Lecture notes:
 Introduction to Generalized Descriptive Set Theory

Miguel Moreno

September 2017

1 Descriptive Set Theory

This is an intensive course, long proofs are discussed during the lectures but not included in the lecture notes.

Day 1

Definition 1.1 (The Baire space B). The Baire space is the set ω^{ω} endowed with the following topology. For every $\eta \in \omega^{n}$ for some n, define the following basic open set

$$
N_{\eta}=\left\{f \in \omega^{\omega} \mid \eta \subseteq f\right\}
$$

the open sets are of the form $\bigcup X$ where X is a collection of basic open sets.
This topology is metrizable, let $d(f, g)=\frac{1}{n+1}$ where n is the least natural number that satisfies $f(n) \neq g(n)$, in case it does not exist then $f=g$ and $d(f, g)=0$.

Definition 1.2 (The Cantor space \mathbf{C}). The cantor space is the set 2^{ω} with the relative subspace topology.
Definition 1.3 (Borel class). Let $S \in\{\mathbf{B}, \mathbf{C}\}$. The class Borel (S) of all Borel sets in S is the least collection of subsets of S which contains all open sets and is closed under complements, countable unions and countable intersections.

Definition 1.4 (Borel hierarchy). Let $S \in\{\mathbf{B}, \mathbf{C}\}$. Define the classes $\Sigma_{\alpha}(S)$ and $\Pi_{\alpha}(S), \alpha<\omega_{1}$, as follows.

1. $\Sigma_{1}(S)$ is the class of open sets.
2. $\Pi_{1}(S)$ is the class of closed sets.
3. For all $\alpha>1, \Sigma_{\alpha}(S)$ is the class of of all countable unions of sets from $\bigcup_{\beta<\alpha} \Pi_{\beta}(S)$.
4. For all $\alpha>1, \Pi_{\alpha}(S)$ is the class of of all countable unions of sets from $\bigcup_{\beta<\alpha} \Sigma_{\beta}(S)$.

Exercise 1.1. 1. For all $n<\omega$ and all $\eta \in \omega^{n}$ the set N_{η} is closed.
2. For all $\beta<\alpha<\omega_{1}, \Sigma_{\beta}(\mathbf{B}) \subseteq \Sigma_{\alpha} \mathbf{B}$.
3. $\operatorname{Borel}(\mathbf{B})=\bigcup_{0<\alpha<\omega_{1}} \Sigma_{\alpha}(\mathbf{B})$.
4. $|\operatorname{Borel}(\mathbf{B})|=2^{\omega}$.
5. There are subsets of \mathbf{B} that are not Borel.

Definition 1.5. Let $S \in\{\mathbf{B}, \mathbf{C}\}$. We say that $A \subseteq S$ is co-meager, if it contains a countable intersection of open and dense subsetes of S. A subset of S is meager, if the cmplement of it is co-meager.

Definition 1.6. Let $S \in\{\mathbf{B}, \mathbf{C}\}$. We say that $X \subseteq S$ has the property of Baire $(P B)$ if there is an open set $U \subseteq S$ such that $X \Delta U$ is meager.

Lemma 1.7. Every Borel subset of \mathbf{B} has the property of Baire.
Exercise 1.2. Prove Lemma 1.7. (Hint: prove that X has the $P B$ if and only if $\mathbf{B} \backslash X$ has the $P B$.)
Definition 1.8 (Borel *-code). Let X be a non-emprty set.

1. A subset $T \subset X^{<\omega}$ is a tree if for all $f \in T$ with $n=\operatorname{dom}(f)>0$ and for all $m<n, f \upharpoonright m \in T$.
2. A non-empty tree $T \subset X^{<\omega}$ is called an ω-tree if the following holds:
(a) If $f: n \rightarrow X$ is in T and $n>0$, then for all $x \in X, f \upharpoonright(n-1) \cup\{(n-1, x)\} \in T$.
(b) There is no $f: \omega \rightarrow X$ such that for all $n<\omega, f \upharpoonright n \in T$.
3. We order T by \subseteq. The maximal elements of T are called leaves and the set of leaves is denoted by $L(T)$. The least element of T is called root (\emptyset). For every $f \in T$ that is not the root, we denote by f^{-}the immediate predecessor of f in T. We call node every element that is not a leaf.
4. A Borel*-code is a pair (T, π), where $T \subseteq(\omega \times \omega)^{<\omega}$ is an ω-tree and π is a function from $L(T)$ to the basic open sets of \mathbf{B}.
5. Given a Borel ${ }^{*}$-code (T, π) and $\eta \in \mathbf{B}$, we define the game $G B^{*}(\eta,(T, \pi))$ as follows. The game $G B^{*}(\eta,(T, \pi))$ is played by two players, I and II. In each move $0 \leq n<\omega$ the function $f_{n}: n+1 \rightarrow(\omega \times \omega)$ from T is chosen as follows: Suppose $f_{n-1} \in T$ is chosen, in case $n=0, f_{-1}=\emptyset$. If f_{n-1} is not a leaf, then \mathbf{I} choose some $i<\omega$ and then II choose some $j<\omega$. This determines $f_{n}=f_{n-1} \cup\{(n,(i, j))\}$. If f_{n-1} is a leaf, then the game ends and II wins if $\eta \in \pi\left(f_{n-1}\right)$.
6. A function $W: \omega^{<\omega} \rightarrow \omega$ is a winning strategy of II in $G B^{*}(\eta,(T, \pi))$, if II wins by choosing $W\left(i_{0}, \ldots, i_{n}\right)$ on the move n, where i_{0}, \ldots, i_{n} are the moves that \mathbf{I} made on the moves $0, \ldots, n$.
7. A Borel*-code (T, π) is a Borel *-code for $X \subseteq \mathbf{B}$ if for all $\eta \in \mathbf{B}, \eta \in X$ if and only if II has a winning strategy in $G B^{*}(\eta,(T, \pi))$. We say that $X \subseteq \mathbf{B}$ is a Borel* set if it has a Borel ${ }^{*}$-code. We denote by Borel* (\mathbf{B}) the class of Borel* sets.

Theorem 1.9. $\operatorname{Borel}(\mathbf{B})=\operatorname{Borel}^{*}(\mathbf{B})$.
Proof. Let us start by showing that $\operatorname{Borel}(\mathbf{B}) \subseteq \operatorname{Borel}^{*}(\mathbf{B})$. We will prove this by showing that every open set is a Borel * set and if $\left\{X_{i}\right\}_{i<\omega}$ is a countable collection of Borel ${ }^{*}$ sets, then $\bigcup_{i<\omega} X_{i}$ and $\bigcap_{i<\omega} X_{i}$ are Borel* sets.

Suppose that X is an open set. Let $\left\{\xi_{i}\right\}_{i<\omega}$ be a collection of elements of $\omega^{<\omega}$ such that $X=\bigcup_{i<\omega} N_{\xi_{i}}$. Let $T=(\omega \times \omega)^{\leq 1}$ and π the fuction given by $\pi((0,(i, j)))=N_{\xi_{j}}$. It is clear that for every $\eta \in X$, II has a winning strategy in $G B^{*}(\eta,(T, \pi))$. Therefore (T, π) is a Borel *-code for X.

Suppose that $\left\{X_{i}\right\}_{i<\omega}$ is a countable collection of Borel * sets. Let $\left(T_{i}, \pi_{i}\right)$ be a Borel*-code of X_{i}. Let T be the set of all functions $f: n \rightarrow(\omega \times \omega)$, for some $n<\omega$, such that if $f(0)=(i, j)$, then there is $g \in T_{i}$, $g: n-1 \rightarrow(\omega \times \omega)$ with $\operatorname{dom}(f)=\operatorname{dom}(g)+1$, and $f(m)=g(m-1)$, for all $0<m<\operatorname{dom}(f)$. For every leaf f of T if $f(0)=(i, j)$, then there is $g \in L\left(T_{i}\right)$ such that $f(m)=g(m-1)$, for all $0<m<\operatorname{dom}(f)$; define $\pi(f)=\pi_{i}(g)$.
Claim 1.10. (T, π) is a Borel *-code of $\bigcap_{i<\omega} X_{i}$, and $\bigcap_{i<\omega} X_{i}$ is a Borel * set.
Proof. Let $\eta \in \bigcap_{i<\omega} X_{i}$. Then for all $i<\omega$, there is a winning strategy W_{i} of II in $G B^{*}\left(\eta,\left(T_{i}, \pi_{i}\right)\right)$. Define $W: \omega^{<\omega} \rightarrow \omega$ by $W\left(i_{0}\right)=0$ and $W\left(i_{0}, \ldots, i_{n}\right)=W_{i_{0}}\left(i_{1}, \ldots, i_{n}\right)$ for all $0<n<\omega$. It is easy to see that W is a winning strategy of II in $G B^{*}(\eta,(T, \pi))$.

