Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

DETERMINATION OF A RIEMANNIAN MANIFOLD FROM THE DISTANCE DIFFERENCE FUNCTIONS

Teemu Saksala In collaboration with: Matti Lassas

University of Helsinki, Finland

RIMS, January 21st 2016

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

Contents

- 2 Notations and Main results
- 8 Related topics and an application for a wave equation

4 The proofs

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks
-				

Contents

- 2 Notations and Main results
- 8 Related topics and an application for a wave equation

4 The proofs

5 Remarks

Seismic imaging a geometric inverse problem

Propagation of seismic waves:

http://www.cyberphysics.co.uk/topics/earth/geophysics/SeismicWavesEarthStructure.html

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

Contents

- 2 Notations and Main results
- 8 Related topics and an application for a wave equation

4 The proofs

Distance difference function

Let (N, g) be a Riemannian manifold, $M \subset N$ open. Denote $F := N \setminus M$. For every $x \in M$ we define

Distance difference function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distance difference data 1

Let (N_1, g_1) and (N_2, g_2) be compact and connected n-dimensional Riemannian manifolds without boundary. Let $d_j(x, y)$ denote the Riemannian distance of points $x, y \in N_j$, j = 1, 2. Let $M_j \subset N_j$ be open sets and define closed sets $F_j = N_j \setminus M_j$. Suppose F_j are smooth n-manifolds with smooth boundary $\partial F_j = \partial M_j$.

Distance difference data 2

We asumme that:

$$\begin{cases} \exists \text{ diffeomorphism } \phi: F_1 \to F_2 \text{ s.t. } \phi^* g_2|_{F_2} = g_1|_{F_1} \\ \{D_x^1(\cdot, \cdot) ; x \in M_1\} = \{D_y^2(\phi(\cdot), \phi(\cdot)) ; y \in M_2\}. \end{cases}$$
(1)

Here for each $x \in M_i$

$$D_x^j(z_1, z_2) = d_j(x, z_1) - d_j(x, z_2), \ z_1, z_2 \in F_j.$$

∢ 臣 ▶

э

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks
	0000			

Main result

Theorem (Lassas-S)

Let (N_1, g_1) and (N_2, g_2) be closed and connected n-dimensional Riemannian manifolds, $n \ge 2$. Let $M_j \subset N_j$ be open sets and define closed sets $F_j = N_j \setminus M_j$. Suppose that F_j is a smooth n-dimensional manifold with boundary ∂F .

If the Distance difference data of N_1 and N_2 coincide i.e. (1) is valid, then manifolds (N_1, g_1) and (N_2, g_2) are Riemannian isometric.

Earthquakes Notations and Main result	s Related topics and an application for a wave equation	The proofs R	emarks
0 0000	000000	00000000000000	

Main result

Theorem (Lassas-S)

Let (N_1, g_1) and (N_2, g_2) be closed and connected n-dimensional Riemannian manifolds, $n \ge 2$. Let $M_j \subset N_j$ be open sets and define closed sets $F_j = N_j \setminus M_j$. Suppose that F_j is a smooth n-dimensional manifold with boundary ∂F .

If the Distance difference data of N_1 and N_2 coincide i.e. (1) is valid, then manifolds (N_1, g_1) and (N_2, g_2) are Riemannian isometric.

Idea of the proof:

- Recover topology
- Recover smooth structure
- Recover Riemannian structure

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

Contents

2 Notations and Main results

8 Related topics and an application for a wave equation

4 The proofs

5 Remarks

Boundary distance functions and Inverse problem

Let (M, g) be a compact *n*-dimensional Riemannian manifold with boundary and $x \in M$. We define a *boundary distance function of* x as

$$r_x: \partial M \to \mathbb{R}, \ r_x(z) = d(x, z).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathcal{R}(M) := \{r_x : x \in M\} \subset L^{\infty}(\partial M).$

