Shifts and Singular Integrals

Henri Martikainen
University of Helsinki

September 2019
Dyadic Harmonic Analysis, Martingales, and Paraproducts Summer School, Bazaleti

1 Dyadic analysis and the boundedness of dyadic model operators.
2 Same kind of analysis in the X-valued setting, where $f: \mathbb{R} \rightarrow X$ takes values in a Banach space.
3 Connection to singular integral theory via representation theorems: bounds for dyadic operators imply bounds for singular integrals.
4 Bi-parameter analysis including the boundedness of bi-parameter model operators and singular integrals.

- We will work with functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (one-parameter setup) or with with functions $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ (bi-parameter setup). Everything would also work in \mathbb{R}^{d} or $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$.
- $\mathcal{D}_{0}=\left\{2^{-k}([0,1)+m): k \in \mathbb{Z}, m \in \mathbb{Z}\right\}$ is the standard dyadic grid. For each $\omega \in \Omega$, where $\Omega=\{0,1\}^{\mathbb{Z}}$, we define the lattice

$$
\mathcal{D}_{\omega}=\left\{I+\omega: I \in \mathcal{D}_{0}\right\}
$$

where

$$
I+\omega:=I+\sum_{k: 2^{-k}<\ell(I)} \omega_{k} 2^{-k} .
$$

Here the side length of I is denoted by $\ell(I)$.
■ Usually we work in some fixed $\mathcal{D}=\mathcal{D}_{\omega}$. We can induce randomness to $\omega \mapsto \mathcal{D}_{\omega}$ by equipping Ω with the natural probability product measure \mathbb{P}.

For a fixed $I \in \mathcal{D}$ and a locally integrable f we define as follows.
■ If $k \in \mathbb{Z}, k \geq 0$, then $I^{(k)}$ denotes the unique interval $J \in \mathcal{D}$ for which $I \subset J$ and $\ell(I)=2^{-k} \ell(J)$.

- The dyadic children of I are denoted by

$$
\operatorname{ch}(I)=\left\{I^{\prime} \in \mathcal{D}:\left(I^{\prime}\right)^{(1)}=I\right\}=\left\{I_{-}, I_{+}\right\} .
$$

- An average over I is $\langle f\rangle_{I}=\frac{1}{|I|} \int_{I} f$. We also write

$$
E_{I} f=\langle f\rangle_{I} 1_{I} \text { and } E_{2-k} f=\sum_{I: \ell(I)=2^{-k}} E_{I} f .
$$

- The martingale difference $\Delta_{I} f$ is defined by

$$
\Delta_{l} f=\sum_{l^{\prime} \in \operatorname{ch}(I)} E_{l^{\prime}} f-E_{l} f .
$$

■ For $k \in \mathbb{Z}, k \geq 0$, we define the martingale difference and average blocks

$$
\Delta_{l}^{k} f=\sum_{\substack{J \in \mathcal{D} \\ J(k)=I}} \Delta_{J} f \quad \text { and } \quad E_{l}^{k} f=\sum_{\substack{J \in \mathcal{D} \\ J(k)=1}} E_{J} f .
$$

An integral pairing is $\langle f, g\rangle=\int f g$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be locally integrable and $I \in \mathcal{D}$. We can write the martingale difference on $I=I_{-} \cup I_{+}$via

$$
\begin{aligned}
& \Delta_{I} f:=\sum_{I \in \mathrm{ch}(I)} 1_{I^{\prime}}\langle f\rangle_{I^{\prime}}-1_{I}\langle f\rangle_{I} \\
& =\frac{1_{I_{-}}}{\left|I_{-}\right|} \int_{I_{-}} f+\frac{1_{I_{+}}}{\left|I_{+}\right|} \int_{I_{+}} f-\frac{1_{I}}{|I|} \int_{I} f \\
& =\frac{2 \cdot 1_{I_{-}}}{|I|} \int_{I_{-}} f+\frac{2 \cdot 1_{I_{+}}}{|I|} \int_{I_{+}} f-\frac{\left(1_{I_{-}}+1_{I_{+}}\right)}{|I|}\left(\int_{I_{-}} f+\int_{I_{+}} f\right) \\
& =1_{I_{-}}\left(\frac{1}{|I|} \int_{I_{-}} f-\frac{1}{|I|} \int_{I_{+}} f\right)-1_{I_{+}}\left(\frac{1}{|I|} \int_{I_{-}} f-\frac{1}{|I|} \int_{I_{+}} f\right) \\
& =\left(1_{I_{-}}-1_{I_{+}}\right) \frac{1}{|I|} \int\left(1_{I_{-}}-1_{I_{+}}\right) f=\left\langle f, h_{I}\right\rangle h_{I},
\end{aligned}
$$

where h_{I} is the Haar function on I defined by

$$
h_{l}:=\frac{1}{|/|^{1 / 2}}\left(1_{I_{-}}-1_{I_{+}}\right)
$$

As the following sum is telescoping, we have

$$
\sum_{\substack{I \in \mathcal{D} \\ 2^{-k_{1}}<\ell(I) \leq 2^{-k_{2}}}} \Delta_{I} f=E_{2-k_{1}} f-E_{2-k_{2}} f .
$$

Therefore, we have both pointwise almost everywhere and in $L^{p}(\mathbb{R}), 1<p<\infty$, that

Fundamental decomposition

$$
f=\lim _{\substack{k_{1} \rightarrow \infty \\ k_{2} \rightarrow-\infty}} \sum_{\substack{l \in \mathcal{D} \\ 2^{-k_{1}}<\ell(I) \leq 2^{-k_{2}}}} \Delta_{l} f=: \sum_{l \in \mathcal{D}} \Delta_{l} f=\sum_{l \in \mathcal{D}}\left\langle f, h_{l}\right\rangle h_{l} .
$$

This uses Lebesgue's differentation theorem (to get $\lim _{k_{1} \rightarrow \infty} E_{2^{-k_{1}}} f=f$) and the domination $\left|E_{2^{-k}} f\right| \leq M_{\mathcal{D}} f$ (to get the L^{p} convergence). Here $M_{\mathcal{D}} f=\sup _{I \in \mathcal{D}} 1_{I}\langle | f| \rangle$.

Square Functions

Define the dyadic square function

$$
S_{\mathcal{D}} f:=\left(\sum_{I \in \mathcal{D}}\left|\Delta_{I} f\right|^{2}\right)^{1 / 2}=\left(\sum_{I \in \mathcal{D}}\left|\left\langle f, h_{l}\right\rangle\right|^{2} \frac{1_{I}}{|I|}\right)^{1 / 2}
$$

$A \lesssim B$ means $A \leq C B ; A \sim B$ means $B \lesssim A \lesssim B$ (C constant $)$.

Theorem

We have $\|f\|_{L^{p}} \sim\left\|S_{\mathcal{D}} f\right\|_{L^{p}}, 1<p<\infty$.

Proof.

Enough: $\left\|S_{\mathcal{D}} f\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}$ (by duality). Here $p=2$ follows by orthogonality and then $p \in(1,2)$ via the weak $(1,1)$ endpoint and interpolation. The case $p \in(2, \infty)$ uses Fefferman-Stein $\|g\|_{L^{p}} \lesssim\left\|M_{\mathcal{D}}^{\sharp} g\right\|_{L^{p}}$, where $M_{\mathcal{D}}^{\sharp} g=\sup _{I \in \mathcal{D}} 1_{I}\langle | g-\langle g\rangle_{I}| \rangle_{I}:$

$$
\left\|S_{\mathcal{D}} f\right\|_{L^{p}}=\left\|\left(S_{\mathcal{D}} f\right)^{2}\right\|_{L^{p / 2}}^{1 / 2} \lesssim\left\|M_{\mathcal{D}}^{\sharp}\left(\left(S_{\mathcal{D}} f\right)^{2}\right)\right\|_{L^{p / 2}}^{1 / 2} \lesssim\left\|M_{\mathcal{D}} f^{2}\right\|_{L^{p / 2}}^{1 / 2}
$$

Here the last inequality was a simple pointwise estimate.

Consider a martingale transform (also called a Haar multiplier)

$$
f=\sum_{I \in \mathcal{D}}\left\langle f, h_{I}\right\rangle h_{I} \mapsto \sum_{I \in \mathcal{D}} \lambda_{I}\left\langle f, h_{I}\right\rangle h_{I}
$$

where $\left|\lambda_{I}\right| \leq 1$ for every $I \in \mathcal{D}$.

As we have

$$
\begin{aligned}
\sum_{I \in \mathcal{D}}\left|\lambda_{I}\left\|\left\langle f, h_{I}\right\rangle\right\|\left\langle g, h_{I}\right\rangle\right| & \leq \int \sum_{I \in \mathcal{D}}\left|\left\langle f, h_{I}\right\rangle \|\left\langle g, h_{I}\right\rangle\right| \frac{1_{I}}{|I|} \\
& \leq\left\|S_{\mathcal{D}} f\right\|_{L^{p}}\left\|S_{\mathcal{D}} g\right\|_{L^{p^{\prime}}} \lesssim\|f\|_{L^{p}}\|g\|_{L^{p^{\prime}}}
\end{aligned}
$$

we have that martingale transforms are bounded $L^{p} \rightarrow L^{p}$, $1<p<\infty$.

A dyadic shift is a simple generalisation of a martingale transform. It comes with the associated notion of complexity involving $i, j \in\{0,1,2, \ldots\}$. A martingale transform has $i=j=0$.

Dyadic shifts

A dyadic shift has the form

$$
S_{\mathcal{D}}^{i, j} f=\sum_{K \in \mathcal{D}} \sum_{\substack{I, J \in \mathcal{D} \\ I^{(i)}=J^{(j)}=K}} a_{K I J}\left\langle f, h_{I}\right\rangle h_{J}, \quad\left|a_{K I J}\right| \leq \frac{|I|^{1 / 2}|J|^{1 / 2}}{|K|}
$$

Theorem

We have $\left\|S_{\mathcal{D}}^{i, j} f\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, 1<p<\infty$.
Proof:

$$
\begin{aligned}
& \sum_{K \in \mathcal{D}} \sum_{\substack{I, J \in \mathcal{D} \\
I^{(i)}=J^{(j)}=K}}\left|a_{K I J}\right|\left|\left\langle f, h_{I}\right\rangle\right|\left|\left\langle g, h_{J}\right\rangle\right| \\
& \leq \sum_{K \in \mathcal{D}} \frac{1}{|K|} \sum_{\substack{I, J \in \mathcal{D} \\
I^{(i)}=J^{(j)}=K}} \int_{I}\left|\Delta_{K}^{i} f\right| \int_{J}\left|\Delta_{K}^{j} g\right| \\
& =\int \sum_{K \in \mathcal{D}}\langle | \Delta_{K}^{i} f| \rangle_{K}\langle | \Delta_{K}^{j} g| \rangle_{K} 1_{K} \\
& \leq\left\|\left(\sum_{K \in \mathcal{D}}\langle | \Delta_{K}^{i} f| \rangle_{K}^{2} 1_{K}\right)^{1 / 2}\right\|_{L^{p}}\left\|\left(\sum_{K \in \mathcal{D}}\langle | \Delta_{K}^{j} g| \rangle_{K}^{2} 1_{K}\right)^{1 / 2}\right\|_{L^{p^{\prime}}} .
\end{aligned}
$$

The next step is to use Stein's inequality to remove the averages:

$$
\left\|\left(\sum_{K \in \mathcal{D}}\langle | \Delta_{K}^{i} f| \rangle_{K}^{2} 1_{K}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\left\|\left(\sum_{K \in \mathcal{D}}\left|\Delta_{K}^{i} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

This has an easy proof, but one could also use the somewhat harder Fefferman-Stein inequality

$$
\left\|\left(\sum_{K \in \mathcal{D}}\left[M_{\mathcal{D}} f_{K}\right]^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\left\|\left(\sum_{K \in \mathcal{D}}\left|f_{K}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

In any case, we are done with the boundedness of shifts as given K the intervals P for which $P^{(i)}=K$ are disjoint, and thus

$$
\left\|\left(\sum_{K \in \mathcal{D}}\left|\Delta_{K}^{i} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}=\left\|\left(\sum_{I \in \mathcal{D}}\left|\Delta_{I} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \sim\|f\|_{L^{p}} .
$$

Definition

A Banach space X is said to be a UMD space if

$$
\left\|\sum_{i=1}^{N} \varepsilon_{i} d_{i}\right\|_{L^{p}(\Omega ; X)} \lesssim\left\|\sum_{i=1}^{N} d_{i}\right\|_{L^{p}(\Omega ; X)}
$$

for all X-valued L^{p}-martingale difference sequences $\left(d_{i}\right)_{i=1}^{N}$ (defined on some probability space Ω), and for all signs $\varepsilon_{i} \in\{-1+1\}$.

