What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs

ONE DIMENSIONAL INVERSE SPECTRAL BOUNDARY PROBLEM

Teemu Saksala

STUDENTS' SEMINAR

December 15th 2016

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs

Contents

Properties of 2nd order differential operators

3 Formulation of the main problem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs

Contents

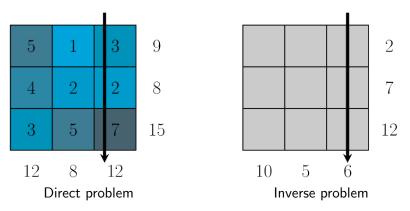
Properties of 2nd order differential operators

Isonalition of the main problem

4 The sketch of proofs

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

An Inverse problem



- Does this problem have a solution?
- If there is a solution, is it unique?
- Do we have some prior information about the numbers?

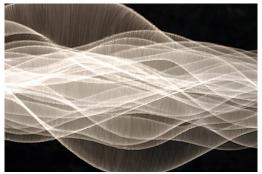
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Vibrating string 1

Let $a, b \in \mathbb{R}$, $a \neq 0$. Recall that the 2nd order equation

$$\left\{ egin{array}{l} a^2 rac{d^2}{dx^2} v(x) = 0, \ x \in (0,1) \ u(0) = 0, \ rac{d}{dx} u(0) = b, \end{array}
ight.$$

descripes the the motion of a vibrating string. Here a is related to the material parameters of the string.



Direct Problem: If numbers a, b are given then

$$\begin{cases} a^2 \frac{d^2}{dx^2} v(x) = 0, \ x \in (0,1) \\ u(0) = 0, \ \frac{d}{dx} u(0) = b, \end{cases}$$

has a unique solution.

Inverse Problem: Find *a*, if some information about the operator $a^2 \frac{d^2}{dx^2}$ is given.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

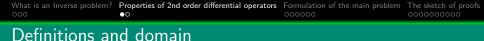
What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲臣 ▶ ─ 臣 ─ のへで

Contents

Properties of 2nd order differential operators

- Isormulation of the main problem
- 4 The sketch of proofs



In this talk we will consider 2nd order differential operators that have a general form

$$A = a(x)\frac{d^2}{dx^2} + b(x)\frac{d}{dx} + c(x)$$

where $x \in [0,1]$ and $a, b, c \in C^{\infty}([0,1]), a(x) > 0$ and a(0) = 1.

We define the domain of A

$$D(A) := H^1_0(0,1) \cap H^2(0,1) \sim \{f \in C^2(0,1) : f(0) = f(1) = 0\}$$

Fhen $A : D(A) \to L^2(0,1).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectrum of a differential operator

Recall that a function $\varphi \in D(A)$ is an eigen function of A, if $\varphi \neq 0$ and there exists $\lambda \in \mathbb{R}$ such that

$$A\varphi = \lambda\varphi.$$

Actually one can show that every eigen function of A is smooth.

Theorem

There exists a L²-orthonormal sequence $(\varphi_j)_{j=1}^{\infty} \subset D(A)$ of eigen functions of differential operator A such that

- $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4 \ldots \to \infty$
- $\varphi_1(x) \neq 0, x \in (0,1)$
- For any $f \in L^2(0,1)$, $f(x) = \sum_{j=1}^{\infty} (f|\varphi_j)_2 \varphi_j(x)$

Proof: Take a course PDE 2 (Spring 2017) or Spectral theorem (Fall 2016)

What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs

Contents

Properties of 2nd order differential operators

3 Formulation of the main problem

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

What is an Inverse problem? Properties of 2nd order differential operators Formulation of the main problem The sketch of proofs 000 CO

Spectral boundary data

We say that the spectral boundary data (SBD) of differential operator A is the collection

$$\{(\lambda_j)_{j=1}^{\infty}, (\dot{\varphi}_j(\mathbf{0}))_{j=1}^{\infty}\}.$$

Problem (Inverse spectral boundary problem)

Let

$$A = a(x)\frac{d^2}{dx^2} + b(x)\frac{d}{dx} + c(x)$$

where $x \in [0,1]$ and $a, b, c \in C^{\infty}([0,1])$, a(x) > 0, a(0) = 1. Suppose that the spectral boundary data

$$\{(\lambda_j)_{j=1}^{\infty}, (\dot{\varphi}_j(\mathbf{0}))_{j=1}^{\infty}\}$$

is given. Can you find functions a, b, c?

