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1. CONTENTS

These notes supplement the notes by I. Holopainen [1]. We give an outline of
the fall 2019 lectures here. Sometimes we simply refer to [1]. If we do something
differently as in [1], we record the results and the proofs here.

1.1. Remark. We introduce here the following highly convenient notation. We
denote A . B if A ≤ CB for some unimportant constant C. This means that C
cannot depend on anything relevant like some important parameter ε. That is, C
can e.g. be some uniform constant, or some constant depending on some fixed
integrability exponent p. We can write A .ε B to mean that A ≤ C(ε)B for some
constant C(ε) that is now allowed to depend on some given parameter ε. We will
also write A ∼ B if A . B . A.

In what follows Lp = Lp(Rn) = Lp(Rn, dx) – that is, we use the Lebesgue
measure and we operate in the whole of Rn, unless we explicitly write Lp(A)
for some A ⊂ Rn or Lp(X) for some measure space (X,µ). Many results e.g. in
Lp(A) can be obtained by just setting f = 0 outside A and using the Rn results –
but not everything can be obtained like this. We also write ‖f‖p = ‖f‖Lp(Rn), but
explicitly write ‖f‖Lp(A).

Moreover, |A| denotes the Lebesgue measure of A ⊂ Rn and 1A denotes the
indicator function of the set A (often denoted by χA). Given p ∈ [1,∞] the dual
exponent p′ is defined via 1/p+ 1/p′ = 1.

First week of lectures. Following [1]: Definition of Lp spaces, 1 ≤ p ≤ ∞, ob-
vious extension of the definition for p ∈ (0, 1), Young’s inequality, Hölder’s in-
equality, triangle inequality of Lp spaces for 1 ≤ p ≤ ∞ (Minkowski’s inequality),
completeness of Lp spaces. An alternative proof of Young’s inequality below in
Lemma 1.2.

1.2. Lemma (Young’s inequality). Let 1 < p <∞. Then we have

ab ≤ ap

p
+
bp
′

p′
, a, b ≥ 0.

Proof. Define

h(x) =
xp

p
+

1

p′
− x, x ≥ 0,

and notice that, by elementary analysis (differentiation),

h(x) ≥ h(1) = 0, i.e., x ≤ xp

p
+

1

p′
.
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Apply this with x = ab1/(1−p) to get

ab1/(1−p) ≤ ap

p
b−p

′
+

1

p′
.

Here we used that p′ = p/(p− 1). Multiply both sides of this inequality with

b1−
1

1−p = b
−p
1−p = bp

′

to establish the desired result. �

Second week of lectures. Sections 2-4 below.

Third week of lectures. Sections 5-7 below.

Fourth week of lectures. Section 8 below + Egorov’s theorem (Thm 2.11) and
Lusin’s theorem (Thm 2.14) from [1] + absolute continuity of measures from [1]
(Section 2.1).

Fifth week of lectures. A general version of the basic covering theorem (Thm
3.3 in [1]) (this is a more general version of Theorem 6.1 below), Vitali covering
theorem (Thm 3.9 in [1]), properties of monotonic functions in R (Section 3.39 of
[1]), definition of functions of bounded variation (beginning of Section 3.54).

Sixth week of lectures. Pages 51–59 of [1]: functions of bounded variation and
all the main properties of absolutely continuous functions.

Seventh week of lectures. Theorem 3.79 and Theorem 3.83 from [1] (the final
results regarding absolutely continuous functions). Section 9 below. Revision,
time permitting.

2. APPROXIMATION BY CONTINUOUS FUNCTIONS AND CONTINUITY OF
TRANSLATIONS

Let Cc = Cc(Rn) denote continuous and compactly supported functions (notice
that Holopainen uses the subscript 0 instead of c).

2.1. Lemma. Let 1 ≤ p <∞. Then Cc is dense in Lp. In other words, given f ∈ Lp for
every ε > 0 there exists g ∈ Cc so that ‖f − g‖p < ε.

Proof. We may assume that f ≥ 0 (write f = f+ − f−) and that f is compactly
supported (by DCT (dominated convergence theorem) 1B(0,M)f → f in Lp). In the
course ’Measure and Integration’ it is proved that there exists simple functions si
so that 0 ≤ s1 ≤ s2 ≤ . . . ≤ f and f(x) = limi→∞ si(x). By DCT (or MCT) we have
‖si−f‖p → 0. Thus, we may assume that f is itself a compactly supported simple
function of the form f =

∑m
i=1 ai1Ai . After this, we can clearly assume f = 1A

for some bounded measurable set A (if we can approximate this by continuous
functions, we can also approximate finite linear combinations).

Fix ε > 0. Choose a compact K and and open G so that K ⊂ A ⊂ G and
|G\K| < ε (see ’Measure and Integration’ – the existence of these sets follows from
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the construction of the Lebesgue measure). We can now define the continuous
function g approximating f = 1A explicitly:

g(x) =
d(x,Gc)

d(x,Gc) +D(x,K)
.

Remember that a mapping of the form x 7→ d(x,B) is 1-Lipschitz (|d(x,B) −
d(y,B)| ≤ |x − y|) and so, in particular, continuous for all sets B. Notice also
that the denominator in the definition of the function g is always strictly positive.
Indeed, if d(x,K) = 0, then x ∈ K (as K is closed) and so x ∈ G and d(x,Gc) > 0
(as G open). Thus, g is continuous. Notice that 0 ≤ g ≤ 1, g(x) = 1 if x ∈ K and
g(x) = 0 if x 6∈ G. Thus, g − 1A satisfies |g − 1A| ≤ 1 and that g(x) − 1A(x) = 0
unless x ∈ G \K. We now simply get

‖g − f‖p ≤
( ˆ

G\K
1 dx

)1/p
= |G \K|1/p < ε1/p,

and we are done. �

We give an elementary proof of the following very useful result, Theorem 2.29
in [1]. The proof in [1] uses Lusin’s theorem and a lemma based on absolute con-
tinuity. However, heavier tools like that are not really required. Indeed, the result
is almost trivial for Cc functions, and we can approximate general Lp functions
by continuous functions using the above lemma.

2.2. Lemma. Suppose f ∈ Lp(R) for 1 ≤ p <∞. Then

lim
y→0

ˆ
Rn
|f(x)− f(x+ y)|p dx = 0.

Proof. Fix f ∈ Lp and denote the translation operator τyf(x) = f(x + y). Let
ε > 0 and choose g ∈ Cc so that ‖f − g‖p < ε. By translation invariance also
‖τyf − τyg‖p = ‖f − g‖p < ε. Hence, by the triangle inequality for the Lp norm
(Minkowski’s inequality), it is enough to show that

lim
y→0
‖g − τyg‖p = 0.

Take an arbitrary sequence yk → 0. We may suppose that |yk| < 1. Choose M > 1
so that spt g ⊂ B(0,M). Notice that if g(x+ yk) 6= 0, then x+ yk ∈ B(0,M) and so
x ∈ B(0, 2M). Thus, we have

‖g − τykg‖pp =

ˆ
B(0,2M)

|g(x)− g(x+ yk)|p dx.

As g is bounded, |g(x)− g(x+ yk)| ≤ C and C ∈ Lp(B(0, 2M)), DCT gives

lim
k→∞

ˆ
B(0,2M)

|g(x)− g(x+ yk)|p dx =

ˆ
B(0,2M)

lim
k→∞
|g(x)− g(x+ yk)|p dx = 0,

where we used the continuity of g with a fixed x. We are done. �
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3. CONVOLUTION AND Lp CONVERGENCE OF APPROXIMATE IDENTITIES

We define the convolution as in [1], but then we present somewhat more gen-
eral approximation results involving the notion of ’approximation of identity’.

