Lecture notes: Introduction to Generalized Descriptive Set Theory

Miguel Moreno

September 2017

1 Descriptive Set Theory

This is an intensive course, long proofs are discussed during the lectures but not included in the lecture notes.

Day 1

Definition 1.1 (The Baire space **B**). The Baire space is the set ω^{ω} endowed with the following topology. For every $\eta \in \omega^n$ for some n, define the following basic open set

$$N_{\eta} = \{ f \in \omega^{\omega} \mid \eta \subseteq f \}$$

the open sets are of the form $\bigcup X$ where X is a collection of basic open sets.

This topology is metrizable, let $d(f,g) = \frac{1}{n+1}$ where n is the least natural number that satisfies $f(n) \neq g(n)$, in case it does not exist then f = g and d(f,g) = 0.

Definition 1.2 (The Cantor space C). The cantor space is the set 2^{ω} with the relative subspace topology.

Definition 1.3 (Borel class). Let $S \in \{B, C\}$. The class Borel(S) of all Borel sets in S is the least collection of subsets of S which contains all open sets and is closed under complements, countable unions and countable intersections.

Definition 1.4 (Borel hierarchy). Let $S \in \{\mathbf{B}, \mathbf{C}\}$. Define the classes $\Sigma_{\alpha}(S)$ and $\Pi_{\alpha}(S)$, $\alpha < \omega_1$, as follows.

- 1. $\Sigma_1(S)$ is the class of open sets.
- 2. $\Pi_1(S)$ is the class of closed sets.
- 3. For all $\alpha > 1$, $\Sigma_{\alpha}(S)$ is the class of of all countable unions of sets from $\bigcup_{\beta < \alpha} \prod_{\beta}(S)$.
- 4. For all $\alpha > 1$, $\Pi_{\alpha}(S)$ is the class of of all countable unions of sets from $\bigcup_{\beta < \alpha} \Sigma_{\beta}(S)$.

Exercise 1.1. *1.* For all $n < \omega$ and all $\eta \in \omega^n$ the set N_η is closed.

- 2. For all $\beta < \alpha < \omega_1$, $\Sigma_{\beta}(\mathbf{B}) \subseteq \Sigma_{\alpha}\mathbf{B}$.
- 3. Borel(**B**) = $\bigcup_{0 < \alpha < \omega_1} \Sigma_{\alpha}(\mathbf{B}).$
- 4. $|Borel(\mathbf{B})| = 2^{\omega}$.
- 5. There are subsets of **B** that are not Borel.

Definition 1.5. Let $S \in \{B, C\}$. We say that $A \subseteq S$ is co-meager, if it contains a countable intersection of open and dense subsets of S. A subset of S is meager, if the cmplement of it is co-meager.

Definition 1.6. Let $S \in \{B, C\}$. We say that $X \subseteq S$ has the property of Baire (PB) if there is an open set $U \subseteq S$ such that $X \Delta U$ is meager.

Lemma 1.7. Every Borel subset of B has the property of Baire.

Exercise 1.2. Prove Lemma 1.7. (Hint: prove that X has the PB if and only if $\mathbf{B} \setminus X$ has the PB.)

Definition 1.8 (Borel^{*}-code). Let X be a non-emprty set.

1. A subset $T \subset X^{<\omega}$ is a tree if for all $f \in T$ with n = dom(f) > 0 and for all m < n, $f \upharpoonright m \in T$.

- 2. A non-empty tree $T \subset X^{<\omega}$ is called an ω -tree if the following holds:
 - (a) If $f: n \to X$ is in T and n > 0, then for all $x \in X$, $f \upharpoonright (n-1) \cup \{(n-1,x)\} \in T$.
 - (b) There is no $f: \omega \to X$ such that for all $n < \omega$, $f \upharpoonright n \in T$.
- 3. We order T by \subseteq . The maximal elements of T are called leaves and the set of leaves is denoted by L(T). The least element of T is called root (\emptyset). For every $f \in T$ that is not the root, we denote by f^- the immediate predecessor of f in T. We call node every element that is not a leaf.
- 4. A Borel^{*}-code is a pair (T, π) , where $T \subseteq (\omega \times \omega)^{<\omega}$ is an ω -tree and π is a function from L(T) to the basic open sets of **B**.
- 5. Given a Borel*-code (T, π) and $\eta \in \mathbf{B}$, we define the game $GB^*(\eta, (T, \pi))$ as follows. The game $GB^*(\eta, (T, \pi))$ is played by two players, \mathbf{I} and \mathbf{II} . In each move $0 \le n < \omega$ the function $f_n : n + 1 \to (\omega \times \omega)$ from T is chosen as follows: Suppose $f_{n-1} \in T$ is chosen, in case n = 0, $f_{-1} = \emptyset$. If f_{n-1} is not a leaf, then \mathbf{I} choose some $i < \omega$ and then \mathbf{II} choose some $j < \omega$. This determines $f_n = f_{n-1} \cup \{(n, (i, j))\}$. If f_{n-1} is a leaf, then the game ends and \mathbf{II} wins if $\eta \in \pi(f_{n-1})$.
- 6. A function $W: \omega^{<\omega} \to \omega$ is a winning strategy of **II** in $GB^*(\eta, (T, \pi))$, if **II** wins by choosing $W(i_0, \ldots, i_n)$ on the move n, where i_0, \ldots, i_n are the moves that **I** made on the moves $0, \ldots, n$.
- 7. A Borel^{*}-code (T,π) is a Borel^{*}-code for $X \subseteq \mathbf{B}$ if for all $\eta \in \mathbf{B}$, $\eta \in X$ if and only if II has a winning strategy in $GB^*(\eta, (T,\pi))$. We say that $X \subseteq \mathbf{B}$ is a Borel^{*} set if it has a Borel^{*}-code. We denote by Borel^{*}(\mathbf{B}) the class of Borel^{*} sets.

Theorem 1.9. $Borel(\mathbf{B}) = Borel^*(\mathbf{B})$.

Proof. Let us start by showing that $Borel(\mathbf{B}) \subseteq Borel^*(\mathbf{B})$. We will prove this by showing that every open set is a *Borel*^{*} set and if $\{X_i\}_{i < \omega}$ is a countable collection of *Borel*^{*} sets, then $\bigcup_{i < \omega} X_i$ and $\bigcap_{i < \omega} X_i$ are *Borel*^{*} sets.

Suppose that X is an open set. Let $\{\xi_i\}_{i<\omega}$ be a collection of elements of $\omega^{<\omega}$ such that $X = \bigcup_{i<\omega} N_{\xi_i}$. Let $T = (\omega \times \omega)^{\leq 1}$ and π the fuction given by $\pi((0, (i, j))) = N_{\xi_j}$. It is clear that for every $\eta \in X$, **II** has a winning strategy in $GB^*(\eta, (T, \pi))$. Therefore (T, π) is a *Borel*^{*}-code for X.

Suppose that $\{X_i\}_{i < \omega}$ is a countable collection of $Borel^*$ sets. Let (T_i, π_i) be a $Borel^*$ -code of X_i . Let T be the set of all functions $f : n \to (\omega \times \omega)$, for some $n < \omega$, such that if f(0) = (i, j), then there is $g \in T_i$, $g : n - 1 \to (\omega \times \omega)$ with dom(f) = dom(g) + 1, and f(m) = g(m - 1), for all 0 < m < dom(f). For every leaf f of T if f(0) = (i, j), then there is $g \in L(T_i)$ such that f(m) = g(m - 1), for all 0 < m < dom(f); define $\pi(f) = \pi_i(g)$.