The spaces $X=\mathbb{R}$ and $X=\mathbb{C}$ are UMD. The UMD property is independent of the choice of the exponent $p \in(1, \infty)$. If X is UMD then so is X^{*} and $L^{p}\left(\mathbb{R}^{d} ; X\right), 1<p<\infty$. This is also automatically a two-sided estimate (apply to $\varepsilon_{i} d_{i}$):

$$
\left\|\sum_{i=1}^{N} \varepsilon_{i} d_{i}\right\|_{L^{p}(\Omega ; X)} \sim\left\|\sum_{i=1}^{N} d_{i}\right\|_{L^{p}(\Omega ; X)}
$$

Remark

We do not want to carefully define what is a martingale difference. What is relevant for us is that for the martingale differences $\Delta_{l} f$, $I \in \mathcal{D}$, where $f: \mathbb{R} \rightarrow X$, we have

$$
\left\|\sum_{I \in \mathcal{D}^{\prime}} \varepsilon_{I} \Delta_{I} f\right\|_{L^{p}(X)} \sim\left\|\sum_{I \in \mathcal{D}^{\prime}} \Delta_{I} f\right\|_{L^{p}(X)^{\prime}}, \quad \varepsilon_{I}= \pm 1
$$

where $\mathcal{D}^{\prime} \subset \mathcal{D}$ and $L^{p}(X):=L^{p}(\mathbb{R} ; X)$.
Notice that $\Delta_{I} f$ has the exact same definition as in the scalar-valued case - the appearing integrals $\int_{1} f \in X$ are interpreted as standard Bochner integrals.

In particular, we have

$$
\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I} \Delta_{I} f\right\|_{L^{p}(X)} \sim\|f\|_{L^{p}(X)}
$$

We say that $\left\{\varepsilon_{k}\right\}_{k}$ is a collection of independent random signs, if there exists a probability space (\mathcal{M}, μ) so that $\varepsilon_{k}: \mathcal{M} \rightarrow\{-1,1\},\left\{\varepsilon_{k}\right\}_{k}$ is independent and

$$
\mu\left(\left\{\varepsilon_{k}=1\right\}\right)=\mu\left(\left\{\varepsilon_{k}=-1\right\}\right)=1 / 2
$$

In X-valued analysis we often average over independent random signs $\left(\varepsilon_{l}\right)$ as in

$$
\mathbb{E}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I} \Delta_{I} f\right\|_{L^{p}(X)} \sim\|f\|_{L^{p}(X)} .
$$

This is the replacement of square function estimates in the scalar-valued setting! Indeed, in the scalar-valued setting

$$
\mathbb{E}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I} \Delta_{I} f\right\|_{L^{p}} \sim\left\|\left(\sum_{I \in \mathcal{D}}\left|\Delta_{I} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

The Kahane-Khintchine inequality says that

$$
\left(\mathbb{E}\left|\sum_{i=1}^{N} \varepsilon_{i} x_{i}\right|_{X}^{q}\right)^{1 / q} \sim_{q}\left(\mathbb{E}\left|\sum_{i=1}^{N} \varepsilon_{i} x_{i}\right|_{X}^{2}\right)^{1 / 2}
$$

for all $1 \leq q<\infty$, Banach spaces X and $x_{i} \in X$.
The previous connection to square functions follows by using Kahane-Khintchine a few times and noticing that in the scalar case

$$
\begin{aligned}
\mathbb{E}\left|\sum_{l} \varepsilon_{l} \Delta_{l} f(x)\right|^{2} & =\sum_{I, J} \mathbb{E}\left(\varepsilon_{l} \varepsilon_{J}\right) \Delta_{l} f(x) \Delta_{J} f(x) \\
& =\sum_{I, J} \delta_{l, J} \Delta_{l} f(x) \Delta_{J} f(x)=\sum_{l}\left|\Delta_{I} f(x)\right|^{2}
\end{aligned}
$$

The Kahane contraction principle says that if $\left(a_{m}\right)_{m=1}^{M}$ is a sequence of scalars and $p \in(0, \infty]$, then

$$
\left(\mathbb{E}\left|\sum_{m=1}^{M} \varepsilon_{m} a_{m} x_{m}\right|_{X}^{p}\right)^{1 / p} \lesssim \max \left|a_{m}\right|\left(\mathbb{E}\left|\sum_{m=1}^{M} \varepsilon_{m} x_{m}\right|_{X}^{p}\right)^{1 / p} .
$$

In the scalar-valued, square function setting, estimates like

$$
\sum_{l \in \mathcal{D}}\left|a_{l}\right|^{2}\left|\Delta_{l} f\right|^{2} \leq \sum_{I \in \mathcal{D}}\left|\Delta_{l} f\right|^{2}, \quad\left|a_{l}\right| \leq 1
$$

are more than obvious. Kahane's result simply says that in random sums we can do similar things.

Suppose $f: \mathbb{R} \rightarrow X$, where X is UMD, and that $\left|\lambda_{l}\right| \leq 1$. Then we have

$$
\begin{aligned}
\left\|\sum_{I \in \mathcal{D}} \lambda_{I}\left\langle f, h_{I}\right\rangle h_{I}\right\|_{L^{p}(X)} & \sim \mathbb{E}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I} \lambda_{I}\left\langle f, h_{I}\right\rangle h_{I}\right\|_{L^{p}(X)} \\
& \sim\left(\mathbb{E}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I} \lambda_{I}\left\langle f, h_{I}\right\rangle h_{I}\right\|_{L^{p}(X)}^{p}\right)^{1 / p} \\
& \lesssim\left(\mathbb{E}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I}\left\langle f, h_{I}\right\rangle h_{I}\right\|_{L^{p}(X)}^{p}\right)^{1 / p} \\
& \sim \mathbb{E}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{I} \Delta_{I} f\right\|_{L^{p}(X)} \sim\|f\|_{L^{p}(X)}
\end{aligned}
$$

where we used the UMD property to introduce and to remove the random signs, Kahane-Khintchine inequality repeatedly and Kahane contraction principle once (to remove λ_{l}).

The $L^{p}(X) \rightarrow L^{p}(X)$ boundedness of Martingale Transforms - that is, complexity zero shifts - was an application of the most fundamental X-valued tools. The case of a general dyadic shift is surprisingly more involved due to the complexity. For this, we need one more tool: the decoupling inequality.

Decoupling notation

For $I \in \mathcal{D}$ let \mathcal{V}_{I} be the probability measure space

$$
\mathcal{V}_{I}=\left(I, \operatorname{Leb}(I),|I|^{-1} \mathrm{~d} x\lfloor I)\right.
$$

Define the product probability space

$$
\mathcal{V}=\mathcal{V}_{\mathcal{D}}=\prod_{l \in \mathcal{D}} \mathcal{V}_{l}
$$

and let ν be the related product measure. If $y \in \mathcal{V}$, we denote the coordinate related to $I \in \mathcal{D}$ by y_{I}.

Let $k \in\{0,1,2, \ldots\}$ and $j \in\{0, \ldots, k\}$. Define the sublattice $\mathcal{D}_{j, k} \subset \mathcal{D}$ by

$$
\mathcal{D}_{j, k}=\left\{Q \in \mathcal{D}: \ell(Q)=2^{m(k+1)+j} \text { for some } m \in \mathbb{Z}\right\}
$$

If $I, I^{\prime} \in \mathcal{D}_{j, k}$ such that $I^{\prime} \subsetneq I$, then $\ell\left(I^{\prime}\right)<2^{-k} \ell(I)$.
Proposition (Decoupling (McConnell, Hytönen, Hytönen-Hänninen))
If X is $U M D$ and $p \in(1, \infty)$ then

$$
\begin{aligned}
\int_{\mathbb{R}} \mid & \left.\sum_{I \in \mathcal{D}_{j, k}} \Delta_{l}^{u} f(x)\right|_{X} ^{p} \mathrm{~d} x \\
& \sim \mathbb{E} \int_{\mathbb{R}} \int_{\mathcal{V}}\left|\sum_{I \in \mathcal{D}_{j, k}} \varepsilon_{l} 1_{l}(x) \Delta_{l}^{u} f\left(y_{l}\right)\right|_{X}^{p} \mathrm{~d} \nu(y) \mathrm{d} x
\end{aligned}
$$

for any $u \in\{0,1, \ldots, k\}$.