So, for f, g ∈ L1 we define for x ∈ Rn the convolution

f ∗ g(x) =

ˆ
Rn
f(y)g(x− y) dy.

This is well-defined, since
´
Rn |f(y)g(x − y)| dy < ∞ for a.e. x ∈ Rn. The latter

follows fromˆ
Rn

ˆ
Rn
|f(y)g(x− y)| dy dx =

ˆ
Rn
|f(y)|

ˆ
Rn
|g(x− y)| dx dy =

(ˆ
Rn
|f |
)(ˆ

Rn
|g|
)
.

This used Fubini’s theorem and translation invariance. Therefore, we have f ∗g ∈
L1 and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
The following properties of the convolution are left as an exercise (here f, g, h ∈
L1):

(1) f ∗ (g + h) = f ∗ g + f ∗ h;
(2) (λf) ∗ g = λ(f ∗ g), λ ∈ R;
(3) f ∗ g = g ∗ f ;
(4) f ∗ (g ∗ h) = (f ∗ g) ∗ h;

3.1. Remark. It is important that the convolution of two functions can be defined in
more generality. It is an exercise to prove the following result. Let 1 ≤ p, q, r ≤ ∞
satisfy

1

r
+ 1 =

1

p
+

1

q
.

If f ∈ Lp and g ∈ Lq we have f ∗ g ∈ Lr and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

In particular, f ∗ g ∈ Lp if f ∈ Lp and g ∈ L1. Some of the calculations in the proof
of Proposition 3.4 give a hint how to do this.

3.2. Definition. A family ϕε ∈ L1, ε > 0, is an approximate identity (as ε → 0) if
the following conditions hold.

(1) We have
´
Rn ϕε = 1 for all ε > 0.

(2) We have supε ‖ϕε‖1 <∞.
(3) For every δ > 0 we have

lim
ε→0

ˆ
|x|≥δ
|ϕε(x)| dx = 0.

3.3. Remark. The following pointers regarding approximate identities are often
helpful.

• Notice that if ϕε ≥ 0, then (2) follows from (1). This is often the case.
• If sptϕε ⊂ B(0, c(ε)), where limε→0 c(ε) = 0, then (3) holds.
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• If a fixed function η ∈ L1 satisfies
´
η = 1 and spt η ⊂ B(0, 1), then ηε :=

1
εn
η(x/ε) is clearly an approximate identity. In fact, the condition spt η ⊂

B(0, 1) is not needed (exercise).

Convolutions with approximate identities f ∗ ϕε are a very important way to
approximate a given function f ∈ Lp as ε→ 0. Notice that by Remark 3.1 f ∗ϕε is
a well-defined Lp function if f ∈ Lp, 1 ≤ p <∞ (as ϕε ∈ L1).

3.4. Proposition. Let 1 ≤ p <∞, f ∈ Lp and (ϕε)ε>0 be an approximate identity. Then
we have

‖f − f ∗ ϕε‖p → 0, ε→ 0.

Proof. Fix f ∈ Lp. Using
´
Rn ϕε = 1 and f ∗ ϕε = ϕε ∗ f we write the pointwise

identity

f(x)− f ∗ ϕε(x) = f(x)

ˆ
Rn
ϕε(y) dy −

ˆ
Rn
f(x− y)ϕε(y) dy

=

ˆ
Rn

[f(x)− f(x− y)]ϕε(y) dy.

For the moment let p > 1. We get using Hölder’s inequality that

|f(x)− f ∗ ϕε(x)| ≤
ˆ
Rn
|f(x)− f(x− y)||ϕε(y)|1/p|ϕε(y)|1/p′ dy

≤
(ˆ

Rn
|f(x)− f(x− y)|p|ϕε(y)| dy

)1/p(ˆ
Rn
|ϕε(y)| dy

)1/p′
.
(ˆ

Rn
|f(x)− f(x− y)|p|ϕε(y)| dy

)1/p
,

where the last step used that supε ‖ϕε‖1 . 1. Therefore, we have

|f(x)− f ∗ ϕε(x)|p .
ˆ
Rn
|f(x)− f(x− y)|p|ϕε(y)| dy,

which also clearly holds with p = 1. We integrate this over x ∈ Rn, and use
Fubini’s theorem, to get that

‖f − f ∗ ϕε‖pp .
ˆ
Rn
|ϕε(y)|

ˆ
Rn
|f(x)− f(x− y)|p dx dy.

Let γ > 0. Using Lemma 2.2 we find δ > 0 so thatˆ
Rn
|f(x)− f(x− y)|p dx < γ

whenever |y| < δ. Using property (3) of Definition 3.2 we find ε0 so thatˆ
|y|≥δ
|ϕε(y)| dy < γ

for all ε ≤ ε0. For all ε ≤ ε0 we therefore haveˆ
Rn
|ϕε(y)|

ˆ
Rn
|f(x)− f(x− y)|p dx dy

5



Real Analysis I Martikainen

=

ˆ
|y|<δ
|ϕε(y)|

ˆ
Rn
|f(x)− f(x− y)|p dx dy

+

ˆ
|y|≥δ
|ϕε(y)|

ˆ
Rn
|f(x)− f(x− y)|p dx dy

. γ

ˆ
Rn
|ϕε(y)| dy + ‖f‖pp

ˆ
|y|≥δ
|ϕε(y)| dy.

Recalling supε ‖ϕε‖1 . 1 and
´
|y|≥δ |ϕε(y)| dy < γ we get that for all ε ≤ ε0 we have

‖f − f ∗ ϕε‖pp . γ(1 + ‖f‖pp).
�

4. APPROXIMATION BY SMOOTH FUNCTIONS IN Lp(U)

Lp(U) and Lploc(U). We will sometimes now work in

Lp(U) =
{
f : U → R : ‖f‖Lp(U) :=

( ˆ
U

|f |p
)1/p

<∞
}

for a given, fixed open set U ⊂ Rn. The set U can be the whole space Rn – in
particular, U need not be bounded. Define still the local Lp space

Lploc(U) = {f : f ∈ Lp(V ) for all open V ⊂⊂ U},

where V ⊂⊂ U means that V is compact and V ⊂ U . Notice thatLploc(U) ⊂ L1
loc(U)

for all 1 ≤ p ≤ ∞ as in each V ⊂⊂ U we have by Hölder’s inequality thatˆ
V

|f | ≤ |V |1/p′
(ˆ

V

|f |p
)1/p

<∞.

That is why it is often convenient to state results for L1
loc functions.

Differentiation and Ck(U) spaces. Let α = (α1, . . . , αn), where αi ∈ {0, 1, 2 . . .}.
This is called a multi-index and we set |α| =

∑n
i=1 αi. Multi-indices are used

mainly for notation related to differentiation: If x = (x1, . . . , xn) ∈ Rn then xα :=
xα1
1 · · ·xα

n

n , and

Dαf(x) :=
∂α1 · · · ∂αn
∂xα1

1 · · · ∂xαnn
f(x) =

∂α1

∂xα1
1

· · · ∂
αn

∂xαnn
f(x),

where
∂f(x)

∂xj
= lim

h→0

f(x+ hej)− f(x)

h
.

Here (e1, . . . , en) is the standard basis of Rn.
Define

C(U) = C0(U) = {f : U → R : f continuous},
Ck(U) = {f : U → R : Dαf ∈ C(U) for |α| ≤ k}

and

C∞(U) =
∞⋂
k=0

Ck(U).
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Define also
Ck
c (U) = {f ∈ Ck(U) : spt f ⊂ U compact},

and define C∞c (U) analogously. Here the support spt f is taken in the whole of
Rn so that a priori spt f ⊂ U , but we demand here that spt f ⊂ U . In this case we
say that ’f is compactly supported in U ’.