Boundary distance functions and Inverse problem

Let (M, g) be a compact *n*-dimensional Riemannian manifold with boundary and $x \in M$. We define a *boundary distance function of* x as

$$r_x: \partial M \to \mathbb{R}, \ r_x(z) = d(x, z).$$

Let $\mathcal{R}(M) := \{r_x : x \in M\} \subset L^{\infty}(\partial M).$

Theorem (Kurylev 97, Katchalov-Kurylev-Lassas 01)

Knowing only a Riemannian manifold $(\partial M, g|_{\partial M})$ and functions $\mathcal{R}(M) \subset L^{\infty}(\partial M)$ one can construct such a smooth structure to set $\mathcal{R}(M)$ that mapping $\mathcal{R} : M \to \mathcal{R}(M)$ is a diffeomorphism. In addition one can explicitly construct such a Riemannian metric tensor \tilde{g} of $\mathcal{R}(M)$ that (M, g) and $(\mathcal{R}(M), \tilde{g})$ are isometric.

Broken scattering relation

Let (M, g) be a compact *n*-dimensional Riemannian manifold with boundary and $x \in M$. Let $\Omega_{+} = \{ (x,\xi) \in SM : x \in \partial M, \langle \xi, \nu(x) \rangle > 0 \},\$ $\Omega_{-} = \{(x, \eta) \in SM : x \in \partial M, \langle \eta, \nu(x) \rangle < 0\}$ and $\alpha_{\mathsf{x},\xi_+,\mathsf{z},\eta}(t) = \begin{cases} \gamma_{\mathsf{x},\xi_+}(t), \ t < \mathsf{s}, \ (\mathsf{x},\xi_+) \in \Omega_+ \\ \gamma_{\mathsf{z},\eta}(t-\mathsf{s}), \ t \ge \mathsf{s}, \ (\mathsf{z},\eta) \in \mathsf{SM}^{\mathsf{int}}. \end{cases}$ ∂М (x,ξ_+) 4 回 2 4 日 2 4 日 2 1 日

Let $\ell(\alpha_{x,\xi_+,z,\eta}) > 0$ be the first time when $\alpha_{x,\xi_+,z,\eta}(t)$ hits ∂M . The broken scattering relation

$$\mathcal{R} = \{ ((x,\xi_+),(y,\xi_-),t) \in \Omega_+ \times \Omega_- \times \mathbb{R}_+ : \\ t = \ell(\alpha_{x,\xi_+,z,\eta}) \text{ and } (y,\xi_-) = (\alpha_{x,\xi,z,\eta}(t),\partial_t \alpha_{x,\xi,z,\eta}(t)), \\ \text{for some } (z,\eta) \in SM \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Inverse problem of the Broken scattering relation

Theorem (Kurylev-Lassas-Uhlmann 2010)

Let (M, g) be a compact connected Riemannian manifold with a nonempty boundary of dimension $n \geq 3$. Then ∂M and the broken scattering relation \mathcal{R} determine the isometry type of the manifold (M,g) uniquely.

Inverse problem of the Broken scattering relation

Theorem (Kurylev-Lassas-Uhlm<u>ann 2010)</u>

Let (M, g) be a compact connected Riemannian manifold with a nonempty boundary of dimension $n \geq 3$. Then ∂M and the broken scattering relation \mathcal{R} determine the isometry type of the manifold (M,g) uniquely.

We define a *scattering distance* of $z \in M^{int}$ as

$$D_z^+(x,y) = d(z,x) + d(z,y), \quad x,y \in \partial M$$

Notice that, if $\gamma_{x,\xi_{+}}$ and $\gamma_{z,\eta}$ are distance minimizers then

$$D_z^+(x,y) = \ell(\alpha_{x,\xi_+,z,\eta}).$$

An application for a wave equation

Let (N_j, g_j) , j = 1, 2 be smooth Riemannian manifolds. $M_j \subset N_j$ open and $F_j := N_j \setminus M_j$ Consider a wave equation

 $\begin{cases} (\partial_t^2 - \Delta_{g_j})G_j(\cdot, \cdot, y, s) = \delta_{y,s}(\cdot, \cdot), & \text{in } N_j \times \mathbb{R}, (y, s) \in M_j \times \mathbb{R}. \\ G_j(x, t, y, s) = 0, & \text{for } t < s, x \in N_j. \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose that the *spontanuous point source data* is valid:

$$\begin{cases} \exists \text{ diffeomorphism } \phi : F_1 \to F_2 \text{ s.t. } \phi^* g_2|_{F_2} = g_1|_{F_1} \\ W_1 = W_2 \end{cases}$$
(2)