Gauge transformations

Let $\kappa \in C^{\infty}([0,1])$ such that

$$\kappa(0) = 1, \text{ and } \kappa(x) > 0, \ x \in [0,1].$$

We define a Gauge transformation A_{κ} of differential operator A by formula

$$A_{\kappa}f = \kappa A\left(rac{f}{\kappa}
ight), \ f \in D(A).$$

Let $\varphi \in D(A)$ be an eigen function of A w.r.t. eigen value λ . Then function $\varphi_{\kappa} := \kappa \varphi$ satisfies

$$A_{\kappa}arphi_{\kappa}=\lambda arphi_{\kappa} ext{ and } rac{d}{dx}arphi_{\kappa}(0)=\dot{\kappa}(0)arphi(0)+\kappa(0)\dot{arphi}(0)=\dot{arphi}(0).$$

Therefore any Gauge transform of operator A preserves the SBD.

Changes of Coordinates 1

Let $\ell > 0$, $X : [0, \ell] \rightarrow [0, 1]$ be a smooth function such that

$$\dot{X}(y)>0,\ X(0)=0,\ \dot{X}(0)=1$$
 and $X(\ell)=1,$

Any such a function is called a change of coordinates. Recall that in these new coordinates we have

$$\frac{d}{dx} = \left(\frac{dX}{dy}\right)^{-1} \frac{d}{dy}$$

and

$$\frac{d^2}{dx^2} = \left(\frac{dX}{dy}\right)^{-2} \left[\frac{d^2}{dy^2} - \frac{d^2X}{dy^2} \left(\frac{dX}{dy}\right)^{-1} \frac{d}{dy}\right].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 What is an Inverse problem?
 Properties of 2nd order differential operators of
 Formulation of the main problem of the sketch of proofs occord

Changes of Coordinates 2

Thus operator A transforms to operator A^X defined as

$$A^X f(y) := a_X(y) \frac{d^2}{dy^2} f(y) + b_X(y) \frac{d}{dy} f(y) + c_X(y) f(y),$$

where

$$a_X(y) = a(X(y))\dot{X}(y)^{-2}$$

$$b_X(y) = -a(X(y))\dot{X}(y)^{-3}\ddot{X}(y) + \dot{X}(y)^{-1}b(X(y))$$

$$c_X(y) = c(X(y)).$$

Let $\varphi \in D(A)$ be an eigen function of A w.r.t. eigen value λ . Define $\varphi_X := \varphi \circ X$. Then

$$A_X \varphi_X = \lambda \varphi_X$$
 and $\dot{\varphi}_X(0) = \dot{\varphi}(X(0)) \dot{X}(0) = \dot{\varphi}(0).$

Thus a change of coordinates preserves SBD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 What is an Inverse problem?
 Properties of 2nd order differential operators on
 Formulation of the main problem on
 The sketch of proofs on

 000
 00
 000000
 0000000
 00000000

The invariance of the spectral boundary data

Theorem

Let A and B be two second order differential operators as before. Then SBD of A coincides with SBD of B if and only if there exists a change of coordinates X and a Gauge transform κ such that

$$B=(A^X)_{\kappa}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

We consider 2nd order differential operators with special forms

$$A := -\frac{d^2}{dx^2} + q(x)$$
 and $B := -a(x)^2 \frac{d^2}{dx^2}$

where $q, a \in C^{\infty}([0,1])$, a(x) > 0, $x \in [0,1]$ and a(0) = 1.