Claim 1.10. (T,π) is a Borel^{*}-code of $\bigcap_{i<\omega} X_i$, and $\bigcap_{i<\omega} X_i$ is a Borel^{*} set.

Proof. Let $\eta \in \bigcap_{i < \omega} X_i$. Then for all $i < \omega$, there is a winning strategy W_i of **II** in $GB^*(\eta, (T_i, \pi_i))$. Define $W : \omega^{<\omega} \to \omega$ by $W(i_0) = 0$ and $W(i_0, \ldots, i_n) = W_{i_0}(i_1, \ldots, i_n)$ for all $0 < n < \omega$. It is easy to see that W is a winning strategy of **II** in $GB^*(\eta, (T, \pi))$.

Let $\eta \in \mathbf{B}$ be such that II has a winning strategy, W, in $GB^*(\eta, (T, \pi))$. Define $W_i : \omega^{<\omega} \to \omega$ by $W_i(i_0, \ldots, i_n) = W(i, i_0, \ldots, i_n)$. It is easy to see that W_i is a winning strategy of II in $GB^*(\eta, (T_i, \pi_i))$. Since this holds for all $i < \omega$, we conclude that $\eta \in X_i$, for all $i < \omega$.

Let (T_i, π_i) be a *Borel*^{*}-code of X_i . Let T be the set of all functions $f : n \to (\omega \times \omega)$, for some $n < \omega$, such that if f(0) = (i, j), then there is $g \in T_j$, $g : n - 1 \to (\omega \times \omega)$ with dom(f) = dom(g) + 1 and f(m) = g(m - 1), for all 0 < m < dom(f). For every leaf f of T if f(0) = (i, j), then there is $g \in L(T_j)$ such that f(m) = g(m - 1), for all 0 < m < dom(f); define $\pi(f) = \pi_j(g)$.

Claim 1.11. (T,π) is a Borel^{*}-code of $\bigcup_{i \le \omega} X_i$, and $\bigcup_{i \le \omega} X_i$ is a Borel^{*} set.

Proof. Let $\eta \in \bigcup_{i < \omega} X_i$. Then there is $j < \omega$, such that there is a winning strategy W_j of **II** in $GB^*(\eta, (T_j, \pi_j))$. Define $W : \omega^{<\omega} \to \omega$ by $W(i_0) = j$ and $W(i_0, \ldots, i_n) = W_j(i_1, \ldots, i_n)$ for all $0 < n < \omega$. It is easy to see that W is a winning strategy of **II** in $GB^*(\eta, (T, \pi))$.

Let $\eta \in \mathbf{B}$ be such that II has a winning strategy, W, in $GB^*(\eta, (T, \pi))$. Define $W' : \omega^{<\omega} \to \omega$ by $W'(i_1, \ldots, i_n) = W(0, \ldots, i_n)$. It is easy to see that W' is a winning strategy of II in $GB^*(\eta, (T_{W(0)}, \pi_{W(0)}))$. Therefore $\eta \in X_{W(0)}$.

To show that $Borel^*(\mathbf{B}) \subseteq Borel(\mathbf{B})$ we will define the rank of an ω -tree and the rank of the elements of an ω -tree.

Given an ω -tree T, we define the rank function, rk, as follows:

- If $\eta \in L(T)$, then $rk(\eta) = 0$.
- If $\eta \notin L(T)$, then $rk(\eta) = \bigcup \{rk(f) + 1 \mid f^- = \eta \}$.

The rank of a tree T is defined by $rk(T) = rk(\emptyset)$.

Exercise 1.3. 1. Show that the rank of an ω -tree is smaller than ω_1 .

2. Find an ω -tree with infinite rank.

Let X be a Borel^{*} set, and (T, π) a Borel^{*}-code of X. We will prove by induction on rk(T) that X is a Borel set.

Case rk(T) = 0. It is clear that $T = \{\emptyset\}$ and $X = \pi(\emptyset)$, therefore X is a Borel set.

Suppose $rk(T) = \alpha$ and if Y is Borel^{*} set with Borel^{*}-code (T', π') with $rk(T) < \alpha$, then Y is a Borel set. Let T_{ij} be the set of all functions $f : n \to \omega$ such that there is a function $g \in T$ with g(0) = (i, j), dom(g) = dom(f) + 1 and f(m) = g(m+1) for all $m \in dom(f)$. Define π_{ij} by $\pi_{ij}(f) = \pi(g)$, where $g \in T$ is such that g(0) = (i, j), dom(g) = dom(f) + 1 and f(m) = g(m+1) for all $m \in dom(f)$. Notice that for all $i, j < \omega, rk(T_{ij}) < \alpha$. By the induction hypothesis, for all $i, j < \omega, (T_{ij}, \pi_{ij})$ is a Borel^{*}-code of a Borel set. Denote by B_{ij} the Borel set with Borel^{*}-code (T_{ij}, π_{ij}) .

Claim 1.12. $X = \bigcap_{i < \omega} \bigcup_{j < \omega} B_{ij}$

Proof. Let $\eta \in X$, then **II** has a winning strategy, W, in $GB^*(\eta, (T, \pi))$. Define $W_{iW(i)} : \omega^{<\omega} \to \omega$ by $W_{iW(i)}(i_0, \ldots, i_n) = W(i, i_0, \ldots, i_n)$, it is clear that W - iW(i) is a winning strategy of **II** in $GB^*(\eta, (T_{iW(i)}, \pi_{iW(i)}))$, so $\eta \in B_{iW(i)}$. Therefore, for all $i < \omega$ there is $j < \omega$ such that $\eta \in B_{ij}$, we conclude that $\eta \in \bigcap_{i < \omega} \bigcup_{i < \omega} B_{ij}$.

so $\eta \in B_{iW(i)}$. Therefore, for all $i < \omega$ there is $j < \omega$ such that $\eta \in B_{ij}$, we conclude that $\eta \in \bigcap_{i < \omega} \bigcup_{j < \omega} B_{ij}$. Let $\eta \in \bigcap_{i < \omega} \bigcup_{j < \omega} B_{ij}$. Then for all $i < \omega$ there is $j < \omega$ such that $\eta \in B_{ij}$, denote by h(i) this j. So there is $W_{ih(i)}$ a winning strategy of **II** in $GB^*(\eta, (T_{ih(i)}, \pi_{ih(i)}))$. Define $W : \omega^{<\omega} \to \omega$ by $W(i_0) = h(i_0)$ and $W(i_0, \ldots, i_n) = W_{h(i_0)}(i_1, \ldots, i_n)$. It is clear that W is a winning strategy of **II** in $GB^*(\eta, (T_{iW(i)}, \pi_{iW(i)}))$ and $\eta \in X$.

At the beginning the *Borel*^{*}-codes look very artificial and complicated, but this codes will be very helpful in the future. In order to give a better understanding of the motivation behind the *Borel*^{*}-codes we will define the *Borel*^{**}-codes. This codes use intersections and unions as part of the coding of sets, this gives a better understanding on what is going on in the coding.

- **Definition 1.13.** 1. A pair (T, π) is a Borel^{**}-code if $T \subseteq \omega^{<\omega}$ is an ω -tree and π is a function with domain T such that if $f \in T$ is a leaf, then $\pi(f)$ is an open set, and in case f is a node, $\pi(f) = \cap$ if | dom(f) | is an even number and $\pi(f) = \cup$ if | dom(f) | is an odd number.
 - 2. For an element $\eta \in \mathbf{B}$ and a Borel^{**}-code (T, π) , the game $B^*(\eta, (T, \pi))$ is played as follows. There are two players, **I** and **II**. The game starts from the root of T. At each move, if the game is at node $f \in T$ and $\pi(f) = \cap$, then **I** chooses an immediate successor g of f and the game continues from this g. If $\pi(f) = \cup$, then **II** makes the choice. Finally, if $\pi(f)$ is an open set, then the game ends, and **II** wins if and only if $\eta \in \pi(x)$.
 - 3. A set $X \subseteq \omega^{\omega}$ is a Borel^{**}-set if there is a Borel^{**}-code (T, π) such that for all $\eta \in \omega^{\omega}$, $\eta \in X$ if and only if **II** has a winning strategy in the game $B^*(\eta, (T, \pi))$. We denote by Borel^{**}(**B**) the set of Borel^{**} sets.