 $W_1 = \{ \operatorname{supp}(G_1(\cdot, \cdot, y_1, s_1)) \cap (F_1 \times \mathbb{R}); y_1 \in M_1, s_1 \in \mathbb{R} \} \subset 2^{F_1 \times \mathbb{R}}$ and

$$W_2 = \{ \operatorname{supp}(G_2(\phi(\cdot), \cdot, y_2, s_2)) \cap (F_1 \times \mathbb{R}); y_2 \in M_2, s_2 \in \mathbb{R} \} \subset 2^{F_1 \times \mathbb{R}}$$

Theorem (Lassas-S)

Let (N_j, g_j) , j = 1, 2 be a closed compact Riemannian n-manifolds, $n \ge 2$ and $M_j \subset N_j$ be an open set such that $F_j = N_j \setminus M_j$ are smooth n-manifolds with boundary. If the spontanuous point source data of these manifolds coincide, that is, we have (2), then (N_1, g_1) and (N_2, g_2) are isometric.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem (Lassas-S)

Let (N_j, g_j) , j = 1, 2 be a closed compact Riemannian n-manifolds, $n \ge 2$ and $M_j \subset N_j$ be an open set such that $F_j = N_j \setminus M_j$ are smooth n-manifolds with boundary. If the spontanuous point source data of these manifolds coincide, that is, we have (2), then (N_1, g_1) and (N_2, g_2) are isometric.

Proof: Let
$$y \in M_j$$
, $z_i \in F_j$, $s \in \mathbb{R}$ $i, j = 1, 2$.

$$\mathcal{T}^{j}_{y,s}(z_i) = \sup\{t \in \mathbb{R}; ext{ the point } (z_i,t) ext{ has a neighborhood} \ U \subset N_j imes \mathbb{R} ext{ such that } G_j(\cdot,\cdot,y,s) igg|_U = 0\}$$

Hence one can deduce that $\mathcal{T}_{y,s}^{j}(z_i) = d_j(z_i, y) - s$ and therefore distance difference functions satisfy equation

$$D_{y}^{j}(z_{1}, z_{2}) = d_{j}(z_{1}, y) - d_{j}(z_{2}, y) = \mathcal{T}_{y,s}^{j}(z_{1}) - \mathcal{T}_{y,s}^{j}(z_{2}).$$

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

Contents

2 Notations and Main results

8 Related topics and an application for a wave equation

4 The proofs

The mapping

We define mappings $\mathcal{D}^j: N_j \to L^{\infty}(F_j \times F_j), \mathcal{D}_j(x) = D_x^j(\cdot, \cdot)$ and $\Phi: L^{\infty}(F_2 \times F_2) \to L^{\infty}(F_1 \times F_1), \Phi(f) = f(\phi, \phi)$. Recall that mapping $\phi: F_1 \to F_2$ was assumed to be a diffeomorphism that pullbacks the metric.

The aim is to show that mapping

$$\Psi := \mathcal{D}_1^{-1} \circ \Phi \circ \mathcal{D}_2 : \mathit{N}_2 \to \mathit{N}_1$$

is a diffeomorphism s.t.

$$\Psi^*g_1=g_2.$$

Notice that range of \mathcal{D}_1 is the same as $\Phi \circ \mathcal{D}_2$ by distance difference data (1)!

Extension of data

By Distance difference data (1) we only know $D_j|_{M_j}$. That's why we have to show that we can get the following:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- The map $\phi: F_1 \to F_2$, is a metric isometry, that is, $d_1(z, w) = d_2(\phi(z), \phi(w))$ for all $z, w \in F_1$.
- **②** { $D_x^1(\cdot, \cdot)$; $x \in N_1$ } = { $D_y^2(\phi(\cdot), \phi(\cdot))$; $y \in N_2$ }.

