ONE DIMENSIONAL INVERSE SPECTRAL BOUNDARY PROBLEM

Teemu Saksala

STUDENTS' SEMINAR

December 15th 2016

Contents

(1) What is an Inverse problem?
(2) Properties of 2nd order differential operators
(3) Formulation of the main problem

4 The sketch of proofs

Contents

(1) What is an Inverse problem?
(2) Properties of 2 nd order differential operators
(3) Formulation of the main problem

4 The sketch of proofs

An Inverse problem

Direct problem

Inverse problem

- Does this problem have a solution?
- If there is a solution, is it unique?
- Do we have some prior information about the numbers?

Vibrating string 1

Let $a, b \in \mathbb{R}, a \neq 0$. Recall that the 2 nd order equation

$$
\left\{\begin{array}{l}
a^{2} \frac{d^{2}}{d x^{2}} v(x)=0, x \in(0,1) \\
u(0)=0, \frac{d}{d x} u(0)=b,
\end{array}\right.
$$

descripes the the motion of a vibrating string. Here a is related to the material parameters of the string.

Vibrating string 2

Direct Problem: If numbers a, b are given then

$$
\left\{\begin{array}{l}
a^{2} \frac{d^{2}}{d x^{2}} v(x)=0, x \in(0,1) \\
u(0)=0, \frac{d}{d x} u(0)=b,
\end{array}\right.
$$

has a unique solution.
Inverse Problem: Find a, if some information about the operator $a^{2} \frac{d^{2}}{d x^{2}}$ is given.

Contents

(1) What is an Inverse problem?
(2) Properties of 2nd order differential operators

3 Formulation of the main problem

4 The sketch of proofs

Definitions and domain

In this talk we will consider 2nd order differential operators that have a general form

$$
A=a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+c(x)
$$

where $x \in[0,1]$ and $a, b, c \in C^{\infty}([0,1]), a(x)>0$ and $a(0)=1$.

We define the domain of A

$$
D(A):=H_{0}^{1}(0,1) \cap H^{2}(0,1) \sim\left\{f \in C^{2}(0,1): f(0)=f(1)=0\right\}
$$

Then $A: D(A) \rightarrow L^{2}(0,1)$.

Spectrum of a differential operator

Recall that a function $\varphi \in D(A)$ is an eigen function of A, if $\varphi \neq 0$ and there exists $\lambda \in \mathbb{R}$ such that

$$
A \varphi=\lambda \varphi .
$$

Actually one can show that every eigen function of A is smooth.

Theorem

There exists a L^{2}-orthonormal sequence $\left(\varphi_{j}\right)_{j=1}^{\infty} \subset D(A)$ of eigen functions of differential operator A such that

- $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \lambda_{4} \ldots \rightarrow \infty$
- $\varphi_{1}(x) \neq 0, x \in(0,1)$
- For any $f \in L^{2}(0,1), f(x)=\sum_{j=1}^{\infty}\left(f \mid \varphi_{j}\right)_{2} \varphi_{j}(x)$

Proof: Take a course PDE 2 (Spring 2017) or Spectral theorem (Fall 2016)

Contents

(1) What is an Inverse problem?

(2) Properties of 2 nd order differential operators
(3) Formulation of the main problem

4 The sketch of proofs

Spectral boundary data

We say that the spectral boundary data (SBD) of differential operator A is the collection

$$
\left\{\left(\lambda_{j}\right)_{j=1}^{\infty},\left(\dot{\varphi}_{j}(0)\right)_{j=1}^{\infty}\right\}
$$

Problem (Inverse spectral boundary problem)

Let

$$
A=a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+c(x)
$$

where $x \in[0,1]$ and $a, b, c \in C^{\infty}([0,1]), a(x)>0, a(0)=1$.
Suppose that the spectral boundary data

$$
\left\{\left(\lambda_{j}\right)_{j=1}^{\infty},\left(\dot{\varphi}_{j}(0)\right)_{j=1}^{\infty}\right\}
$$

is given. Can you find functions a, b, c ?