Exercise 1.4. $Borel^*(\mathbf{B}) = Borel^{**}(\mathbf{B}).$

Notice that the rank was defined for ω -trees in general. For every *Borel*^{**} set, X, as the least ordinal α such that there is a *Borel*^{**}-code of X.

Exercise 1.5. What is the relation between the rank of a Borel^{**} set and the Borel hierarchy?

Day 2

Definition 1.14. • $X \subseteq \mathbf{B}$ is $\Sigma_1^1(\mathbf{B})$ if there is $Y \subseteq \mathbf{B} \times \mathbf{B}$ a Borel set such that pr(Y) = X.

- $X \subseteq \mathbf{B}$ is $\Pi_1^1(\mathbf{B})$ if $\mathbf{B} \setminus X$ is $\Sigma_1^1(\mathbf{B})$.
- $X \subseteq \mathbf{B}$ is $\Delta_1^1(\mathbf{B})$ if it is $\Sigma_1^1(\mathbf{B})$ and $\Pi_1^1(\mathbf{B})$.

Lemma 1.15. The following are equivalent:

- X is $\Sigma_1^1(\mathbf{B})$.
- X = pr(Y) for some closed $y \subseteq \mathbf{B} \times \mathbf{B}$.

Lemma 1.16. If $X \subseteq \mathbf{B}$ is Borel, then X is $\Delta^1_1(\mathbf{B})$.

Proof. Let $X \subseteq \mathbf{B}$ be a Borel set and (T, π) a *Borel**-code for X. Let $h: \omega^{<\omega} \to \omega$ be one-to-on and onto. For all $f \in \omega^{\omega}$ define $W_f: \omega^{<\omega} \to \omega$ by $W_f(i_0, \ldots, i_n) = f(h(i_0, \ldots, i_n))$. Let P be the set of all the tuples $(\eta, f) \in \omega^{\omega} \times \omega^{\omega}$ such that W_f is a winning strategy for II in the game $GB^*(\eta, (T, \pi))$. It is clear that pr(P) = X.

Claim 1.17. P is closed

Proof. Let $(\eta, f) \notin P$ then there are $n < \omega$ and $\{j_0, \ldots, j_n\}$ such that if I choose j_m in the *m*-move and II choose $W_f(j_0,\ldots,j_m)$ in the *m*-move, then after *n* moves the game stops in a leaf *g* and $\eta \notin \pi(g)$. Therefore, there is $r < \omega$, such that $N_{\eta \upharpoonright r} \cap \pi(g) = \emptyset$, so $(N_{\eta \upharpoonright r} \times N_{f \upharpoonright m}) \cap P = \emptyset$.

We conclude that X is $\Sigma_1^1(\mathbf{B})$ and since $Borel(\mathbf{B})$ is closed under complements, we conclude that $\mathbf{B} \setminus X$ is Borel, therefore it is $\Sigma_1^1(\mathbf{B})$. We conclude that X is $\Delta_1^1(\mathbf{B})$.

Exercise 1.6. Prove the claims of the following proof.

Theorem 1.18 (Separation). If $X, Y \subseteq \mathbf{B}$ are $\Sigma_1^1(\mathbf{B})$ disjoint sets, then there is a Borel set $Z \subseteq \mathbf{B}$ that satisfies $X \subseteq Z \subseteq \mathbf{B} \backslash Y.$

Proof. Choose $X^*, Y^* \subseteq \mathbf{B} \times \mathbf{B}$ such that $pr(X^*) = X$ and $pr(Y^*) = Y$. For all $\eta \in \mathbf{B}$, let X_η be the set of all $\xi \in \omega^{\omega}$ that satisfy the following: If $dom(\xi) = n$, then there are $\eta' \xi' \in \mathbf{B}$, $(\eta', \xi') \in X^*$, and $\eta' \upharpoonright n = \eta \upharpoonright n$ and $\xi \subseteq \xi'$. Define Y_{η} in the same way. We denote by $X_{\eta \upharpoonright n}$ the set of functions $\xi \in \omega^n$ such that there is $\eta' \in \mathbf{B}$, and $\xi \in X_{\xi'}$ and $\eta \upharpoonright n \subseteq \eta'$. It is clear that $X_{\eta} = \bigcup_{n < \omega} X_{\eta \upharpoonright n}$. Given two trees $T, T' \subseteq \omega^{<\omega}$, we say that $T \leq T'$ if there is a function $f: T \to T'$ that satisfies the following:

for all $\eta, \xi \in T$, if $\eta \subsetneq \xi$, then $f(\eta) \subsetneq f(\xi)$. Let Z be the set of $\eta \in \mathbf{B}$ that satisfy $Y_{\eta} \leq X_{\eta}$.

Claim 1.19. • If $\eta \in X$, then $Y_{\eta} \leq X_{\eta}$.

- If $Y_n \leq X_n$, then $\eta \notin Y$.
- $X \subset Z \subset \mathbf{B} \setminus Y$.

for all $T, T' \subseteq \omega^{<\omega}$ we define the game GC(T, T') as follows: in the *n*-th movement, I chooses $t_n \in T$ such that $t_m \subseteq t_n$ holds for all m < n, and **II** chooses $t'_n \in T'$ such that $t'_m \subseteq t'_n$ holds for all m < n. The game ends when a player cannot make a choice, the player that cannot make a choice looses.

Claim 1.20. $T \leq T'$ si y solo si **II** has a winning strategy for the game GC(T,T').

Let T be the set of all functions with finite domain, $f: n \to \bigcup_{m < \omega} (\omega^m)^3$ such that for all i < n the following holds:

- $f(i) \in (\omega^i)^3$.
- If j + 1 < n and $f(j) = (\xi_k)_{k < 3}$, then $\xi_1 \in X_{\xi_0}$ and $\xi_2 \in X_{\xi_0}$.
- If j < l < n, $f(j) = (\xi_k)_{k < 3}$, and $f(l) = (\xi'_k)_{k < 3}$, then for all k < 3, $\xi_k \subseteq \xi'_k$.

Define π with domain L(T) as $\pi(f) = N_{\xi_0}$ if dom(f) = n + 1, $f(n) = (\xi_k)_{k < 3}$, and $\xi_2 \notin Y_{\xi_0}$. And $\pi(f) = \emptyset$ in other case.

Claim 1.21. There is a Borel^{*}-code (T', π') such that there is a tree isomorphism $h: T' \to T$ that satisfies $\pi'(f) = \pi(h(f)).$

Claim 1.22. II has a winning strategy in $GB^*(\eta, (T', \pi'))$ if and only if $GC(Y_\eta, X_\eta)$.