Proof: Omitted

Reconstruction of topology

It suffices to show that $\mathcal{D}: N \to L^{\infty}(F \times F)$ is continuous and 1-to-1. **Proof:** By Δ -inequality it holds that \mathcal{D} is 2-Lipschitz.

Suppose that $x, y \in N$, $x \neq y$ s.t. $D_x = D_y$. Let $q \in F^{int}$, $\ell_x = d(x,q)$ and $\ell_y = d(q,y)$. Let $\gamma_{q,\eta} : [0, \ell_x] \to N$ be a minimizing geodesic from q to x. Let s > 0 be s.t. $s < \min(\ell_x, \ell_y, \min(q))$ and $\gamma_{q,\eta}([0,s]) \subset F^{int}$. Denote $p = \gamma_{q,\eta}(s)$.

By $D_x = D_y$,

$$d(q,p) + (d(p,y) - d(q,y)) = d(q,p) + (d(p,x) - d(q,x)) = 0.$$

Thus p is on a minimizing geodesic from q to y and therefore $\gamma_{q,\eta}$ is also a minimizing geodesic from q to y. Since we assumed $x \neq y$ we can assume $\ell_x < \ell_y$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Since F^{int} is open, we can choose point $\hat{q} \in F^{int}$ s.t. $\hat{q} \notin \gamma_{q,\eta}(-\infty, \infty)$. Let β be a minimizing geodesic from \hat{q} to x.

Now $\beta \cup \gamma_{q,\eta} = (red \cup blue)$ would be a distance minimizing curve from \hat{q} to y. This a contradiction and x = y. Thus \mathcal{D} is 1-to-1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Smooth structure: Suitable atlases

For each $x \in M_j$ there exist a neighborhood W_j of x, point $z \in F_i^{int}$ and s > 0 s.t.

$$H_j: W_j \rightarrow \mathbb{R}^n, \ H_j(y) = (d_j(y, z_i) - d_j(y, z))_{i=1}^n, \ z_i = \gamma_{z, \eta_i}(s)$$

is a smooth coordinate system.

Proof: Omitted.

Riemannian structure: Geodesically equivalent metrics

Definition

Let N be smooth manifold with two Riemannian metric tensors g_1 and g_2 . We say that metrics g_1 and g_2 are geodesically equivalent, if for all geodesics γ_1 of metric g_1 there exists a reparametrization α_1 s.t. $\gamma_1 \circ \alpha_1$ is a geodesic of g_2 and vice versa.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Examples of geodesic equivalence:

 \mathbb{R}^n with Euclidean metric *e* and *ce*, where c > 0 is constant.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Examples of geodesic equivalence:

 \mathbb{R}^n with Euclidean metric *e* and *ce*, where c > 0 is constant.

Gnomonic projection F of Sphere: Wikipedia, Consider metrics $F_*g_{S^2}$ and Euclidean metric e on \mathbb{R}^2

Examples of geodesic equivalence:

 \mathbb{R}^n with Euclidean metric *e* and *ce*, where c > 0 is constant.

Gnomonic projection F of Sphere: Wikipedia,

Consider metrics $F_*g_{S^2}$ and Euclidean metric e on \mathbb{R}^2

Beltrami-Klein model for disc: Wikipedia, Hyperbolic disc

Our goal is first to show that g_1 and $g_2 := \Psi_* g_2$ are geodisically equivalent on N_1 .

Let $z \in F_i$ and $\xi \in S_z N_i$. Define a set

$$\begin{split} \omega_j(z,\xi) &:= \{ x \in N_j \;\; ; \;\; \exists w \in F_j \; \text{such that} \; D^j_x(\cdot,w) \; \text{is} \; C^1 \text{-smooth}, \\ & \text{near} \; z \; \text{and} \; \nabla D^j_x(\cdot,w) |_z = \xi \} \cup \{ z \}. \end{split}$$

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks
			000000000000000000000000000000000000000	

Let $z \in F_2$, $\xi \in S_z N_2$. Then curve $\Psi(\gamma_{z,\xi}^2(\cdot)) : [0, \tau_2(z,\xi)) \to N_1$ is smooth and non self-intersecting. By distance difference data we have

$$\Psi(\gamma_{z,\xi}^2([0,\tau_2(z,\xi))) = \Psi(\omega_2(z,\xi)) = \omega_1(\phi^{-1}(z),(\phi^{-1})^*\xi).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thus we know that "quite many" qeodesics of g_2 are also geodesics of g_1 .