Lets fix the dyadic shift

$$
S_{\mathcal{D}}^{i, j} f=\sum_{K \in \mathcal{D}} \sum_{I, J \in \mathcal{D}} a_{K I J}\left\langle f, h_{l}\right\rangle h_{J}, \quad\left|a_{K I J}\right| \leq \frac{|I|^{1 / 2}|J|^{1 / 2}}{|K|} .
$$

We begin with the following consequence of the UMD property and Kahane-Khintchine inequality

$$
\begin{aligned}
\left\|S_{\mathcal{D}}^{i, j} f\right\|_{L^{p}(X)} & \sim \mathbb{E}\left\|\sum_{P \in \mathcal{D}} \varepsilon_{P} \Delta_{P}^{j} S_{\mathcal{D}}^{i, j} f\right\|_{L^{p}(X)} \\
& =\mathbb{E}\left\|\sum_{K \in \mathcal{D}} \epsilon_{K} \sum_{\substack{l, J \in \mathcal{D} \\
I^{(i)}=J^{(j)}=K}} a_{K I J}\left\langle\Delta_{K}^{i} f, h_{l}\right\rangle h_{J}\right\|_{L^{p}(X)} \\
& \sim\left(\mathbb{E}\left\|\sum_{K \in \mathcal{D}} \epsilon_{K} \sum_{\substack{I, J \in \mathcal{D} \\
I^{(i)}=J^{(j)}=K}} a_{K I J}\left\langle\Delta_{K}^{i} f, h_{l}\right\rangle h_{J}\right\|_{L^{p}(X)}^{p}\right)^{1 / p} .
\end{aligned}
$$

Next, we define the kernel

$$
a_{K}(x, y)=|K| \sum_{\substack{l, J \in \mathcal{D} \\ I^{(i)}=J(j)=K}} a_{K I J} h_{l}(y) h_{J}(x),
$$

and notice that $\left|a_{K}(x, y)\right| \leq 1$. We can now write

$$
\sum_{\substack{I, J \in \mathcal{D} \\ I^{(i)}=J^{(j)}=K}} a_{K I J}\left\langle\Delta_{K}^{i} f, h_{I}\right\rangle h_{J}(x)=\frac{1}{|K|} \int_{K} a_{K}(x, y) \Delta_{K}^{i} f(y) \mathrm{d} y .
$$

The decoupling space allows us to further write this in the convenient form:

$$
\frac{1}{|K|} \int_{K} a_{K}(x, y) \Delta_{K}^{i} f(y) \mathrm{d} y=\int_{\mathcal{V}} a_{K}\left(x, y_{K}\right) \Delta_{K}^{i} f\left(y_{K}\right) \mathrm{d} \nu(y) .
$$

The idea is that we can now take the $\int_{\mathcal{V}}$ integral outside the K summation and use Hölder's inequality $\left(\int_{\mathcal{V}}|g|_{X} \leq\left(\int_{\mathcal{V}}|g|_{X}^{p}\right)^{1 / p}\right)$:

$$
\begin{aligned}
& \left(\mathbb{E}\left\|\int_{\mathcal{V}} \sum_{K \in \mathcal{D}} \epsilon_{K} a_{K}\left(x, y_{K}\right) \Delta_{K}^{i} f\left(y_{K}\right) \mathrm{d} \nu(y)\right\|_{L_{x}^{p}(x)}^{p}\right)^{1 / p} \\
& \quad \leq\left(\mathbb{E} \int_{\mathbb{R}} \int_{\mathcal{V}}\left|\sum_{K \in \mathcal{D}} \epsilon_{K} a_{K}\left(x, y_{K}\right) \Delta_{K}^{i} f\left(y_{K}\right)\right|_{X}^{p} \mathrm{~d} \nu(y) \mathrm{d} x\right)^{1 / p} .
\end{aligned}
$$

We are finally in the position to use $\left|a_{K}(x, y)\right| \leq 1$ and the Kahane contraction principle - after this we are left with

$$
\left(\mathbb{E} \int_{\mathbb{R}} \int_{\mathcal{V}}\left|\sum_{K \in \mathcal{D}} \epsilon_{K} 1_{K}(x) \Delta_{K}^{i} f\left(y_{K}\right)\right|_{X}^{p} \mathrm{~d} \nu(y) \mathrm{d} x\right)^{1 / p}
$$

We have arrived at the term from the decoupling inequality justifying its a priori weird form. A technical detail is that we have the full grid \mathcal{D} here - we can simply fix this by writing in the beginning

$$
\mathcal{D}=\bigcup_{v=0}^{i} \mathcal{D}_{v, i}
$$

and doing the previous estimate with each piece $\mathcal{D}_{u, i}$ separately.
With such a fixed v we get

$$
\begin{aligned}
& \left(\mathbb{E} \int_{\mathbb{R}} \int_{\mathcal{V}}\left|\sum_{K \in \mathcal{D}_{v, i}} \epsilon_{K} 1_{K}(x) \Delta_{K}^{i} f\left(y_{K}\right)\right|_{X}^{p} \mathrm{~d} \nu(y) \mathrm{d} x\right)^{1 / p} \\
& \quad \sim\left(\int_{\mathbb{R}}\left|\sum_{K \in \mathcal{D}_{v, i}} \Delta_{K}^{i} f(x)\right|_{X}^{p} \mathrm{~d} x\right)^{1 / p} \lesssim\|f\|_{L^{p}(X)}
\end{aligned}
$$

To see the last inequality you need to again introduce random signs (by UMD) and remove the summing restriction by contraction.

We have proved the following:

Theorem

If X is $U M D$ and $p \in(1, \infty)$ then

$$
\left\|S_{\mathcal{D}}^{i, j} f\right\|_{L^{p}(X)} \lesssim(1+i)\|f\|_{L^{p}(X)}
$$

With duality it is possible to get the constant $1+\min (i, j)$ here. We will soon see that when we apply the theory of shifts to prove results for singular integrals, any polynomial dependence will be OK. Thus, we do not care too much.

Let $K: \mathbb{R} \times \mathbb{R} \backslash \Delta \rightarrow \mathbb{R}$, where $\Delta:=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y\}$, satisfy the size estimate

$$
|K(x, y)| \lesssim \frac{1}{|x-y|}
$$

and, for some $\alpha \in(0,1]$, the Hölder estimates
$\left|K(x, y)-K\left(x^{\prime}, y\right)\right| \lesssim \frac{\left|x-x^{\prime}\right|^{\alpha}}{|x-y|^{1+\alpha}}, \quad$ whenever $\quad\left|x-x^{\prime}\right| \leq|x-y| / 2$
and
$\left\lvert\, K(x, y)-K\left(x, y^{\prime} \left\lvert\, \lesssim \frac{\left|y-y^{\prime}\right|^{\alpha}}{|x-y|^{1+\alpha}}\right.\right.\right.$,
whenever $\left|y-y^{\prime}\right| \leq|x-y| / 2$.
Example: $K(x, y)=1 /(x-y)$. Such a K is called a standard singular integral kernel. We denote the best kernel constant by $\|K\|_{C Z_{\alpha}}$.

A linear operator T - a priori defined on linear combinations of indicators of intervals - is called a singular integral operator (SIO) if there exists a standard kernel K so that, whenever spt $f \cap \operatorname{spt} g=\emptyset$, we have

$$
\langle T f, g\rangle=\int_{\mathbb{R}} \int_{\mathbb{R}} K(x, y) f(y) g(x) \mathrm{d} x \mathrm{~d} y
$$

This kernel structure alone is not enough for boundedness properties. An SIO T is called a Calderón-Zygmund operator (CZO) if for all intervals $l \subset \mathbb{R}$ we have

$$
\int_{I}\left|T 1_{I}\right| \lesssim|I| \quad \text { and } \quad \int_{I}\left|T^{*} 1_{I}\right| \lesssim|I| .
$$

If an SIO T is $L^{p}, p \in(1, \infty)$, bounded, then T is clearly a CZO.

The completely formal object $T 1(x)=\int K(x, y) \mathrm{d} y$ can be defined in the sense that all the following pairings are well-defined:

$$
\left\langle T 1, \varphi_{l}\right\rangle:=\left\langle T 1_{3 l}, \varphi_{l}\right\rangle+\int_{(3 /)^{c}} \int_{l}\left[K(x, y)-K\left(c_{l}, y\right)\right] \varphi_{l}(y) \mathrm{d} y \mathrm{~d} x
$$

for all φ_{I} supported on an interval I with $\int \varphi_{I}=0$ and $\left\|\varphi_{I}\right\|_{L^{\infty}} \leq 1$. By the Hölder estimate of K the second term is a well-defined absolutely convergent integral dominated by $|I|$.

We say $T 1 \in \mathrm{BMO}$ if for all intervals I and $\varphi_{\text {I }}$ like above we have

$$
\left|\left\langle T 1, \varphi_{\prime}\right\rangle\right| \lesssim|I| .
$$

Best constant is denoted $\|T 1\|_{\text {BMO }}$. As observed above this follows from

$$
\left|\left\langle T 1_{3 l}, \varphi_{I}\right\rangle\right| \lesssim|I| .
$$

If

$$
\left|\left\langle T 1_{I}, 1_{\Lambda}\right\rangle\right| \lesssim|I|
$$

for all intervals $I \subset \mathbb{R}, T$ is said to satisfy the weak boundedness property (WBP) - best constant is denoted by $\|T\|_{\text {WBP }}$.

Lemma

An SIO T is a CZO if and only if $T 1 \in \mathrm{BMO}, T^{*} 1 \in \mathrm{BMO}$ and the WBP holds.

Proof: If T is a CZO, then the desired conditions hold trivially (for the BMO recall that it is enough to control $\left.\left\langle T 1_{31}, \varphi_{I}\right\rangle\right)$.
Suppose conversely that $T 1 \in \mathrm{BMO}$ and the WBP holds. Then

$$
\int_{l}\left|T 1_{l}\right|=\sup \left|\int T\left(1_{l}\right) 1_{l} g\right|
$$

where $\|g\|_{L^{\infty}} \leq 1$.Write $1_{I} g=1_{I}\left(g-\langle g\rangle_{I}\right)+1_{l}\langle g\rangle_{I}$, and control the first term by $T 1 \in \mathrm{BMO}$ and the second by the WBP.

Theorem (Hytönen)

Suppose T is a CZO. Then

$$
\begin{aligned}
&\langle T f, g\rangle=C\left(\|K\|_{\mathrm{CZ}}^{\alpha}\right. \\
&\left.+\|T\|_{\mathrm{WBP}}\right) \mathbb{E}_{\omega} \sum_{i, j=0}^{\infty} 2^{-\alpha \max (i, j) / 2}\left\langle S_{\omega}^{i, j} f, g\right\rangle \\
&+C\|T 1\|_{\mathrm{BMO}} \mathbb{E}_{\omega}\left\langle\frac{\pi_{\omega, T 1} f}{C\|T 1\|_{\mathrm{BMO}}}, g\right\rangle \\
&+C\left\|T^{*} 1\right\|_{\mathrm{BMO}} \mathbb{E}_{\omega}\left\langle\frac{\pi_{\omega, T^{*} 1}^{*} f}{C\left\|T^{*} 1\right\|_{\mathrm{BMO}}}, g\right\rangle .
\end{aligned}
$$

Here $C=C(\alpha)<\infty, S_{\omega}^{i, j}$ is a dyadic shift in the grid \mathcal{D}_{ω} and

$$
\pi_{\omega, b} f:=\sum_{l \in \mathcal{D}_{\omega}}\left\langle b, h_{l}\right\rangle\langle f\rangle_{l} h_{l}
$$

is a dyadic paraproduct in the grid \mathcal{D}_{ω}.

If X is a Banach space and T is a CZO, we can hit simple functions $f=\sum_{i=1}^{N} f_{i} x_{i}$, where f_{i} are scalar-valued and $x_{i} \in X$, by $T f=\sum_{i=1}^{N}\left(T f_{i}\right) x_{i}$. These are dense in $L^{p}(X)$.

Corollary

Let T be a CZO, X be a UMD space and $p \in(1, \infty)$. Then we have

$$
\|T f\|_{L^{p}(X)} \lesssim\|f\|_{L^{p}(X)} .
$$

For now, we only know this result for those $\mathrm{SIOs} T$ satisfying $T 1=T^{*} 1=0$ and the WBP, as we have only proved results for the dyadic shifts. Convolution form $\operatorname{SIOs}(K(x, y)=K(x-y))$ satisfy $T 1=T^{*} 1=0$, so this is already a very reasonable class. In particular, the Hilbert transform H for which $K(x, y)=1 /(x-y)$ maps $L^{p}(X)$ to $L^{p}(X)$ if X is UMD. In fact, X is UMD if and only if this happens (Burkholder, Bourgain).