Let $\eta \in \mathbf{B}$ be such that II has a winning strategy, W, in $G B^{*}(\eta,(T, \pi))$. Define $W_{i}: \omega^{<\omega} \rightarrow \omega$ by $W_{i}\left(i_{0}, \ldots, i_{n}\right)=W\left(i, i_{0}, \ldots, i_{n}\right)$. It is easy to see that W_{i} is a winning strategy of II in $G B^{*}\left(\eta,\left(T_{i}, \pi_{i}\right)\right)$. Since this holds for all $i<\omega$, we conclude that $\eta \in X_{i}$, for all $i<\omega$.

Let $\left(T_{i}, \pi_{i}\right)$ be a Borel ${ }^{*}$-code of X_{i}. Let T be the set of all functions $f: n \rightarrow(\omega \times \omega)$, for some $n<\omega$, such that if $f(0)=(i, j)$, then there is $g \in T_{j}, g: n-1 \rightarrow(\omega \times \omega)$ with $\operatorname{dom}(f)=\operatorname{dom}(g)+1$ and $f(m)=g(m-1)$, for all $0<m<\operatorname{dom}(f)$. For every leaf f of T if $f(0)=(i, j)$, then there is $g \in L\left(T_{j}\right)$ such that $f(m)=g(m-1)$, for all $0<m<\operatorname{dom}(f)$; define $\pi(f)=\pi_{j}(g)$.
Claim 1.11. (T, π) is a Borel *-code of $\bigcup_{i<\omega} X_{i}$, and $\bigcup_{i<\omega} X_{i}$ is a Borel * set.
Proof. Let $\eta \in \bigcup_{i<\omega} X_{i}$. Then there is $j<\omega$, such that there is a winning strategy W_{j} of II in $G B^{*}\left(\eta,\left(T_{j}, \pi_{j}\right)\right)$. Define $W: \omega^{<\omega} \rightarrow \omega$ by $W\left(i_{0}\right)=j$ and $W\left(i_{0}, \ldots, i_{n}\right)=W_{j}\left(i_{1}, \ldots, i_{n}\right)$ for all $0<n<\omega$. It is easy to see that W is a winning strategy of II in $G B^{*}(\eta,(T, \pi))$.

Let $\eta \in \mathbf{B}$ be such that II has a winning strategy, W, in $G B^{*}(\eta,(T, \pi))$. Define $W^{\prime}: \omega^{<\omega} \rightarrow \omega$ by $W^{\prime}\left(i_{1}, \ldots, i_{n}\right)=W\left(0, \ldots, i_{n}\right)$. It is easy to see that W^{\prime} is a winning strategy of II in $G B^{*}\left(\eta,\left(T_{W(0)}, \pi_{W(0)}\right)\right)$. Therefore $\eta \in X_{W(0)}$.

To show that $\operatorname{Borel}^{*}(\mathbf{B}) \subseteq \operatorname{Borel}(\mathbf{B})$ we will define the rank of an ω-tree and the rank of the elements of an ω-tree.

Given an ω-tree T, we define the rank function, $r k$, as follows:

- If $\eta \in L(T)$, then $r k(\eta)=0$.
- If $\eta \notin L(T)$, then $r k(\eta)=\bigcup\left\{r k(f)+1 \mid f^{-}=\eta\right\}$.

The rank of a tree T is defined by $\operatorname{rk}(T)=\operatorname{rk}(\emptyset)$.
Exercise 1.3. 1. Show that the rank of an ω-tree is smaller than ω_{1}.
2. Find an ω-tree with infinite rank.

Let X be a Borel * set, and (T, π) a Borel *-code of X. We will prove by induction on $r k(T)$ that X is a Borel set.

Case $\operatorname{rk}(T)=0$. It is clear that $T=\{\emptyset\}$ and $X=\pi(\emptyset)$, therefore X is a Borel set.
Suppose $r k(T)=\alpha$ and if Y is Borel ${ }^{*}$ set with Borel ${ }^{*}$-code $\left(T^{\prime}, \pi^{\prime}\right)$ with $r k(T)<\alpha$, then Y is a Borel set.
Let $T_{i j}$ be the set of all functions $f: n \rightarrow \omega$ such that there is a function $g \in T$ with $g(0)=(i, j)$, $\operatorname{dom}(g)=\operatorname{dom}(f)+1$ and $f(m)=g(m+1)$ for all $m \in \operatorname{dom}(f)$. Define $\pi_{i j}$ by $\pi_{i j}(f)=\pi(g)$, where $g \in T$ is such that $g(0)=(i, j), \operatorname{dom}(g)=\operatorname{dom}(f)+1$ and $f(m)=g(m+1)$ for all $m \in \operatorname{dom}(f)$. Notice that for all $i, j<\omega, r k\left(T_{i j}\right)<\alpha$. By the induction hypothesis, for all $i, j<\omega,\left(T_{i j}, \pi_{i j}\right)$ is a Borel ${ }^{*}$-code of a Borel set. Denote by $B_{i j}$ the Borel set with Borel *-code $\left(T_{i j}, \pi_{i j}\right)$.
Claim 1.12. $X=\bigcap_{i<\omega} \bigcup_{j<\omega} B_{i j}$
Proof. Let $\eta \in X$, then II has a winning strategy, W, in $G B^{*}(\eta,(T, \pi))$. Define $W_{i W(i)}: \omega^{<\omega} \rightarrow \omega$ by $W_{i W(i)}\left(i_{0}, \ldots, i_{n}\right)=W\left(i, i_{0}, \ldots, i_{n}\right)$, it is clear that $W-i W(i)$ is a winning strategy of $\mathbf{I I}$ in $G B^{*}\left(\eta,\left(T_{i W(i)}, \pi_{i W(i)}\right)\right)$, so $\eta \in B_{i W(i)}$. Therefore, for all $i<\omega$ there is $j<\omega$ such that $\eta \in B_{i j}$, we conclude that $\eta \in \bigcap_{i<\omega} \bigcup_{j<\omega} B_{i j}$.

Let $\eta \in \bigcap_{i<\omega} \bigcup_{j<\omega} B_{i j}$. Then for all $i<\omega$ there is $j<\omega$ such that $\eta \in B_{i j}$, denote by $h(i)$ this j. So there is $W_{i h(i)}$ a winning strategy of II in $G B^{*}\left(\eta,\left(T_{i h(i)}, \pi_{i h(i)}\right)\right)$. Define $W: \omega^{<\omega} \rightarrow \omega$ by $W\left(i_{0}\right)=h\left(i_{0}\right)$ and $W\left(i_{0}, \ldots, i_{n}\right)=W_{h\left(i_{0}\right)}\left(i_{1}, \ldots, i_{n}\right)$. It is clear that W is a winning strategy of II in $G B^{*}\left(\eta,\left(T_{i W(i)}, \pi_{i W(i)}\right)\right)$ and $\eta \in X$.

At the beginning the Borel*-codes look very artificial and complicated, but this codes will be very helpful in the future. In order to give a better understanding of the motivation behind the Borel ${ }^{*}$-codes we will define the Borel**-codes. This codes use intersections and unions as part of the coding of sets, this gives a better understanding on what is going on in the coding.

Definition 1.13. 1. A pair (T, π) is a Borel $^{* *}$-code if $T \subseteq \omega^{<\omega}$ is an ω-tree and π is a function with domain T such that if $f \in T$ is a leaf, then $\pi(f)$ is an open set, and in case f is a node, $\pi(f)=\cap$ if $|\operatorname{dom}(f)|$ is an even number and $\pi(f)=\cup$ if $|\operatorname{dom}(f)|$ is an odd number.
2. For an element $\eta \in \mathbf{B}$ and a Borel ${ }^{* *}$-code (T, π), the game $B^{*}(\eta,(T, \pi))$ is played as follows. There are two players, \mathbf{I} and $\mathbf{I I}$. The game starts from the root of T. At each move, if the game is at node $f \in T$ and $\pi(f)=\cap$, then \mathbf{I} chooses an immediate successor g of f and the game continues from this g. If $\pi(f)=\cup$, then II makes the choice. Finally, if $\pi(f)$ is an open set, then the game ends, and II wins if and only if $\eta \in \pi(x)$.
3. A set $X \subseteq \omega^{\omega}$ is a Borel ${ }^{* *}$-set if there is a Borel ${ }^{* *}$-code (T, π) such that for all $\eta \in \omega^{\omega}, \eta \in X$ if and only if II has a winning strategy in the game $B^{*}(\eta,(T, \pi))$. We denote by $\operatorname{Borel}^{* *}(\mathbf{B})$ the set of Borel** sets.