 \square

The following is a standard way to code structures with domain ω with elements of 2^{ω} . Fix a countable relational vocabulary $\mathcal{L} = \{P_n \mid n < \omega\}.$

Definition 1.23. Fix a bijection $\pi: \omega^{<\omega} \to \omega$. For every $\eta \in 2^{\omega}$ define the \mathcal{L} -structure \mathcal{A}_n with domain ω as follows: For every relation P_m with arity n, every tuple (a_1, a_2, \ldots, a_n) in ω^n satisfies

$$(a_1, a_2, \dots, a_n) \in P_m^{\mathcal{A}_\eta} \Longleftrightarrow \eta(\pi(m, a_1, a_2, \dots, a_n)) = 1$$

Definition 1.24 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary. We define \cong_T^{ω} as the relation

 $\{(\eta,\xi)\in 2^{\omega}\times 2^{\omega}\mid (\mathcal{A}_{\eta}\models T,\mathcal{A}_{\xi}\models T,\mathcal{A}_{\eta}\cong \mathcal{A}_{\xi}) \text{ or } (\mathcal{A}_{\eta}\not\models T,\mathcal{A}_{\xi}\not\models T)\}.$

A function $f: 2^{\omega} \to 2^{\omega}$ is Borel, if for every open set $A \subseteq 2^{\omega}$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^{ω} . Let E_1 and E_2 be equivalence relations on 2^{ω} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f: 2^{\omega} \to 2^{\omega}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$, we denote it by $E_1 \leq_B E_2$.

Exercise 1.7. A function f is Borel if and only if for all Borel set X, $f^{-1}[X]$ is Borel.

Example 1.1. Let T_1 be the theory of the order of the rational numbers, $\cong_{T_1}^{\omega}$ has only two equivalent classes. Let T_2 be the theory of a vector space over the field of rational numbers. $\cong_{T_1}^{\omega} \leq_B \cong_{T_2}^{\omega}$.

This can be use to compare the complexity of two theories, from Example 1.1 we conclude that T_1 is less complex than T_2 , in the Borel reducibility sense.

Question 1.25. Is there an equivalence relation E on 2^{ω} such that for every complete first order theory in a countable vocabulary T, either $E \not\leq_B \cong_{T_1}^{\omega}$ or $\cong_{T_1}^{\omega} \not\leq_B E$.

Let T be a complete countable theory, we will denote by $I(\lambda, T)$ the amount of non-isomorphic models of T of size λ . The following is the main theorem of [12].

Theorem 1.26 (The Main Gap Theorem, [12]). Let T be a complete countable theory.

- If T is not superstable, or deep, or with DOP or OTOP then for every uncountable cardinal λ , $I(\lambda, T) = 2^{\lambda}$.
- If T is shallow superstable without DOP and without OTOP, then for every $\alpha > 0$, $I(\aleph_{\alpha}, T) \leq \beth_{\omega_1}(|\alpha|)$.

Let T be a complete countable theory, we say that T is a classifiable theory if T is superstable without DOP and without OTOP. T_1 in Example 1.1 is not classifiable and T_2 is classifiable. The Main Gap Theorem tells us that classifiable theories are less complex than non-classifiable ones, in the stability sense.

2 Generalized Descriptive Set Theory

Day 3

Definition 2.1 (The Generalized Baire space $\mathbf{B}(\kappa)$). Let κ be an uncountable cardinal. The generalized Baire space is the set κ^{κ} endowed with the following topology. For every $\eta \in \kappa^{<\kappa}$, define the following basic open set

$$N_{\eta} = \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \}$$

the open sets are of the form $\bigcup X$ where X is a collection of basic open sets.

Definition 2.2 (The Generalized Cantor space $\mathbf{C}(\kappa)$). Let κ be an uncountable cardinal. The generalized Cantor space is the set 2^{κ} with the relative subspace topology.

From now on κ is an uncountable cardinal that satisfies κ^{κ} .

Definition 2.3 (κ -Borel class). Let $S \in \{\mathbf{B}(\kappa), \mathbf{C}(\kappa)\}$. The class κ -Borel(S) of all κ -Borel sets in S is the least collection of subsets of S which contains all open sets and is closed under complements, unions and intersections both of length at most κ .

- **Definition 2.4** (κ -Borel^{*}-set in $\mathbf{C}(\kappa)$). 1. A tree T is a κ^+ , κ -tree if does not contain chains of length κ and its cardinality is less than κ^+ . It is closed if every chain has a unique supremum.
 - 2. A pair (T,h) is a κ -Borel*-code if T is a closed κ^+ , κ -tree and h is a function with domain T such that if $x \in T$ is a leaf, then h(x) is a basic open set and otherwise $h(x) \in \{\cup, \cap\}$.
 - 3. For an element $\eta \in 2^{\kappa}$ and a κ -Borel^{*}-code (T,h), the κ -Borel^{*}-game $B^*(T,h,\eta)$ is played as follows. There are two players, **I** and **II**. The game starts from the root of T. At each move, if the game is at node $x \in T$ and $h(x) = \cap$, then **I** chooses an immediate successor y of x and the game continues from this y. If $h(x) = \cup$, then **II** makes the choice. At limits the game continues from the (unique) supremum of the previous moves by Player **I**. Finally, if h(x) is a basic open set, then the game ends, and **II** wins if and only if $\eta \in h(x)$.
 - 4. A set $X \subseteq 2^{\kappa}$ is a κ -Borel^{*}-set if there is a κ -Borel^{*}-code (T,h) such that for all $\eta \in 2^{\kappa}$, $\eta \in X$ if and only if **II** has a winning strategy in the game $B^*(T,h,\eta)$.

We can define the κ -Borel^{*}-set in the generalized Baire space too, by using the same coding but with basic open sets of the generalized Baire space. Given two sets $X, Y \subset \kappa^{\kappa}$ we say that X and Y are duals if there is a κ -Borel^{*}-code (T, h) such that for all $\eta \in \kappa^{\kappa}$, $\eta \in X$ if and only if **II** has a winning strategy in the game $B^*(T, h, \eta)$, and $\eta \in Y$ if and only if **I** has a winning strategy in the game $B^*(T, h, \eta)$. We will write $\mathbf{II} \uparrow B^*(T, h, \eta)$ when **II** has a winning strategy in the game $B^*(T, h, \eta)$, and $\mathbf{I} \uparrow B^*(T, h, \eta)$ when **I** has a winning strategy in the game $B^*(T, h, \eta)$.

Exercise 2.1. X is a κ -Borel set if and only if there is a κ -Borel*-code (T,h) such that (T,h) codes X and T is a κ^+, ω -tree.

Definition 2.5. • $X \subseteq \mathbf{B}(\kappa)$ is $\Sigma_1^1(\kappa)$ if there is $Y \subseteq \mathbf{B}(\kappa) \times \mathbf{B}(\kappa)$ a closed set such that pr(Y) = X.

- $X \subseteq \mathbf{B}(\kappa)$ is $\Pi^1_1(\kappa)$ if $\mathbf{B}(\kappa) \setminus X$ is $\Sigma^1_1(\kappa)$.
- $X \subseteq \mathbf{B}(\kappa)$ is $\Delta_1^1(\kappa)$ if it is $\Sigma_1^1(\kappa)$ and $\Pi_1^1(\kappa)$.

Theorem 2.6 ([2], Theorem 17). *1.* κ -Borel $\leq \kappa$ -Borel^{*}.

- 2. κ -Borel $\subseteq \Delta_1^1(\kappa)$.
- 3. κ -Borel $\subseteq \Sigma_1^1(\kappa)$.
- 4. κ -Borel^{*} $\subseteq \Sigma_1^1(\kappa)$.

Proof. (Sketch). From Exercise 2.1 we conclude that (1) holds. (2) follows from (3) and tha fact that κ -Borel is closed under complement. (3) follows from (1) and (4). To prove (4), code the winning strategies $\sigma : T \to T$ by elements of κ^{κ} , notice that the assumption $\kappa^{<\kappa}$ is needed. Then, if X is κ -Borel^{*}, then there is a κ -Borel^{*}-code (T, h) that codes X. The set $Y = \{(\eta, \xi) \mid \xi \text{ is a code of a winning strategy for II in } B^*(T, h, \eta)\}$ is closed and pr(Y) = X.