Gauge transformations

Let $\kappa \in C^{\infty}([0,1])$ such that

$$
\kappa(0)=1, \text { and } \kappa(x)>0, x \in[0,1] .
$$

We define a Gauge transformation A_{κ} of differential operator A by formula

$$
A_{\kappa} f=\kappa A\left(\frac{f}{\kappa}\right), f \in D(A) .
$$

Let $\varphi \in D(A)$ be an eigen function of A w.r.t. eigen value λ. Then function $\varphi_{\kappa}:=\kappa \varphi$ satisfies

$$
A_{\kappa} \varphi_{\kappa}=\lambda \varphi_{\kappa} \text { and } \frac{d}{d x} \varphi_{\kappa}(0)=\dot{\kappa}(0) \varphi(0)+\kappa(0) \dot{\varphi}(0)=\dot{\varphi}(0) .
$$

Therefore any Gauge transform of operator A preserves the SBD.

Changes of Coordinates 1

Let $\ell>0, X:[0, \ell] \rightarrow[0,1]$ be a smooth function such that

$$
\dot{X}(y)>0, X(0)=0, \dot{X}(0)=1 \text { and } X(\ell)=1
$$

Any such a function is called a change of coordinates. Recall that in these new coordinates we have

$$
\frac{d}{d x}=\left(\frac{d X}{d y}\right)^{-1} \frac{d}{d y}
$$

and

$$
\frac{d^{2}}{d x^{2}}=\left(\frac{d X}{d y}\right)^{-2}\left[\frac{d^{2}}{d y^{2}}-\frac{d^{2} X}{d y^{2}}\left(\frac{d X}{d y}\right)^{-1} \frac{d}{d y}\right]
$$

Changes of Coordinates 2

Thus operator A transforms to operator A^{X} defined as

$$
A^{X} f(y):=a_{X}(y) \frac{d^{2}}{d y^{2}} f(y)+b_{X}(y) \frac{d}{d y} f(y)+c_{X}(y) f(y)
$$

where

$$
\begin{gathered}
a_{X}(y)=a(X(y)) \dot{X}(y)^{-2} \\
b_{X}(y)=-a(X(y)) \dot{X}(y)^{-3} \ddot{X}(y)+\dot{X}(y)^{-1} b(X(y)) \\
c_{X}(y)=c(X(y))
\end{gathered}
$$

Let $\varphi \in D(A)$ be an eigen function of A w.r.t. eigen value λ. Define $\varphi_{X}:=\varphi \circ X$. Then

$$
A_{X} \varphi_{X}=\lambda \varphi_{X} \text { and } \dot{\varphi}_{X}(0)=\dot{\varphi}(X(0)) \dot{X}(0)=\dot{\varphi}(0)
$$

Thus a change of coordinates preserves SBD

The invariance of the spectral boundary data

Theorem

Let A and B be two second order differential operators as before. Then SBD of A coincides with SBD of B if and only if there exists a change of coordinates X and a Gauge transform κ such that

$$
B=\left(A^{X}\right)_{\kappa} .
$$

Main theorem

We consider 2nd order differential operators with special forms

$$
A:=-\frac{d^{2}}{d x^{2}}+q(x) \text { and } B:=-a(x)^{2} \frac{d^{2}}{d x^{2}}
$$

where $q, a \in C^{\infty}([0,1]), a(x)>0, x \in[0,1]$ and $a(0)=1$.

Theorem (Inverse spectral boundary problem)

Suppose that the boundary spectral data

$$
\left\{\left(\lambda_{j}\right)_{j=1}^{\infty},\left(\dot{\varphi}_{j}(0)\right)_{j=1}^{\infty}\right\}
$$

of operator A (respectively B) is given. Then we can reconstruct the potential q (respectively the wave speed a).

Contents

(1) What is an Inverse problem?