Theorem (Inverse spectral boundary problem)

Suppose that the boundary spectral data

$$\{(\lambda_j)_{j=1}^{\infty}, (\dot{\varphi}_j(\mathbf{0}))_{j=1}^{\infty}\}$$

of operator A (respectively B) is given. Then we can reconstruct the potential q (respectively the wave speed a).

What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs
000	00	000000	000000000

Contents

Properties of 2nd order differential operators

3 Formulation of the main problem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

We will provide a proof for the case

$$A:=\frac{d^2}{dx^2}+q(x).$$

All we need to do is to recover the first eigen function $arphi_1$ since then

$$q(x) = \frac{\frac{d^2}{dx^2}\varphi_1(x) + \lambda_1\varphi_1(x)}{\varphi_1(x)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Recall that we know that $\varphi_1(x) \neq 0$.

Initial/Boundary value problem of Wave equation

To solve the Inverse spectral boundary problem we will employ one dimensional wave equation

$$(*) \begin{cases} \left(\frac{d^2}{dt^2} - \frac{d^2}{dx^2} + q(x)\right)u(t, x) = 0, \ (t, x) \in (0, 1) \times (0, 1) \\ u(t, 0) = f(t), \ u(t, 1) = 0 \\ u(0, x) = \frac{\partial}{\partial t}u(0, x) = 0, \end{cases}$$

where $f \in C_0^{\infty}(0,1)$ is called a boundary source.

Theorem

Let $f \in C_0^{\infty}(0,1)$. Then there exists a unique $u^f(t,x) \in C^{\infty}((0,1) \times (0,1))$ that solves (*).

Proof: Take course PDE 1 next fall!

 What is an Inverse problem?
 Properties of 2nd order differential operators on
 Formulation of the main problem on
 The sketch of proofs on

 000
 00
 00
 000000
 0000000

A series representation of waves

Recall that $(\varphi_j)_{j=1}^{\infty} \subset C^{\infty}((0,1))$ is an ON basis of $L^2(0,1)$. Therefore for every boundary source $f \in C_0^{\infty}((0,1))$ we can write

$$u^{f}(t,x) = \sum_{j=1}^{\infty} u_{j}^{f}(t)\varphi_{j}(x),$$

where the Fourier coefficients are given by

$$u_j^f(t) := (u^f(t,\cdot)|arphi_j)_{L^2(0,1)} = \int_0^1 u^f(t,x) arphi_j(x) dx.$$

Theorem (Fourier coefficients of waves)

For any $f \in C^{\infty}(0,1)$ we can find the Fourier coefficients $u_j^f(t)$ from SBD.

 What is an Inverse problem?
 Properties of 2nd order differential operators
 Formulation of the main problem
 The sketch of proofs

 000
 00
 0000000
 00000000

Finding the Fourier coefficients from SBD 1

Since u^f is smooth we can differentiate under the integral to get

$$\frac{d^2}{dt^2} u_j^f(t) = \int_0^1 \frac{\partial^2}{\partial t^2} u^f(t, x) \varphi_j(x) dx$$

$$= \int_0^1 \left[\frac{\partial^2}{\partial x^2} u^f(t, x) - q(x) u^f(t, x) \right] \varphi_j(x) dx$$

$$= \int_0^1 u^f(t, x) \underbrace{\left[\frac{\partial^2}{\partial x^2} \varphi_j(x) - q(x) \varphi_j(x) \right]}_{=-\lambda_j \varphi_j(x)} dx$$

$$+ \frac{\partial}{\partial x} u^f(1, t) \underbrace{\varphi_j(1)}_{=0} - \underbrace{u^f(1, t)}_{=0} \frac{\partial}{\partial x} \varphi_j(1)$$

$$- \frac{\partial}{\partial x} u^f(0, t) \underbrace{\varphi_j(0)}_{=0} + \underbrace{u^f(0, t)}_{=f(t)} \frac{\partial}{\partial x} \varphi_j(0)$$

 What is an Inverse problem?
 Properties of 2nd order differential operators
 Formulation of the main problem
 The sketch of proofs

 000
 00
 000000
 000000
 000000

Finding the Fourier coefficients from SBD 2

Thus we obtain the following initial value problem:

$$\begin{cases} \frac{d^2}{dt^2}u_j^f(t) = -\lambda_j u_j^f(t) + \dot{\varphi}_j(0)f(t) \\ u_j^f(0) = \frac{d}{dt}u_j^f(0) = 0. \end{cases}$$

Solution: Take courses ODE 1 and ODE 2 (Spring 2017).