Exercise 2.2. Complete the details in the proof of Theorem 2.6.

The following theorem is the separation theorem and the proof can be found in [10].

Theorem 2.7 ([10], Corollary 34). Suppose A and B are disjoint $\Sigma_1^1(\kappa)$ sets. There are κ -Borel^{*} sets C_0 and C_1 such that $A \subseteq C_0$, $B \subseteq C_1$, and C_0 and C_1 are duals.

Theorem 2.8 ([2], Theorem 17). $\Delta_1^1(\kappa) \subseteq \kappa$ -Borel*

Proof. Let A be a $\Delta_1^1(\kappa)$ set. Let $B = \mathbf{B}(\kappa) \setminus A$, by 2.7, there are κ -Borel^{*} sets C_0 and C_1 such that $A \subseteq C_0$, $B \subseteq C_1$, and C_0 and C_1 are duals. Since C_0 and C_1 are duals, C_0 and C_1 are disjoint. So $A = C_0$, $B = C_1$. \Box

Corollary 2.9 ([10], Corollary 35). X is $\Delta_1^1(\kappa)$ if there is a κ -Borel^{*}-code (T,h) that codes X and

 $\mathbf{II} \uparrow B^*(T,h,\eta) \Leftrightarrow \mathbf{I} \not \supset B^*(T,h,\eta)$

for all $\eta \in \kappa^{\kappa}$ the game is determined.

Exercise 2.3. Prove the claims of the following proof.

Theorem 2.10 ([2], Theorem 18). 1. κ -Borel $\subseteq \Delta_1^1(\kappa)$

2. $\Delta_1^1(\kappa) \subsetneq \Sigma_1^1(\kappa)$

Proof. 1. Let $\xi \mapsto (T_{\xi}, h_{\xi})$ be a continuous coding of the κ -Borel*-codes with T a $\kappa^+ \omega$ -tree, such that for all $\kappa^+ \omega$ -tree, T, and h, there is ξ such that $T_{\xi}, h_{\xi} = (T, h)$.

Claim 2.11. The set $B = \{(\eta, \xi) \mid \eta \text{ is in the set coded by } (T_{\xi}, h_{\xi})\}$ is $\Sigma_1^1(\kappa)$ and is not κ -Borel, otherwise $D = \{\eta \mid (\eta, \eta) \notin B\}$ would be Borel (Hint: use the set $C = \{(\eta, \xi, \sigma) \mid \sigma \text{ is a winning strategy for II in } B^*(T_{\xi}, h_{\xi}, \eta)\}$).

2.

Claim 2.12. There is $A \subseteq 2^{\kappa} \times 2^{\kappa}$ such that if $B \subseteq 2^{\kappa}$ is a $\Sigma_1^1(\kappa)$ set, then there is $\eta \in 2^{\kappa}$ such that $B = \{\xi \mid (\xi, \eta) \in A\}$ (Hint: the construction used in the classical case works too). The set $D = \{\eta \mid (\eta, \eta) \in A\}$ is $\Sigma_1^1(\kappa)$ but not $\Pi_1^1(\kappa)$.

Exercise 2.4. Prove the claims of the following proof.

Lemma 2.13 ([5], Lemma 5). Assume V = L. Suppose $\psi(x,\xi)$ is a Σ_1 -formula in set theory with parameter $\xi \in 2^{\kappa}$ and that $r(\alpha)$ is a formula of set theory that says that " α is a regular cardinal". Then for $x \in 2^{\kappa}$ we have $\psi(x,\xi)$ if and only if the set

$$A = \{ \alpha < \kappa \mid \exists \beta > \alpha(L_{\beta} \models ZF^{-} \land \psi(x \upharpoonright \alpha, \xi \upharpoonright \alpha) \land r(\alpha)) \}$$

contains a club.

Proof. Suppose that $x \in 2^{\kappa}$ is such that $\psi(x,\xi)$ holds. Let θ be a large enough cardinal such that

$$L_{\theta} \models ZF^{-} \land \psi(x,\xi) \land r(\alpha).$$

For each $\alpha < \kappa$, let

$$H(\alpha) = Sk(\alpha \cup \{\kappa, \xi, x\})^{L_{\theta}}$$

and $\overline{H}(\alpha)$ the Mostowski collapse of $H(\alpha)$. Let

$$D = \{ \alpha < \kappa \mid H(\alpha) \cap \kappa = \alpha \}.$$

Claim 2.14. D is a club set and $D \subseteq A$.

Suppose $x \in 2^{\kappa}$ is such that $\psi(x,\xi)$ does not hold. Let $\mu < \kappa$ be a regular cardinal. Take θ as above and let C be an unbounded set, closed under μ -limits (i.e. if $(\gamma_i)_i < \mu$ is an increasing succession of elements of C, then $\bigcup \{\gamma_i \mid i < \mu\} \in C$). Let

$$K(\alpha) = Sk(\alpha \cup \{\kappa, C, \xi, x\})^{L_{\theta}}$$

and

$$D = \{ \alpha \in S^{\kappa}_{\mu} \mid K(\alpha) \cap \kappa = \alpha \}.$$

Claim 2.15. D is an unbounded set, closed under μ -limits.

Let $\alpha_0 \in D$ be the least ordinal that is a μ -cofinal limit of elements of D.

Claim 2.16. $\alpha_0 \in C$ and $\alpha_0 > \mu$ (*Hint: Use the elementarity of* $K(\alpha)$ *and the fact that* $D \subseteq S^{\kappa}_{\mu}$).

Let $\bar{\beta}$ be such that $L_{\bar{\beta}}$ is equal to the Mostowski collapse of $K(\alpha_0)$. We will show that $\alpha_0 \notin A$. Suppose, towards a contradiction, that $\alpha_0 \in A$. There exists $\beta > \alpha$ such that

$$L_{\beta} \models ZF^{-} \land \psi(x \restriction \alpha, \xi \restriction \alpha) \land r(\alpha).$$

Claim 2.17. β is a limit ordinal greater than $\overline{\beta}$ and L_{β} satisfies "there exists a $\gamma \leq \alpha_0$ and an order-preserving bijection from γ to $D \cap \alpha_0$ " (Hint: Show that $K(\alpha_0)$ is a definable subset of L_{θ} and $D \cap \alpha_0$ is a definable subset of $K(\alpha_0)$, to conclude that $D \cap \alpha_0$ is a definable subset of $L_{\overline{\beta}}$ and $D \cap \alpha_0 \in L_{\beta}$).

By the way α_0 was chosen, $D \cap \alpha_0$ has order type μ . Hence, by Claim 2.16 α_0 is singular in L_β but this contradicts that $L_\beta \models r(\alpha)$.

Day 4

Let μ be a regular cardinal, we say that $X \subseteq \kappa$ is a μ -club if X is unbounded set and closed under μ -limits.

Definition 2.18 $(E_{\mu-\text{club}}^{\kappa})$. Let $\mu < \kappa$ be a regular cardinal. For all $\eta, \xi \in \kappa^{\kappa}$ we say that η and ξ are $E_{\mu-\text{club}}^{\kappa}$ equivalent ($\eta \in E_{\mu-\text{club}}^{\kappa} \xi$) if the set { $\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)$ } contains a μ -club.

