p

3
2 (n)

so we are in the case when

limn→∞ p(n)tk−1(n) = 0. Consider the event

Ae(2tk−1(n)
)

=

{
A
(
2tk−1(n)

)
< en}.

We consider the following probability measure

Pt0

{
X
}

= P

{
X
∣∣∣|G0| = t0

}
.

We write

Pt0

{
|Gk| <

C

p(n)

}
≤ Pt0

{
|Gk| <

C

p(n)

∣∣∣∣Ae(2tk−1(n)
)}

+ Pt0

{
Ace(2tk−1(n)

)}
.

By (4.45) this gives

Pt0

{
|Gk| <

C

p(n)

}
≤ Pt0

{
|Gk| <

C

p(n)

∣∣∣∣Ae(2tk−1(n)
)}

+ o(1) as n → ∞. (4.65)

Consider the random variables Y∗(s) ∈ Bin
(
⌊n(1 − e)⌋, pa(s)

)
which are stochastically

dominated by the random variable
(

Y (s)|Ae(2tk−1(n)
))

and call |G l
∗| the l th generation

where in the process explained above where here the vertices are activated at time s with a
distribution Y∗(s). Suppose |G0

∗| = |G0|, using equation (4.65), we have

Pt0

{
|Gk| <

C

p(n)

}
≤ Pt0

{
|Gk

∗| <
C

p(n)

}
+ o(1) as n → ∞.

Consider the events

Cj =

{|G j
∗|∑

i=1

Y∗(s) > (1 − 4e)tj+1

}
.

We write

Pt0

{
|Gk

∗| <
c

p(n)

}
≤ Pt0

{
|Gk

∗| <
c

p(n)

∣∣∣∣Ck−1

}
+ Pt0

(
Cc

k−1

)
. (4.66)

We shall prove that

lim
n→∞

Pt0

(
Cc

k−1

)
= 0, (4.67)
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which combined with (4.66) will give

Pt0

{
|Gk

∗| <
C

p(n)

}
≤ Pt0

{
|Gk

∗| <
C

p(n)

∣∣∣Ck−1

}
+ o(1) as n → ∞.

To prove (4.67), we consider the development of (4.67) into conditional probabilities in
the following way

Pt0

(
Cc

k−1

)
≤

k−2∑

j=1

Pt0

(
Cc

j+1

∣∣∣Cj

)
+ Pt0

(
Cc

1

)
. (4.68)

We first compute the probability of Cc
1

Pt0

(
Cc

1

)
= P

{ t0(n)∑

i=1

Y∗(s) ≤ (1 − 4e)t1

}
.

where the condition G0
= t0(n) is inserted in the sum. By (4.61) we have

(1 − 3e)t1(n) ≤
t0(n)∑

s=1

E
(
Y∗(s)

)
≤ t1(n)

(
1 +

1

t0(n)

)
.

The random variables Y∗(s) are binomial and independent. Thus

Var
( t0(n)∑

s=1

Y∗(s)
)
≤

t0(n)∑

s=1

E
(
Y∗(s)

)

≤ t1(n)
(

1 +
1

t0(n)

)
. (4.69)

We have

P

{ t0(n)∑

i=1

Y∗(s) ≤ (1 − 4e)t1

}
≤ P

{∣∣∣∣
t0(n)∑

i=1

Y∗(s) −
t0(n)∑

i=1

EY∗(s)

∣∣∣∣ ≤ et1(n)

}
(4.70)

We use Chebyshev inequality in (4.70). With the help of equation (4.69) we find

P

{ t0(n)∑

i=1

Y∗(s) ≤ (1 − 4e)t1

}
≤

1 +
1

t0(n)e2t1(n)
.

Hence
lim

n→∞
Pt0

(
Cc

1

)
= 0. (4.71)
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The conditional probabilities are

Pt0

{
Cc

j+1

∣∣∣∣Cj

}
= P

{|G j+1
∗ |∑

s=1

Y∗(s) ≤ (1 − 4e)j+2tj+2(n)

∣∣∣∣
|G j

∗|∑

s=1

Y∗(s) > (1 − 4e)j+1tj+1(n)

}

≤ P

{(1−4e)j+1tj+1(n)∑

s=1

Y∗(s) ≤ (1 − 4e)j+2tj+2(n)

}
. (4.72)

The event conditioned on
∑|G j

∗|
s=1 Y∗(s) > (1 − 4e)j+1tj+1(n) is independent to |G0| =

t0(n). By (4.61) we have

(1 − 3e) 1

2
np2(n)t2

l (n) ≤
tl (n)∑

s=1

E
(
Y∗(s)

)
≤ 1

2
np2(n)t2

l (n)
(

1 +
1

tl (n)

)
.