Exercise 1.4. Borel $^{*}(\mathbf{B})=$ Borel $^{* *}(\mathbf{B})$.
Notice that the rank was defined for ω-trees in general. For every Borel** set, X, as the least ordinal α such that there is a Borel ${ }^{* *}$-code of X.

Exercise 1.5. What is the relation between the rank of a Borel** set and the Borel hierarchy?

Day 2

Definition 1.14. - $X \subseteq \mathbf{B}$ is $\Sigma_{1}^{1}(\mathbf{B})$ if there is $Y \subseteq \mathbf{B} \times \mathbf{B}$ a Borel set such that $p r(Y)=X$.

- $X \subseteq \mathbf{B}$ is $\Pi_{1}^{1}(\mathbf{B})$ if $\mathbf{B} \backslash X$ is $\Sigma_{1}^{1}(\mathbf{B})$.
- $X \subseteq \mathbf{B}$ is $\Delta_{1}^{1}(\mathbf{B})$ if it is $\Sigma_{1}^{1}(\mathbf{B})$ and $\Pi_{1}^{1}(\mathbf{B})$.

Lemma 1.15. The following are equivalent:

- X is $\Sigma_{1}^{1}(\mathbf{B})$.
- $X=\operatorname{pr}(Y)$ for some closed $y \subseteq \mathbf{B} \times \mathbf{B}$.

Lemma 1.16. If $X \subseteq \mathbf{B}$ is Borel, then X is $\Delta_{1}^{1}(\mathbf{B})$.
Proof. Let $X \subseteq \mathbf{B}$ be a Borel set and (T, π) a Borel *-code for X. Let $h: \omega^{<\omega} \rightarrow \omega$ be one-to-on and onto. For all $f \in \omega^{\omega}$ define $W_{f}: \omega^{<\omega} \rightarrow \omega$ by $W_{f}\left(i_{0}, \ldots, i_{n}\right)=f\left(h\left(i_{0}, \ldots, i_{n}\right)\right)$. Let P be the set of all the tuples $(\eta, f) \in \omega^{\omega} \times \omega^{\omega}$ such that W_{f} is a winning strategy for II in the game $G B^{*}(\eta,(T, \pi))$. It is clear that $\operatorname{pr}(P)=X$.
Claim 1.17. P is closed
Proof. Let $(\eta, f) \notin P$ then there are $n<\omega$ and $\left\{j_{0}, \ldots, j_{n}\right\}$ such that if I choose j_{m} in the m-move and II choose $W_{f}\left(j_{0} \ldots, j_{m}\right)$ in the m-move, then after n moves the game stops in a leaf g and $\eta \notin \pi(g)$. Therefore, there is $r<\omega$, such that $N_{\eta \upharpoonright r} \cap \pi(g)=\emptyset$, so $\left(N_{\eta \upharpoonright r} \times N_{f \upharpoonright m}\right) \cap P=\emptyset$.

We conclude that X is $\Sigma_{1}^{1}(\mathbf{B})$ and since $\operatorname{Borel}(\mathbf{B})$ is closed under complements, we conclude that $\mathbf{B} \backslash X$ is Borel, therefore it is $\Sigma_{1}^{1}(\mathbf{B})$. We conclude that X is $\Delta_{1}^{1}(\mathbf{B})$.

Exercise 1.6. Prove the claims of the following proof.
Theorem 1.18 (Separation). If $X, Y \subseteq \mathbf{B}$ are $\Sigma_{1}^{1}(\mathbf{B})$ disjoint sets, then there is a Borel set $Z \subseteq \mathbf{B}$ that satisfies $X \subseteq Z \subseteq \mathbf{B} \backslash Y$.

Proof. Choose $X^{*}, Y^{*} \subseteq \mathbf{B} \times \mathbf{B}$ such that $\operatorname{pr}\left(X^{*}\right)=X$ and $\operatorname{pr}\left(Y^{*}\right)=Y$. For all $\eta \in \mathbf{B}$, let X_{η} be the set of all $\xi \in \omega^{\omega}$ that satisfy the following: If $\operatorname{dom}(\xi)=n$, then there are $\eta^{\prime} \xi^{\prime} \in \mathbf{B},\left(\eta^{\prime}, \xi^{\prime}\right) \in X^{*}$, and $\eta^{\prime} \upharpoonright n=\eta \upharpoonright n$ and $\xi \subseteq \xi^{\prime}$. Define Y_{η} in the same way. We denote by $X_{\eta \upharpoonright n}$ the set of functions $\xi \in \omega^{n}$ such that there is $\eta^{\prime} \in \mathbf{B}$, and $\xi \in X_{\xi^{\prime}}$ and $\eta \upharpoonright n \subseteq \eta^{\prime}$. It is clear that $X_{\eta}=\bigcup_{n<\omega} X_{\eta \upharpoonright n}$.

Given two trees $T, T^{\prime} \subseteq \omega^{<\omega}$, we say that $T \leq T^{\prime}$ if there is a function $f: T \rightarrow T^{\prime}$ that satisfies the following: for all $\eta, \xi \in T$, if $\eta \subsetneq \xi$, then $f(\eta) \subsetneq f(\xi)$. Let Z be the set of $\eta \in \mathbf{B}$ that satisfy $Y_{\eta} \leq X_{\eta}$.
Claim 1.19. - If $\eta \in X$, then $Y_{\eta} \leq X_{\eta}$.

- If $Y_{\eta} \leq X_{\eta}$, then $\eta \notin Y$.
- $X \subseteq Z \subseteq \mathbf{B} \backslash Y$.
for all $T, T^{\prime} \subseteq \omega^{<\omega}$ we define the game $G C\left(T, T^{\prime}\right)$ as follows: in the n-th movement, \mathbf{I} chooses $t_{n} \in T$ such that $t_{m} \subseteq t_{n}$ holds for all $m<n$, and II chooses $t_{n}^{\prime} \in T^{\prime}$ such that $t_{m}^{\prime} \subseteq t_{n}^{\prime}$ holds for all $m<n$. The game ends when a player cannot make a choice, the player that cannot make a choice looses.
Claim 1.20. $T \leq T^{\prime}$ si y solo si II has a winning strategy for the game $G C\left(T, T^{\prime}\right)$.
Let T be the set of all functions with finite domain, $f: n \rightarrow \bigcup_{m<\omega}\left(\omega^{m}\right)^{3}$ such that for all $i<n$ the following holds:
- $f(i) \in\left(\omega^{i}\right)^{3}$.
- If $j+1<n$ and $f(j)=\left(\xi_{k}\right)_{k<3}$, then $\xi_{1} \in X_{\xi_{0}}$ and $\xi_{2} \in X_{\xi_{0}}$.
- If $j<l<n, f(j)=\left(\xi_{k}\right)_{k<3}$, and $f(l)=\left(\xi_{k}^{\prime}\right)_{k<3}$, then for all $k<3, \xi_{k} \subseteq \xi_{k}^{\prime}$.

Define π with domain $L(T)$ as $\pi(f)=N_{\xi_{0}}$ if $\operatorname{dom}(f)=n+1, f(n)=\left(\xi_{k}\right)_{k<3}$, and $\xi_{2} \notin Y_{\xi_{0}}$. And $\pi(f)=\emptyset$ in other case.

Claim 1.21. There is a Borel ${ }^{*}$-code $\left(T^{\prime}, \pi^{\prime}\right)$ such that there is a tree isomorphism $h: T^{\prime} \rightarrow T$ that satisfies $\pi^{\prime}(f)=\pi(h(f))$.
Claim 1.22. II has a winning strategy in $G B^{*}\left(\eta,\left(T^{\prime}, \pi^{\prime}\right)\right)$ if and only if $G C\left(Y_{\eta}, X_{\eta}\right)$.

The following is a standard way to code structures with domain ω with elements of 2^{ω}. Fix a countable relational vocabulary $\mathcal{L}=\left\{P_{n} \mid n<\omega\right\}$.