Standard mollifier. In the exercise set 2 it is asked to show that h : R→ R that is
defined by h(t) = e−1/t for t > 0 and h(t) = 0 otherwise is a smooth function in R
(i.e. indefinitely differentiable, h ∈ C∞(R)). We define η : Rn → R by setting

η(x) = Ch(1− |x|2)
for a constant C > 0 to be selected. Notice that η ≥ 0, η(x) = 0 if |x| ≥ 1, and that
η is smooth – η ∈ C∞c (Rn) (denoted by C∞0 by Holopainen). We let

C =
1´

B(0,1)
h(1− |x|2) dx

so that, in addition,
´
η =
´
B(0,1)

η = 1. By Remark 3.3 we have that the family

(4.1) ηε(x) :=
1

εn
η(x/ε), ε > 0,

is an approximate identity with ηε(x) = 0 if |x| ≥ ε. This particular family ηε is the
so-called ’standard mollifier’, and is practical in many approximation arguments.
In what follows ηε denotes always this particular standard mollifier.

Smoothing of functions. If f ∈ L1
loc = L1

loc(Rn) (in particular if f ∈ Lploc) we can
define

f ε(x) := f ∗ ηε(x) =

ˆ
f(y)ηε(x− y) dy

for all x ∈ Rn. This is becauseˆ
|f(y)ηε(x− y)| dy .ε

ˆ
B(x,ε)

|f | <∞.

Thus, here we do not need arguments based on Fubini or anything else fancier,
and we have a working definition for all x.

4.2. Remark. If f ∈ L1
loc(U) we can define f ε(x) for only all x ∈ Uε, where

Uε = {x ∈ U : d(x, ∂U) > ε}.
This is because B(x, ε) ⊂⊂ U for x ∈ Uε, so that f ∈ L1(B(x, ε)). Things are
always a bit more technically demanding if we are working in the local spaces
L1
loc(U), as then arguments can only be ran in compact sets that are inside U. That

is, we always need to worry about such containments.
In the simpler situation when f ∈ Lp(U) for some 1 ≤ p ≤ ∞, we can again

define f ε(x) for all x ∈ Rn. In this case you can interpret f ∈ L1
loc(Rn) by setting

f = 0 outside U .

There is a rough philosophy: the convolution of two functions is as regular as
the more regular function of the two.
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4.3. Theorem. Let ε > 0. If f ∈ L1
loc(Rn), we have f ε ∈ C∞(Rn) and

Dαf ε = f ∗Dαηε

for all multi-indices α.

Proof. Fix x ∈ Rn and i ∈ {1, . . . , n}, and assume |h| < ε. We can write

(4.4)
f ε(x+ hei)− f ε(x)

h
=

1

εn

ˆ
B(x,2ε)

1

h

[
η
(x− y + hei

ε

)
− η
(x− y

ε

)]
f(y) dy.

Notice that for all y we have

1

h

[
η
(x− y + hei

ε

)
− η
(x− y

ε

)]
=

1

ε

1

h/ε

[
η
(x− y

ε
+
h

ε
ei

)
− η
(x− y

ε

)]

→ 1

ε

∂η

∂xi

(x− y
ε

)
= εn

∂ηε
∂xi

(x− y)

as h → 0. Hence, if we could pass the limit h → 0 inside the integral in (4.4), we
would get that

∂f ε

∂xi
(x) = lim

h→0

f ε(x+ hei)− f ε(x)

h
=

ˆ
f(y)

∂ηε
∂xi

(x− y) dy = f ∗ ∂ηε
∂xi

(x).

The passage of the limit is justified by DCT as

η
(x− y

ε
+
h

ε
ei

)
− η
(x− y

ε

)
=

ˆ h/ε

0

d

ds
η
(x− y

ε
+ sei

)
ds

=

ˆ h/ε

0

∇η
(x− y

ε
+ sei

)
· ei ds,

the absolute value of which is dominated by

h

ε
‖∇η‖L∞ .

Thus, the absolute value of the integrand in (4.4) is dominated by

1

ε
‖∇η‖L∞ |f |,

which is independent of the sequence variable h and belongs to L1(B(x, 2ε)),
justifying the use of DCT. It is clear that we can repeat this argument to get
Dαf ε = f ∗Dαηε for all multi-indices α.

To show that these are all continuous functions is a similar, but easier, argu-
ment. For example, for a fixed x ∈ Rn, ε > 0 and for |h| < ε, we have

|f ε(x+ h)− f ε(x)| ≤ 1

εn

ˆ
B(x,2ε)

|f(y)|

∣∣∣∣∣η(x− y + h

ε

)
− η
(x− y

ε

)∣∣∣∣∣ dy.
We can simply dominate (as η is bounded) the integrand by C|f | ∈ L1(B(x, 2ε)),
and so the claim follows by using DCT as h→ 0 and the continuity of η. �

4.5. Remark. By small modifications we could prove f ε ∈ C∞(Uε) if f ∈ L1
loc(U).
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4.6. Theorem. Let f ∈ Lp = Lp(Rn), 1 ≤ p <∞. Then we have that

‖f ε‖p ≤ ‖f‖p
and

lim
ε→0
‖f − f ε‖p = 0.

Proof. By Remark 3.1 we have

‖f ε‖p = ‖f ∗ ηε‖p ≤ ‖ηε‖1‖f‖p = ‖f‖p.
That

lim
ε→0
‖f − f ε‖p = 0

follows from the fact that ηε is an approximation of identity and Proposition 3.4.
�

4.7. Corollary. C∞c (U) is dense in Lp(U), 1 ≤ p <∞.

Proof. Fix f ∈ Lp(U). For j = 1, 2, . . . define

Vj = B(0, j) ∩ {x ∈ U : d(x, ∂U) > 1/j}.
By DCT we have ‖f1Vj − f‖Lp(U) → 0 as j → ∞. Let δ > 0, and using the above
choose Vj ⊂⊂ U so that ‖f1Vj − f‖Lp(U) < δ. Viewing f1Vj as a locally integrable
function defined in the whole Rn, we know that (f1Vj)

ε ∈ C∞(Rn) for all ε > 0.
Notice that

(f1Vj)
ε(x) =

ˆ
Vj∩B(x,ε)

f(y)ηε(x− y) dy.

Thus, (f1Vj)
ε(x) = 0 unless Vj ∩B(x, ε) 6= ∅. This means that

spt(f1Vj) ⊂ {x : d(x, Vj) ≤ ε},

which is a compact subset of U if ε < 1/j. Thus, we have (f1Vj)
ε ∈ C∞c (U) for

ε < 1/j. Using the above theorem we choose ε < 1/j so that

‖f1Vj − (f1Vj)
ε‖Lp(U) = ‖f1Vj − (f1Vj)

ε‖p < δ.

We have found (f1Vj)
ε ∈ C∞c (U) so that ‖f − (f1Vj)

ε‖Lp(U) < 2δ. �

5. INTERPOLATION

Let (X,µ) be a σ-finite measure space (X =
⋃∞
i=1Xi, µ(Xi) < ∞). This partic-

ular topic is completely general, and e.g. the translation invariance properties of
the Lebesgue measure are not important here (unlike in the above convolution
arguments). For 0 < p <∞ and a measurable f : X → R define

‖f‖Lp(X) =
(ˆ

X

|f |p dµ
)1/p

,

‖f‖Lp,∞(X) = sup
λ>0

λµ({x ∈ X : |f(x)| > λ})1/p,

‖f‖L∞(X) = inf{C ≥ 0: |f(x)| ≤ C for µ-a.e. x ∈ X},
‖f‖L∞,∞(X) = ‖f‖L∞(X).
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The so-called weak-Lp(X) – denoted Lp,∞(X) – consists of those f for which
‖f‖Lp,∞(X) <∞. If f ∈ Lp(X) then for all λ > 0 we have

µ({|f | > λ}) =
1

λp

ˆ
{|f |>λ}

λp ≤ 1

λp

ˆ
|f |p

from which it follows that ‖f‖Lp,∞(X) ≤ ‖f‖Lp(X) < ∞. That is, we have the
natural inclusion Lp(X) ⊂ Lp,∞(X).