Next, we will still prove the $L^{p}(X)$ boundedness of the dyadic paraproducts. We need some additional important tools for this.

It is trivial that

$$
\left\|\sum_{S \in \mathcal{S}} f_{S}\right\|_{L^{p}(X)}=\left(\sum_{S \in \mathcal{S}}\left\|f_{S}\right\|_{L^{p}(X)}^{p}\right)^{1 / p}
$$

if $\mathcal{S} \subset \mathcal{D}$ is a collection of disjoint cubes and spt $f_{S} \subset S$.
This holds as a \sim if \mathcal{S} is sparse and the functions f_{S} satisfy some additional assumptions. The collection \mathcal{S} is sparse if for all $S \in \mathcal{S}$ there is $E_{S} \subset S$ so that the sets E_{S} are mutually disjoint and $\left|E_{S}\right| \gtrsim|S|$.

Lemma

Let X be a Banach space and $p \in(1, \infty)$. Let $\mathcal{S} \subset \mathcal{D}$ be a sparse collection of dyadic cubes, and assume that for each $S \in \mathcal{S}$ we have a function f_{S} that satisfies:

- spt $f_{S} \subset S$;
- $\int f_{S}=0$;
- f_{S} is constant on the maximal $S^{\prime} \in \mathcal{S}$ satisfying $S^{\prime} \subsetneq S$ (the collection of such S^{\prime} is denoted by $\mathrm{ch}_{\mathcal{S}}(S)$).
Then we have

$$
\left\|\sum_{S \in \mathcal{S}} f_{S}\right\|_{L^{p}(X)} \sim\left(\sum_{S \in \mathcal{S}}\left\|f_{S}\right\|_{L^{p}(X)}^{p}\right)^{1 / p}
$$

Define the scalars $a_{l}=\left\langle T 1, h_{l}\right\rangle / C\|T 1\|_{\mathrm{BMO}}$, where T is a CZO. Define the function $b=\sum_{l} a_{l} h_{l}$. Then it is easy to see that $b \in \mathrm{BMO}_{1}$ in the usual sense, and so by square function estimates and John-Nirenberg inequality we have for $p \in(1, \infty)$ that

$$
\begin{aligned}
& \sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|\left(\sum_{I \subset I_{0}}\left|a_{I}\right|^{2} \frac{1 I}{|I|}\right)^{1 / 2}\right\|_{L^{p}} \\
& =\sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|\left(\sum_{I \subset I_{0}}\left|\left\langle b, h_{I}\right\rangle\right|^{2} \frac{1_{I}}{|I|}\right)^{1 / 2}\right\|_{L^{p}} \\
& \sim \sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|\sum_{I \subset I_{0}}\left\langle b, h_{I}\right\rangle h_{I}\right\|_{L^{p}} \\
& =\sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|1_{I_{0}}\left(b-\langle b\rangle_{I_{0}}\right)\right\|_{L^{p}} \sim \sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|}\left\|1_{I_{0}}\left(b-\langle b\rangle I_{I_{0}}\right)\right\|_{L^{1}}<\infty .
\end{aligned}
$$

Thus

$$
\sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|\left(\sum_{I \subset I_{0}}\left|a_{I}\right|^{2} \frac{1_{I}}{|I|}\right)^{1 / 2}\right\|_{L^{p}} \lesssim 1
$$

Fix a function $f: \mathbb{R} \rightarrow X$. Given an intercal $I_{0} \in \mathcal{D}$ let $\operatorname{Stop}\left(I_{0}\right)$ denote the maximal $I \subset I_{0}$ such that $\left.\left.\left.\langle | f\right|_{X}\right\rangle_{I}>\left.2\langle | f\right|_{X}\right\rangle_{I_{0}}$. With $I_{0} \in \mathcal{D}$ fixed we define $\mathcal{S}_{0}\left(I_{0}\right)=\left\{I_{0}\right\}$ and

$$
\mathcal{S}_{j+1}\left(I_{0}\right)=\bigcup_{I \in \mathcal{S}_{j}\left(I_{0}\right)} \operatorname{Stop}(I), \quad j \geq 0
$$

We define the sparse collection of stopping intervals

$$
\mathcal{S}=\mathcal{S}\left(I_{0}\right)=\bigcup_{j=0}^{\infty} \mathcal{S}_{j}\left(I_{0}\right)
$$

for each $S \in \mathcal{S}$ we set

$$
E_{S}=S \backslash \bigcup_{S^{\prime} \in \operatorname{Stop}(S)} S^{\prime}
$$

and for each $I \subset I_{0}$ we denote by $\pi I=\pi_{\mathcal{S}} I$ the smallest $S \in \mathcal{S}$ such that $I \subset S$. Notice also $c h_{\mathcal{S}}(S)=\operatorname{Stop}(S)$.

Fix a UMD space $X, p \in(1, \infty)$, a function $f: \mathbb{R} \rightarrow X$ and a dyadic paraproduct

$$
\pi_{\mathcal{D}} f=\sum_{I \in \mathcal{D}} a_{l}\langle f\rangle_{I} h_{l}, \quad \sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|\left(\sum_{I \subset I_{0}}\left|a_{l}\right|^{2} \frac{1_{l}}{|I|}\right)^{1 / 2}\right\|_{L^{p}} \leq 1 .
$$

Fix an arbitrary $I_{0} \in \mathcal{D}$ and notice that it is enough to bound

$$
\sum_{I \subset I_{0}} a_{I}\langle f\rangle_{I} h_{I}=\sum_{S \in \mathcal{S}} \sum_{\pi I=S} a_{l}\langle f\rangle_{I} h_{l}
$$

By Pythagoras' we have

$$
\left\|\sum_{I \subset I_{0}} a_{I}\langle f\rangle_{I} h_{I}\right\|_{L^{p}(X)} \sim\left(\sum_{S \in \mathcal{S}}\left\|\sum_{\pi I=S} a_{I}\langle f\rangle_{I} h_{I}\right\|_{L^{p}(X)}^{p}\right)^{1 / p}
$$

Given $S \in \mathcal{S}$ we can now replace f with

$$
f_{S}=f 1_{E(S)}+\sum_{S^{\prime} \in \operatorname{Stop}(S)}\langle f\rangle_{S^{\prime}} 1_{S^{\prime}}
$$

as $\langle f\rangle_{I}=\left\langle f_{S}\right\rangle_{I}$ if $\pi I=S$. Key property: $\left.\left.\left\|f_{S}\right\|_{L^{\infty}(X)} \lesssim\langle | f\right|_{X}\right\rangle_{S}$.
By UMD we have

$$
\left\|\sum_{\pi I=S} a_{l}\left\langle f_{S}\right\rangle_{I} h_{l}\right\|_{L^{p}(X)} \sim \mathbb{E}\left\|\sum_{\pi I=S} \epsilon_{l} a_{l}\left\langle f_{S}\right\rangle_{I} \frac{1_{I}}{|I|^{1 / 2}}\right\|_{L^{p}(X)} .
$$

By UMD-valued Stein's inequality (by Bourgain) we can remove the averages and have

$$
\mathbb{E}\left\|\sum_{\pi I=S} \epsilon_{l} a_{l}\left\langle f_{S}\right\rangle, \frac{1_{I}}{|I|^{1 / 2}}\right\|_{L^{p}(X)} \lesssim \mathbb{E}\left\|\sum_{\pi I=S} \epsilon_{l} a_{l} f_{S} \frac{1_{I}}{|I|^{1 / 2}}\right\|_{L^{p}(X)} .
$$

Next, we have

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{\pi I=S} \epsilon_{l} a_{l} f_{S} \frac{1_{l}}{|I|^{1 / 2}}\right\|_{L^{p}(X)} & \leq\left\|f_{S}\right\|_{L^{\infty}(X)} \mathbb{E}\left\|\sum_{I \subset S} \epsilon_{l} a_{l} \frac{1_{I}}{|I|^{1 / 2}}\right\|_{L^{p}} \\
& \sim\left\|f_{S}\right\|_{L^{\infty}(X)}\left\|\left(\sum_{I \subset S}\left|a_{l}\right|^{2} \frac{1_{l}}{|I|}\right)^{1 / 2}\right\|_{L^{p}} .
\end{aligned}
$$

Recalling

$$
\left.\left.\left\|f_{S}\right\|_{L^{\infty}(X)} \lesssim\langle | f\right|_{X}\right\rangle_{S}
$$

and

$$
\left\|\left(\sum_{I \subset S}\left|a_{I}\right|^{2} \frac{1_{I}}{|I|}\right)^{1 / 2}\right\|_{L^{p}} \leq|S|^{1 / p}
$$

we have

$$
\sum_{S \in \mathcal{S}}\left\|\sum_{\pi I=S} a_{l}\langle f\rangle_{I} h_{l}\right\|_{L^{p}(X)}^{p} \lesssim \sum_{S \in \mathcal{S}}\langle | f|x\rangle_{S}^{p}|S| \lesssim\|f\|_{L^{p}(X)}^{p}
$$

The last estimate is a simple consequence of the sparseness of \mathcal{S}. We are done with the $L^{p}(X)$ boundedness of paraproducts.

Classical one-parameter kernels are "singular" (involve "division by zero") exactly when $x=y$. In contrast, the multi-parameter theory is concerned with kernels whose singularity is spread over the union of all hyperplanes of the form $x_{i}=y_{i}$, where $x, y \in \mathbb{R}^{d}$ are written as

$$
x=\left(x_{i}\right)_{i=1}^{t} \in \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{t}}
$$

for a fixed partition $d=d_{1}+\ldots+d_{t}$. The bi-parameter case $d=d_{1}+d_{2}$ is already representative of many of the challenges arising in this context. The prototype example is

$$
1 /\left[\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)\right],
$$

the product of Hilbert kernels in both coordinate directions of \mathbb{R}^{2}, but general two-parameter kernels are neither assumed to be of the product nor of the convolution form.

We work in $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$, fix two dyadic grids \mathcal{D}_{k} in $\mathbb{R}, k=1,2$, and write $\mathcal{D}=\mathcal{D}_{1} \times \mathcal{D}_{2}$ for the related dyadic rectangles. If $I=I_{1} \times I_{2} \in \mathcal{D}$ and $\mathbf{i}=\left(i_{1}, i_{2}\right)$, then $I^{(\mathrm{i})}:=I_{1}^{\left(i_{1}\right)} \times I_{2}^{\left(i_{2}\right)}$. Moreover, we define $h_{l}:=h_{l_{1}} \otimes h_{l_{2}}$.