By definition of tl (n) in (4.64) we have

(1 − 3e)tl+1(n) ≤
tl (n)∑

s=1

E
(
Y∗(s)

)
≤ tl+1(n)

(
1 +

1

tl (n)

)
.

This gives

(1 − 3e)(1 − 4e)j+1tj+2(n) ≤
(1−4e)j+1tj+1(n)∑

s=1

E
(
Y∗(s)

)

≤ (1 − 4e)j+2tj+2(n)
(

1 +
1

(1 − 4e)j+1tj+1

)
. (4.73)

We find with the help of the first inequality of (4.73) in (4.72)

Pt0

{
Cc

j+1

∣∣∣∣Cj

}
≤ P

{∣∣∣∣
(1−4e)j+1tj+1(n)∑

s=1

Y∗(s) −
(1−4e)j+1tj+1(n)∑

s=1

EY∗(s)

∣∣∣∣ ≥ e(1 − 4e)j+1tj+2

}
.

(4.74)
The random variables Y∗(s) are binomial and independent. From (4.73) we have

Var
((1−4e)j+1tj+1(n)∑

s=1

Y∗(s)
)
≤

(1−4e)j+1tj+1(n)∑

s=1

E
(
Y∗(s)

)

≤ (1 − 4e)j+2tj+2(n)
(

1 +
1

(1 − 4e)j+1tj+1

)
. (4.75)
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Using Chebyshev inequality in the equation (4.74), we find with the help of (4.75)

lim
n→∞

Pt0

{
Cj+1

∣∣∣∣Cj

}
= 0. (4.76)

We have a finite number of generations k, therefore we deduce by (4.68) that

lim
n→∞

Pt0

(
Cc

k−1

)
= 0.

For the kth generation we have

Pt0

{
|Gk

∗| ≤ (1 − 4e)k+1
(1

2

)2k−1 1

p(n)

∣∣∣∣Ck−1

}
= Pt0

{|Gk−1
∗

|∑

s=1

Y∗(s) ≤ (1 − 4e)k−1tk−1(n)

∣∣∣∣Ck−1

}

= Pt0

{
Ck

∣∣∣∣Ck−1

}
. (4.77)

Using equation (4.76) in (4.77), we find

lim
n→∞

Pt0

{
|Gk

∗| ≤ (1 − 4e)k+1
(1

2

)2k−1 1

p(n)

∣∣∣∣Ck−1

}
= 0. (4.78)

If we combine (4.78) with (4.68) and (4.71), we find

lim
n→∞

Pt0

{
|Gk

∗| ≤ (1 − 4e)k+1
(1

2

)2k−1 1

p(n)

}
= 0 (4.79)

which proves equation (4.63) with C = (1 − 4e)k+1
(

1
2

)2k−1

> 0 in the case

|Bi| =

⌊
1

n
1− 1

2k p
2− 1

2k (n)

⌋
. Equation (4.79) still holds if we consider |Bi| ≥

⌊
1

n
1− 1

2k p
2− 1

2k (n)

⌋

instead,

lim
n→∞

P

{
|Bi+k| >

C

p(n)

∣∣∣∣|Bi| ≥ 1

n1− 1

2k p2− 1

2k (n)

}
= 1.

This proves Proposition 4.3.

Proposition 4.4. Let p(n) =
w(n)

n for some w(n) with limn→∞ w(n) = ∞ and suppose
there exists c > 0 such that p(n) ≤ c√

n
. Let a(n) be a function with limn→∞ a(n) = ∞ and

let e > 0. Then there exists k > 0 and C > 0 such that

lim
n→∞

P

{
|Bi+k| >

C

n1−ep2−e(n)

∣∣∣∣|Bi| ≥ a(n)

np2(n)

}
= 1. (4.80)
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Proof of proposition 4.4. We consider the process of activation described in the proposi-
tion 4.3. We start with G0

= t0(n) = ⌊ a(n)
np2(n)

