# LECTIO PRAECURSORIA: Reconstruction of Riemannian manifold from boundary and interior data

# Teemu Saksala



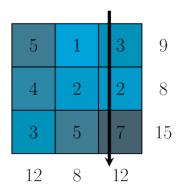
(University of Helsinki)

LECTIO PRAECURSORIA

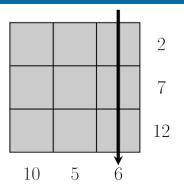








Sum the integers in each line and column.

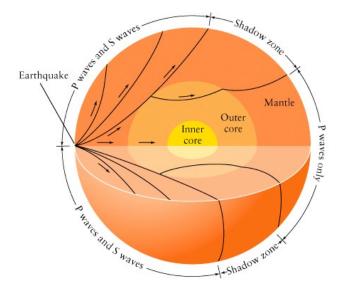


- Do we have some *a priori* information about the numbers? Are they positive integers, integers, rational?
- A priori information {numbers are postive integers} + measurements  $\{10,5,6,12,7,2\}$  = data
- Is there a solution for given data?
- Is the solution unique for the given data?

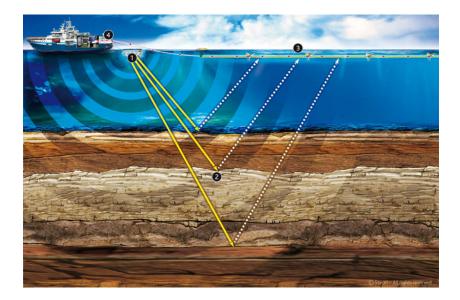
# X-ray imaging



#### Earthquakes and seismic waves



## How to see inside the Earth?



# 2D Riemannian manifold



# 3D Riemannian manifold



#### How to measure distances?



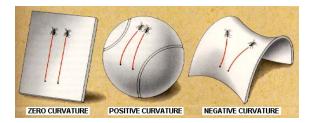
d(a,b) = shortest travel time from a to b

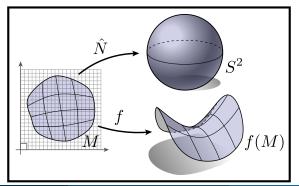
A path that locally minimizes the distance is called a **geodesic**.

(University of Helsinki)

LECTIO PRAECURSORIA

#### Global vs local

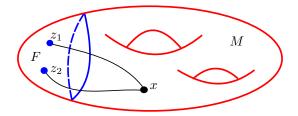




#### Article I

Let (N, g) be a smooth compact Riemannian manifold,  $M \subset N$  open. Denote  $F := N \setminus M$ . For every  $x \in M$  we define a distance difference function (DDF)

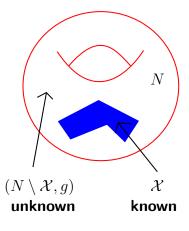
$$D_x: F \times F \to \mathbb{R}, \ D_x(z_1, z_2) = d(x, z_1) - d(x, z_2).$$



If F contains an open set,  $(F, g|_F)$  as smooth Riemannian manifold is given and for every  $x \in M$  the corresponding DDF  $D_x$  is given, then we can recover, topological, smooth and Riemannian structure of (N, g).

# Article II

Let (N,g) be a smooth and complete Riemannian manifold without a boundary and  $\mathcal{X} \subset N$  open.



#### Model:

$$(\partial_t^2 - \Delta_g)w(t, x) = f, \quad \text{in } (0, \infty) \times N,$$
$$w|_{t=0} = \partial_t w|_{t=0} = 0,$$

where 
$$f \in C_0^{\infty}((0,\infty) \times \mathcal{X})$$
.

Denote  $\Lambda_{\mathcal{X}} f = w^f|_{(0,\infty)\times\mathcal{X}}$ . Then  $\Lambda_{\mathcal{X}}: C_0^{\infty}((0,\infty)\times\mathcal{X}) \to C^{\infty}((0,\infty)\times\mathcal{X})$  determines (N,g).

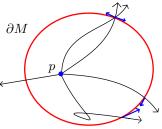
# Article III

Let  $(\overline{M},g)$  be a smooth compact Riemannian manifold with a smooth boundary  $\partial M$ . We also assume that  $\partial M$  is strictly convex and M is non-trapping in the sense that for every  $(p,\xi) \in SM$  the first exit time function

$$\tau_{exit}(p,\xi) := \inf\{t > 0 : \gamma_{p,\xi}(t) \in \partial M\} < \infty.$$

For every  $p \in M$  we define the scattering set of point source p as

 $R_{\partial M}(p) := \{ (\gamma_{p,\xi}(\tau_{exit}(p,\xi)), (\dot{\gamma}_{p,\xi}(\tau_{exit}(p,\xi)))^T) \in T \partial M : \xi \in S_p M \}.$ 



Denote  $R_{\partial M}(M) = \{R_{\partial M}(p) : p \in M\}.$ 

If g satisfies a certain generic property, then  $\{\partial M, R_{\partial M}(M)\}$  determine  $(\overline{M}, g)$ .

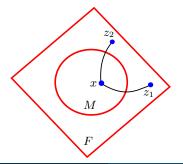
## Article IV

Let (N,g) be a smooth complete Riemannian manifold. Let  $M \subset N$  be open, relatively compact and let  $\partial M$  be smooth. Suppose that there exists a relatively compact open set U, with a smooth boundary  $\partial U$ , such that  $M \subset \overline{U}$  and  $F := U \setminus \overline{M}$  is not empty.

Suppose that  $\overline{U}$  is convex in the sense that for all  $p, q \in \overline{U}$  any distance minimizing geodesic from p to q is contained in  $\overline{U}$ .

For every  $x \in M$  we define a distance difference function (DDF)

$$D_x: F \times F \to \mathbb{R}, \ D_x(z_1, z_2) = d(x, z_1) - d(x, z_2).$$



Denote

$$\mathcal{D}(M) = \{D_x : x \in M\}.$$

Then  $\{\mathcal{D}(M), (F, g|_F)\}$ determine  $(\overline{U}, g|_{\overline{U}}).$