Definition 2.19 $(E_{\mu-\text{club}}^2)$. Let $\mu < \kappa$ be a regular cardinal. For all $\eta, \xi \in 2^{\kappa}$ we say that η and ξ are $E_{\mu-\text{club}}^2$ equivalent ($\eta \in E_{\mu-\text{club}}^2 \xi$) if the set { $\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)$ } contains a μ -club.

An equivalence relation E on $X \in {\kappa^{\kappa}, 2^{\kappa}}$ is $\Sigma_1^1(\kappa)$ -complete if every $\Sigma_1^1(\kappa)$ equivalence relation is κ -Borel reducible to it.

Exercise 2.5. Prove the claims of the following proof.

Theorem 2.20 ([5], Theorem 7). Suppose that V = L. Then $E_{\mu-club}^{\kappa}$ is $\Sigma_1^1(\kappa)$ -complete, for every regular μ .

Proof. Suppose E is a $\Sigma_1^1(\kappa)$ equivalence relation on κ^{κ} . Let $a:\kappa^{\kappa}\to 2^{\kappa\times\kappa}$ the map defined by

$$a(\eta)(\alpha,\beta) = 1 \Leftrightarrow \eta(\alpha) = \beta.$$

Let b be a continuous bijection from $2^{\kappa \times \kappa}$ to 2^{κ} , and $c = b \circ a$. Define E' by

$$(\eta,\xi) \in E' \Leftrightarrow (\eta=\xi) \lor (\eta,\xi \in ran(c) \land (c^{-1}(\eta),c^{-1}(\xi)) \in E)$$

Claim 2.21. c is a continuous reduction of E to E' and E' is a $\Sigma_1^1(\kappa)$ equivalence relation.

We can assume without loss of generality, that E is an equivalence relation on 2^{κ} . It is enough to define $f: 2^{\kappa} \to (2^{<\kappa})^{\kappa}$ such that for all $\eta, \xi \in 2^{\kappa}$, $(\eta, \xi) \in E$ if and only if the set $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\}$ contains a μ -club and f is continuous in the topology generated by the sets

$$\{\eta \mid \eta \restriction \alpha = p\}, p \in (2^{<\kappa})^{\alpha}, \alpha < \kappa.$$

Claim 2.22. f can be coded by a κ -Borel function $\mathcal{F}: 2^{\kappa} \to \kappa^{\kappa}$.

Claim 2.23. There is a Σ_1 -formula of set theory $\psi(\eta, \xi) = \psi(\eta, \xi, x) = \exists k \varphi(k, \eta, \xi, x)$ with $x \in 2^{\kappa}$, such that for all $\eta, \xi \in 2^{\kappa}$,

$$(\eta, \xi) \in E \Leftrightarrow \psi(\eta, \xi).$$

Let $r(\alpha)$ be the formula " α is a regular cardinal" and $\psi^E = \psi^E(\kappa)$ be the sentence with parameter κ that asserts that $\psi(\eta, \xi)$ defines an equivalence relation on 2^{κ} . For all $\eta \in 2^{\kappa}$ and $\alpha < \kappa$, let

$$T_{\eta,\alpha} = \{ p \in 2^{\alpha} \mid \exists \beta > \alpha(L_{\beta} \models ZF^{-} \land \psi(p,\eta \upharpoonright \alpha, x) \land r(\alpha) \land \psi^{E}) \}$$

and let

$$f(\eta)(\alpha) = \begin{cases} \min_{L} T_{\eta,\alpha} & \text{if } T_{\eta,\xi} \neq \emptyset\\ 0 & \text{otherwise} \end{cases}$$

We will show that $(\eta, \xi) \in E$ if and only if the set $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\}$ contains a μ -club.

Suppose $\psi(\eta, \xi, x) = \exists k \varphi(k, \eta, \xi, x)$ holds and let k witnesses that. Let θ be a cardinal large enough such that $L_{\theta} \models ZF^- \land \varphi(k, \eta, \xi, x) \land r(\alpha)$. For all $\alpha < \kappa$ let $H(\alpha) = Sk(\alpha \cup \{\kappa, k, \eta, \xi, x\})^{L_{\theta}}$. The set $D = \{\alpha < \kappa \mid H(\alpha) \cap \kappa = \alpha \land H(\alpha) \models \psi^E\}$ is a club. Using the Mostowski collapse we have that

$$D' = \{ \alpha < \kappa \mid \exists \beta > \alpha(L_{\beta} \models ZF^{-} \land \varphi(k \upharpoonright \alpha, \eta \upharpoonright \alpha, \xi \upharpoonright \alpha, x \upharpoonright \alpha) \land r(\alpha) \land \psi^{E}) \}$$

contains a club. For all $\alpha \in D'$ and $p \in T_{\eta,\alpha}$ we have that

$$\exists \beta_1 > \alpha(L_{\beta_1} \models ZF^- \land \psi(p, \eta \restriction \alpha) \land r(\alpha) \land \psi^E)$$

and

$$\exists \beta_2 > \alpha(L_{\beta_2} \models ZF^- \land \psi(\eta \restriction \alpha, \xi \restriction \alpha) \land r(\alpha) \land \psi^E)$$

Therefore, for $\beta = max\{\beta_1, \beta_2\}$ we have that

$$L_{\beta} \models ZF^{-} \land \psi(p,\eta \restriction \alpha) \land \psi(\eta \restriction \alpha,\xi \restriction \alpha) \land r(\alpha) \land \psi^{E}.$$

Since ψ^E holds and so transitivity holds for $\psi(\eta, \xi)$, we conclude that

$$L_{\beta} \models ZF^{-} \land \psi(p, \xi \restriction \alpha) \land r(\alpha) \land \psi^{E}$$

so $p \in T_{\xi,\alpha}$ and $T_{\eta,\alpha} \subseteq T_{\xi,\alpha}$. Using the same argument we can show that $T_{\xi,\alpha} \subseteq T_{\eta,\alpha}$ holds for all $\alpha \in D'$. We conclude that for all $\alpha \in D'$ it holds that $T_{\xi,\alpha} = T_{\eta,\alpha}$, and the set $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\}$ contains a μ -club.

Suppose that $\neg \psi(\eta, \xi, x)$ holds. Then by Lemma 2.13 there is no μ -club inside

$$\{\alpha < \kappa \mid \exists \beta > \alpha(L_{\beta} \models ZF^{-} \land \psi(\eta \restriction \alpha, \xi \restriction \alpha) \land r(\alpha))\}.$$

Notice that $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\} = \{\alpha \mid \min_L T_{\eta,\alpha} = \min_L T_{\xi,\alpha}\}$, so $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\} \subseteq \{\alpha \mid T_{\eta,\alpha} \cap T_{\xi,\alpha} \neq \emptyset\}$, therefore

$$\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\} \subseteq \{\alpha \mid \exists p \exists \beta > \alpha(L_{\beta} \models ZF^{-} \land \psi(p, \xi \upharpoonright \alpha) \land \psi(p, \eta \upharpoonright \alpha) \land r(\alpha) \land \psi^{E})\}.$$

We conclude that $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\} \subseteq \{\alpha < \kappa \mid \exists \beta > \alpha(L_{\beta} \models ZF^{-} \land \psi(\eta \restriction \alpha, \xi \restriction \alpha) \land r(\alpha))\}$, so $\{\alpha < \kappa \mid f(\eta)(\alpha) = f(\xi)(\alpha)\}$ does not contain a μ -club. \Box

Exercise 2.6. $E_{\omega\text{-club}}^{\kappa}$ is a $\kappa\text{-Borel}^*$ set.