⌋ and follow the process until we reach

a generation Gk such that with a probability tending to 1 as n → ∞ the size of that
generation fulfils |Gk| > C

n1−ep2−e(n)
. By Proposition 4.3, we know that with a probability

tending to 1 as n → ∞, if |Gk| > C1

n1−ep2−e(n) we need several generations ke to reach

the size |Gk+ke | > C2

p(n)
. Thus as we consider the process of activation until the new gen-

eration of activated vertices reaches a size C1

n1−ep2−e(n) < |Gk| < C2

n1−ep2−e(n) , by Lemma

4.5 this implies that the number of activated vertices has with probability 1 the same
property. Thus we have the following event with a probability tending to 1 as n → ∞

A
( 1

n
3
4 p

7
4 (n)

)
=

{
|A
( 1

n
3
4 p

7
4 (n)

)
| <

1

n
1
2−ep 3

2 −e(n)

}
.

We denote

Pt0(X ) = P

{
X
∣∣∣|G0

∗| = t0

}
.

We have

Pt0

{
|Gk

∗| <
C

n1−ep2−e(n)

}
≤ Pt0

{
|Gk

∗| <
C

n1−ep2−e(n)

∣∣∣A
( 1

n
3
4 p

7
4 (n)

)}
+P

(
Ac
( 1

n
3
4 p

7
4 (n)

))
.

The random variable
(

Y (s)|A(s)
)

stochastically dominates the random variable

Y∗(s) ∈ Bin
(

n − 1

n
1
2 −ep 3

2 −e(n)
,

p2(n)

1 − p(n)
s
(
1 − sp(n)

))
.

Consider the process where the number of vertices activated at time s is distributed as
Y∗(s) then if |G0

∗| = t0(n) we have for any e, there exist n sufficiently large such that

1

2
np2(n)t2(1 − e) ≤ E

(
G1
∗

)
≤ 1

2
np2(n)t2.

Therefore we introduce the sequence tk+1(n) =
1
2 np2(n)t2

k (n) and starting with t0(n) =a(n)
np2(n) , we have that

tk(n) =
1

2

(1

2
a(n)

)2k 1

np2(n)
. (4.81)

This sequence reaches the required size C
n1−ep2−e(n) for

k >
log(log(np(n)))

log 2
. (4.82)
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We have

(1

2
a(n)

)2
log(log(n))

log 2

= eelog(log(n)) log( 1
2 a(n))

= elog(np(n)) log( 1
2 a(n))

= (np(n))log( 1
2 a(n)) > (np(n))e for any e > 0. (4.83)

It means that if we can show that the number of vertices in each generation is close to

the sequence of tk then we need at most
log(log(np(n)))

log 2
generations so as to reach the size

C
n1−ep2−e(n)

. We can see in the equation (4.83) that the exponent log( 1
2
a(n)) is very large

which is not needed. It comes from the fact that we need about
log(log(np(n)))

log 2
steps so as to

reach a size

(
np(n)
)e

np2(n)
and then, the size increases to 1

p(n)
in a finite number of steps.

Let |G0
∗| = t0(n) = |G0|. Consider the events

D(i) =

{
|Gi

∗| ≤
(1

2

)2i−1

ti

}

We prove that for k as in (4.82)

lim
n→∞

Pt0

(
D(k)

)
= 0

which implies that |Gk
∗| > 1

n1−ep2−e(n)
for some e > 0. We write

Pt0

(
D(k)

)
≤

k∑

i=1

Pt0

(
D(k)

∣∣∣Dc(k − 1)
)

+ Pt0

(
Dc(1)

)
. (4.84)

We first treat the last term of the right hand side of (4.84). By definition of the event, we
have

Pt0

(
Dc(1)

)
= Pt0

{
|G1

∗| ≤
1

2
t1

}
.

We compute this probability using Chebyshev inequality and the fact that Var
(
|Gi

∗|
)
≤

E
(
|Gi

∗|
)
. This gives

Pt0

{
|G1

∗| ≤
1

2
t1(n)

}
≤ E

(
|G1

∗|
)

1
4
t2
1 (n)

≤ 4

t1(n)
.