A bi-parameter shift has the form

$$
S_{\mathcal{D}}^{\mathrm{i}, \mathrm{j}} f=\sum_{K \in \mathcal{D}} \sum_{\substack{\left.I, J \in \mathcal{D} \\ I(\mathrm{i})=J^{\mathrm{j}}\right)=K}} a_{K I J}\left\langle f, h_{l}\right\rangle h_{J},
$$

where f is a function defined in \mathbb{R}^{2} and

$$
\left|a_{K I J}\right| \leq \frac{|I|^{1 / 2}|J|^{1 / 2}}{|K|}=\frac{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}}{\left|K_{1}\right|} \frac{\left|I_{2}\right|^{1 / 2}\left|J_{2}\right|^{1 / 2}}{\left|K_{2}\right|}
$$

We can write a bi-parameter shift

$$
S_{\mathcal{D}}^{\mathrm{i}, \mathrm{j}} f=\sum_{K \in \mathcal{D}} \sum_{\substack{I, J \in \mathcal{D} \\ I^{(\mathrm{i})}=J^{(\mathrm{j})}=K}} a_{K I J}\left\langle f, h_{I}\right\rangle h_{J},
$$

in the form

$$
\sum_{K_{1} \in \mathcal{D}_{1}} \sum_{\substack{I_{1}, J_{1} \in \mathcal{D}_{1} \\ l_{1}^{\left(i_{1}\right)}=J_{1}^{\left(j_{1}\right)}=K_{1}}} S_{K_{1} I_{1} J_{1}}^{i_{2}, j_{2}}\left\langle f, h_{I_{1}}\right\rangle h_{J_{1}},
$$

where $S_{K_{1} l_{1} J_{1}}^{i_{2}, j_{2}}=S_{\mathcal{D}_{2}, K_{1} l_{1} J_{1}}^{i_{2}, j_{2}}$ is a one-parameter dyadic shift in \mathbb{R} defined by

$$
S_{K_{1} J_{1} J_{1}}^{i_{2}, j_{2}} g=\sum_{K_{2} \in \mathcal{D}_{2}} \sum_{\substack{I_{2}, J_{2} \in \mathcal{D}_{2} \\ I_{2}^{\left(i_{2}\right)}=J_{2}^{\left(i_{2}\right)}=K_{2}}} a_{K I J}\left\langle g, h_{l_{2}}\right\rangle h_{J_{2}} .
$$

In this sense the bi-parameter shift $S_{\mathcal{D}}^{\mathrm{i}, \mathrm{j}}$ is a dyadic shift in \mathbb{R} of complexity (i_{1}, j_{1}) but with operator coefficients $S_{K_{1} 1_{1} J_{1}}^{i_{2}, j_{2}}$.

This leads us to study a general one-parameter operator-valued dyadic shift

$$
S_{\mathcal{D}}^{i, j} f=\sum_{K \in \mathcal{D}} \sum_{\substack{I, J \in \mathcal{D} \\ I^{(i)}=J^{(j)}=K}} b_{K I J}\left\langle f, h_{I}\right\rangle h_{J},
$$

where \mathcal{D} is again just a dyadic grid in \mathbb{R} (n ot the collection of dyadic rectangles in \mathbb{R}^{2} like just above), $b_{K I J} \in \mathcal{L}(X, Y)$ are bounded linear operators between two UMD spaces X and Y and $f: \mathbb{R} \rightarrow X$.

Under which conditions on the operators $b_{K I J}$ is the operator-valued shift $S_{\mathcal{D}}^{i, j}$ bounded $L^{p}(X) \rightarrow L^{p}(Y)$?

The proof of the UMD-valued boundedness of the usual scalar-valued shifts works also here. Following the proof we still reduce to bounding

$$
\left(\mathbb{E} \int_{\mathbb{R}} \int_{\mathcal{V}}\left|\sum_{K \in \mathcal{D}_{v, i}} \epsilon_{K} b_{K}\left(x, y_{K}\right) \Delta_{K}^{i} f\left(y_{K}\right)\right|_{Y}^{p} \mathrm{~d} \nu(y) \mathrm{d} x\right)^{1 / p}
$$

where this time the kernels

$$
b_{K}(x, y):=|K| \sum_{\substack{l, J \in \mathcal{D} \\ l^{(i)}=J^{(j)}=K}} b_{K I J} h_{l}(y) h_{J}(x),
$$

are not scalar-valued and bounded (so that we could use Kahane's contraction principle), but rather take values in $\mathcal{L}(X, Y)$.

Notice that with a fixed K and x, y, we have with some unique I and J (depending on x, y) that

$$
b_{K}\left(x, y_{K}\right)= \pm \frac{|K|}{|I|^{1 / 2}|J|^{1 / 2}} b_{K I J}
$$

To end the proof in exactly the same way as in the scalar-valued case, we simply need to assume that the family of normalised operators

$$
\frac{|K|}{|I|^{1 / 2}|J|^{1 / 2}} b_{K I J}
$$

can be removed as if the Kahane's contraction principle would hold for them. This is called \mathcal{R}-boundedness - a notion which is more demanding than assuming that this normalised family of operators is uniformly bounded.

Definition

If X and Y are Banach spaces and $\mathcal{T} \subset \mathcal{L}(X, Y)$, we say that \mathcal{T} is \mathcal{R}-bounded if there exists a constant C such that for all integers $K \geq 1$, all $T_{k} \in \mathcal{T}$ and for all $x_{k} \in X$, the inequality

$$
\mathbb{E}\left|\sum_{k=1}^{K} \varepsilon_{k} T_{k} x_{k}\right|_{Y} \leq C \mathbb{E}\left|\sum_{k=1}^{K} \varepsilon_{k} x_{k}\right|_{X}
$$

holds. The smallest constant C is denoted by $\mathcal{R}(\mathcal{T})$.
Recall that by Kahane-Khintchine inequality we can use whatever exponent in the random sums.

Theorem (Boundedness of OP-valued shifts)

Let X and Y be UMD spaces. The one-parameter operator-valued shift

$$
S_{\mathcal{D}}^{i, j} f=\sum_{K \in \mathcal{D}} \sum_{\substack{I, J \in \mathcal{D} \\ I^{(i)}=J^{(j)}=K}} b_{K I J}\left\langle f, h_{I}\right\rangle h_{J}
$$

is bounded $L^{p}(X) \rightarrow L^{p}(Y), p \in(1, \infty)$, if the family of operators

$$
\mathcal{C}\left(S_{\mathcal{D}}^{i, j}\right):=\left\{\frac{|K|}{|I|^{1 / 2}|J|^{1 / 2}} b_{K I J} \in \mathcal{L}(X, Y): K=I^{(i)}=J^{(j)}\right\}
$$

is \mathcal{R}-bounded. In fact, we have

$$
\left\|S_{\mathcal{D}}^{i, j} f\right\|_{L^{p}(Y)} \lesssim \mathcal{R}\left(\mathcal{C}\left(S_{\mathcal{D}}^{i, j}\right)\right)(1+\min (i, j))\|f\|_{L^{p}(X)}
$$

We now return to our bi-parameter shift, and recall that for a certain one-parameter dyadic shift $S_{K_{1}}^{i_{1}, j_{1} J_{1}}$, we could write

$$
\begin{aligned}
& S_{\mathcal{D}^{i}, j}^{i j}=\sum_{K_{1} \in \mathcal{D}_{1}} \sum_{h_{1}, J_{1} \in \mathcal{D}_{1}} S_{K_{1}, 1_{1} J_{1}}^{i, j_{2}}\left\langle f, h_{1_{1}}\right\rangle h_{J_{1}} . \\
& l_{1}^{\left(i_{1}\right)}=J_{1}^{\left(\mathrm{I}_{1}\right)}=K_{1}
\end{aligned}
$$

We have been writing $L^{p}(X)$ for $L^{p}(\mathbb{R} ; X)$ all the time - but now in the bi-parameter setting this gets confusing as we need to consider $L^{P}\left(\mathbb{R}^{2} ; X\right)$ etc.

Moreover, if here $f: \mathbb{R}^{2} \rightarrow X$ belongs to $L^{P}\left(\mathbb{R}^{2} ; X\right)$ we should think (for the OP-valued theory) of this space in the form $L^{P}\left(\mathbb{R} ; L^{P}(\mathbb{R} ; X)\right)$. For this reason, we might as well consider the more general mixed-norm spaces $L^{p_{1}}\left(\mathbb{R} ; L^{p_{2}}(\mathbb{R} ; X)\right)=: L^{p_{1}} L^{p_{2}}(X)$. We mean specifically $L_{x_{1}}^{p_{1}} L_{x_{2}}^{D_{2}}$ in what follows.

Suppose X is UMD, $f: \mathbb{R}^{2} \rightarrow X$ and fix $p_{1}, p_{2} \in(1, \infty)$. By the OP-valued theory of shifts the bi-parameter shift satisfies

$$
\left\|S_{\mathcal{D}}^{i, j} f\right\|_{L^{p_{1} L^{p_{2}}}(X)} \lesssim C\left(1+\min \left(i_{1}, j_{1}\right)\right)\|f\|_{L^{p_{1}} L^{p_{2}}(X)}
$$

where

$$
C:=\mathcal{R}\left(\left\{\frac{\left|K_{1}\right|}{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}} S_{K_{1} J_{1} J_{1}}^{i_{2}, j_{2}} \in \mathcal{L}\left(L^{p_{2}}(X)\right): K_{1}=l_{1}^{\left(i_{1}\right)}=J_{1}^{\left(j_{1}\right)}\right\}\right)
$$

For each fixed K_{1}, I_{1}, J_{1}, the scalar-coefficients, indexed by K_{2}, I_{2}, J_{2}, of the shift

$$
\frac{\left|K_{1}\right|}{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}} S_{K_{1} I_{1} J_{1}}^{i_{2}, j_{2}}
$$

satisfy precisely the usual normalisation of a one-parameter shift

$$
\left|\frac{\left|K_{1}\right|}{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}} a_{K I J}\right| \leq \frac{\left|I_{2}\right|^{1 / 2}\left|J_{2}\right|^{1 / 2}}{\left|K_{2}\right|}
$$

We have reduced to a question concerning a family of one-parameter shifts: if for each k we are given a one-parameter shift $S_{k}^{i, j}$, is the family $\left(S_{k}^{i, j}\right) \mathcal{R}$-bounded in $L^{p}(X)$ for every $p \in(1, \infty)$? This actually requires more than just X being UMD.

Definition

A Banach space X has Pisier's property (α) if for all N, all $\alpha_{i, j}$ in the complex unit disc and all $x_{i, j} \in X, 1 \leq i, j \leq N$, there holds

$$
\left.\left.\mathbb{E} \mathbb{E}^{\prime}\left|\sum_{1 \leq i, j \leq N} \epsilon_{i} \epsilon_{j}^{\prime} \alpha_{i, j} x_{i, j}\right|_{X} \lesssim \mathbb{E} \mathbb{E}^{\prime}\right|_{1 \leq i, j \leq N} \epsilon_{i} \epsilon_{j}^{\prime} x_{i, j}\right|_{X}
$$

Here $\left(\epsilon_{i}\right)$ and $\left(\epsilon_{j}^{\prime}\right)$ are sequences of independent random signs.
By Kahane-Khintchine we can use whatever exponent here. The scalars have Pisier's (α), and if X has Pisier's (α) so does $L^{p}(X)$.

\mathcal{R}-boundedness of one-parameter shifts

Pisier's property (α) arises naturally in multi-parameter X-valued analysis, together with the already familiar UMD condition. One reason is that the \mathcal{R}-boundedness of one-parameter shifts, or the boundedness of bi-parameter shifts, requires this.