Definition 1.23. Fix a bijection $\pi: \omega^{<\omega} \rightarrow \omega$. For every $\eta \in 2^{\omega}$ define the \mathcal{L}-structure \mathcal{A}_{η} with domain ω as follows: For every relation P_{m} with arity n, every tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in ω^{n} satisfies

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P_{m}^{\mathcal{A}_{\eta}} \Longleftrightarrow \eta\left(\pi\left(m, a_{1}, a_{2}, \ldots, a_{n}\right)\right)=1 .
$$

Definition 1.24 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary. We define \cong_{T}^{ω} as the relation

$$
\left\{(\eta, \xi) \in 2^{\omega} \times 2^{\omega} \mid\left(\mathcal{A}_{\eta} \models T, \mathcal{A}_{\xi} \models T, \mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}\right) \text { or }\left(\mathcal{A}_{\eta} \mid \neq T, \mathcal{A}_{\xi} \not \models T\right)\right\}
$$

A function $f: 2^{\omega} \rightarrow 2^{\omega}$ is Borel, if for every open set $A \subseteq 2^{\omega}$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^{ω}. Let E_{1} and E_{2} be equivalence relations on 2^{ω}. We say that E_{1} is Borel reducible to E_{2}, if there is a Borel function $f: 2^{\omega} \rightarrow 2^{\omega}$ that satisfies $(x, y) \in E_{1} \Leftrightarrow(f(x), f(y)) \in E_{2}$, we denote it by $E_{1} \leq_{B} E_{2}$.
Exercise 1.7. A function f is Borel if and only if for all Borel set $X, f^{-1}[X]$ is Borel.
Example 1.1. Let T_{1} be the theory of the order of the rational numbers, $\cong_{T_{1}}^{\omega}$ has only two equivalent classes. Let T_{2} be the theory of a vector space over the field of rational numbers. $\cong{ }_{T_{1}}^{\omega} \leq_{B} \cong{ }_{T_{2}}^{\omega}$.

This can be use to compare the complexity of two theories, from Example 1.1 we conclude that T_{1} is less complex than T_{2}, in the Borel reducibility sense.

Question 1.25. Is there an equivalence relation E on 2^{ω} such that for every complete first order theory in a countable vocabulary T, either $E \not \mathbb{Z}_{B} \cong{ }_{T_{1}}^{\omega}$ or $\cong{ }_{T_{1}}^{\omega} \not \mathbb{Z}_{B} E$.

Let T be a complete countable theory, we will denote by $I(\lambda, T)$ the amount of non-isomorphic models of T of size λ. The following is the main theorem of [12].

Theorem 1.26 (The Main Gap Theorem, [12]). Let T be a complete countable theory.

- If T is not superstable, or deep, or with DOP or OTOP then for every uncountable cardinal $\lambda, I(\lambda, T)=2^{\lambda}$.
- If T is shallow superstable without DOP and without OTOP, then for every $\alpha>0, I\left(\aleph_{\alpha}, T\right) \leq \beth_{\omega_{1}}(|\alpha|)$.

Let T be a complete countable theory, we say that T is a classifiable theory if T is superstable without DOP and without OTOP. T_{1} in Example 1.1 is not classifiable and T_{2} is classifiable. The Main Gap Theorem tells us that classifiable theories are less complex than non-classifiable ones, in the stability sense.

2 Generalized Descriptive Set Theory

Day 3

Definition 2.1 (The Generalized Baire space $\mathbf{B}(\kappa)$). Let κ be an uncountable cardinal. The generalized Baire space is the set κ^{κ} endowed with the following topology. For every $\eta \in \kappa^{<\kappa}$, define the following basic open set

$$
N_{\eta}=\left\{f \in \kappa^{\kappa} \mid \eta \subseteq f\right\}
$$

the open sets are of the form $\bigcup X$ where X is a collection of basic open sets.
Definition 2.2 (The Generalized Cantor space $\mathbf{C}(\kappa)$). Let κ be an uncountable cardinal. The generalized Cantor space is the set 2^{κ} with the relative subspace topology.

From now on κ is an uncountable cardinal that satisfies κ^{κ}.
Definition 2.3 (κ-Borel class). Let $S \in\{\mathbf{B}(\kappa), \mathbf{C}(\kappa)\}$. The class κ-Borel (S) of all κ-Borel sets in S is the least collection of subsets of S which contains all open sets and is closed under complements, unions and intersections both of length at most κ.

Definition $2.4(\kappa$-Borel*-set in $\mathbf{C}(\kappa))$. 1. A tree T is a κ^{+}, κ-tree if does not contain chains of length κ and its cardinality is less than κ^{+}. It is closed if every chain has a unique supremum.
2. A pair (T, h) is a κ-Borel ${ }^{*}$-code if T is a closed κ^{+}, κ-tree and h is a function with domain T such that if $x \in T$ is a leaf, then $h(x)$ is a basic open set and otherwise $h(x) \in\{\cup, \cap\}$.
3. For an element $\eta \in 2^{\kappa}$ and a κ-Borel*-code (T, h), the κ-Bore $*^{*}$-game $B^{*}(T, h, \eta)$ is played as follows. There are two players, I and II. The game starts from the root of T. At each move, if the game is at node $x \in T$ and $h(x)=\cap$, then \mathbf{I} chooses an immediate successor y of x and the game continues from this y. If $h(x)=\cup$, then II makes the choice. At limits the game continues from the (unique) supremum of the previous moves by Player \mathbf{I}. Finally, if $h(x)$ is a basic open set, then the game ends, and II wins if and only if $\eta \in h(x)$.
4. A set $X \subseteq 2^{\kappa}$ is a κ-Borel* -set if there is a κ-Borel ${ }^{*}$-code (T, h) such that for all $\eta \in 2^{\kappa}, \eta \in X$ if and only if II has a winning strategy in the game $B^{*}(T, h, \eta)$.

We can define the κ-Borel ${ }^{*}$-set in the generalized Baire space too, by using the same coding but with basic open sets of the generalized Baire space. Given two sets $X, Y \subset \kappa^{\kappa}$ we say that X and Y are duals if there is a κ-Borel* ${ }^{*}$-code (T, h) such that for all $\eta \in \kappa^{\kappa}, \eta \in X$ if and only if II has a winning strategy in the game $B^{*}(T, h, \eta)$, and $\eta \in Y$ if and only if \mathbf{I} has a winning strategy in the game $B^{*}(T, h, \eta)$. We will write II $\uparrow B^{*}(T, h, \eta)$ when II has a winning strategy in the game $B^{*}(T, h, \eta)$, and $\mathbf{I} \uparrow B^{*}(T, h, \eta)$ when \mathbf{I} has a winning strategy in the game $B^{*}(T, h, \eta)$.

Exercise 2.1. X is a κ-Borel set if and only if there is a κ-Borel* ${ }^{*}$-code (T, h) such that (T, h) codes X and T is a κ^{+}, ω-tree.

Definition 2.5. - $X \subseteq \mathbf{B}(\kappa)$ is $\Sigma_{1}^{1}(\kappa)$ if there is $Y \subseteq \mathbf{B}(\kappa) \times \mathbf{B}(\kappa)$ a closed set such that pr $(Y)=X$.

- $X \subseteq \mathbf{B}(\kappa)$ is $\Pi_{1}^{1}(\kappa)$ if $\mathbf{B}(\kappa) \backslash X$ is $\Sigma_{1}^{1}(\kappa)$.
- $X \subseteq \mathbf{B}(\kappa)$ is $\Delta_{1}^{1}(\kappa)$ if it is $\Sigma_{1}^{1}(\kappa)$ and $\Pi_{1}^{1}(\kappa)$.

Theorem 2.6 ([2], Theorem 17). 1. κ-Borel $\subseteq \kappa$-Borel ${ }^{*}$.
2. κ-Borel $\subseteq \Delta_{1}^{1}(\kappa)$.
3. κ-Borel $\subseteq \Sigma_{1}^{1}(\kappa)$.
4. κ-Borel ${ }^{*} \subseteq \Sigma_{1}^{1}(\kappa)$.

Proof. (Sketch). From Exercise 2.1 we conclude that (1) holds. (2) follows from (3) and tha fact that κ-Borel is closed under complement. (3) follows from (1) and (4). To prove (4), code the winning strategies $\sigma: T \rightarrow T$ by elements of κ^{κ}, notice that the assumption $\kappa^{<\kappa}$ is needed. Then, if X is κ-Borel ${ }^{*}$, then there is a κ-Borel ${ }^{*}$-code (T, h) that codes X. The set $Y=\left\{(\eta, \xi) \mid \xi\right.$ is a code of a winning strategy for $\mathbf{I I}$ in $\left.B^{*}(T, h, \eta)\right\}$ is closed and $p r(Y)=X$.