5.1. Theorem (Marcinkiewicz interpolation theorem). Let (X,µ) and (Y, ν) be σ-
finite measure spaces and let 0 < p0 < p1 ≤ ∞. Let T be a sublinear operator defined
on the space Lp0(X) +Lp1(X) and taking values in the space of measurable functions on
Y . Assume that there exists two constants A0 and A1 such that

‖Tf‖Lp0,∞(Y ) ≤ A0‖f‖Lp0 (X), f ∈ Lp0(X),

‖Tf‖Lp1,∞(Y ) ≤ A1‖f‖Lp1 (X), f ∈ Lp1(X).

Let p ∈ (p0, p1) and write

1

p
=

1− θ
p0

+
θ

p1
, θ ∈ (0, 1).

Then we have

‖Tf‖Lp(Y ) ≤ 2
( p

p− p0
+

p

p1 − p

)1/p
A1−θ

0 Aθ1‖f‖Lp(X).

5.2. Remark. Sublinearity means that we have the pointwise estimates

|T (f + g)| ≤ |Tf |+ |Tg| and |T (λf)| = |λ||Tf |, λ ∈ R.

Marcinkiewicz interpolation theorem is an easy but very useful interpolation
theorem. The good points are:

(1) We can assume only Lq → Lq,∞ type estimates at the endpoints q ∈ {p0, p1}
but conclude strong Lp → Lp estimates for p0 < p < p1.

(2) T does not need to be linear – this is important in what follows (T will e.g.
be a so-called maximal function).

This theorem has a rather simple proof using the important identity

(5.3)
ˆ
X

|f |p dµ = p

ˆ ∞
0

λp−1µ({x ∈ X : |f(x)| > λ}) dλ, 0 < p <∞.

The proof of this identity is left as an exercise. The weak point of the Marcinkiewicz
interpolation theorem is that we cannot interpolate estimates like Lp0 → Lq0 and
Lp1 → Lq1 , but rather need to have p0 = q0 and p1 = q1. Such interpolation results
do exist (the Riesz-Thorin interpolation theorem), but we will not cover those
here.

Proof of Theorem 5.1. Assume p1 <∞ – the case p1 =∞ is an exercise. Let f ∈ Lp,
p0 < p < p1. Fix some parameter λ > 0 related to the level sets of the form
{|g| > λ} appearing in (5.3) and fix also another technical parameter δ > 0 (which
we will later fix in a natural way to recover the claimed quantitative estimate).

10
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Define f0 = f1{|f |>δλ} and f1 = f − f0. It is almost obvious that f0 ∈ Lp0(X)
(as p0 − p < 0) and f1 ∈ Lp1(X) (as p1 − p > 0) – in particular, Tf is defined by
assumption and we have by sublinearity that

|Tf | ≤ |Tf0|+ |Tf1|.

Therefore, we have

{|Tf | > λ} ⊂ {|Tf0| > λ/2} ∪ {|Tf1| > λ/2},

and so

ν({|Tf | > λ}) ≤ ν({|Tf0| > λ/2}) + ν({|Tf1| > λ/2})

≤
(λ

2

)−p0
‖Tf0‖p0Lp0,∞(Y ) +

(λ
2

)−p1
‖Tf1‖p1Lp1,∞(Y )

≤
(λ

2

)−p0
Ap00 ‖f0‖

p0
Lp0 (X) +

(λ
2

)−p1
Ap11 ‖f1‖

p1
Lp1 (X)

=
(λ

2

)−p0
Ap00

ˆ
|f |>δλ

|f(x)|p0 dµ(x) +
(λ

2

)−p1
Ap11

ˆ
|f |≤δλ

|f(x)|p1 dµ(x).

In the last estimate we used the main assumption concerning the weak type esti-
mates Lp0(X)→ Lp0,∞(Y ) and Lp1(X)→ Lp1,∞(Y ).

Using (5.3) we get that

‖Tf‖pLp(Y ) = p

ˆ ∞
0

λp−1ν({|Tf | > λ}) dλ

≤ p(2A0)
p0

ˆ ∞
0

λp−1λ−p0
ˆ
|f |>δλ

|f(x)|p0 dµ(x) dλ

+ p(2A1)
p1

ˆ ∞
0

λp−1λ−p1
ˆ
|f |≤δλ

|f(x)|p1 dµ(x) dλ = I + II.

If we want this generality of general measures, we now need Fubini’s theorem
with a general σ-finite measure. The proof is really different than in the Lebesgue
case (see ’Measure and Integration’), and is given in ’Real Analysis II’. However,
later in the lecture notes we will only need the interpolation in the Lebesgue case
so you can also assume that µ is the Lebesgue measure. In any case, by some
version of Fubini’s theorem we have

I = p(2A0)
p0

ˆ
X

|f(x)|p0
ˆ |f(x)|/δ
0

λp−p0−1 dλ dµ(x)

=
p(2A0)

p0

p− p0
1

δp−p0

ˆ
X

|f(x)|p dµ(x)

and similarly

II =
p(2A1)

p1

p1 − p
1

δp−p1

ˆ
X

|f(x)|p dµ(x).

Therefore, we have already proved that

‖Tf‖pLp(Y ) ≤ p
((2A0)

p0

p− p0
1

δp−p0
+

(2A1)
p1

p1 − p
1

δp−p1

)
‖f‖pLp(X).

11
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If we want to recover the exact claimed quantitative dependence on the various
constants (which will not be important to us in what follows), it is now natural to
fix δ so that

(2A0)
p0

1

δp−p0
= (2A1)

p1
1

δp−p1
,

which gives

δ =
1

2
A

p0
p1−p0
0 A

− p1
p1−p0

1 .

We then get

‖Tf‖Lp(Y ) ≤ (2A0)
p0/p

1

δ1−p0/p

( p

p− p0
+

p

p1 − p

)1/p
‖f‖Lp(X),

where

(2A0)
p0/p

1

δ1−p0/p
= 2A

1− p0p1−pp1
p0p−pp1

0 A
p0p1−pp1
p0p−pp1
1 .

We are done after solving for θ, which gives the desired formula

θ =
1/p− 1/p0
1/p1 − 1/p0

=
p0p1 − pp1
p0p− pp1

.

�

6. MAXIMAL FUNCTION ESTIMATES

For a locally integrable f ∈ L1
loc = L1

loc(Rn; dx) define the (centred) Hardy–
Littlewood maximal function

Mf(x) := sup
r>0

1

|B(x, r)|

ˆ
B(x,r)

|f(y)| dy.

In practical arguments it is often convenient to use the following larger maximal
function as well

x 7→ sup
B open ball

1B(x)

|B|

ˆ
B

|f(y)| dy.

Notice that if x ∈ B = B(z, r), then B ⊂ B(x, 2r), and so (as |B| ∼ rn ∼ |B(x, 2r)|)
we have

sup
B open ball

1B(x)

|B|

ˆ
B

|f(y)| dy .Mf(x).

That is, these are pointwise comparable functions, and results that hold for one of
them, also hold for the other. We can call this other one the ’non-centred maximal
function’ and denote it e.g. by Mncf(x).

The maximal function is of fundamental use in analysis as it has good mapping
properties and it e.g. dominates many other operators pointwise. We will now
prove the mapping properties.