We immediately notice that

lim
n→∞

Pt0

{
|G1

∗| ≤
1

2
t1(n)

}
= 0. (4.85)
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We turn to the conditional probabilities which appear in (4.84). By definition of the
event, we have

Pt0

(
D(k)

∣∣∣Dc(k − 1)
)

= P

{
|Gk

∗| ≤
(1

2

)2k−1

tk

∣∣∣|Gk−1
∗ | ≥

(1

2

)2k−1−1

tk−1

}
,

where the event conditioned on |Gk−1
∗ | ≥

(
1
2

)2k−1−1

tk−1is independent from |G0
∗| =

t0(n). Considering the fact that

P

{
|Gi

∗| ≤
(1

2

)2i−1

tk

∣∣∣|Gi−1
∗ | ≥

(1

2

)2i−1−1

ti−1

}

≤ P

{
|Gi

∗| ≤
(1

2

)2i−1

tk

∣∣∣|Gi−1
∗ | =

⌊(1

2

)2i−1−1

ti−1

⌋}

then one can find by use of the Chebyshev inequality similarly as it is done for (4.85) that

P

{
|Bi

∗| ≤
(1

2

)2i−1

ti

∣∣∣|Bi−1
∗ | =

⌊(1

2

)2i−1−1

ti−1

⌋}
≤ 22i

ti
.

Hence we can compute the sum of the conditional probabilities and prove that it con-
verges to 0. We have

k∑

i=1

Pt0

(
D(i)

∣∣∣Dc(i − 1)
)

=

k∑

i=1

P

{
|Bi

∗| ≤
(1

2

)2i−1

ti

∣∣∣|Bi−1
∗ | =

(1

2

)2i−1−1

ti−1

}

≤
k∑

i=1

22i

ti
.

By definition of ti given in (4.81) this gives

k∑

i=1

Pt0

(
D(i)

∣∣∣Dc(i − 1)
)
≤ 2

k∑

i=1

22i

( 1
2a(n))2i 1

np2(n)

≤ 2np2(n)

k∑

i=1

( 4a(n)

)2i

. (4.86)

Since limn→∞ a(n) = ∞, for n large, we have 4a(n)
< 1 and we can bound (4.86) the

following way

k∑

i=1

Pt0

(
D(i)

∣∣∣Dc(i − 1)
)
≤ 2np2(n)

k∑

i=1

( 4a(n)

)i

≤ 2np2(n)
1a(n)

(4.87)
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By assumption p(n) ≤ c√
n

so we have

np2(n) ≤ C2 and limn→∞a(n) = ∞,

so

lim
n→∞

k∑

i=1

Pt0

(
D(i)

∣∣∣Dc(i − 1)
)

= 0. (4.88)

We conclude by (4.85) and (4.88) that

lim
n→∞

Pt0

(
D(k)

)
= 0. (4.89)

This implies that with a probability tending to 1 as n → ∞, the process underlying our
process of activation activates at least 1

n1−ep2−e vertices for some e > 0 so

lim
n→∞

P

{
|Bi+k| >

C

n1−ep2−e(n)

∣∣∣∣|Bi| ≥ a(n)

np2(n)

}
= 1.

which proves proposition 4.4.

We now turn to the last proposition needed to prove Theorem 2.2. We use branching
process argument to show that starting from ⌊ 1+e

np2(n)
⌋ vertices, with probability tending to

1 as n → ∞ we activate at least a(n)
np2(n) vertices with limn→∞ a(n) = ∞.

Proposition 4.5. Under conditions of Theorem 2.2, i.e. suppose p(n) =
w(n)

n for some w(n)
with limn→∞ w(n) = ∞ and
limn→∞

√
np(n) = 0. Suppose that |A(0)| = ⌊ 1+n

np2(n)
⌋ with n > 0 then there exists a(n)

with limn→∞ a(n) = ∞ and t(n) such that

lim
n→∞

P

{
|A(t(n))| ≥ a(n)

np2(n)

}
= 1.

Proof of proposition 4.5. To prove Proposition 4.5, we are going to prove that with a prob-
ability tending to 1 as n goes to infinity for a non negligible part of the ⌊ 1+n

np2(n)
⌋ vertices,

the process of activation survives. Denote by D ⊂ A(0) the set of vertices which have
infinitely many descendant. Let g(n) be any function such that limn→∞ g(n)np2(n) = 0

and let b > 1 then for t = ⌊ b
np2(n)

+ g(n)⌋ > 1
np2(n)

the probability of activation is

pa(t) =
b
n

(
1 − p(n)

)t−1
(

1 +
g(n)

np2(n)

)
. For n sufficiently large we have

pa(t) >





1
nb(1 − b−1

2

)
if 1 < b < 2

2−e
n if b = 2

2
n if b > 2.