(2) Properties of 2 nd order differential operators

3 Formulation of the main problem

4 The sketch of proofs

We will provide a proof for the case

$$
A:=\frac{d^{2}}{d x^{2}}+q(x)
$$

All we need to do is to recover the first eigen function φ_{1} since then

$$
q(x)=\frac{\frac{d^{2}}{d x^{2}} \varphi_{1}(x)+\lambda_{1} \varphi_{1}(x)}{\varphi_{1}(x)}
$$

Recall that we know that $\varphi_{1}(x) \neq 0$.

Initial/Boundary value problem of Wave equation

To solve the Inverse spectral boundary problem we will employ one dimensional wave equation

$$
(*)\left\{\begin{array}{l}
\left(\frac{d^{2}}{d t^{2}}-\frac{d^{2}}{\frac{d^{2}}{2}}+q(x)\right) u(t, x)=0,(t, x) \in(0,1) \times(0,1) \\
u(t, 0)=f(t), u(t, 1)=0 \\
u(0, x)=\frac{\partial}{\partial t} u(0, x)=0,
\end{array}\right.
$$

where $f \in C_{0}^{\infty}(0,1)$ is called a boundary source.

Theorem

Let $f \in C_{0}^{\infty}(0,1)$. Then there exists a unique $u^{f}(t, x) \in C^{\infty}((0,1) \times(0,1))$ that solves ($*$).

Proof: Take course PDE 1 next fall!

A series representation of waves

Recall that $\left(\varphi_{j}\right)_{j=1}^{\infty} \subset C^{\infty}((0,1))$ is an ON basis of $L^{2}(0,1)$.
Therefore for every boundary source $f \in C_{0}^{\infty}((0,1))$ we can write

$$
u^{f}(t, x)=\sum_{j=1}^{\infty} u_{j}^{f}(t) \varphi_{j}(x)
$$

where the Fourier coefficients are given by

$$
u_{j}^{f}(t):=\left(u^{f}(t, \cdot) \mid \varphi_{j}\right)_{L^{2}(0,1)}=\int_{0}^{1} u^{f}(t, x) \varphi_{j}(x) d x
$$

Theorem (Fourier coefficients of waves)

For any $f \in C^{\infty}(0,1)$ we can find the Fourier coefficients $u_{j}^{f}(t)$ from $S B D$.

Finding the Fourier coefficients from SBD 1

Since u^{f} is smooth we can differentiate under the integral to get

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} u_{j}^{f}(t)=\int_{0}^{1} \frac{\partial^{2}}{\partial t^{2}} u^{f}(t, x) \varphi_{j}(x) d x \\
= \\
\int_{0}^{1}\left[\frac{\partial^{2}}{\partial x^{2}} u^{f}(t, x)-q(x) u^{f}(t, x)\right] \varphi_{j}(x) d x \\
= \\
\int_{0}^{1} u^{f}(t, x) \underbrace{\left[\frac{\partial^{2}}{\partial x^{2}} \varphi_{j}(x)-q(x) \varphi_{j}(x)\right]}_{=-\lambda_{j} \varphi_{j}(x)} d x \\
\\
+\frac{\partial}{\partial x} u^{f}(1, t) \underbrace{\varphi_{j}(1)}_{=0}-\underbrace{u^{f}(1, t)}_{=0} \frac{\partial}{\partial x} \varphi_{j}(1) \\
\\
-\frac{\partial}{\partial x} u^{f}(0, t) \underbrace{\varphi_{j}(0)}_{=0}+\underbrace{u^{f}(0, t)}_{=f(t)} \frac{\partial}{\partial x} \varphi_{j}(0)
\end{gathered}
$$

Finding the Fourier coefficients from SBD 2

Thus we obtain the following initial value problem:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d t^{2}} u_{j}^{f}(t)=-\lambda_{j} u_{j}^{f}(t)+\dot{\varphi}_{j}(0) f(t) \\
u_{j}^{f}(0)=\frac{d}{d t} u_{j}^{f}(0)=0
\end{array}\right.
$$

Solution: Take courses ODE 1 and ODE 2 (Spring 2017).
Thus we conclude that for all $f, h \in C_{0}^{\infty}(0,1)$ we have recovered the Fourier coefficients

$$
\left(u_{j}^{f}(t)\right)_{j=1}^{\infty}, \text { of the wave } u^{f}(t, x)
$$

and the inner products

$$
\left(u^{f}(t, \cdot) \mid u^{h}(t, \cdot)\right)_{L^{2}(0,1)}=\sum_{j=1}^{\infty} u_{j}^{f}(t) u_{j}^{h}(t)
$$

This is the Parseval identity (Funktionaali analyysin peruskurssi Spring 2017).