6.1. Theorem (Basic covering theorem). Let B be a finite family of open (or closed)
balls in Rn. Then there exists pairwise disjoint balls B1, B2, . . . , Bm ∈ B such that⋃

B∈B

B ⊂
m⋃
i=1

3Bi.

12
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Proof. Let B = {Uj}Nj=1, where Uj = B(xj, rj). As this is a finite collection, by
reordering we may assume that r1 ≥ r2 ≥ . . . ≥ rN . Let B1 = U1, and then let B2

be the biggest ball Uj so that Uj 6⊂ 3B1 (if it exists). Let then B3 be the biggest ball
Uj so that Uj 6⊂ 3B1 ∪ 3B2 (if it exists). We continue this selection process as long
as possible – the process finishes after a finite, say m, number of steps. It follows
from the construction directly that⋃

B∈B

B ⊂
m⋃
i=1

3Bi.

Importantly, the balls Bi, i = 1, . . . ,m, are disjoint. To see this, suppose that
Bi1 ∩ Bi2 6= ∅ for some 1 ≤ i1 < i2 ≤ m. As the radius of Bi1 is also larger than or
equal to the radius of Bi2 , we must have (by triangle inequality) that Bi2 ⊂ 3Bi1 .
But this is a contradiction with the selection process.

�

6.2. Remark. If f ∈ L1 is non-trivial (f 6= 0 on a set of positive measure), then
Mf 6∈ L1. Indeed, in this case in some ball BR = B(0, R) we must haveˆ

BR

|f | & 1.

If |x| > R, then BR ⊂ B(x, 2|x|), and so

Mf(x) ≥ 1

|B(x, 2|x|)|

ˆ
B(x,2|x|)

|f | & 1

|x|n
.

Notice thatˆ
Rn\B(0,R)

|x|−n dx =
∞∑
k=0

ˆ
2kR≤|x|<2k+1R

|x|−n dx &
∞∑
k=0

1 =∞.

Despite the previous remark, we do have the following result. It is typical in
analysis that an operator does not map L1 to L1 but does map L1 to L1,∞.

6.3. Theorem. We have that M : L1(Rn)→ L1,∞(Rn) boundedly – i.e.,

‖Mf‖L1,∞ . ‖f‖1.

Proof. Fix f ∈ L1 and λ > 0. Define

Ωλ := {x ∈ Rn : Mf(x) > λ}.
Let K ⊂ Ωλ be an arbitrary compact set, and for every x ∈ K choose (using the
fact that Mf(x) > λ) a radius rx > 0 and the related ball Ux = B(x, rx) so that

1

|Ux|

ˆ
Ux

|f | > λ.

As {Ux : x ∈ K} is an open cover of K, we can use compactness to choose a finite
subfamily Ux1 , . . . , UxN so that

K ⊂
N⋃
j=1

Uxj .

13
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By the basic covering theorem choose disjoint B1, . . . , Bm ∈ {Uxj : j = 1, . . . , N}
so that

K ⊂
N⋃
j=1

Uxj ⊂
m⋃
i=1

3Bi.

We now get

|K| ≤
m∑
i=1

|3Bi| .
m∑
i=1

|Bi| ≤
1

λ

m∑
i=1

ˆ
Bi

|f | ≤ 1

λ

ˆ
Rn
|f |.

As K ⊂ Ωλ was an arbitrary compact subset, the same inequality holds with |K|
replaced by |Ωλ|, and we are done. �

6.4. Corollary. For all 1 < p <∞ and f ∈ Lp we have

‖Mf‖p . ‖f‖p.

Proof. As we have ‖Mf‖L1,∞ . ‖f‖1 and the trivial estimate ‖Mf‖∞ ≤ ‖f‖∞, the
claim follows from Marcinkiewicz interpolation theorem. �

7. LEBESGUE’S DIFFERENTIATION THEOREM

7.1. Theorem (Lebesgue’s differentiation theorem). For f ∈ L1
loc we have

lim
r→0

1

|B(x, r)|

ˆ
B(x,r)

|f(y)− f(x)| dy = 0

for almost every x ∈ Rn. In particular, we have

lim
r→0

1

|B(x, r)|

ˆ
B(x,r)

f(y) dy = f(x)

for almost every x ∈ Rn.

Proof. The latter claim follow from the first as

1

|B(x, r)|

ˆ
B(x,r)

f(y) dy − f(x) =
1

|B(x, r)|

ˆ
B(x,r)

[f(y)− f(x)] dy,

and so it is enough to prove the first claim.
This is a local claim, so we can assume without loss of generality that f ∈ L1

(enough to prove that the claim holds for every k and for a.e. x ∈ B(0, k) – with a
fixed k we can replace f by f1B(0,2k) ∈ L1).

There is a standard protocol to show almost everywhere convergence for in-
tegrable functions. It involves the following two steps: 1) show convergence in
some appropriate dense subset; 2) prove the boundedness of the relevant max-
imal operator (depending on the problem at hand). In this case, the relevant
maximal function is Mf , and we already know Theorem 6.3 – this gives us 2).
But 1) is also clear, as the claim is obvious for continuous functions (which are
dense). We now show how the standard protocol pieces these two facts together.

Let

σrf(x) =
1

|B(x, r)|

ˆ
B(x,r)

|f(y)− f(x)| dy.

14
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It is enough to show that

|{x : lim sup
r→0

σrf(x) > 0}| = 0.

We fix an arbitrary λ > 0 and show that

|{x : lim sup
r→0

σrf(x) > λ}| = 0,

which is enough. Let ε > 0. Choose g ∈ Cc so that

‖f − g‖1 < ε.

We know that because g is continuous we have

lim
r→0

σrg(x) = 0

for every x ∈ Rn. Estimating

σrf(x) ≤ σr(f − g)(x) + σrg(x)

we see that

lim sup
r→0

σrf(x) ≤ sup
r>0

σr(f − g)(x) ≤M(f − g)(x) + |f(x)− g(x)|.

Therefore, we have by Theorem 6.3 that∣∣∣{x : lim sup
r→0

σrf(x) > λ
}∣∣∣

≤
∣∣∣{x : M(f − g)(x) >

λ

2

}∣∣∣+
∣∣∣{x : |f(x)− g(x)| > λ

2

}∣∣∣
≤ 2

λ

(
‖M(f − g)‖L1,∞ + ‖f − g‖L1,∞

)
.

1

λ
‖f − g‖1 <

ε

λ
.

This ends the proof. �

7.2. Remark. Notice that Lebesgue’s differentiation theorem implies that |f(x)| ≤
Mf(x) for almost every x.

We present two immediate but important corollaries.

7.3. Corollary. Let f ∈ L1([a, b]) and define

F (x) =

ˆ x

a

f(y) dy, x ∈ [a, b].

For almost every x ∈ [a, b] we have

F ′(x) = f(x).

Proof. Suppose h > 0. We have∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣ ≤ 1

h

ˆ x+h

x

|f(y)− f(x)| dy ≤ 2

2h

ˆ x+h

x−h
|f(y)− f(x)| dy,

which goes, for almost every x, to 0 as h → 0+ by Lebesgue’s differentiation
theorem. We can control the limit limh→0− similarly, and then the claim follows.

�
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7.4. Corollary. Let E ⊂ Rn be measurable. Then for a.e. x ∈ E we have

lim
r→0

|E ∩B(x, r)|
|B(x, r)|

= 1

and for a.e. x ∈ Ec we have

lim
r→0

|E ∩B(x, r)|
|B(x, r)|

= 0.