(4.90)
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We treat here the first case in (4.90). The other cases can be proved the same way. The
process of activation can be bounded from below for any e > 0 by a branching process

with distribution Xn(t) ∈ Bin
(

n(1 − e), 1
nb(1 − b−1

2

))
where b(1 − b−1

2

)
> 1. For

such a process, the probability of survival 1 − xb (n) is strictly positive where xb (n) is
the probability of ultimate extinction. Thus, the probability of survival for any process

starting from any of the vertices v ∈
[

1+ n
2

np2(n)
; 1+n

np2(n)

]
is strictly positive and bounded from

below by the probability of survival of the branching process with distribution Xn(t) ∈
Bin
(

n(1 − e), 1
n

(
1 +

n
2

)(
1 − n

4

))
.

We notice that the probability of survival for each of the vertices is bounded away
from 1 as there is a positive probability that they have no descendant at the first genera-
tion.

If we can prove that among the vertices v ∈
[

1+ n
2

np2(n) ;
1+n

np2(n)

]
, the probability that at

most g(n) survive with limn→∞ g(n)np2(n) = 0 converges to 0 then we have our result.

Let H denote the set of vertices with a branching process which survives. The proba-

bility that exactly h branching processes with distribution Xn(⌊ 1+ n
2

np2(n)⌋) survive is

P

{
|H | = h

}
=

(⌊ n2 1
np2(n)⌋
h

)
(1 − xb (n))hxb (n)

n
2

np2(n)
−s

,

where 1−xb (n) is the probability of survival, we have h branching processes which survive

and
⌊ n

2

np2(n)

⌋
− h which don’t and

(⌊ n2 1
np2(n)

⌋
h

)
way to choose the h vertices

The union is disjoint so the probability that at most g(n) vertices are activated is

P

{⌊g(n)⌋⋃

h=0

|H | = h
}

) =

⌊g(n)⌋∑

h=0

(⌊ n2 1
np2(n)⌋
h

)
(1 − xb (n))hxb (n)

n
2

np2(n)
−h

. (4.91)

Suppose that there exists g1(n) with limn→∞ g1(n)np2(n) = 0, such that there existsj > 0 and for any N0 > 0, there exists n > N0 with

P

{⌊g1(n)⌋⋃

h=0

|H | = h

}
> j. (4.92)

or in other words limn→∞P

{
∪⌊g1(n)⌋

h=0 |H | = h

}
> j. Equation (4.92) implies using

(4.91) that
⌊g1⌋(n)∑

h=0

(⌊ n
2

1
np2(n)

⌋
h

)
(1 − xb (n))hxb (n)

n
2

np2(n)
−h

> j. (4.93)
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By assumption limn→∞ g1(n)np2(n) = 0 then there exists d and for any h < g1(n), we
have

(⌊ n
2

1
np2(n)

⌋
h

)
≥

(
⌊ n

2
1

np2(n)
⌋
)h

h!
(1 − d).

This gives for (4.93)

a

n
2

np2(n)

⌊g1⌋(n)∑

h=0

1

h!

(⌊n
2

1

np2(n)

⌋1 − xb (n)

xb (n)

)h

(1 − d) > j.

By assumption limn→∞ hnp2(n) = 0, therefore the function

f (h) =
1

h!

(⌊n
2

1

np2(n)

⌋1 − xb (n)

xb (n)

)h

is increasing with h.
Now, consider the sum from 0 to h(n)g1(n) where h(n) is such that

limn→∞ h(n)g1(n)np2(n) = 0 and limn→∞ h(n) = ∞, we have

⌊h(n)g1(n)⌋∑

h=0

1

h!

(⌊n
2

1

np2(n)

⌋1 − xb (n)

xb (n)

)h

≥ h(n)

⌊g1(n)⌋∑

h=0

1

h!

(⌊n
2

1

np2(n)

⌋1 − xb (n)

xb (n)

)h

≥ h(n)j→ ∞ as n → ∞,

which is impossible as it is the lower bound on the probability that at most h(n)g1(n)
vertices survive.

Then for any g1(n) such that limn→∞ g1(n)np2(n) = 0

lim
n→∞

P

(⌊g1(n)⌋⋃

h=0

{|H | = h}
)

= 0,

This proves that there exists e0 > 0 such that

lim
n→∞

P

{
|H | >

e0

np2(n)

}
= 1.