Theorem

Let X be a UMD space satisfying Pisier's property (α). Suppose that we are given a family $\left\{S_{k}^{i, j}: k \in \mathcal{K}\right\}$ of dyadic one-parameter shifts of fixed complexity (i, j). Then for all $p \in(1, \infty)$ we have

$$
\mathcal{R}\left(\left\{S_{k}^{i, j} \in \mathcal{L}\left(L^{p}(X)\right): k \in \mathcal{K}\right\}\right) \lesssim 1+\min (i, j) .
$$

Corollary

Let X be a UMD space satisfying Pisier's property (α) and $p_{1}, p_{2} \in(1, \infty)$. Then a bi-parameter shift $S_{\mathcal{D}}^{\mathrm{i}, \mathrm{j}}$ satisfies

$$
\left\|S_{\mathcal{D}}^{\mathrm{i}, \mathrm{j}} f\right\|_{L^{p_{1} L^{p_{2}}}(X)} \lesssim\left(1+\min \left(i_{1}, j_{1}\right)\right)\left(1+\min \left(i_{2}, j_{2}\right)\right)\|f\|_{L^{p_{1}} L^{p_{2}}(X)} .
$$

We give the proof in the martingale transform - i.e., zero-complexity case. Suppose $f_{k} \in L^{P}(X)$, where X is UMD with Pisier's (α), and that $\left|\lambda_{l, k}\right| \leq 1$. Then we have

$$
\begin{aligned}
\mathbb{E} \| \sum_{k} \varepsilon_{k} & \sum_{l \in \mathcal{D}} \lambda_{I, k}\left\langle f_{k}, h_{I}\right\rangle h_{l} \|_{L^{p}(X)} \\
& =\mathbb{E}\left\|\sum_{I \in \mathcal{D}} \Delta_{I}\left(\sum_{k} \varepsilon_{k} \lambda_{I, k} f_{k}\right)\right\|_{L^{p}(X)} \\
& \sim \mathbb{E E}^{\prime}\left\|\sum_{I \in \mathcal{D}} \epsilon_{l}^{\prime} \sum_{k} \varepsilon_{k} \lambda_{I, k}\left\langle f_{k}, h_{l}\right\rangle h_{l}\right\|_{L^{p}(X)} \\
& \lesssim \mathbb{E} \mathbb{E}^{\prime}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{l}^{\prime} \sum_{k} \varepsilon_{k}\left\langle f_{k}, h_{l}\right\rangle h_{l}\right\|_{L^{p}(X)} \\
& =\mathbb{E} \mathbb{E}^{\prime}\left\|\sum_{I \in \mathcal{D}} \varepsilon_{l}^{\prime} \Delta_{I}\left(\sum_{k} \varepsilon_{k} f_{k}\right)\right\|_{L^{p}(X)} \sim \mathbb{E}\left\|\sum_{k} \varepsilon_{k} f_{k}\right\|_{L^{p}(X)}
\end{aligned}
$$

The shift case is again more difficult and needs to go through the decoupling based proof - but this is how Pisier's (α) appears.

We model a tensor-product of two SIOs $T_{1} \otimes T_{2}$, which acts on a tensor-product function $f_{1} \otimes f_{2}$ via the formula

$$
\left(T_{1} \otimes T_{2}\right)\left(f_{1} \otimes f_{2}\right)(x)=T_{1} f_{1}\left(x_{1}\right) T_{2} f_{2}\left(x_{2}\right), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Notice that the relation

$$
\left\langle\left(T_{1} \otimes T_{2}\right)\left(f_{1} \otimes f_{2}\right), g_{1} \otimes g_{2}\right\rangle=\left\langle T_{1} f_{1}, g_{1}\right\rangle\left\langle T_{2} f_{2}, g_{2}\right\rangle
$$

implies

- The full kernel representation

$$
\begin{aligned}
& \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} K_{1}\left(x_{1}, y_{1}\right) K_{2}\left(x_{2}, y_{2}\right)\left(f_{1} \otimes f_{2}\right)\left(y_{1}, y_{2}\right)\left(g_{1} \otimes g_{2}\right)\left(x_{1}, x_{2}\right) \mathrm{d} y \mathrm{~d} x \\
& \text { if spt } f_{1} \cap \text { spt } g_{1}=\emptyset \text { and spt } f_{2} \cap \text { spt } g_{2}=\emptyset ;
\end{aligned}
$$

Bi-Parameter SIOs

- The partial kernel representation

$$
\iint_{\mathbb{R} \times \mathbb{R}}\left\langle T_{2} f_{2}, g_{2}\right\rangle K_{1}\left(x_{1}, y_{1}\right) f_{1}\left(y_{1}\right) g_{1}\left(x_{1}\right) \mathrm{d} y_{1} \mathrm{~d} x_{1}
$$

if spt $f_{1} \cap$ spt $g_{1}=\emptyset$;

- The partial kernel representation

$$
\iint_{\mathbb{R} \times \mathbb{R}}\left\langle T_{1} f_{1}, g_{1}\right\rangle K_{2}\left(x_{2}, y_{2}\right) f_{2}\left(y_{2}\right) g_{2}\left(x_{2}\right) \mathrm{d} y_{2} \mathrm{~d} x_{2}
$$

if spt $f_{2} \cap$ spt $g_{2}=\emptyset$.

The full kernel $K(x, y)=K_{1}\left(x_{1}, y_{1}\right) K_{2}\left(x_{2}, y_{2}\right)$ satisfies many natural estimates, like

$$
|K(x, y)| \lesssim \frac{1}{\left|x_{1}-y_{1}\right|} \frac{1}{\left|x_{2}-y_{2}\right|}
$$

and

$$
\begin{aligned}
\mid K(x, y) & -K\left(x,\left(y_{1}, y_{2}^{\prime}\right)\right)-K\left(x,\left(y_{1}^{\prime}, y_{2}\right)\right)+K\left(x, y^{\prime}\right) \mid \\
& \lesssim \frac{\left|y_{1}-y_{1}^{\prime}\right|^{\alpha}}{\left|x_{1}-y_{1}\right|^{1+\alpha}} \frac{\left|y_{2}-y_{2}^{\prime}\right|^{\alpha}}{\left|x_{2}-y_{2}\right|^{1+\alpha}}
\end{aligned}
$$

whenever $\left|y_{1}-y_{1}^{\prime}\right| \leq\left|x_{1}-y_{1}\right| / 2$ and $\left|y_{2}-y_{2}^{\prime}\right| \leq\left|x_{2}-y_{2}\right| / 2$.

The partial kernel

$$
K_{f_{2}, g_{2}}\left(x_{1}, y_{1}\right):=\left\langle T_{2} f_{2}, g_{2}\right\rangle K_{1}\left(x_{1}, y_{1}\right)
$$

satisfies the usual one-parameter kernel estimates with the constant $C\left(f_{2}, g_{2}\right)=\left\|K_{1}\right\| \mathrm{cz}_{\alpha}\left|\left\langle T_{2} f_{2}, g_{2}\right\rangle\right|$.

If T_{2} is a CZO, then we have

$$
C\left(1_{l}, g_{l}\right)+C\left(g_{l}, 1_{l}\right) \lesssim \int_{I}\left|T_{2} 1_{I}\right|+\int_{I}\left|T_{2}^{*} 1_{l}\right| \lesssim|I|
$$

for all intervals I and functions $g_{\text {I }}$ supported on I satisfying $\left\|g_{\|}\right\|_{L^{\infty}} \leq 1$

Partial kernels $K_{f_{1}, g_{1}}\left(x_{2}, y_{2}\right)$ behave analogously if T_{1} is a CZO.

Bi-Parameter SIOs

However, tensor-products $T_{1} \otimes T_{2}$ are not particularly interesting. Indeed, we can write

$$
\left(T_{1} \otimes T_{2}\right) f=T_{1}^{1} T_{2}^{2} f
$$

where e.g. $T_{1}^{1} f(x):=T_{1}\left(f\left(\cdot, x_{2}\right)\right)\left(x_{1}\right)$, and then Fubini shows

$$
\left\|\left(T_{1} \otimes T_{2}\right) f\right\|_{L^{p}} \leq\left\|T_{1}\right\|_{L^{p} \rightarrow L^{p}}\left\|T_{2}\right\|_{L^{p} \rightarrow L^{p}}\|f\|_{L^{p}}
$$

Definition

A linear operator acting on suitable functions defined in \mathbb{R}^{2} is a bi-parameter SIO, if it has full and partial kernel representations that satisfy the estimates a tensor product model does.

Bi-Parameter SIOs

This means that we require that the pairing

$$
\left\langle T\left(f_{1} \otimes f_{2}\right), g_{1} \otimes g_{2}\right\rangle
$$

has, under the natural support conditions, the full kernel representation

$$
\iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} K(x, y)\left(f_{1} \otimes f_{2}\right)\left(y_{1}, y_{2}\right)\left(g_{1} \otimes g_{2}\right)\left(x_{1}, x_{2}\right) \mathrm{d} y \mathrm{~d} x
$$

for some K satisfying the various product estimates from above, and partial kernel representations like

$$
\iint_{\mathbb{R} \times \mathbb{R}} K_{f_{2}, g_{2}}\left(x_{1}, y_{1}\right) f_{1}\left(y_{1}\right) g_{1}\left(x_{1}\right) \mathrm{d} y_{1} \mathrm{~d} x_{1}
$$

where the kernel satisfies the 1-parameter kernel bounds with a constant $C\left(f_{2}, g_{2}\right)$ satisfying

$$
C\left(1_{l}, g_{l}\right)+C\left(g_{l}, 1_{l}\right) \lesssim|I|
$$

for all intervals I and functions $g_{\text {I }}$ supported on I satisfying $\left\|g_{l}\right\|_{L^{\infty}} \leq 1$.

So what are the conditions we should impose on 2-parameter SIOs to make them bounded (in the 1-parameter setting we demanded WBP and $T 1, T^{*} 1 \in \mathrm{BMO}$.)

Recall that for 1-parameter T the BMO condition we really used was that for all $p \in(1, \infty)$ we have

$$
\sup _{I_{0} \in \mathcal{D}} \frac{1}{\left|I_{0}\right|^{1 / p}}\left\|\left(\sum_{I \subset I_{0}}\left|a_{l}\right|^{2} \frac{1_{l}}{|I|}\right)^{1 / 2}\right\|_{L^{p}}<\infty, \quad a_{l}=\left\langle T 1, h_{l}\right\rangle
$$

For a 2-parameter SIO the analog of ' $T 1 \in \mathrm{BMO}^{\prime}$ will be that uniformly for all dyadic grids $\mathcal{D}^{1}, \mathcal{D}^{2}$ we have

$$
\sup _{\Omega} \frac{1}{|\Omega|^{1 / p}}\left\|\left(\sum_{\substack{I \in \mathcal{D}^{1} \times \mathcal{D}^{2} \\ I \subset \Omega}}\left|a_{l}\right|^{2} \frac{1_{I}}{|I|}\right)^{1 / 2}\right\|_{L^{p}}<\infty, \quad a_{l}=\left\langle T 1, h_{l}\right\rangle
$$

where the supremum is over all open sets Ω of finite measure. The exponent p does not matter here - the conditions are the same for all $p \in(0, \infty)$ (by a John-Nirenberg style argument).