Since F_1 contains an open set, it holds that for each $p \in M_1$ there exists an open conic neighbourhood $\Sigma_p \subset T_p N_1$ s.t. for each $\xi \in \Sigma_p$ geodesic $\gamma_{p,\xi}$ is a pre-geodesic of g_2 .

There can be a trapped geodesic in M. red curve

Use a modified version of a results of V. Matveev to show that this is enough

Invariants of Geodesic flow

We define a function $\mathit{I}_0: \mathit{TN}_1 \to \mathbb{R}$ as

$$I_0((x,v)) = \left(\frac{\det(g^1(x))}{\det(g^2(x))}\right)^{\frac{2}{n+1}} g_{ij}^2(x) v^i v^j.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Invariants of Geodesic flow

We define a function $\mathit{I}_0: \mathit{TN}_1 \to \mathbb{R}$ as

$$I_0((x,v)) = \left(\frac{\det(g^1(x))}{\det(g^2(x))}\right)^{\frac{2}{n+1}} g_{ij}^2(x) v^i v^j.$$

Theorem (Matveev-Topalov 2003)

Let N be a smooth manifold with geodesically equivalent Riemannian metrics g_1 and g_2 . Then function I_0 is constant on curves $t \mapsto (\gamma^1(t), \dot{\gamma}^1(t))$. Where γ^1 is any geodesic of metric g_1 .

Metrics g_1 and g_2 coincide on N_1

Let $p \in M$ and $z \in F_1^{int}$ and denote by γ an unit speed geodesic of g_1 from z to p. By distance difference data (1) it holds that

$$1 = I_0(z, \dot{\gamma}) = I_0(p, \dot{\gamma}).$$

and therefore

$$g_{ij}^{1}(p)\dot{\gamma}^{i}\dot{\gamma}^{j} = 1 = \left(\frac{\det(g1(p))}{\det(g^{2}(p))}\right)^{\frac{2}{n+1}}g_{ij}^{2}(p)\dot{\gamma}^{i}\dot{\gamma}^{j}.$$
 (3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Metrics g_1 and g_2 coincide on N_1

Let $p \in M$ and $z \in F_1^{int}$ and denote by γ an unit speed geodesic of g_1 from z to p. By distance difference data (1) it holds that

$$1 = I_0(z, \dot{\gamma}) = I_0(p, \dot{\gamma}).$$

and therefore

$$g_{ij}^1(p)\dot{\gamma}^i\dot{\gamma}^j = 1 = \left(\frac{\det(g1(p))}{\det(g^2(p))}\right)^{\frac{2}{n+1}}g_{ij}^2(p)\dot{\gamma}^i\dot{\gamma}^j. \tag{3}$$

Since metrics are bilinear, \exists an open conic set $W \subset T_p N$ s.t. $\forall v \in W$ equation (3) holds. Thus

$$g_{ij}^1(p)=\left(rac{\det(g^1(p))}{\det(g^2(p))}
ight)^{rac{2}{n+1}}g_{ij}^2(p), orall i,j=1,\ldots,n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

And therefore

$$\left(\frac{\det(g_1(p))}{\det(g_2(p))}\right)^{\frac{2n}{n+1}-1}=1.$$

Since we assumed n > 1, it holds that

$$\frac{\det(g_1(p))}{\det(g_2(p))} = 1.$$

Then we can conclude that

$$g_1(p)=g_2(p).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Thus we have proved that $\Psi: N_2 \rightarrow N_1$ is a Riemannian isomorphism.

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

Contents

Earthquakes

2 Notations and Main results

8 Related topics and an application for a wave equation

4 The proofs

Earthquakes	Notations and Main results	Related topics and an application for a wave equation	The proofs	Remarks

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●