This in turns implies that

lim
n→∞

P

{
|A
(
t(n)
)
| ≥ a(n)

np2(n)

}
= 1

for some function a(n) with limn→∞ a(n) = ∞, which proves Proposition 4.5.
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We now have all elements to prove Theorem 2.2. We described the conditions to
activate almost all the graph trying to find weaker and weaker conditions. To prove
Theorem 2.2 , we start from the last proposition and take them in reverse order.

Proof of Theorem 2.2. Let p(n) =
w(n)

n for some w(n) with limn→∞ w(n) = ∞ and
limn→∞

√
np(n) = 0. Suppose that |A(0)| ≥ 1+n

np2(n) with n > 0.

By Proposition 4.5, there exists a time t(n) and a(n) with limn→∞ a(n) = ∞ such
that

lim
n→∞

P

{
A
(
t(n)
)
≥ a(n)

np2(n)

}
= 1.

Lemma 4.5 implies that for any e > 0 then for n large we have

lim
n→∞

P

{ |A(0)| +∑i
l=1 |Bl |

|Bi+1| < e} = 1

and we derive that there exists i such that

lim
n→∞

P

{
|Bi| ≥ C1

a(n)

np2(n)

}
= 1. (4.94)

By Proposition 4.4, we have there exists k > 0 such that

lim
n→∞

P

{
|Bi+k| >

C2

n1−ep2−e (n)
∣∣∣|Bi| ≥ C1

a(n)

np2(n)

}
= 1. (4.95)

Combine (4.95) with (4.94), we find that if |A(0)| ≥ 1+n
np2(n)

then there exists l > 0 such

that

lim
n→∞

P

{
|Bl | >

C2

n1−ep2−e(n)

}
= 1. (4.96)

By Proposition 4.3 we have that for e > 1
2k

lim
n→∞

P

{
|Bl+k| >

C3

p(n)

∣∣∣|Bl | ≥ C2

n1−ep2−e(n)

}
= 1. (4.97)

Combine (4.97) with (4.96), we find that if |A(0)| ≥ 1+n
np2(n)

then there exists m > 0 such

that

lim
n→∞

P

{
|Bm| >

C3

p(n)

}
= 1. (4.98)

By Proposition 4.2, we have that there exists C4 > 0 such that

lim
n→∞

P

{ |A(⌊ C3

p(n)
⌋)|

n
> C4n

∣∣∣∣
∣∣∣A
(⌊ C3

p(n)

⌋
)
)∣∣∣ >

C3

p(n)

}
= 1. (4.99)
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Combine (4.98) with (4.99), we find that if |A(0)| ≥ 1+n
np2(n) then there exists a step

t(n) = ⌊ C3

p(n)⌋ such that

lim
n→∞

P

{ |A(t(n))|
n

> C4n

}
= 1. (4.100)

By Proposition 4.1, we know that if we activate a positive part of the graph then with a
probability tending to 1 as n → ∞, we activate almost all the graph. For any e > 0 then

lim
n→∞

P

{ |A(n)|
n

< 1 − e∣∣∣ |A(t(n))|
n

> C4

}
= 0 (4.101)

Combine (4.100) with (4.101), we find that if |A(0)| ≥ 1+n
np2(n)

then for any e > 0

lim
n→∞

P

{ |A(n)|
n

< 1 − e} = 0

which proves Theorem 2.2

4.3 Proof of Theorem 2.3

We consider the case when the probability of having an edge between two vertices is
p(n) =

c√
n
. In such a case 1

np2(n) =
1
c2 and the critical size is of order constant. We prove

in the following that starting with a constant number of vertices greater than two then
with a positive probability, we activate almost all the graph. Notice that Propositions
4.1, 4.4, 4.3, 4.2 and Lemma 4.5 apply under conditions of Theorem 2.3, i.e. with
p(n) =

c√
n
.

Proof of Theorem 2.3. Let p(n) =
c√
n

where c > 0 is a constant. Let |A(0)| = k ≥ 2,

suppose that t is a constant then the probability of activation is

pa(t) =
c2

n
t
(

1 − c√
n

)t−1

≥ c2

n
t
(

1 − (t − 1)
c√
n

)
. (4.102)

Let e > 0 then there exists N > 0 such that for n > N we have

pa(t) ≥ c2

n
t(1 − e). (4.103)

In the case when t = o
(√

n
)
, the probability of activation increases with the number

of activations. We can bound from below the process of activation after time t by a
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branching process where the number of offspring from a point is distributed as Bin(n(1−e), c2t
n (1 − e)).
If c2t(1− e)2 > 1 then with a positive probability, the branching process survives and

hence the process of activation too.
If we start with t vertices and c2t ≤ 1 then with a positive probability, we can activate

⌊ 1
c2 ⌋ + 1 − t vertices. At step t0 = ⌊ 1

c2 ⌋ + 1, we have c2
(
⌊ 1

c2 ⌋ + 1
)

> 1 so for e > 0

small enough this gives c2t0(1 − e)2 > 1 and we have

pa(t0) >
1

n

and then as before, the process of activation survives with a positive probability. We know
that there exists a(n) with limn→∞ a(n) = ∞, a time t(n) and a positive constant x such
that

lim
n→∞

P

{
|A
(
t(n)
)
| > a(n)

}
= x > 0. (4.104)

Moreover Propositions 4.1, 4.2, 4.3 and 4.4 apply in the case of p(n) =
c√
n
. Using the

same chain of arguments as in the proof of Theorem 2.2, this gives

lim
n→∞

P

{ |A(n)|
n

< 1 − e∣∣∣|A(t(n)
)
| > a(n)

}
= 0, (4.105)

which implies equation (2.5) of Theorem 2.3. Combine (4.104) with (4.105), we can
conclude that if |A(0)| = k ≥ 2, with a positive probability, we activate almost all the
graph.

The probability that the activation spreads through a positive part of the graph is
bounded away from 1 as the probability that we have no activation after |A(0)| steps is
positive. We have equation (2.4) of Theorem 2.3

1 > lim
n→∞

P

{ |An(n)|
n

> 1 − e} ≥ z(k, c).

4.4 Proof of Theorem 2.4

We consider the last case when the probability of having an edge between two vertices
is much larger than 1√

n
. Suppose that p(n) =

w(n)√
n

where limn→∞ w(n) = ∞ and that

|A(0)| = k ≥ 2 then with a probability tending to 1 as n goes to infinity the process of
activation survives and so we activate almost all the graph.

Proof of Theorem 2.4 . Let p(n) =
w(n)√

n
where limn→∞ w(n) = ∞ and limn→∞ p(n) = 0

. Suppose |A(0)| = k ≥ 2 is a constant then the probability of activation is pa(k) =
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(
1 − w(n)√

n

)k−1

. The probability of activation pa(t) increases with t . We can bound

from below the process of activation after time k by a branching process where the number

of offspring from a point is distributed as X ∈ Bin
(

n(1 − e), w2(n)k
n (1 − e0)

)
.

For such a process, the probability of ultimate extinction is the smallest nonnegative
root of the equation.

tu = gX (u), (4.106)

where gX (u) = EuX is the probability generating function of the random variable X . By

assumption X ∈ Bin(n(1 − e), w2(n)k
n ), (4.106) becomes

(
1 − w2(n)

n
k(1 − e0)(1 − u)

)n(1−e)

= u. (4.107)

We know that

(
1 − 1

n
w2(n)k(1 − e)(1 − u)

)n(1−e)

≤ e−w2(n)k(1−e)(1−e0)(1−u).

and u0 = 1 is always solution. For any u1 > 0 there exists N0 such that for any n > N0

we have e−w(n)k(1−e)(1−e0)(1−u1) < u1 and so u1 > 0 is not a solution.

We know that limn→∞ e−w2(n)k(1−e)(1−e0)(1−u)
= 0 then limn→∞

(
1 +

1
nw2(n)k(1 −e)(u − 1)

)n

= 0 and u = 0 is the limiting solution to the equation (4.107). So the

probability of ultimate extinction of the process is 0 and the survival probability of the
branching process bounding from below our process converges to 1 as n → ∞.

Hence the process survives with probability tending to 1 as n → ∞ and reaches a sizea(n). From that point we can bound from below our process with the process where the
probability of a link between two vertices is p(n) =

c√
n

then using Theorem 2.3 we find

that

lim
n→∞

P

{ |A(n)|
n

< 1 − e} = 0.

which proves Theorem 2.4.
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