We will abbreviate this condition with ' $T 1 \in \mathrm{BMO}_{\text {prod' }}$. We will have to assume this not only for T and T^{*} but also for the partial adjoint T_{1} and its dual:

$$
\left\langle T_{1}\left(f_{1} \otimes f_{2}\right), g_{1} \otimes g_{2}\right\rangle:=\left\langle T\left(g_{1} \otimes f_{2}\right), f_{1} \otimes g_{2}\right\rangle
$$

Thus, ' $T 1, T^{*} 1, T_{1}(1),\left(T_{1}\right)^{*}(1) \in \mathrm{BMO}_{\text {prod }}$ ' will be among our assumptions. What about WBP? We will assume

$$
\left|\left\langle T\left(1_{l_{1}} \otimes 1_{l_{2}}\right), 1_{l_{1}} \otimes 1_{l_{2}}\right\rangle\right| \lesssim\left|I_{1}\right|\left|I_{2}\right|
$$

for all intervals $I_{1}, I_{2} \subset \mathbb{R}$. However, this is not enough. We will, in fact, need to incorporate some 'BMO' here as well and assume

$$
\left|\left\langle T\left(a_{l_{1}} \otimes 1_{l_{2}}\right), 1_{l_{1}} \otimes 1_{l_{2}}\right\rangle\right| \lesssim\left|I_{1}\right|\left|l_{2}\right|
$$

whenever spt $a_{l_{1}} \subset l_{1}$ and $\left\|a_{1}\right\|_{L \infty} \leq 1$, and the three symmetric conditions.

Definition

A bi-parameter SIO T satisfying

$$
\begin{gathered}
T 1, T^{*} 1, T_{1}(1),\left(T_{1}\right)^{*}(1) \in \mathrm{BMO}_{\text {prod }} \\
\left|\left\langle T\left(a_{l_{1}} \otimes 1_{l_{2}}\right), 1_{l_{1}} \otimes 1_{l_{2}}\right\rangle\right| \lesssim\left|I_{1}\right|\left|I_{2}\right|
\end{gathered}
$$

whenever spt $a_{l_{1}} \subset l_{1}$ and $\left\|a_{l_{1}}\right\|_{L^{\infty}} \leq 1$, and the three other symmetric conditions, is a bi-parameter CZO.

Theorem (M., 2011)

Suppose T is a bi-parameter CZO. Then T is an average (over all dyadic grids \mathcal{D}^{1} and \mathcal{D}^{2}) of a rapidly converging sum of bi-parameter dyadic model operators: bi-parameter shifts, bi-parameter partial paraproducts (hybrids of shifts and paraproducts) and full paraproducts.

Corollary
Let T be a bi-parameter CZO and $p_{1}, p_{2} \in(1, \infty)$. Then we have

$$
\|T f\|_{L^{p_{1}} L^{p_{2}}} \lesssim\|f\|_{L^{p_{1}} L^{p_{2}}} .
$$

We have only considered bi-parameter shifts at this point, so the rest of the dyadic model operators need to still be defined and bounded to get this result.

We did the shift result already even in the vector-valued situation. Thus, we have already proved the following result:

Corollary

Let T be a bi-parameter CZO, X be a UMD space with Pisier's (α) and $p_{1}, p_{2} \in(1, \infty)$. If T is free of paraproducts in the sense that it has a representation with shifts only, then

$$
\|T f\|_{L^{p_{1}} L^{p_{2}}(X)} \lesssim\|f\|_{L^{p_{1}} L^{p_{2}}(X)} .
$$

The 'paraproduct free' can be phrased concretely in terms of $T 1=0$ type conditions - however, it is more than $T 1=T^{*} 1=T_{1}(1)=\left(T_{1}\right)^{*}(1)=0$ as also the so-called 'partial paraproducts' are assumed to vanish here.

- In the 1-parameter situation it was easy that if T is an L^{p} bounded SIO, then T is a CZO. The non-trivial part being that a CZO is L^{p} bounded.
- In the bi-parameter situation this converse is also hard. Using a so-called Journé's covering lemma, it can be proved that if a bi-parameter SIO T is L^{p} bounded, then $T 1 \in \mathrm{BMO}_{\text {prod }}$.
- However, we also need that $T_{1}(1) \mathrm{BMO}_{\text {prod }}$. It is not true, though, that if T is e.g. L^{2} bounded, then so is T_{1} ! Thus, we can only prove that if T is a 2-parameter SIO so that T and T_{1} are bounded, then T is a CZO. This detail means that the CZO theory is not characterising just the L^{p} boundedness of T but the simultaneous L^{p} boundedness of T and T_{1}.
- In the 1-parameter theory we can upgrade L^{2} boundedness to L^{p} boundedness by proving $L^{1} \rightarrow L^{1, \infty}$, interpolating and using duality.
- However, the end point $L^{1} \rightarrow L^{1, \infty}$ is not true in the bi-parameter world.
- For this reason it is quite powerful that the representation point of view gives that a CZO T is L^{p} bounded for every $p \in(1, \infty)$ (even mixed-norm bounded).
- Indeed, interpolating the only known end point $L^{\infty} \rightarrow \mathrm{BMO}_{\text {prod }}$ is very difficult, although still doable. This interpolation requires an extensive theory of product Hardy spaces.

As we are modeling $T_{1} \otimes T_{2}$, the model operators need to include suitable generalisations of all $U_{1} \otimes U_{2}$, where $U_{1} \in\left\{S_{1}, \pi_{1}, \pi_{1}^{*}\right\}$ and similarly for U_{2}. Bi-parameter shifts generalise $S_{1} \otimes S_{2}$.

For example, if $\pi_{\mathcal{D}^{1}} f_{1}=\sum_{l_{1} \in \mathcal{D}^{1}} a_{l_{1}}\left\langle f_{1}\right\rangle_{l_{1}} h_{l_{1}}$ and $\pi_{\mathcal{D}^{2}} f_{2}=\sum_{l_{2} \in \mathcal{D}^{2}} b_{l_{2}}\left\langle f_{2}\right\rangle_{l_{2}} h_{l_{2}}$, then $\left(\pi_{\mathcal{D}^{1}} \otimes \pi_{\mathcal{D}^{2}}\right) f$ looks like

$$
\sum_{l_{1}, l_{2}} a_{l_{1}} b_{l_{2}}\langle f\rangle_{l_{1} \times l_{2}} h_{l_{1} \times l_{2}}
$$

It is not so hard to see that $\left(a_{1} b_{l_{2}}\right)_{1_{1}, l_{2}}$ satisfies the product BMO condition. The correct generalisation then is

$$
\sum_{l_{1}, l_{2}} a l_{1}, l_{2}\langle f\rangle l_{1} \times l_{2} h_{l_{1} \times l_{2}}
$$

where

$$
\sup _{\Omega} \frac{1}{|\Omega|^{1 / 2}}\left(\sum_{I_{1} \times I_{2} \subset \Omega}\left|a_{l_{1}, l_{2}}\right|^{2}\right)^{1 / 2} \leq 1 .
$$

We knew how to bound bi-parameter shifts in $L^{p_{1}} L^{p_{2}}(X)$, where X is UMD with Pisier's (α). We do not know how to do this for quite all these spaces X for the other model operators - the above introduced full paraproducts or the partial paraproducts (that generalise $S_{1} \otimes \pi_{2}$).

In practice, all known UMD spaces satisfying Pisier's (α) are function lattices - this means that $x \in X$ is actually a function $x: \Omega \rightarrow \mathbb{R}$ with suitable assumptions. We could develop the vector-valued theory of bi-parameter full and partial paraproducts in UMD function lattices. This then would imply that all bi-parameter CZOs are bounded in $L^{p_{1}} L^{p_{2}}(X)$ whenever X is a UMD function lattice.

For simplicity, however, in these lectures we show the boundedness of these other bi-parameter model operators only in the scalar-valued case.

Let $\mathcal{D}=\mathcal{D}^{1} \times \mathcal{D}^{2}$. Below $R \in \mathcal{D}$. We will prove that
$\sum_{R}\left|a_{R}\right|\left|b_{R}\right| \lesssim\left[\sup _{\Omega} \frac{1}{|\Omega|^{1 / 2}}\left(\sum_{R \subset \Omega}\left|a_{R}\right|^{2}\right)^{1 / 2}\right] \cdot\left\|\left(\sum_{R}\left|b_{R}\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2}\right\|_{L^{1}}$.
Given $k \in \mathbb{Z}$ we define

$$
U_{k}=\left\{x:\left(\sum_{R}\left|b_{R}\right|^{2} \frac{1_{R}(x)}{|R|}\right)^{1 / 2}>2^{-k}\right\}
$$

and

$$
\widehat{\mathcal{R}}_{k}=\left\{R \in \mathcal{D}:\left|R \cap U_{k}\right|>|R| / 2\right\} .
$$

If $R \in \widehat{\mathcal{R}}_{k}$, then

$$
R \subset \tilde{U}_{k}:=\left\{x: M_{\mathcal{D}} 1_{U_{k}}>1 / 2\right\}
$$

where $M_{\mathcal{D}} f=\sup _{R} 1_{R}\langle | f| \rangle_{R}$. As $M_{\mathcal{D}}: L^{2} \rightarrow L^{2}$, we have $\left|\tilde{U}_{k}\right| \lesssim\left|U_{k}\right|$.

H^{1}-BMO duality

For all $R_{0} \in \mathcal{D}$ and for all $x \in R_{0}$ we have

$$
\left(\sum_{R \in \mathcal{D}}\left|b_{R}\right|^{2} \frac{1_{R}(x)}{|R|}\right)^{1 / 2} \geq \frac{\left|b_{R_{0}}\right|}{\left|R_{0}\right|^{1 / 2}}
$$

If $b_{R_{0}} \neq 0$, then this implies that $R_{0} \subset U_{k}$ and so $R_{0} \in \widehat{\mathcal{R}}_{k}$ for all large enough k.

We may obviously assume

$$
\left\|\left(\sum_{R}\left|b_{R}\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2}\right\|_{L^{1}}<\infty
$$

Then we have $\left|U_{k}\right| \rightarrow 0$ when $k \rightarrow-\infty$, and so we also have that $R_{0} \notin \widehat{\mathcal{R}}_{k}$ for all small enough k.