Proof. Lebesgue’s differentiation theorem applied to 1E ∈ L1
loc gives that

lim
r→0

|E ∩B(x, r)|
|B(x, r)|

= lim
r→0

1

|B(x, r)|

ˆ
B(x,r)

1E(y) dy = 1E(x)

for almost every x ∈ Rn. �

8. POINTWISE CONVERGENCE OF APPROXIMATE IDENTITIES

We have already shown that if (ϕε) is an approximate identity, then f ∗ ϕε → f
in Lp, 1 ≤ p < ∞. We now study some related pointwise results and the case
p =∞.

If ηε is the standard mollifier from (4.1), then we have

|f ∗ ηε(x)− f(x)| . 1

εn

ˆ
B(x,ε)

|f(y)− f(x)| dy ∼ 1

|B(x, ε)|

ˆ
B(x,ε)

|f(y)− f(x)| dy.

Thus, it follows from Lebesgue’s differentiation theorem that if f ∈ L1
loc, then

f ∗ ηε(x)→ f(x) for a.e. x ∈ Rn. We can prove this more generally. If ϕ ∈ L1 with´
ϕ = 1, then (see exercises) we know that the scaled functions ϕε(x) = 1

εn
ϕ(x/ε)

form an approximate identity. Under certain additional assumptions on ϕ we
will show that f ∗ ϕε(x)→ f(x) for a.e. x ∈ Rn.

We say that ϕ is radial if its values ϕ(x) only depend on |x|. This means that
ϕ(x) = r(|x|) for some r : [0,∞] → R. We say that a radial ϕ is decreasing if
|x| ≥ |y| implies ϕ(x) ≤ ϕ(y). Our aim is to show that f ∗ ϕε(x) → f(x) for a.e.
x ∈ Rn if f ∈ Lp, 1 ≤ p ≤ ∞, and ϕ is radial, non-negative and decreasing. Notice
that the function η in the standard mollifier satisfies these assumptions, but that
the function η is even compactly supported and smooth, which are not required
in the general theorem.

The scheme for showing this is the same as in the Lebesgue’s differentiation
theorem (the case f ∈ L∞ being a bit special): 1) show convergence in some
appropriate dense subset; 2) prove the boundedness of the relevant maximal op-
erator (depending on the problem at hand). We will start with 2).

8.1. Proposition. Suppose f ∈ Lp, 1 ≤ p ≤ ∞. Let ϕ ∈ L1 be radial, non-negative and
decreasing and ϕε(x) = 1

εn
ϕ(x/ε) be the related approximate identity. Then for all ε > 0

we have
|f ∗ ϕε(x)| ≤ ‖ϕ‖1Mf(x)

for all x ∈ Rn.
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Proof. Due to the properties of ϕ, we can approximate ϕ by the special ’simple’
functions of the form

∑
i ai1B(0,ri), where ai, ri > 0. Indeed, if ϕ(x) = r(|x|) for a

positive and decreasing function r defined on [0,∞], we can approximate point-
wise using for each j = 1, 2, . . . the functions

ϕj(x) =
∞∑
i=1

[r(i2−j)− r((i+ 1)2−j)]1B(0,i2−j)(x).

By the monotone convergence theorem it is enough to prove that

|f ∗ (ϕj)ε(x)| ≤ ‖ϕj‖1Mf(x).

So, for notational convenience, we can assume that ϕ(x) =
∑

i ai1B(0,ri)(x),
ai, ri > 0. Then we have

f ∗ ϕε(x) =
1

εn

ˆ
Rn
f(x− y)ϕ(y/ε) dy =

ˆ
Rn
f(x− εy)ϕ(y) dy,

and so

|f ∗ ϕε(x)| ≤
∑
i

ai

ˆ
B(0,ri)

|f(x− εy)| dy

=
∑
i

ai
1

εn

ˆ
B(x,εri)

|f(y)| dy

=
∑
i

ai|B(0, ri)|
1

|B(x, εri)|

ˆ
B(x,εri)

|f(y)| dy

≤
(∑

i

ai|B(0, ri)|
)
Mf(x) = ‖ϕ‖1Mf(x).

�

For 1) we need the following lemma that is of independent interest.

8.2. Lemma. Let (ϕε)ε be a general approximate identity and g ∈ L∞ be continuous at
the point x. Then we have

g(x) = lim
ε→0

g ∗ ϕε(x).

Proof. Suppose γ > 0. Choose δ > 0 so that |g(z)− g(x)| < γ whenever |z−x| < δ.
Then using the properties of approximate identities choose ε0 so thatˆ

|y|≥δ
|ϕε(y)| dy < γ

for all ε ≤ ε0. Then we have

|g(x)− g ∗ ϕε(x)| ≤
ˆ
Rn
|g(x− y)− g(x)||ϕε(y)| dy

=
( ˆ
|y|<δ

+

ˆ
|y|≥δ

)
|g(x− y)− g(x)||ϕε(y)| dy = I + II.

We have for all ε that
I ≤ γ

ˆ
Rn
|ϕε(y)| dy . γ.
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For all ε ≤ ε0 we have

II . ‖g‖∞
ˆ
|y|≥δ
|ϕε(y)| dy ≤ γ‖g‖∞.

We are done. �

8.3. Remark. If g ∈ L∞ is uniformly continuous (e.g. g ∈ Cc) then the above proof
gives that

‖g − g ∗ ϕε‖∞ → 0.

8.4. Theorem. Suppose f ∈ Lp, 1 ≤ p ≤ ∞. Let ϕ ∈ L1 be radial, non-negative and
decreasing and ϕε(x) = 1

εn
ϕ(x/ε) be the related approximate identity. Then we have

f(x) = lim
ε→0

f ∗ ϕε(x)

for almost every x.

Proof. Having proved the above results, the proof is now (in the case 1 ≤ p <∞)
completely analogous to the proof of Lebesgue’s differentiation theorem. Indeed,
define

σεf(x) = |f ∗ ϕε(x)− f(x)|
and the related maximal function

Af(x) = sup
ε>0
|f ∗ ϕε(x)|.

By Proposition 8.1 we haveAf(x) .Mf(x). We know by Theorem 6.3 and Corol-
lary 6.4 that A maps boundedly as follows: A : L1 → L1,∞ and A : Lp → Lp,
1 < p < ∞. In particular, we have A : Lp → Lp,∞ for all 1 ≤ p < ∞. For
1 ≤ p < ∞ we are now in the position to run the exact same ’standard argu-
ment’ as in Lebesgue’s differentiation theorem. We give the details to make this
absolutely clear.

So suppose f ∈ Lp, 1 ≤ p <∞. It is enough to show that for an arbitrary λ > 0
we have

|{x : lim sup
ε→0

σεf(x) > λ}| = 0.

Let γ > 0. Choose g ∈ Cc so that

‖f − g‖p < γ.

By Lemma 8.2 we have
lim
ε→0

σεg(x) = 0

for every x ∈ Rn. Estimating

σεf(x) ≤ σε(f − g)(x) + σεg(x)

we see that

lim sup
ε→0

σεf(x) ≤ sup
ε>0

σε(f − g)(x) ≤ A(f − g)(x) + |f(x)− g(x)|.

Therefore, as ‖Ah‖Lp,∞ . ‖h‖p we have∣∣∣{x : lim sup
ε→0

σεf(x) > λ
}∣∣∣
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≤
∣∣∣{x : A(f − g)(x) >

λ

2

}∣∣∣+
∣∣∣{x : |f(x)− g(x)| > λ

2

}∣∣∣
≤
(λ

2

)−p(
‖A(f − g)‖pLp,∞ + ‖f − g‖pLp,∞

)
.

1

λp
‖f − g‖pp <

γp

λp
.