Controllability

Next we ask can we control the end state of a wave. I.e.

Theorem (Controllability)

Let $a \in C^{\infty}(0,1)$. There exists a unique $f \in C^{\infty}(0,1)$ such that

$$
u^{f}(1, x)=a(x) .
$$

Projectors

Let $t \in[0,1]$ then we define a projection

$$
P_{t}: L^{2}(0,1) \rightarrow L^{2}(0,1), P_{t}(f)=\chi_{[0, t]} f .
$$

Define a function $M_{j k}:[0,1] \rightarrow \mathbb{R}$ by formula

$$
M_{j k}(t)=\left(P_{t} \varphi_{j} \mid \varphi_{k}\right)_{L^{2}(0,1)}=\int_{0}^{t} \varphi_{j}(x) \varphi_{k}(x) d x
$$

Suppose that function M_{11} is known then

$$
\frac{d}{d t} M_{11}(t)=\varphi_{1}(t)^{2} \Rightarrow \text { eigen function } \varphi_{1} \text { is recovered. }
$$

Recovery of matrix valued mapping $t \mapsto M_{j k}(t)$

Let $t_{0} \in[0,1]$.

- Choose any smooth orthogonal basis $\left(g_{k}\right)_{k=1}^{\infty}$ of $L^{2}\left(0, t_{0}\right)$. By controllability theorem

$$
\operatorname{span}\left(u^{g_{k}}\left(t_{0}, \cdot\right)\right)_{k=1}^{\infty} \subset L^{2}\left(0, t_{0}\right) \text { is dense. }
$$

- Use Gram-Schmidt to orthonormalise $u^{g_{k}}\left(t_{0}, \cdot\right)$ to orthonormal basis $\left(v_{k}\right)_{k=1}^{\infty}$ of $L^{2}\left(0, t_{0}\right)$.
- Since solution mapping $f \mapsto u^{f}$ is linear it holds that

$$
v_{k}(x)=u^{f_{k}}\left(x, t_{0}\right), f_{k}(t):=\sum_{j=1}^{k} d_{j k} g_{j}(t), d_{j k} \in \mathbb{R} .
$$

- Since $\left(v_{k}\right)_{k=1}^{\infty}$ of $L^{2}\left(0, t_{0}\right)$ is ON-basis it holds that

$$
P_{t_{0}} \varphi_{j}=\sum_{\ell=1}^{\infty}\left(\varphi_{j} \mid v_{\ell}\right)_{L^{2}\left(0, t_{0}\right)} v_{\ell}
$$

Thus

$$
M_{j k}\left(t_{0}\right)=\left(P_{t_{0}} \varphi_{j} \mid \varphi_{k}\right)_{L^{2}(0,1)}=\sum_{\ell=1}^{\infty}\left(\varphi_{j} \mid v_{\ell}\right)_{L^{2}(0,1)}\left(\varphi_{k} \mid v_{\ell}\right)_{L^{2}(0,1)}
$$

- Notice that $\left(\varphi_{j} \mid v_{\ell}\right)_{L^{2}(0,1)}$ is a Fourier coefficient of v_{ℓ} w.r.t basis $\left(\varphi_{j}\right)_{j=1}^{\infty}$ i.e

$$
\left(\varphi_{j} \mid v_{\ell}\right)_{L^{2}(0,1)}=u_{j}^{f_{\ell}}\left(t_{0}\right)
$$

By the Theorem for the Fourier coefficients of waves, we can recover these from SBD.

Thank you for your attention!