Exercise 2.2. Complete the details in the proof of Theorem 2.6.
The following theorem is the separation theorem and the proof can be found in [10].
Theorem 2.7 ([10], Corollary 34). Suppose A and B are disjoint $\Sigma_{1}^{1}(\kappa)$ sets. There are κ-Borel ${ }^{*}$ sets C_{0} and C_{1} such that $A \subseteq C_{0}, B \subseteq C_{1}$, and C_{0} and C_{1} are duals.

Theorem 2.8 ([2], Theorem 17). $\Delta_{1}^{1}(\kappa) \subseteq \kappa$-Borel ${ }^{*}$
Proof. Let A be a $\Delta_{1}^{1}(\kappa)$ set. Let $B=\mathbf{B}(\kappa) \backslash A$, by 2.7, there are κ-Borel ${ }^{*}$ sets C_{0} and C_{1} such that $A \subseteq C_{0}$, $B \subseteq C_{1}$, and C_{0} and C_{1} are duals. Since C_{0} and C_{1} are duals, C_{0} and C_{1} are disjoint. So $A=C_{0}, B=C_{1}$.

Corollary 2.9 ([10], Corollary 35). X is $\Delta_{1}^{1}(\kappa)$ if there is a κ-Borel ${ }^{*}$-code (T, h) that codes X and

$$
\mathbf{I I} \uparrow B^{*}(T, h, \eta) \Leftrightarrow \mathbf{I} \nVdash B^{*}(T, h, \eta)
$$

for all $\eta \in \kappa^{\kappa}$ the game is determined.
Exercise 2.3. Prove the claims of the following proof.
Theorem 2.10 ([2], Theorem 18). 1. κ-Borel $\subsetneq \Delta_{1}^{1}(\kappa)$
2. $\Delta_{1}^{1}(\kappa) \subsetneq \Sigma_{1}^{1}(\kappa)$

Proof. 1. Let $\xi \mapsto\left(T_{\xi}, h_{\xi}\right)$ be a continuous coding of the κ-Borel ${ }^{*}$-codes with T a $\kappa^{+} \omega$-tree, such that for all $\kappa^{+} \omega$-tree, T, and h, there is ξ such that $T_{\xi}, h_{\xi}=(T, h)$.
Claim 2.11. The set $B=\left\{(\eta, \xi) \mid \eta\right.$ is in the set coded by $\left.\left(T_{\xi}, h_{\xi}\right)\right\}$ is $\Sigma_{1}^{1}(\kappa)$ and is not κ-Borel, otherwise $D=\{\eta \mid(\eta, \eta) \notin B\}$ would be Borel (Hint: use the set $C=\left\{(\eta, \xi, \sigma) \mid \sigma\right.$ is a winning strategy for $\mathbf{I I}$ in $\left.\left.B^{*}\left(T_{\xi}, h_{\xi}, \eta\right)\right\}\right)$.
2.

Claim 2.12. There is $A \subseteq 2^{\kappa} \times 2^{\kappa}$ such that if $B \subseteq 2^{\kappa}$ is a $\Sigma_{1}^{1}(\kappa)$ set, then there is $\eta \in 2^{\kappa}$ such that $B=\{\xi \mid(\xi, \eta) \in A\}$ (Hint: the construction used in the classical case works too).
The set $D=\{\eta \mid(\eta, \eta) \in A\}$ is $\Sigma_{1}^{1}(\kappa)$ but not $\Pi_{1}^{1}(\kappa)$.

Exercise 2.4. Prove the claims of the following proof.

Lemma 2.13 ([5], Lemma 5). Assume $V=L$. Suppose $\psi(x, \xi)$ is a Σ_{1}-formula in set theory with parameter $\xi \in 2^{\kappa}$ and that $r(\alpha)$ is a formula of set theory that says that " α is a regular cardinal". Then for $x \in 2^{\kappa}$ we have $\psi(x, \xi)$ if and only if the set

$$
A=\left\{\alpha<\kappa \mid \exists \beta>\alpha\left(L_{\beta} \models Z F^{-} \wedge \psi(x \upharpoonright \alpha, \xi \upharpoonright \alpha) \wedge r(\alpha)\right)\right\}
$$

contains a club.
Proof. Suppose that $x \in 2^{\kappa}$ is such that $\psi(x, \xi)$ holds. Let θ be a large enough cardinal such that

$$
L_{\theta} \models Z F^{-} \wedge \psi(x, \xi) \wedge r(\alpha)
$$

For each $\alpha<\kappa$, let

$$
H(\alpha)=S k(\alpha \cup\{\kappa, \xi, x\})^{L_{\theta}}
$$

and $\bar{H}(\alpha)$ the Mostowski collapse of $H(\alpha)$. Let

$$
D=\{\alpha<\kappa \mid H(\alpha) \cap \kappa=\alpha\}
$$

Claim 2.14. D is a club set and $D \subseteq A$.
Suppose $x \in 2^{\kappa}$ is such that $\psi(x, \xi)$ does not hold. Let $\mu<\kappa$ be a regular cardinal. Take θ as above and let C be an unbounded set, closed under μ-limits (i.e. if $\left(\gamma_{i}\right)_{i}<\mu$ is an increasing succession of elements of C, then $\left.\bigcup\left\{\gamma_{i} \mid i<\mu\right\} \in C\right)$. Let

$$
K(\alpha)=S k(\alpha \cup\{\kappa, C, \xi, x\})^{L_{\theta}}
$$

and

$$
D=\left\{\alpha \in S_{\mu}^{\kappa} \mid K(\alpha) \cap \kappa=\alpha\right\}
$$

Claim 2.15. D is an unbounded set, closed under μ-limits.
Let $\alpha_{0} \in D$ be the least ordinal that is a μ-cofinal limit of elements of D.
Claim 2.16. $\alpha_{0} \in C$ and $\alpha_{0}>\mu$ (Hint: Use the elementarity of $K(\alpha)$ and the fact that $D \subseteq S_{\mu}^{\kappa}$).
Let $\bar{\beta}$ be such that $L_{\bar{\beta}}$ is equal to the Mostowski collapse of $K\left(\alpha_{0}\right)$. We will show that $\alpha_{0} \notin A$. Suppose, towards a contradiction, that $\alpha_{0} \in A$. There exists $\beta>\alpha$ such that

$$
L_{\beta} \models Z F^{-} \wedge \psi(x \upharpoonright \alpha, \xi \upharpoonright \alpha) \wedge r(\alpha)
$$

Claim 2.17. β is a limit ordinal greater than $\bar{\beta}$ and L_{β} satisfies "there exists a $\gamma \leq \alpha_{0}$ and an order-preserving bijection from γ to $D \cap \alpha_{0}$ " (Hint: Show that $K\left(\alpha_{0}\right)$ is a definable subset of L_{θ} and $D \cap \alpha_{0}$ is a definable subset of $K\left(\alpha_{0}\right)$, to conclude that $D \cap \alpha_{0}$ is a definable subset of $L_{\bar{\beta}}$ and $\left.D \cap \alpha_{0} \in L_{\beta}\right)$.

By the way α_{0} was chosen, $D \cap \alpha_{0}$ has order type μ. Hence, by Claim $2.16 \alpha_{0}$ is singular in L_{β} but this contradicts that $L_{\beta} \models r(\alpha)$.

Day 4

Let μ be a regular cardinal, we say that $X \subseteq \kappa$ is a μ-club if X is unbounded set and closed under μ-limits.
Definition 2.18 ($E_{\mu \text {-club }}^{\kappa}$). Let $\mu<\kappa$ be a regular cardinal. For all $\eta, \xi \in \kappa^{\kappa}$ we say that η and ξ are $E_{\mu-c l u b}^{\kappa}$ equivalent ($\eta E_{\mu-c l u b}^{\kappa} \xi$) if the set $\{\alpha<\kappa \mid \eta(\alpha)=\xi(\alpha)\}$ contains a μ-club.
Definition $2.19\left(E_{\mu \text {-club }}^{2}\right)$. Let $\mu<\kappa$ be a regular cardinal. For all $\eta, \xi \in 2^{\kappa}$ we say that η and ξ are $E_{\mu-c l u b}^{2}$ equivalent ($\eta E_{\mu \text {-club }}^{2} \xi$) if the set $\{\alpha<\kappa \mid \eta(\alpha)=\xi(\alpha)\}$ contains a μ-club.

An equivalence relation E on $X \in\left\{\kappa^{\kappa}, 2^{\kappa}\right\}$ is $\Sigma_{1}^{1}(\kappa)$-complete if every $\Sigma_{1}^{1}(\kappa)$ equivalence relation is κ-Borel reducible to it.
Exercise 2.5. Prove the claims of the following proof.
Theorem 2.20 ([5], Theorem 7). Suppose that $V=L$. Then $E_{\mu-c l u b}^{\kappa}$ is $\Sigma_{1}^{1}(\kappa)$-complete, for every regular μ.
Proof. Suppose E is a $\Sigma_{1}^{1}(\kappa)$ equivalence relation on κ^{κ}. Let $a: \kappa^{\kappa} \rightarrow 2^{\kappa \times \kappa}$ the map defined by

$$
a(\eta)(\alpha, \beta)=1 \Leftrightarrow \eta(\alpha)=\beta
$$

Let b be a continuous bijection from $2^{\kappa \times \kappa}$ to 2^{κ}, and $c=b \circ a$. Define E^{\prime} by

$$
(\eta, \xi) \in E^{\prime} \Leftrightarrow(\eta=\xi) \vee\left(\eta, \xi \in \operatorname{ran}(c) \wedge\left(c^{-1}(\eta), c^{-1}(\xi)\right) \in E\right)
$$

Claim 2.21. c is a continuous reduction of E to E^{\prime} and E^{\prime} is a $\Sigma_{1}^{1}(\kappa)$ equivalence relation.
We can assume without loss of generality, that E is an equivalence relation on 2^{κ}. It is enough to define $f: 2^{\kappa} \rightarrow\left(2^{<\kappa}\right)^{\kappa}$ such that for all $\eta, \xi \in 2^{\kappa},(\eta, \xi) \in E$ if and only if the set $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\}$ contains a μ-club and f is continuous in the topology generated by the sets

$$
\{\eta \mid \eta \upharpoonright \alpha=p\}, p \in\left(2^{<\kappa}\right)^{\alpha}, \alpha<\kappa .
$$

Claim 2.22. f can be coded by a κ-Borel function $\mathcal{F}: 2^{\kappa} \rightarrow \kappa^{\kappa}$.
Claim 2.23. There is a Σ_{1}-formula of set theory $\psi(\eta, \xi)=\psi(\eta, \xi, x)=\exists k \varphi(k, \eta, \xi, x)$ with $x \in 2^{\kappa}$, such that for all $\eta, \xi \in 2^{\kappa}$,

$$
(\eta, \xi) \in E \Leftrightarrow \psi(\eta, \xi) .
$$

Let $r(\alpha)$ be the formula " α is a regular cardinal" and $\psi^{E}=\psi^{E}(\kappa)$ be the sentence with parameter κ that asserts that $\psi(\eta, \xi)$ defines an equivalence relation on 2^{κ}. For all $\eta \in 2^{\kappa}$ and $\alpha<\kappa$, let

$$
T_{\eta, \alpha}=\left\{p \in 2^{\alpha} \mid \exists \beta>\alpha\left(L_{\beta} \models Z F^{-} \wedge \psi(p, \eta \upharpoonright \alpha, x) \wedge r(\alpha) \wedge \psi^{E}\right)\right\}
$$

and let

$$
f(\eta)(\alpha)= \begin{cases}\min _{L} T_{\eta, \alpha} & \text { if } T_{\eta, \xi} \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

We will show that $(\eta, \xi) \in E$ if and only if the set $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\}$ contains a μ-club.
Suppose $\psi(\eta, \xi, x)=\exists k \varphi(k, \eta, \xi, x)$ holds and let k witnesses that. Let θ be a cardinal large enough such that $L_{\theta}=Z F^{-} \wedge \varphi(k, \eta, \xi, x) \wedge r(\alpha)$. For all $\alpha<\kappa$ let $H(\alpha)=S k(\alpha \cup\{\kappa, k, \eta, \xi, x\})^{L_{\theta}}$. The set $D=\{\alpha<\kappa \mid$ $\left.H(\alpha) \cap \kappa=\alpha \wedge H(\alpha) \models \psi^{E}\right\}$ is a club. Using the Mostowski collapse we have that

$$
D^{\prime}=\left\{\alpha<\kappa \mid \exists \beta>\alpha\left(L_{\beta} \models Z F^{-} \wedge \varphi(k \upharpoonright \alpha, \eta \upharpoonright \alpha, \xi \upharpoonright \alpha, x \upharpoonright \alpha) \wedge r(\alpha) \wedge \psi^{E}\right)\right\}
$$

contains a club. For all $\alpha \in D^{\prime}$ and $p \in T_{\eta, \alpha}$ we have that

$$
\exists \beta_{1}>\alpha\left(L_{\beta_{1}} \models Z F^{-} \wedge \psi(p, \eta \upharpoonright \alpha) \wedge r(\alpha) \wedge \psi^{E}\right)
$$

and

$$
\exists \beta_{2}>\alpha\left(L_{\beta_{2}} \models Z F^{-} \wedge \psi(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha) \wedge r(\alpha) \wedge \psi^{E}\right)
$$

Therefore, for $\beta=\max \left\{\beta_{1}, \beta_{2}\right\}$ we have that

$$
L_{\beta} \models Z F^{-} \wedge \psi(p, \eta \upharpoonright \alpha) \wedge \psi(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha) \wedge r(\alpha) \wedge \psi^{E}
$$

Since ψ^{E} holds and so transitivity holds for $\psi(\eta, \xi)$, we conclude that

$$
L_{\beta} \models Z F^{-} \wedge \psi(p, \xi \upharpoonright \alpha) \wedge r(\alpha) \wedge \psi^{E}
$$

so $p \in T_{\xi, \alpha}$ and $T_{\eta, \alpha} \subseteq T_{\xi, \alpha}$. Using the same argument we can show that $T_{\xi, \alpha} \subseteq T_{\eta, \alpha}$ holds for all $\alpha \in D^{\prime}$. We conclude that for all $\alpha \in D^{\prime}$ it holds that $T_{\xi, \alpha}=T_{\eta, \alpha}$, and the set $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\}$ contains a μ-club.

Suppose that $\neg \psi(\eta, \xi, x)$ holds. Then by Lemma 2.13 there is no μ-club inside

$$
\left\{\alpha<\kappa \mid \exists \beta>\alpha\left(L_{\beta} \models Z F^{-} \wedge \psi(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha) \wedge r(\alpha)\right)\right\}
$$

Notice that $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\}=\left\{\alpha \mid \min _{L} T_{\eta, \alpha}=\min _{L} T_{\xi, \alpha}\right\}$, so $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\} \subseteq\{\alpha \mid$ $\left.T_{\eta, \alpha} \cap T_{\xi, \alpha} \neq \emptyset\right\}$, therefore

$$
\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\} \subseteq\left\{\alpha \mid \exists p \exists \beta>\alpha\left(L_{\beta} \models Z F^{-} \wedge \psi(p, \xi \upharpoonright \alpha) \wedge \psi(p, \eta \upharpoonright \alpha) \wedge r(\alpha) \wedge \psi^{E}\right)\right\}
$$

We conclude that $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\} \subseteq\left\{\alpha<\kappa \mid \exists \beta>\alpha\left(L_{\beta} \vDash Z F^{-} \wedge \psi(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha) \wedge r(\alpha)\right)\right\}$, so $\{\alpha<\kappa \mid f(\eta)(\alpha)=f(\xi)(\alpha)\}$ does not contain a μ-club.

Exercise 2.6. $E_{\omega-\text { club }}^{\kappa}$ is a κ-Borel ${ }^{*}$ set.
A function $f: 2^{\kappa} \rightarrow 2^{\kappa}$ is κ-Borel, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a κ-Borel subset of 2^{κ}. Let E_{1} and E_{2} be equivalence relations on 2^{κ}. We say that E_{1} is κ-Borel reducible to E_{2}, if there is a κ-Borel function $f: 2^{\kappa} \rightarrow 2^{\kappa}$ that satisfies $(x, y) \in E_{1} \Leftrightarrow(f(x), f(y)) \in E_{2}$, we denote it by $E_{1} \leq_{B} E_{2}$. In the same way it can be define κ-Borel function and κ-Borel reducibility in $\mathbf{B}(\kappa)$.

Exercise 2.7. Assume $f: 2^{\kappa} \rightarrow 2^{\kappa}$ is κ-Borel function and B is a κ-Borel ${ }^{*}$ set. Prove that $f^{-1}[B]$ is a κ-Borel ${ }^{*}$ set.