This ends the proof in the case 1 ≤ p <∞.
Let now p =∞ and f ∈ L∞. Fix an arbitrary r > 0. We will show that

f(x) = lim
ε→0

f ∗ ϕε(x)

for almost every x ∈ B(0, r) – which is enough. Define f1 = f1B(0,r+1) and f2 =
f − f1. As f1 ∈ L1 we know by the first part of the proof that

f(x) = f1(x) = lim
ε→0

f1 ∗ ϕε(x)

for almost every x ∈ B(0, r). Thus, it is enough to show that

lim
ε→0

f2 ∗ ϕε(x) = 0

for almost every x ∈ B(0, r). Write

f2 ∗ ϕε(x) =

ˆ
Rn

1B(0,r+1)c(x− y)f(x− y)ϕε(y) dy.

If x ∈ B(0, r) and y ∈ B(0, 1), then x− y ∈ B(0, r + 1) and so 1B(0,r+1)c(x− y) = 0.
Thus, we get

|f2 ∗ ϕε(x)| ≤ ‖f‖∞
ˆ
Rn\B(0,1)

|ϕε(y)| dy.

As (ϕε)ε is an approximate identity, we know that limε→0

´
|y|≥1 |ϕε(y)| dy = 0.

Thus, we are done. �

Poisson kernel and Dirichlet problem. As an application, we define the Poisson
kernel P ∈ L1 by setting

P (x) =
C

(1 + |x|2)(n+1)/2
, x ∈ Rn.

Notice that this is indeed in L1 asˆ
B(0,1)

P (x) dx+
∞∑
k=0

ˆ
2k≤|x|<2k+1

P (x) dx . 1 +
∞∑
k=0

2−k <∞.

Then we select the constant C so that
´
P = 1. Thus, as P ∈ L1 is non-negative,

radial and decreasing, we know that for f ∈ Lp we have pointwise almost every-
where that

lim
t→0

u(x, t) = f(x),

where u(x, t) := f ∗ Pt(x) and Pt(x) = 1
tn
P (x/t). Thus, the function u defined in

the upper half-space
Rn+1

+ := {(x, t) : x ∈ Rn, t > 0}
has the ’boundary values’ f(x). If 1 ≤ p <∞, we also know thatˆ

Rn
|u(x, t)− f(x)|p dx→ 0
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as t → 0. It can be shown that u is harmonic in Rn+1
+ – that is, we have that the

Laplace vanishes:

∆u(x, t) =
( ∂2
∂x21

+ · · ·+ ∂2

∂x2n
+
∂2

∂t2

)
u(x, t) = 0, (x, t) ∈ Rn+1

+ .

Thus, we have that u solves the boundary value problem (Dirichlet problem)
∆u = 0 in Rn+1

+ and u = f in ∂Rn+1
+ = Rn (in the above sense limt→0 u(x, t) = f(x)

pointwise almost everywhere). We have presented a way to study the Dirichlet
problem with ’rough’ boundary data – indeed, the boundary data f is only an Lp
function. In addition, note still that by Proposition 8.1 we have

sup
t>0
|u(x, t)| ≤Mf(x).

9. WEAK DERIVATIVES AND SOBOLEV SPACES

Lp spaces are some of the most fundamental function spaces in modern analy-
sis. They are important on their own, but also serve as a basic building block for
more complicated spaces, such as Sobolev spaces, which appear naturally in the
theory of partial differential equations. We give a very brief introduction to these
spaces now.

In what follows U ⊂ Rn is open.

9.1. Definition. Let f ∈ L1
loc(U) and α be a multi-index. If there exists g ∈ L1

loc(U)
so that the integration by parts type formulaˆ

U

fDαϕ = (−1)|α|
ˆ
U

gϕ

holds for all ϕ ∈ C∞c (U), then we denote g = Dαf and call g the αth-weak partial
derivative of f .

In the exercises we show that if f ∈ L1
loc(U) is such thatˆ

fϕ = 0

for all ϕ ∈ C∞c (U), then f = 0 almost everywhere. It follows that that the weak
derivates are unique, if they exist.

9.2. Example. Let U = (0, 2) ⊂ R and

f(x) =

{
x, if 0 < x ≤ 1,
2, if 1 < x < 2.

If ϕ ∈ C∞c (U), thenˆ 2

0

fϕ′ =

ˆ 1

0

xϕ′ − 2ϕ(1) = −
ˆ 1

0

ϕ− ϕ(1).

Aiming for a contradiction suppose that there exists g = D1f ∈ L1
loc(U). Choose

now a sequence of functions (ϕj) so that ϕj ∈ C∞c (U), ϕj(1) = 1, 0 ≤ ϕj ≤ 1 and
ϕj(x)→ 0, when x ∈ (0, 2), x 6= 1. We now have by DCT that

1 = lim
j→∞

ϕj(1) = lim
j→∞

(ˆ 2

0

gϕj −
ˆ 1

0

ϕj

)
= 0,
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which is a contradiction.
If, however, we define

f(x) =

{
x, if 0 < x ≤ 1,
1, if 1 < x < 2,

then we have that the weak derivative D1f exists and

D1f(x) =

{
1, if 0 < x ≤ 1,
0, if 1 < x < 2.

To see this, notice that for all ϕ ∈ C∞c (U) we haveˆ 2

0

f(x)ϕ′(x) dx =

ˆ 1

0

xϕ′(x) dx+

ˆ 2

1

ϕ′(x) dx

= −
ˆ 1

0

ϕ(x) dx+ ϕ(1)− ϕ(1) = −
ˆ 1

0

ϕ(x) dx.

Thus, an angle is fine, but an actual jump is too much for the weak derivative to
exist.

9.3. Definition. Let 1 ≤ p < ∞ and k = 1, 2, . . .. We say that f ∈ W k,p(U)
if f ∈ Lp(U) has weak-derivatives Dαf ∈ Lp(U) for every multi-index α with
|α| ≤ k. We norm this space with the norm

‖f‖Wk,p(U) :=
∑
||Dαf ||Lp(U),

where we agree D0f = f . These are called Sobolev spaces.

9.4. Theorem. W k,p(U) is a Banach space.

Proof. For convenience, let k = 1. Let (fj) be a Cauchy sequence in W 1,p(U). Then
(fj) and (∂ifj), 1 ≤ i ≤ n, are Cauchy sequences in Lp(U), which we know to be a
Banach space. Thus, there exists g, g1, . . . , gn ∈ Lp(U) so that fj → g and ∂ifj → gi,
1 ≤ i ≤ n, in Lp(U). It is now enough to show that the weak derivative ∂ig exists
and ∂ig = gi. Let ϕ ∈ C∞c (U) and sptϕ ⊂ V ⊂⊂ U . Then we haveˆ

V

g∂iϕ =

ˆ
V

(g − fj)∂iϕ+

ˆ
V

fj∂iϕ

=

ˆ
V

(g − fj)∂iϕ−
ˆ
V

(∂ifj)ϕ

=

ˆ
V

(g − fj)∂iϕ−
ˆ
V

(∂ifj − gi)ϕ−
ˆ
V

giϕ.

The claim follows by letting j →∞, using Hölder’s inequality and |V | <∞. �

We end our brief study of Sobolev spaces by illustrating that the fact that
derivatives belong to Lp implies (in some situations) that f ∈ Lq for q > p.

We assume n ≥ 2 in what follows.

9.5. Definition. If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ =
np

n− p
.
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Notice that
1

p∗
=

1

p
− 1

n

and so p∗ > p. Let us see how this exponent comes up naturally. Fix 1 ≤ p < n.
Suppose that there is 1 ≤ q <∞ and a constant C so that

‖ϕ‖q ≤ C‖∇ϕ‖p
for all ϕ ∈ C∞c (Rn). Fix ϕ ∈ C∞c (Rn) so that ϕ 6≡ 0. Define for all λ > 0 the
function ϕλ by setting ϕλ(x) = ϕ(λx). We have(ˆ

|ϕ(λx)|q dx

)1/q

≤ C

(ˆ
|λ∇ϕ(λx)|p dx

)1/p

= Cλ

(ˆ
|∇ϕ(λx)|p dx

)1/p

.

By change of variable this gives

λ−n/q‖ϕ‖q ≤ Cλ1−n/p‖∇ϕ‖p
and so

‖ϕ‖q ≤ Cλ1−n/p+n/q‖∇ϕ‖p.
If 1 − n/p + n/q 6= 0, then λ1−n/p+n/q → 0, when λ → 0 or λ → ∞, and we must
have ϕ ≡ 0 – a contradiction. Thus, if the inequality

‖ϕ‖q ≤ C‖∇ϕ‖p
holds for all ϕ ∈ C∞c (Rn), we must at least have 1− n/p+ n/q = 0 and so

q =
np

n− p
= p∗.

We now prove that this inequality is, indeed, valid. Denote the closure of
C∞c (U) in W k,p(U) by W k,p

0 (U). In general, we have W k,p(U) 6= W k,p
0 (U). How-

ever, in the special U = Rn this is true (which we do not show here).

9.6. Theorem (The Sobolev inequality). Assume 1 ≤ p < n. Then we have

‖f‖p∗ . ‖∇f‖p

for all f ∈ W 1,p(Rn) = W 1,p
0 (Rn).

Proof. We begin with the case p = 1 – notice that 1∗ = n/(n − 1). Assume ϕ ∈
C∞c (Rn). For all 1 ≤ i ≤ n and x ∈ Rn we have

|ϕ(x)| = |ϕ(x1, . . . , xi, . . . , xn)| =
∣∣∣∣ˆ xi

−∞
∂iϕ(x1, . . . , ti, . . . , xn) dti

∣∣∣∣
≤
ˆ ∞
−∞
|∇ϕ(x1, . . . , ti, . . . , xn)| dti.

Thus, there holds

|ϕ(x)|
n
n−1 ≤

n∏
i=1

[ˆ ∞
−∞
|∇ϕ(x1, . . . , ti, . . . , xn) dti

] 1
n−1

.
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Integrating both sides with respect to x1 ∈ (−∞,∞) we get
ˆ ∞
−∞
|ϕ|

n
n−1 dx1 ≤

ˆ ∞
−∞

n∏
i=1

[ˆ ∞
−∞
|∇ϕ| dti

] 1
n−1

dx1

=

[ˆ ∞
−∞
|∇ϕ| dt1

] 1
n−1
ˆ ∞
−∞

n∏
i=2

[ˆ ∞
−∞
|∇ϕ| dti

] 1
n−1

dx1.

Using the generalised Hölder’s inequality (from the exercises) with
∑n

i=2 1/1 =
n− 1 = 1

1/(n−1) we get

ˆ ∞
−∞

n∏
i=2

[ˆ ∞
−∞
|∇ϕ| dti

] 1
n−1

dx1 =

∥∥∥∥∥
n∏
i=2

ˆ ∞
−∞
|∇ϕ| dti

∥∥∥∥∥
1

n−1

L
1

n−1
x1

≤

[
n∏
i=2

∥∥∥∥ˆ ∞
−∞
|∇ϕ| dti

∥∥∥∥
L1
x1

] 1
n−1

=

[
n∏
i=2

ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dx1 dti

] 1
n−1

.

Thus, we have
ˆ ∞
−∞
|ϕ|

n
n−1 dx1 ≤

[ˆ ∞
−∞
|∇ϕ| dt1

] 1
n−1

n∏
i=2

[ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dx1 dti

] 1
n−1

.

We now integrate the obtained inequality over x2 ∈ (−∞,∞) to get
ˆ ∞
−∞

ˆ ∞
−∞
|ϕ|

n
n−1 dx1 dx2 ≤

[ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dx1 dt2

] 1
n−1
ˆ ∞
−∞

n∏
i=1
i 6=2

I
1

n−1

i dx2,

where

I1 =

ˆ ∞
−∞
|∇ϕ| dt1 and Ii =

ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dx1 dti, i = 3, . . . , n.

Applying the generalised Hölder’s inequality as above we getˆ ∞
−∞

ˆ ∞
−∞
|ϕ|

n
n−1 dx1 dx2

≤
[ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dx1 dt2

] 1
n−1
[ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dt1 dx2

] 1
n−1

×
n∏
i=3

[ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞
|∇ϕ| dx1 dx2 dti

] 1
n−1

.

Continuing we eventually get
ˆ
Rn
|ϕ|

n
n−1 ≤

[ˆ
Rn
|∇ϕ|

] n
n−1

.
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But this is the desired result for ϕ ∈ C∞c (Rn) – that is, we have

‖ϕ‖L1∗ (Rn) ≤ ‖∇ϕ‖L1(Rn).

Let then f ∈ W 1,1(Rn) = W 1,1
0 (Rn), and choose ϕj ∈ C∞c (Rn) so that

‖f − ϕj‖W 1,1(Rn) → 0.

By what we have proved we have

‖ϕi − ϕj‖L1∗ (Rn) ≤ ‖∇ϕi −∇ϕj‖L1(Rn).

Thus, we have that (ϕj) is a Cauchy sequence in the space L1∗(Rn), and so f ∈
L1∗(Rn) and ‖f − ϕj‖L1∗ (Rn) → 0. Thus, we get

‖f‖L1∗ (Rn) = lim
j→∞
‖ϕj‖L1∗ (Rn) ≤ lim

j→∞
‖∇ϕj‖L1(Rn) = ‖∇f‖L1(Rn).

Let now 1 < p < n. Assume again ϕ ∈ C∞c (Rn). We apply the p = 1 case to the
W 1,1

0 (Rn) mapping g = |ϕ|γ , where γ > 1 is to be selected. Now ∇g = γ|ϕ|γ−1∇ϕ
and so (ˆ

|ϕ|
γn
n−1

)n−1
n

≤ γ

ˆ
|ϕ|γ−1|∇ϕ| ≤ γ

(ˆ
|ϕ|

(γ−1)p
p−1

) p−1
p

‖∇ϕ‖Lp(Rn).

In the last step we used Hölder’s inequality. Choosing

γ =
p(n− 1)

n− p
> 1

we get
γn

n− 1
= p∗ =

(γ − 1)p

p− 1
.

Therefore, we have

‖ϕ‖Lp∗ (Rn) =

(ˆ
Rn
|ϕ|p∗

)1/p∗

=

(ˆ
Rn
|ϕ|p∗

)n−1
n
− p−1

p

≤ p(n− 1)

n− p
‖∇ϕ‖Lp(Rn),

which is the desired result for smooth, compactly supported functions. The ap-
proximation argument is the same as in the p = 1 case. �

We also now right away get the following version with an open set U ⊂ Rn.

9.7. Theorem. Assume 1 ≤ p < n. Then we have

‖f‖Lp∗ (U) . ‖∇f‖Lp(U)

for all f ∈ W 1,p
0 (U).

Proof. As f ∈ W 1,p
0 (U) there exists ϕj ∈ C∞c (U) so that ‖f − ϕj‖W 1,p(U) → 0. We

can set ϕj = 0 outside U so that ϕj ∈ C∞c (Rn) and apply the previous result to ϕj .
The claim follows with the same Cauchy sequence argument as above. �

Thus, we have W 1,p
0 (U) ⊂ Lp

∗
(U) and W 1,p(Rn) ⊂ Lp

∗
(Rn), even though only

the inclusion to Lp(U) (or Lp(Rn)) was obvious from the definition. For p = n and
p > n we have different type of inclusions. Appropriate inclusions also hold for
W k,p

0 (U) with a general k, of course.
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