A function $f: 2^{\kappa} \to 2^{\kappa}$ is κ -Borel, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a κ -Borel subset of 2^{κ} . Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is κ -Borel reducible to E_2 , if there is a κ -Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$, we denote it by $E_1 \leq_B E_2$. In the same way it can be define κ -Borel function and κ -Borel reducibility in $\mathbf{B}(\kappa)$. **Exercise 2.7.** Assume $f: 2^{\kappa} \to 2^{\kappa}$ is κ -Borel function and B is a κ -Borel^{*} set. Prove that $f^{-1}[B]$ is a κ -Borel^{*} set.

Corollary 2.24 ([2], Theorem 18). Suppose that V = L. Then κ -Borel^{*} = $\Sigma_1^1(\kappa)$.

Proof. It follows from Exercise 2.7, Exercise 2.6, and Theorem 2.20.

Corollary 2.25 ([2], Theorem 18). Suppose that V = L. Then $\Delta_1^1(\kappa) \neq \kappa$ -Borel^{*}.

Proof. It follows from Theorem 2.10 and Corollary 2.24.

Question 2.26. Is it consistent that $\Delta_1^1(\kappa) = \kappa$ -Borel*?

Question 2.27. An equivalence relation E on $X \in {\kappa^{\kappa}, 2^{\kappa}}$ is κ -Borel*-complete if every κ -Borel* equivalence relation is κ -Borel reducible to it. Does there exists a κ -Borel*-complete relation that is not a Σ_1^1 -complete relation?

The following lemma shows that there is a model of set theory in which $\Delta_1^1(\kappa)$, κ -Borel^{*}, and $\Sigma_1^1(\kappa)$ are different. The proof can be found in [4].

Lemma 2.28 ([4], Corollary 3.2). It is consistently that $\Delta_1^1(\kappa) \subsetneq \kappa$ -Borel^{*} $\subsetneq \Sigma_1^1(\kappa)$.

3 The Main Gap in $B(\kappa)$

Session in the logic seminar

Definition 3.1. For every $\eta \in \kappa^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ as follows. For every tuple (a_1, a_2, \ldots, a_n) in κ^n

 $(a_1, a_2, \dots, a_n) \in P_m^{\mathcal{A}_\eta} \Leftrightarrow \text{ the arity of } P_m \text{ is } n \text{ and } \eta(\pi(m, a_1, a_2, \dots, a_n)) > 0.$

Definition 3.2. For every $\eta \in 2^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ as follows. For every tuple (a_1, a_2, \ldots, a_n) in κ^n

 $(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_\eta} \Leftrightarrow \text{ the arity of } P_m \text{ is } n \text{ and } \eta(\pi(m, a_1, a_2, \ldots, a_n)) = 1.$

Notice that the structure $\mathcal{A}_{\eta} \upharpoonright \alpha$ is not necessary coded by the function $\eta \upharpoonright \alpha$.

Exercise 3.1. There is a club C_{π} such that for all $\alpha \in C_{\pi}$, $\mathcal{A}_{\eta} \upharpoonright \alpha = \mathcal{A}_{\eta \upharpoonright \alpha}$

With the structures coded by the elements of 2^{κ} and κ^{κ} , it is easy to define the isomorphism relation of structures of size κ in both spaces.

Definition 3.3 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary. We define \cong_T^{κ} as the relation

 $\{(\eta,\xi)\in\kappa^{\kappa}\times\kappa^{\kappa}\mid (\mathcal{A}_{\eta}\models T,\mathcal{A}_{\xi}\models T,\mathcal{A}_{\eta}\cong\mathcal{A}_{\xi}) \text{ or } (\mathcal{A}_{\eta}\not\models T,\mathcal{A}_{\xi}\not\models T)\}.$

Definition 3.4. Assume T is a complete first order theory in a countable vocabulary. We define \cong_T^2 as the relation

$$\{(\eta,\xi)\in 2^{\kappa}\times 2^{\kappa}\mid (\mathcal{A}_{\eta}\models T,\mathcal{A}_{\xi}\models T,\mathcal{A}_{\eta}\cong \mathcal{A}_{\xi}) \text{ or } (\mathcal{A}_{\eta}\not\models T,\mathcal{A}_{\xi}\not\models T)\}.$$

Notice that $\cong_T^{\kappa} \leq_c \cong_T^2$ holds for every theory T.

Definition 3.5. (Ehrenfeucht-Fraissé game) Fix $\{X_{\gamma}\}_{\gamma < \kappa}$ an enumeration of the elements of $\mathcal{P}_{\kappa}(\kappa)$ and $\{f_{\gamma}\}_{\gamma < \kappa}$ an enumeration of all the functions with domain in $\mathcal{P}_{\kappa}(\kappa)$ and range in $\mathcal{P}_{\kappa}(\kappa)$. For every $\alpha < \kappa$ we define the game $EF_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for structures \mathcal{A} and \mathcal{B} with domain κ , as follows. The game is played by two players, \mathbf{I} and \mathbf{II} . In the n-th move, \mathbf{I} choose an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha, X_{\beta_{n-1}} \subseteq X_{\beta_n}$, and then \mathbf{II} chooses an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n}), rang(f_{\theta_n}) \subset \alpha, X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$ (if n = 0 then $X_{\beta_{n-1}} = \emptyset$ and $f_{\theta_{n-1}} = \emptyset$). The game finishes after ω moves. The player \mathbf{II} wins if $\bigcup_{i < \omega} f_{\theta_i} : A \upharpoonright_{\alpha} \to B \upharpoonright_{\alpha}$ is a partial isomorphism, otherwise the player \mathbf{I} wins.

We will write $\mathbf{I} \uparrow \mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ when \mathbf{I} has a winning strategy in the game $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$, similarly we write $\mathbf{II} \uparrow \mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ when \mathbf{II} has a winning strategy.

Theorem 3.6. [12] If T is a classifiable theory, then for every two models of T with domain κ , \mathcal{A}, \mathcal{B} , it holds that $\mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathcal{A} \cong \mathcal{B}$.

Corollary 3.7 ([2], Theorem 70). If T is a classifiable theory, then \cong_T^{κ} is Δ_1^1 .

Lemma 3.8 ([7], Lemma 2.4). If \mathcal{A} and \mathcal{B} are structures with domain κ , then the following hold:

- II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff$ II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .
- $\mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Exercise 3.2. Prove Lemma 3.8 (Hint: look at the closed points of a winning strategy).

Definition 3.9. Assume T is a complete first order theory in a countable vocabulary. For every $\alpha < \kappa$ and $\eta, \xi \in \kappa^{\kappa}$, we write $\eta \ R_{EF}^{\alpha} \xi$ if one of the following holds, $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \not\models T$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \not\models T$, or $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$, $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T$ and $\mathbf{II} \uparrow EF_{\omega}^{\kappa}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\xi} \upharpoonright_{\alpha})$.

Exercise 3.3. Let T be a complete first order theory in a countable vocabulary. There are club many α such that R_{EF}^{α} is an equivalence relation.

Theorem 3.10 ([7], Theorem 2.8). If T is a classifiable theory and $\mu < \kappa$ a regular cardinal, then \cong_T is continuously reducible to $E^{\kappa}_{\mu-club}$ ($\cong^{\kappa}_T \leq_c E^{\kappa}_{\mu-club}$).

Proof. Define the reduction $\mathcal{F}: \kappa^{\kappa} \to \kappa^{\kappa}$ by,

$$\mathcal{F}(\eta)(\alpha) = \begin{cases} f_{\eta}(\alpha) & \text{if } cf(\alpha) = \mu, \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T \text{ and } R_{EF}^{\alpha} \text{ is an equivalence relation} \\ 0 & \text{in other case} \end{cases}$$

where $f_{\eta}(\alpha)$ is a code in $\kappa \setminus \{0\}$ for the R_{EF}^{α} equivalence class of $\mathcal{A}_{\eta} \upharpoonright_{\alpha}$. The proof follows from Lemma 3.8 and Exercise 3.3.