Thus we conclude that for all $f, h \in C_0^\infty(0, 1)$ we have recovered the Fourier coefficients

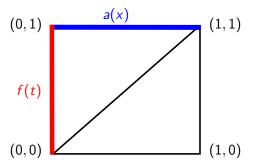
$$(u_j^f(t))_{j=1}^\infty$$
, of the wave $u^f(t,x)$.

and the inner products

$$(u^{f}(t,\cdot)|u^{h}(t,\cdot))_{L^{2}(0,1)} = \sum_{j=1}^{\infty} u^{f}_{j}(t)u^{h}_{j}(t)$$

This is the Parseval identity (Funktionaali analyysin peruskurssi Spring 2017).

Next we ask can we control the end state of a wave. I.e.



Theorem (Controllability)

Let $a\in C^\infty(0,1).$ There exists a unique $f\in C^\infty(0,1)$ such that

$$u^f(1,x)=a(x).$$

Let $t \in [0, 1]$ then we define a projection

$$P_t: L^2(0,1) \to L^2(0,1), \ P_t(f) = \chi_{[0,t]}f.$$

Define a function $M_{jk}: [0,1] \to \mathbb{R}$ by formula

$$M_{jk}(t) = (P_t \varphi_j | \varphi_k)_{L^2(0,1)} = \int_0^t \varphi_j(x) \varphi_k(x) dx.$$

Suppose that function M_{11} is known then

 $\frac{d}{dt}M_{11}(t) = \varphi_1(t)^2 \Rightarrow$ eigen function φ_1 is recovered.

 What is an Inverse problem?
 Properties of 2nd order differential operators on
 Formulation of the main problem on
 The sketch of proofs on

Recovery of matrix valued mapping $t \mapsto M_{ik}(t)$

Let $t_0 \in [0, 1]$.

• Choose any smooth orthogonal basis $(g_k)_{k=1}^{\infty}$ of $L^2(0, t_0)$. By controllability theorem

$$\operatorname{span}(u^{g_k}(t_0,\cdot))_{k=1}^\infty \subset L^2(0,t_0)$$
 is dense.

- Use Gram-Schmidt to orthonormalise u^{g_k}(t₀, ⋅) to orthonormal basis (v_k)[∞]_{k=1} of L²(0, t₀).
- Since solution mapping $f \mapsto u^f$ is linear it holds that

$$v_k(x) = u^{f_k}(x, t_0), \ f_k(t) := \sum_{j=1}^k d_{jk}g_j(t), \ d_{jk} \in \mathbb{R}.$$

• Since $(v_k)_{k=1}^{\infty}$ of $L^2(0, t_0)$ is ON-basis it holds that

$$P_{t_0}\varphi_j = \sum_{\ell=1}^{\infty} (\varphi_j | v_\ell)_{L^2(0,t_0)} v_\ell$$

Thus

$$M_{jk}(t_0) = (P_{t_0}\varphi_j|\varphi_k)_{L^2(0,1)} = \sum_{\ell=1}^{\infty} (\varphi_j|v_\ell)_{L^2(0,1)} (\varphi_k|v_\ell)_{L^2(0,1)}$$

Notice that (φ_j|v_ℓ)_{L²(0,1)} is a Fourier coefficient of v_ℓ w.r.t basis (φ_j)[∞]_{j=1} i.e

$$(\varphi_j|v_\ell)_{L^2(0,1)} = u_j^{f_\ell}(t_0).$$

By the Theorem for the Fourier coefficients of waves, we can recover these from SBD.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is an Inverse problem?	Properties of 2nd order differential operators	Formulation of the main problem	The sketch of proofs
			000000000

Thank you for your attention!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで