How to find the Riemannian structure from the local source-to-solution mapping of a wave equation?

Teemu Saksala

Department of Mathematics and Statistics University of Helsinki

AIP-2017, Hangzhou, June 1, 2017

Tapio Helin

Matti Lassas

Lauri Oksanen

part of the paper: Correlation based passive imaging with a white noise source, JMPA, accepted, arXiv:1609:08022.

Let (N,g) be a smooth and complete Riemannian manifold without boundary and $\mathcal{X} \subset N$ open.

Model:

$$\begin{aligned} &(\partial_t^2 - \Delta_g)w(t, x) = f, \quad \text{in } (0, \infty) \times N, \\ &w|_{t=0} = \partial_t w|_{t=0} = 0, \end{aligned}$$

where

$$f \in C_0^{\infty}((0,\infty) \times N).$$

Let Λ be the solution operator of the wave equation above. Denote $\Lambda f = w^f$.

Problem setting 2

Local source-to-solution operator:

For $f\in C_0^\infty((0,\infty)\times N),$ we define

$$\Lambda_{\mathcal{X}} f := \Lambda f|_{(0,\infty) \times N} = w^f|_{(0,\infty) \times N}.$$

What does $\Lambda_{\mathcal{X}}$ tell about (N, g)?

Theorem (Helin-Lassas-Oksanen-S 2016)

Let (N,g) be a smooth and complete Riemannian manifold of dimension $n \ge 2$. Let $\mathcal{X} \subset N$ be an open and nonempty set. Consider the following initial value problem for the wave equation

$$\begin{split} \partial_t^2 w(t,x) &- \Delta_g w(t,x) = f, \quad in \ (0,\infty) \times N, \\ w|_{t=0} &= \partial_t w|_{t=0} = 0. \end{split}$$

Let $\Lambda_{\mathcal{X}}: C_0^{\infty}((0,\infty) \times \mathcal{X}) \to C^{\infty}((0,\infty) \times \mathcal{X})$ be the local source-to-solution operator defined by

$$\Lambda_{\mathcal{X}}f = w^f|_{(0,\infty)\times\mathcal{X}}.$$

Then the data $(\mathcal{X}, \Lambda_{\mathcal{X}})$ determines (N, g) up to an isometry.

- (1) Show that the local the source-to-solution map $\Lambda_{\mathcal{X}}$ determines $d_g: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $g|_{\mathcal{X}}$ (Not considered today, sorry).
- (2) Show that local the source-to-solution map $\Lambda_{\mathcal{X}}$ determines a certain family of distance functions
- (3) Show that this family of distance functions determines the Riemannian manifold (N, g) (Not considered today, sorry).

Corollary

Let (N,g) be a smooth, connected and compact Riemannian manifold of dimension $n \ge 2$ without boundary. Let $\mathcal{X} \subset N$ be an open and nonempty set. Let $(\varphi_k)_{k=1}^{\infty} \subset C^{\infty}(N)$ be the collection of orthonormal eigenfunctions of operator Δ_g in $L^2(N)$. Let $(\lambda_k)_{k=1}^{\infty}$ be the collection of corresponding eigenvalues of Δ_g . Then the Spectral data

$$(\mathcal{X}, (\varphi_k|_{\mathcal{X}})_{k=1}^{\infty}, (\lambda_k)_{k=1}^{\infty})$$

determines (N,g) up to isometry.

Let $f\in C_0^\infty((0,\infty)\times N)$ and w^f be the solution of wave equation. Denote the j^{th} Fourier coefficient of w^f

$$I_j(t) := \langle w^f(t, \cdot), \varphi_j \rangle_{L^2(N)}.$$

By Greens formula and initial values of w^f we have

$$\frac{d^2}{dt^2} I_j(t) - \lambda_j I_j(t) = \int_{\mathcal{X}} f(t, x) \varphi_j(x) dV_g(x) I_j(0) = \frac{d}{dt} I_j(0) = 0.$$

History

Let $\left(M,g\right)$ be smooth, compact manifold with boundary.

$$\begin{aligned} \partial_t^2 w(t,x) &- \Delta_g w(t,x) = 0, \quad \text{in } (0,\infty) \times M, \\ w|_{t=0} &= \partial_t w|_{t=0} = 0. \\ u &= f, \quad \text{in } (0,\infty) \times \partial M, \ f \in C_0^\infty((0,\infty) \times \partial M). \end{aligned}$$

Let Θ be the hyperbolic Dirichlet-to-Neuman map of above problem.

Does Θ determine (M, g)?

- The approach that we use is a modification of the Boundary Control method. This method was first developed by Belishev to the acoustic wave equation on Rⁿ with an isotropic wave speed
- A geometric version of the method, suitable when the wave speed is given by a Riemannian metric tensor as in the present paper, was introduced by Belishev and Kurylev.
- Partial data problem is also considered for instance by: Katchalov-Kurylev, Lassas-Oksanen, Milne

Essential tool: Finite speed of wave propagation

Let $\mathcal{X} \subset N$ be an open and bounded set. Define

$$\begin{aligned} &(\partial_t^2 - \Delta_g)u = f, & \text{in } (0, \infty) \times N \\ &f|_{C_{\mathcal{X}}} = 0 \\ &u|_{N \times \{t=0\}} = \partial_t u|_{N \times \{t=0\}} = 0, \end{aligned}$$

Then

 $u|_{C_{\mathcal{V}}} = 0.$

Essential tool: Unique continuation, by Tataru

Consider an open double cone created by a cylindrical set $(0,2T) imes\mathcal{X}$

 $C(T,\mathcal{X}) = \{(t,x) \in (0,2T) \times N : \mathsf{dist}_g(x,\mathcal{X}) < \min\{t,2T-t\}\}.$

We write

$$M(T, \mathcal{X}) = \{ x \in N : \mathsf{dist}_g(x, \mathcal{X}) \le T \}.$$

Let $u \in C_0^{\infty}(\mathbb{R} \times N)$. Suppose that $(\partial_t^2 - \Delta_g)u = 0$ in $(0, 2T) \times N$ and $u|_{(0,2T) \times \mathcal{X}} \equiv 0$. Then $u|_{C(T,\mathcal{X})} \equiv 0$.

Let T > 0. The collection

$$\mathcal{W}_T := \{ w^f(T, \cdot) : f \in C_0^\infty((0, T) \times \mathcal{X}) \}$$

is dense in Hilbert space $L^2(M(T, \mathcal{X}))$.

Let T>0 and $f,h\in C_0^\infty((0,2T)\times \mathcal{X}),$ then

$$\langle w^f(T,\cdot), w^h(T,\cdot) \rangle_{L^2(N)} = \langle f, (J\Lambda_{\mathcal{X}} - \Lambda_{\mathcal{X}}^*J)h \rangle_{L^2((0,T) \times N)}$$

where

$$J: L^2(0,2T) \to L^2(0,T), \ J\phi(t) = \frac{1}{2} \int_t^{2T-t} \phi(s) \ ds.$$

From $\Lambda_{\mathcal{X}}$ to distance functions 1

Lemma

Let $(p,\xi) \in S\mathcal{X}$. The data $(\mathcal{X}, \Lambda_{\mathcal{X}}, d_q|_{\mathcal{X} \times \mathcal{X}})$ determines $\tau(p,\xi) := \sup\{t > 0 : d_q(p,\gamma_{p,\xi}(t)) = t\}.$

Let s > 0 so small that $\gamma_{p,\xi}([0,s]) \subset \mathcal{X}$. Denote $y = \gamma_{p,\xi}(s)$. Denote $x = \gamma_{p,\xi}(s+r)$. Let $\epsilon > 0$. If $r+s < \tau(p,\xi)$, then for every $\epsilon > 0$ holds

$$B_g(y, r+\epsilon) \setminus B_g(p, r+s) \neq \emptyset \quad (*).$$

Claim:

Riemannian balls are not nice!

Let $N = S^2$, p = (0, -1), $s = \pi/2$, y = (-1, 0) and $r > \pi/2$. for every $\epsilon > 0$ we have

$$B_g(y, r+\epsilon) \setminus B_g(p, r+s) = \emptyset$$

Let $\epsilon > 0$. If $r + s < \tau(p, \xi)$. Then $B_g(y, r + \epsilon) \setminus B_g(p, r + s) \neq \emptyset$ (*).

Using The approximate controllability and the Blagovestchenskii identity we can test if (*) holds.

Lemma

Let $p, z \in \mathcal{X}$, $\xi \in T_p \mathcal{X}$, $\|\xi\| = 1$ and $\tilde{r} < \tau(y, \xi)$. Then data $(\mathcal{X}, \Lambda_{\mathcal{X}}, d_g|_{\mathcal{X} \times \mathcal{X}})$ determines $d_g(y, z)$, where $y = \gamma_{p,\xi}(\tilde{r})$.

Theorem

Let (N,g) be a complete Riemannian manifold. Then the local source-to-solution data $(\mathcal{X}, \Lambda_{\mathcal{X}}, d_g|_{\mathcal{X} \times \mathcal{X}})$ determines the following family of distance functions

 $R_{\mathcal{X}}(N) := \{ d_g(x, \cdot) |_{\mathcal{X}} : x \in N \} \subset C(\mathcal{X}).$

Theorem

Let (N,g) be a complete smooth Riemannian manifold without a boundary. Let $U \subset N$ be open, bounded and have a smooth boundary. Suppose that the topological and smooth structure of U are known, and $g|_U$ is also known. Then

 $R(N) := \{ d_g(\cdot, x) |_{\overline{U}} : x \in N \} \subset C(\overline{U})$

determines, topological, smooth and Riemannian structure of $\left(N,g\right)$ up to isometry.

Thank you for your attention!