Corollary 2.24 ([2], Theorem 18). Suppose that $V=L$. Then κ-Borel ${ }^{*}=\Sigma_{1}^{1}(\kappa)$.
Proof. It follows from Exercise 2.7, Exercise 2.6, and Theorem 2.20.
Corollary 2.25 ([2], Theorem 18). Suppose that $V=L$. Then $\Delta_{1}^{1}(\kappa) \neq \kappa$-Bore ψ^{*}.
Proof. It follows from Theorem 2.10 and Corollary 2.24.
Question 2.26. Is it consistent that $\Delta_{1}^{1}(\kappa)=\kappa$-Bore* ${ }^{*}$?
Question 2.27. An equivalence relation E on $X \in\left\{\kappa^{\kappa}, 2^{\kappa}\right\}$ is κ-Borel*-complete if every κ-Borel* equivalence relation is κ-Borel reducible to it. Does there exists a κ-Borel*-complete relation that is not a Σ_{1}^{1}-complete relation?

The following lemma shows that there is a model of set theory in which $\Delta_{1}^{1}(\kappa), \kappa$-Borel ${ }^{*}$, and $\Sigma_{1}^{1}(\kappa)$ are different. The proof can be found in [4].
Lemma 2.28 ([4], Corollary 3.2). It is consistently that $\Delta_{1}^{1}(\kappa) \subsetneq \kappa$ - Borel $^{*} \subsetneq \Sigma_{1}^{1}(\kappa)$.

3 The Main Gap in B(κ)

Session in the logic seminar

Definition 3.1. For every $\eta \in \kappa^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ as follows.
For every tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in κ^{n}

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P_{m}^{\mathcal{A}_{\eta}} \Leftrightarrow \text { the arity of } P_{m} \text { is } n \text { and } \eta\left(\pi\left(m, a_{1}, a_{2}, \ldots, a_{n}\right)\right)>0 .
$$

Definition 3.2. For every $\eta \in 2^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ as follows.
For every tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in κ^{n}

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P_{m}^{\mathcal{A}_{\eta}} \Leftrightarrow \text { the arity of } P_{m} \text { is } n \text { and } \eta\left(\pi\left(m, a_{1}, a_{2}, \ldots, a_{n}\right)\right)=1
$$

Notice that the structure $\mathcal{A}_{\eta} \upharpoonright \alpha$ is not necessary coded by the function $\eta \upharpoonright \alpha$.
Exercise 3.1. There is a club C_{π} such that for all $\alpha \in C_{\pi}, \mathcal{A}_{\eta} \upharpoonright \alpha=\mathcal{A}_{\eta \upharpoonright \alpha}$
With the structures coded by the elements of 2^{κ} and κ^{κ}, it is easy to define the isomorphism relation of structures of size κ in both spaces.

Definition 3.3 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary. We define \cong_{T}^{κ} as the relation

$$
\left\{(\eta, \xi) \in \kappa^{\kappa} \times \kappa^{\kappa} \mid\left(\mathcal{A}_{\eta} \mid=T, \mathcal{A}_{\xi} \models T, \mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}\right) \text { or }\left(\mathcal{A}_{\eta} \not \vDash T, \mathcal{A}_{\xi} \not \models T\right)\right\} .
$$

Definition 3.4. Assume T is a complete first order theory in a countable vocabulary. We define \cong_{T}^{2} as the relation

$$
\left\{(\eta, \xi) \in 2^{\kappa} \times 2^{\kappa} \mid\left(\mathcal{A}_{\eta} \models T, \mathcal{A}_{\xi} \models T, \mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}\right) \text { or }\left(\mathcal{A}_{\eta} \not \models T, \mathcal{A}_{\xi} \not \models T\right)\right\} .
$$

Notice that $\cong_{T}^{\kappa} \leq_{c} \cong_{T}^{2}$ holds for every theory T.
Definition 3.5. (Ehrenfeucht-Fraïssé game) Fix $\left\{X_{\gamma}\right\}_{\gamma<\kappa}$ an enumeration of the elements of $\mathcal{P}_{\kappa}(\kappa)$ and $\left\{f_{\gamma}\right\}_{\gamma<\kappa}$ an enumeration of all the functions with domain in $\mathcal{P}_{\kappa}(\kappa)$ and range in $\mathcal{P}_{\kappa}(\kappa)$. For every $\alpha<\kappa$ we define the game $E F_{\omega}^{\kappa}\left(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}\right)$ for structures \mathcal{A} and \mathcal{B} with domain κ, as follows. The game is played by two players, \mathbf{I} and $\mathbf{I I}$. In the n-th move, \mathbf{I} choose an ordinal $\beta_{n}<\alpha$ such that $X_{\beta_{n}} \subset \alpha, X_{\beta_{n-1}} \subseteq X_{\beta_{n}}$, and then II chooses an ordinal $\theta_{n}<\alpha$ such that $\operatorname{dom}\left(f_{\theta_{n}}\right), \operatorname{rang}\left(f_{\theta_{n}}\right) \subset \alpha, X_{\beta_{n}} \subseteq \operatorname{dom}\left(f_{\theta_{n}}\right) \cap \operatorname{rang}\left(f_{\theta_{n}}\right)$ and $f_{\theta_{n-1}} \subseteq f_{\theta_{n}}$ (if $n=0$ then $X_{\beta_{n-1}}=\emptyset$ and $\left.f_{\theta_{n-1}}=\emptyset\right)$. The game finishes after ω moves. The player II wins if $\cup_{i<\omega} f_{\theta_{i}}: A \upharpoonright_{\alpha} \rightarrow B \upharpoonright_{\alpha}$ is a partial isomorphism, otherwise the player \mathbf{I} wins.

We will write $\mathbf{I} \uparrow \operatorname{EF}_{\omega}^{\kappa}\left(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}\right)$ when \mathbf{I} has a winning strategy in the game $\mathrm{EF}_{\omega}^{\kappa}\left(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}\right)$, similarly we write $\mathbf{I I} \uparrow E F_{\omega}^{\kappa}\left(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}\right)$ when II has a winning strategy.

Theorem 3.6. [12] If T is a classifiable theory, then for every two models of T with domain $\kappa, \mathcal{A}, \mathcal{B}$, it holds that $\mathbf{I I} \uparrow E F_{\omega}^{\kappa}(\mathcal{A}, \mathcal{B}) \Longleftrightarrow \mathcal{A} \cong \mathcal{B}$.

Corollary 3.7 ([2], Theorem 70). If T is a classifiable theory, then \cong_{T}^{κ} is Δ_{1}^{1}.
Lemma 3.8 ([7], Lemma 2.4). If \mathcal{A} and \mathcal{B} are structures with domain κ, then the following hold:

- II $\uparrow E F_{\omega}^{\kappa}(\mathcal{A}, \mathcal{B}) \Longleftrightarrow \mathbf{I I} \uparrow E F_{\omega}^{\kappa}\left(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}\right)$ for club-many α.
- $\mathbf{I} \uparrow E F_{\omega}^{\kappa}(\mathcal{A}, \mathcal{B}) \Longleftrightarrow \mathbf{I} \uparrow E F_{\omega}^{\kappa}\left(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}\right)$ for club-many α.

Exercise 3.2. Prove Lemma 3.8 (Hint: look at the closed points of a winning strategy).
Definition 3.9. Assume T is a complete first order theory in a countable vocabulary. For every $\alpha<\kappa$ and $\eta, \xi \in \kappa^{\kappa}$, we write $\eta R_{E F}^{\alpha} \xi$ if one of the following holds, $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \not \equiv T$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \not \models T$, or $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$, $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T$ and $\mathbf{I I} \uparrow E F_{\omega}^{\kappa}\left(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\xi} \upharpoonright_{\alpha}\right)$.
Exercise 3.3. Let T be a complete first order theory in a countable vocabulary. There are club many α such that $R_{E F}^{\alpha}$ is an equivalence relation.
Theorem 3.10 ([7], Theorem 2.8). If T is a classifiable theory and $\mu<\kappa$ a regular cardinal, then \cong_{T} is continuously reducible to $E_{\mu-c l u b}^{\kappa}\left(\cong_{T}^{\kappa} \leq_{c} E_{\mu-c l u b}^{\kappa}\right)$.
Proof. Define the reduction $\mathcal{F}: \kappa^{\kappa} \rightarrow \kappa^{\kappa}$ by,

$$
\mathcal{F}(\eta)(\alpha)= \begin{cases}f_{\eta}(\alpha) & \text { if } c f(\alpha)=\mu, \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T \text { and } R_{E F}^{\alpha} \text { is an equivalence relation } \\ 0 & \text { in other case }\end{cases}
$$

where $f_{\eta}(\alpha)$ is a code in $\kappa \backslash\{0\}$ for the $R_{E F}^{\alpha}$ equivalence class of $\mathcal{A}_{\eta} \upharpoonright_{\alpha}$. The proof follows from Lemma 3.8 and Exercise 3.3.