Let $\mathcal{R}_{k}=\widehat{\mathcal{R}}_{k} \backslash \widehat{\mathcal{R}}_{k-1}, k \in \mathbb{Z}$, and notice that we have deduced that all relevant R_{0} (i.e. those for which $b_{R_{0}} \neq 0$) belong to one and exactly one \mathcal{R}_{k}.

$$
\begin{aligned}
& \sum_{R}\left|a_{R}\right|\left|b_{R}\right|=\sum_{k \in \mathbb{Z}} \sum_{R \in \mathcal{R}_{k}}\left|a_{R}\right|\left|b_{R}\right| \\
& \leq 2 \int \sum_{k \in \mathbb{Z}} \sum_{R \in \mathcal{R}_{k}}\left|a_{R}\right|\left|b_{R}\right| \frac{1_{R}}{|R|} 1_{\tilde{U}_{k}} 1_{U_{k-1}^{c}} \\
& \lesssim \sum_{k \in \mathbb{Z}}\left\|\left(\sum_{R \subset \tilde{U}_{k}}\left|a_{R}\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2}\right\|_{L^{2}}\left\|\left(\sum_{R}\left|b_{R}\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2} 1_{\tilde{U}_{k}} 1_{U_{k-1}^{c}}\right\|_{L^{2}} \\
& \lesssim\left[\sup _{\Omega} \frac{1}{|\Omega|^{1 / 2}}\left(\sum_{R \subset \Omega}\left|a_{R}\right|^{2}\right)^{1 / 2}\right] \sum_{k \in \mathbb{Z}} 2^{-k}\left|U_{k}\right| \\
& \sim\left[\sup _{\Omega} \frac{1}{|\Omega|^{1 / 2}}\left(\sum_{R \subset \Omega}\left|a_{R}\right|^{2}\right)^{1 / 2}\left\|\left(\sum_{R}\left|b_{R}\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2}\right\|_{L^{1}} .\right.
\end{aligned}
$$

It is enough to bound

$$
\sum_{R}\left|a_{R}\right|\langle | f| \rangle_{R}\left|\left\langle g, h_{R}\right\rangle\right| .
$$

The $H^{1}-\mathrm{BMO}$ duality bounds this with

$$
\int\left(\sum_{R}\langle | f| \rangle_{R}^{2}\left|\left\langle g, h_{R}\right\rangle\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2} \leq \int M_{\mathcal{D}} f\left(\sum_{R}\left|\left\langle g, h_{R}\right\rangle\right|^{2} \frac{1_{R}}{|R|}\right)^{1 / 2}
$$

It remains to use Hölder's inequality and the boundedness of the maximal function $M_{\mathcal{D}}$ and the square function involving rectangles. How to see that the latter is bounded? (The mixed-norm boundedness of the rectangular maximal function takes some thinking as well, but we omit it for now.)

Let $\Delta_{R} f=\left\langle f, h_{R}\right\rangle h_{R}=\Delta_{l_{1}}^{1} \Delta_{l_{2}}^{2} f$, if $R=I_{1} \times I_{2} \in \mathcal{D}$ and e.g.
$\Delta_{I_{1}}^{1} f(x)=\Delta_{I_{1}}\left(f\left(\cdot, x_{2}\right)\right)\left(x_{1}\right)$. Then

$$
\begin{aligned}
& \left\|\left(\sum_{R}\left|\Delta_{R} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{1} L^{p_{2}}}} \\
& \sim \mathbb{E}\left\|\sum_{R} \epsilon_{R} \Delta_{R} f\right\|_{L^{p_{1} L^{p_{2}}}} \\
& \sim \mathbb{E}^{\prime}\left\|\sum_{l_{1}} \epsilon_{l_{1}} \Delta_{l_{1}}^{1}\left(\sum_{l_{2}} \epsilon_{l_{2}}^{\prime} \Delta_{l_{2}}^{2} f\right)\right\|_{L^{p_{1} L^{p_{2}}}} \\
& \sim \mathbb{E}^{\prime}\left\|\sum_{l_{2}} \epsilon_{l_{2}}^{\prime} \Delta_{l_{2}}^{2} f\right\|_{L^{p_{1} L^{p_{2}}}} \sim\|f\|_{L^{p_{1} L^{p_{2}}}}
\end{aligned}
$$

We used Kahane-Khintchine multiple times and the known UMD space estimates.

There is a genuinely different full paraproduct as well (the partial adjoint of the previous one - or the one modeling $\pi_{1} \otimes \pi_{2}^{*}$):

$$
\sum_{R=I_{1} \times I_{2}} a_{R}\left\langle f, \frac{1_{I_{1}}}{\left|I_{1}\right|} \otimes h_{I_{2}}\right\rangle h_{I_{1}} \otimes \frac{1_{I_{2}}}{\left|I_{2}\right|}
$$

It is bounded by H^{1}-BMO duality as well, but the end is different reducing e.g. to bounding

$$
\left\|\left(\sum_{I_{2}}\left|M_{\mathcal{D}^{1}}\left\langle f, h_{I_{2}}\right\rangle_{2}\right|^{2} \otimes \frac{1_{I_{2}}}{\left|I_{2}\right|}\right)^{1 / 2}\right\|_{L^{p_{1} L^{p_{2}}}}
$$

First, remove the maximal function by using that for all $p_{1}, p_{2}, r \in(1, \infty)$ we have

$$
\left\|\left(\sum_{j}\left|M_{\mathcal{D}^{1}}^{1} f_{j}\right|^{r}\right)^{1 / r}\right\|_{L^{p_{1} L^{p_{2}}}} \lesssim\left\|\left(\sum_{j}\left|f_{j}\right|^{r}\right)^{1 / r}\right\|_{L^{p_{1} L^{p_{2}}}}
$$

Then we are left with

$$
\left\|\left(\sum_{I_{2}}\left|\left\langle f, h_{l_{2}}\right\rangle_{2}\right|^{2} \otimes \frac{1_{l_{2}}}{\left|I_{2}\right|}\right)^{1 / 2}\right\|_{L^{p_{1} L^{p_{2}}}}=\left\|\left(\sum_{I_{2}}\left|\Delta_{l_{2}}^{2} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{1} L^{p_{2}}}}
$$

after which this is just a square function estimate in $L^{p_{2}}$.
We have dealt with all the full paraproducts. It remains to deal with the last remaining family of model operators - the partial paraproducts.

A proper generalisation of $S_{1} \otimes \pi_{2}$ is

$$
P f=\sum_{K=K_{1} \times K_{2} \in \mathcal{D}} \sum_{\substack{l_{1}, J_{1} \in \mathcal{D}_{1} \\ l_{1}^{\left(i_{1}\right)}=J_{1}^{\left(\mathcal{L}_{1}\right)}=K_{1}}} a_{K l_{1} J_{1}}\left\langle f, h_{l_{1}} \otimes \frac{1_{K_{2}}}{\left|K_{2}\right|}\right\rangle h_{J_{1}} \otimes h_{K_{2}},
$$

where for each fixed K_{1}, l_{1}, J_{1} we have the one-parameter BMO estimate

$$
\sup _{I_{2} \in \mathcal{D}^{2}} \frac{1}{\left|I_{2}\right|^{1 / 2}}\left(\sum_{\substack{K_{2} \in \mathcal{D}^{2} \\ K_{2} \subset I_{2}}}\left|a_{K I_{1} J_{1}}\right|^{2}\right)^{1 / 2} \leq \frac{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}}{\left|K_{1}\right|}
$$

We have a choice to try to bound this directly, or to use the operator-valued theory of shifts again. We could see a bi-parameter shift as a shift-valued shift, and we can view partial paraproducts as a paraproduct-valued shift. We use the op-valued approach.

Regarding the mixed-norm bounds, the op-valued approach has a detail: we can directly do $L_{x_{1}}^{p_{1}} L_{x_{2}}^{p_{2}}$ as now the shift structure is in the x_{1} variable. Unlike in the bi-parameter shift case where we can, by symmetry, also do $L_{x_{2}}^{p_{2}} L_{x_{1}}^{p_{1}}$, here there is no symmetry. This would lead us to study shift-valued paraproducts, but there is no equally good theory for operator-valued paraproducts as there is for operator-valued shifts.

For this reason, we really only explictly tackle the $L_{x_{1}}^{p_{1}} L_{x_{2}}^{p_{2}}$ case now, while the other one is also true by modified arguments.
So we write

$$
P f=\sum_{\substack{K_{1} \in \mathcal{D}^{1}\\}} \sum_{\substack{I_{1}, J_{1} \in \mathcal{D}_{1} \\ l_{1}^{\left(i_{1}\right)}=J_{1}^{\left(j_{1}\right)}=K_{1}}} \pi_{K_{1} I_{1} J_{1}}\left\langle f, h_{l_{1}}\right\rangle h_{J_{1}},
$$

where

$$
\pi_{K_{1} I_{1} J_{1}} g=\sum_{K_{2} \in \mathcal{D}^{2}} a_{K I_{1} J_{1}}\langle g\rangle K_{2} h_{K_{2}}
$$

By the OP-valued theory of shifts the partial paraproduct satisfies

$$
\|P f\|_{L^{p_{1} L^{p_{2}}}} \lesssim C\left(1+\min \left(i_{1}, j_{1}\right)\right)\|f\|_{L^{p_{1}} L^{p_{2}}}
$$

where

$$
C:=\mathcal{R}\left(\left\{\frac{\left|K_{1}\right|}{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}} \pi_{K_{1} I_{1} J_{1}} \in \mathcal{L}\left(L^{p_{2}}\right): K_{1}=I_{1}^{\left(i_{1}\right)}=J_{1}^{\left(j_{1}\right)}\right\}\right) .
$$

With fixed K_{1}, I_{1}, J_{1} the coefficients $b_{K_{2}}=\frac{\left|K_{1}\right|}{\left|I_{1}\right|^{1 / 2}\left|J_{1}\right|^{1 / 2}} a_{K l_{1} J_{1}}$ satisfy the natural normalisation

$$
\sup _{I_{2} \in \mathcal{D}^{2}} \frac{1}{\left|I_{2}\right|^{1 / 2}}\left(\sum_{\substack{K_{2} \in \mathcal{D}^{2} \\ K_{2} \subset I_{2}}}\left|b_{K_{2}}\right|^{2}\right)^{1 / 2} \leq 1
$$

So the question has reduced to the \mathcal{R}-boundedness of a family of normalised paraproducts - this can be done directly by using H^{1}-BMO duality, for example. We omit the details.

The one-parameter representation theorem:

- T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. 175 (2012) 1473-1506.
- T. Hytönen, Representation of singular integrals by dyadic operators, and the A_{2} theorem, Expo. Math. 35 (2017) 166-205.
One-parameter operator-valued dyadic analysis:
■ T. Hänninen, T. Hytönen, Operator-valued dyadic shifts and the $T(1)$ theorem, Monatsh. Math. 180 (2016) 213-253.
Bi-parameter representation theorem:
- H. Martikainen, Representation of bi-parameter singular integrals by dyadic operators, Adv. Math. 229 (2012) 1734-1761.

Bi-parameter analysis using operator-valued dyadic shifts:

- T. Hytönen, H. Martikainen, E. Vuorinen, Multi-parameter estimates via operator-valued shifts, Proc. Lond. Math. Soc. 119 (6) (2019) 1560-1597.
Textbooks on UMD-valued analysis
- T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces, Volume I: Martingales and Littlewood-Paley Theory, Springer-Verlag, 2016.
- T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces, Volume II: Probabilistic Techniques and Operator Theory, Springer-Verlag, 2017.

Further reading on multilinear versions of the theory:

- F. Di Plinio, K. Li, H. Martikainen, E. Vuorinen, Multilinear singular integrals on non-commutative L^{p} spaces, preprint, arXiv:1905.02139, 2019.
- K. Li, H. Martikainen, Y. Ou, E. Vuorinen, Bilinear representation theorem, Trans. Amer. Math. Soc. 371 (6) (2019) 4193-4214.
- K. Li, H. Martikainen, E. Vuorinen, Bilinear

Calderón-Zygmund theory on product spaces, J. Math. Pures Appl., to appear, arXiv:1712.08135, 2018.