Question 3.11. Is it provable in ZFC that $E_{\mu-club}^{\kappa} \leq_B \cong_T^{\kappa}$ holds for every non-classifiable theory T and regular cardinal μ ?

Model theory session

Exercise 3.4. Prove the claim below (Hint: Use the proof of Theorem 3.10).

Lemma 3.12 ([6], Lemma 2). Assume T is a classifiable theory and $\mu < \kappa$ is a regular cardinal. If $\diamond_{\kappa}(S^{\kappa}_{\mu})$ holds then \cong^{κ}_{T} is continuously reducible to $E^{2}_{\mu-club}$.

Proof. Let $\{S_{\alpha} \mid \alpha \in X\}$ be a sequence testifying $\diamondsuit_{\kappa}(S_{\mu}^{\kappa})$ and define the function $\mathcal{F}: 2^{\kappa} \to 2^{\kappa}$ by

$$\mathcal{F}(\eta)(\alpha) = \begin{cases} 1 & \text{if } \alpha \in S^{\kappa}_{\mu} \cap C_{\pi} \cap C_{EF}, \text{ } \mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{S_{\alpha}}) \text{ and } \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T \\ 0 & \text{otherwise.} \end{cases}$$

Claim 3.13. $\eta \ \xi \ if \ and \ only \ \mathcal{F}(\eta) \ E_{\mu-club}^2 \ \mathcal{F}(\xi).$

The proof of the following theorems can be found in [2].

Theorem 3.14 ([2], Theorem 79). Suppose that $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

- 1. If T is unstable or superstable with OTOP, then $E^2_{\lambda-club} \leq_c \cong_T^{\kappa}$.
- 2. If $\lambda \geq 2^{\omega}$ and T is superstable with DOP, then $E^2_{\lambda-club} \leq_c \cong_T^{\kappa}$.

Theorem 3.15 ([2], Theorem 86). Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable theory. Then $E^2_{\omega\text{-club}} \leq_c \cong^{\kappa}_T$.

Theorem 3.16 ([6], Theorem 4). Suppose that $\kappa = \lambda^+ = 2^{\lambda}$, $\lambda^{<\lambda} = \lambda$ and $\diamondsuit_{\kappa}(S_{\lambda}^{\kappa})$ holds.

- 1. If T_1 is classifiable and T_2 is unstable or superstable with OTOP, then $\cong_{T_1}^{\kappa} \leq_c \cong_{T_2}^{\kappa}$ and $\cong_{T_2}^{\kappa} \not\leq_B \cong_{T_1}^{\kappa}$.
- 2. If $\lambda \geq 2^{\omega}$, T_1 is classifiable and T_2 is superstable with DOP, then $\cong_{T_1}^{\kappa} \leq_c \cong_{T_2}^{\kappa}$ and $\cong_{T_2}^{\kappa} \not\leq_B \cong_{T_1}^{\kappa}$.

Notice that if V = L, then $\diamondsuit_{\kappa}(S_{\lambda}^{\kappa})$ holds for all $\lambda < \kappa$. Therefore in L it holds that If T is classifiable and T' not, then $\cong_T^{\kappa} \leq_c \cong_{T'}^{\kappa}$.

The last session was used to study Question 3.11. The following results answer Question 3.11 for two kind of non-classifiable theories, the proofs are omitted in this notes, due to the length of them. The proofs can be found in [7] and [11]. The main ideas of these proofs is the use of coloured trees, as it was discussed during the lecture. Coloured trees has been used to obtain Borel-reducibility results of isomorphism relations (see [2], [5], [7], and [11]).

Definition 3.17. Let T be a stable theory. T has the orthogonal chain property (OCP), if there exist $\lambda_r(T)$ -saturated models of T of power $\lambda_r(T)$, $\{\mathcal{A}_i\}_{i < \omega}$, $a \notin \bigcup_{i < \omega} \mathcal{A}_i$, such that $t(a, \bigcup_{i < \omega} \mathcal{A}_i)$ is not algebraic for every $j < \omega$, $t(a, \bigcup_{i < \omega} \mathcal{A}_i) \perp \mathcal{A}_j$, and for every $i \leq j$, $\mathcal{A}_i \subseteq \mathcal{A}_j$.

Exercise 3.5. If T has the OCP, then T is unsuperstable.

Lemma 3.18 ([7], Corollary 5.10). Assume T is stable and has the OCP, then $E_{\omega-club}^{\kappa} \leq_c \cong_T$.

Corollary 3.19 ([7], Corollary 5.11). Assume T_1 is a classifiable theory and T_2 is a stable theory with the OCP, then $\cong_{T_1} \leq_c \cong_{T_2}$.

Question 3.20. Does there exists a stable unsuperstable theory that doesn't have OCP?

Definition 3.21. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the following holds:

There are F^a_{ω} -saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, such that $M_1 \downarrow_{M_0} M_2$, and for every $M_3 F^a_{\omega}$ -prime model over $M_1 \cup M_2$, there is a non-algebraic type $p \in S(M_3)$ orthogonal to M_1 and to M_2 , such that it does not fork over $M_1 \cup M_2$.

Lemma 3.22 ([11], Corollary 4.15). Assume T is a theory with S-DOP and let λ be $(2^{\omega})^+$, then $E_{\lambda-club}^{\kappa} \leq_c \cong_T$.

Corollary 3.23 ([11], Corollary 4.16). Assume T_1 is a classifiable theory and T_2 is a superstable theory with S-DOP, then $\cong_{T_1 \leq c} \cong_{T_2}$.

Question 3.24. Does there exists a superstable theory with DOP that doesn't have S-DOP?

Remark 3.25. By Theorem 2.20 we conclude from Lemma 3.18 and Lemma 3.22 that, if V = L, then \cong_T is Σ_1^1 -complete for every T stable with the OCP or superstable theory with S-DOP.

References

- [1] D. Blackwell, Borel sets via games Ann. Probab. 9, 321–322 (1981).
- [2] S. D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory. Mem. Am. Math. Soc. 230(1081), (American Mathematical Society, 2014).
- [3] A. Halko, Negligible subsets of the generalized Baire space $\omega_1^{\omega_1}$ Ann. Acad. Sci. Ser. Diss. Math. 108, 321–322(1996).
- [4] T. Hyttinen, and V. Kulikov, Borel^{*} sets in the generalized Baire space. Tr. Log. Stud. Log. Lib. To appear.
- [5] T. Hyttinen and V. Kulikov, On Σ_1^1 -complete equivalence relations on the generalized baire space. Math. Log. Quart. **61**, 66 81 (2015).
- [6] T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. Math. Logic. 56 no.3, 175 – 185 (2017).
- [7] T. Hyttinen, and M. Moreno, On the reducibility of isomorphism relations, Math Logic Quart. To appear.
- [8] T. Jech, Set theory. Springer-Verlag Berlin Heidelberg, New York (2003).
- [9] A. Kechris, Classical descriptive set theory. Springer-Verlag Berlin Heidelberg, New York (1994).
- [10] A. Mekler, and J. Väänänen, Trees and Π_1^1 subsets of $\omega_1^{\omega_1}$, J. Symbolic Logic. 58(3), 1052–1070, (1993).
- [11] M. Moreno, The isomorphism relation of theories with S-DOP, manuscript.
- [12] S. Shelah, Classification theory. Stud. Logic Found. Math. 92, North-Holland, 1990.