Question 3.11. Is it provable in $Z F C$ that $E_{\mu-c l u b}^{\kappa} \leq_{B} \cong_{T}^{\kappa}$ holds for every non-classifiable theory T and regular cardinal μ ?

Model theory session

Exercise 3.4. Prove the claim below (Hint: Use the proof of Theorem 3.10).
Lemma 3.12 ([6], Lemma 2). Assume T is a classifiable theory and $\mu<\kappa$ is a regular cardinal. If $\diamond_{\kappa}\left(S_{\mu}^{\kappa}\right)$ holds then \cong_{T}^{κ} is continuously reducible to $E_{\mu-c l u b}^{2}$.
Proof. Let $\left\{S_{\alpha} \mid \alpha \in X\right\}$ be a sequence testifying $\diamond_{\kappa}\left(S_{\mu}^{\kappa}\right)$ and define the function $\mathcal{F}: 2^{\kappa} \rightarrow 2^{\kappa}$ by

$$
\mathcal{F}(\eta)(\alpha)= \begin{cases}1 & \text { if } \alpha \in S_{\mu}^{\kappa} \cap C_{\pi} \cap C_{E F}, \mathbf{I I} \uparrow E F_{\omega}^{\kappa}\left(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{S_{\alpha}}\right) \text { and } \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T \\ 0 & \text { otherwise }\end{cases}
$$

Claim 3.13. $\eta \quad \xi$ if and only $\mathcal{F}(\eta) E_{\mu-c l u b}^{2} \mathcal{F}(\xi)$.

The proof of the following theorems can be found in [2].
Theorem 3.14 ([2], Theorem 79). Suppose that $\kappa=\lambda^{+}=2^{\lambda}$ and $\lambda^{<\lambda}=\lambda$.

1. If T is unstable or superstable with $O T O P$, then $E_{\lambda-c l u b}^{2} \leq_{c} \cong_{T}^{\kappa}$.
2. If $\lambda \geq 2^{\omega}$ and T is superstable with $D O P$, then $E_{\lambda-c l u b}^{2} \leq_{c} \cong_{T}^{\kappa}$.

Theorem 3.15 ([2], Theorem 86). Suppose that for all $\gamma<\kappa, \gamma^{\omega}<\kappa$ and T is a stable unsuperstable theory. Then $E_{\omega-c l u b}^{2} \leq_{c} \cong_{T}^{\kappa}$.
Theorem 3.16 ([6], Theorem 4). Suppose that $\kappa=\lambda^{+}=2^{\lambda}$, $\lambda^{<\lambda}=\lambda$ and $\diamond_{\kappa}\left(S_{\lambda}^{\kappa}\right)$ holds.

1. If T_{1} is classifiable and T_{2} is unstable or superstable with $O T O P$, then $\cong_{T_{1}}^{\kappa} \leq_{c} \cong_{T_{2}}^{\kappa}$ and $\cong_{T_{2}}^{\kappa} Z_{B} \cong_{T_{1}}^{\kappa}$.
2. If $\lambda \geq 2^{\omega}$, T_{1} is classifiable and T_{2} is superstable with $D O P$, then $\cong_{T_{1}}^{\kappa} \leq_{c} \cong_{T_{2}}^{\kappa}$ and $\cong_{T_{2}}^{\kappa} \not Z_{B} \cong_{T_{1}}^{\kappa}$.

Notice that if $V=L$, then $\diamond_{\kappa}\left(S_{\lambda}^{\kappa}\right)$ holds for all $\lambda<\kappa$. Therefore in L it holds that If T is classifiable and T^{\prime} not, then $\cong_{T}^{\kappa} \leq_{c} \cong_{T^{\prime}}^{\kappa}$.

The last session was used to study Question 3.11. The following results answer Question 3.11 for two kind of non-classifiable theories, the proofs are omitted in this notes, due to the length of them. The proofs can be found in [7] and [11]. The main ideas of these proofs is the use of coloured trees, as it was discussed during the lecture. Coloured trees has been used to obtain Borel-reducibility results of isomorphism relations (see [2], [5], [7], and [11]).

Definition 3.17. Let T be a stable theory. T has the orthogonal chain property (OCP), if there exist $\lambda_{r}(T)$ saturated models of T of power $\lambda_{r}(T),\left\{\mathcal{A}_{i}\right\}_{i<\omega}$, $a \notin \cup_{i<\omega} \mathcal{A}_{i}$, such that $t\left(a, \cup_{i<\omega} \mathcal{A}_{i}\right)$ is not algebraic for every $j<\omega, t\left(a, \cup_{i<\omega} \mathcal{A}_{i}\right) \perp \mathcal{A}_{j}$, and for every $i \leq j, \mathcal{A}_{i} \subseteq \mathcal{A}_{j}$.

Exercise 3.5. If T has the $O C P$, then T is unsuperstable.
Lemma 3.18 ([7], Corollary 5.10). Assume T is stable and has the $O C P$, then $E_{\omega-c l u b}^{\kappa} \leq_{c} \cong_{T}$.
Corollary 3.19 ([7], Corollary 5.11). Assume T_{1} is a classifiable theory and T_{2} is a stable theory with the $O C P$, then $\cong_{T_{1}} \leq_{c} \cong_{T_{2}}$.
Question 3.20. Does there exists a stable unsuperstable theory that doesn't have OCP?
Definition 3.21. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the following holds:
There are F_{ω}^{a}-saturated models $\left(M_{i}\right)_{i<3}, M_{0} \subset M_{1} \cap M_{2}$, such that $M_{1} \downarrow_{M_{0}} M_{2}$, and for every $M_{3} F_{\omega}^{a}$-prime model over $M_{1} \cup M_{2}$, there is a non-algebraic type $p \in S\left(M_{3}\right)$ orthogonal to M_{1} and to M_{2}, such that it does not fork over $M_{1} \cup M_{2}$.

Lemma 3.22 ([11], Corollary 4.15). Assume T is a theory with $S-D O P$ and let λ be $\left(2^{\omega}\right)^{+}$, then $E_{\lambda-c l u b}^{\kappa} \leq_{c} \cong_{T}$.
Corollary 3.23 ([11], Corollary 4.16). Assume T_{1} is a classifiable theory and T_{2} is a superstable theory with S - $D O P$, then $\cong_{T_{1}} \leq_{c} \cong_{T_{2}}$.

Question 3.24. Does there exists a superstable theory with DOP that doesn't have S - $D O P$?
Remark 3.25. By Theorem 2.20 we conclude from Lemma 3.18 and Lemma 3.22 that, if $V=L$, then \cong_{T} is Σ_{1}^{1}-complete for every T stable with the $O C P$ or superstable theory with $S-D O P$.

References

[1] D. Blackwell, Borel sets via games Ann. Probab. 9, 321-322 (1981).
[2] S. D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory. Mem. Am. Math. Soc. 230(1081), (American Mathematical Society, 2014).
[3] A. Halko, Negligible subsets of the generalized Baire space $\omega_{1}^{\omega_{1}}$ Ann. Acad. Sci. Ser. Diss. Math. 108, 321-322(1996).
[4] T. Hyttinen, and V. Kulikov, Borel* sets in the generalized Baire space. Tr. Log. Stud. Log. Lib. To appear.
[5] T. Hyttinen and V. Kulikov, On Σ_{1}^{1}-complete equivalence relations on the generalized baire space. Math. Log. Quart. 61, $66-81$ (2015).
[6] T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. Math. Logic. 56 no.3, 175 - 185 (2017).
[7] T. Hyttinen, and M. Moreno, On the reducibility of isomorphism relations, Math Logic Quart. To appear.
[8] T. Jech, Set theory. Springer-Verlag Berlin Heidelberg, New York (2003).
[9] A. Kechris, Classical descriptive set theory. Springer-Verlag Berlin Heidelberg, New York (1994).
[10] A. Mekler, and J. Väänänen, Trees and Π_{1}^{1} subsets of $\omega_{1}^{\omega_{1}}$, J. Symbolic Logic. 58(3), 1052-1070, (1993).
[11] M. Moreno, The isomorphism relation of theories with S-DOP, manuscript.
[12] S. Shelah, Classification theory. Stud. Logic Found. Math. 92, North-Holland, 1990.

