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1. INTRODUCTION: FOURIER COEFFICIENTS AND FOURIER SERIES

The lectures are for the most part based on the books by Duoandikoetxea [1]
and Grafakos [2], and the lecture notes of Salo [3].

We study functions f : R→ C that are 1-periodic:

f(x+ 1) = f(x), x ∈ R.

It is equivalent to say that f is a function defined on the 1-torus

T = T1 := R/Z,

which consists of the equivalence classes determined by the equivalence relation
x ≡ y if and only x− y ∈ Z. We will use this latter point of view f : T→ C simply
as a short way to say that f : R→ C is 1-periodic. That is, we do not need to think
about the torus more than that.

We note that many of the results could be stated and proved for functions de-
fined in the n-Torus Tn := Rn/Zn. This means studying functions f : Rn → C
which satisfy f(x + m) = f(x) for all x and m ∈ Zn. We will not pursue this but
see Grafakos [2].

A trigonometric polynomial P has the form

P (x) =
∑
m∈Z

ame
2πimx,
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where am 6= 0 for only finitely many m. Recall that

eix = cosx+ i sinx

so that x 7→ e2πimx is 1-periodic. Notice that we can recover the coefficients am
with the following calculation:ˆ 1

0

P (x)e−2πimx dx =
∑
k∈Z

ak

ˆ 1

0

e2πi(k−m)x dx =
∑
k∈Z

akδk,m = am,

where δk,m = 1 if k = m and zero otherwise. Motivated by this we make the
following definition.

1.1. Definition. Let f ∈ L1(T) – i.e., f : R→ C is 1-periodic and ‖f‖L1 :=
´ 1

0
|f | <

∞. The mth Fourier coefficient f̂(m) of f is defined by

f̂(m) :=

ˆ 1

0

f(x)e−2πimx dx, m ∈ Z.

So for a trigonometric polynomial P we have

P (x) =
∑
m∈Z

P̂ (m)e2πimx.

1.2. Definition. The N th partial sum of the Fourier series of f ∈ L1(T) is

SNf(x) :=
∑
|m|≤N

f̂(m)e2πimx.

We are interested in questions with the following flavour:

• Do the Fourier coefficients f̂(m) determine f?
• Does SNf(x) converge in some sense (pointwise, in Lp) as N →∞? Under

what assumptions? Does it converge to f?
• What kind of estimates do the coefficients f̂(m) satisfy, and do they corre-

late with the regularity (smoothness) properties of f?

1.3. Lemma (Some basic properties of Fourier coefficients). Let f, g ∈ L1(T). Then
we have

(1) f̂ + g(m) = f̂(m) + ĝ(m);
(2) λ̂f(m) = λf̂(m), λ ∈ C;
(3) τ̂yf(m) = f̂(m)e−2πimy, τyf := f(x− y), y ∈ R;
(4) ê2πik·f(m) = f̂(m− k).

Proof. We only check the property (3). Using the change of variables u = x− y we
get

τ̂yf(m) =

ˆ 1

0

f(x− y)e−2πimx dx

=

ˆ 1−y

−y
f(u)e−2πim(u+y) du = e−2πimy

ˆ 1−y

−y
f(u)e−2πimu du
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= e−2πimy

ˆ 1

0

f(u)e−2πimu du = e−2πimyf̂(m).

The penultimate step used the 1-periodicity of the function u 7→ f(u)e−2πimu. The
fact that ˆ a+1

a

g =

ˆ 1

0

g

for all a ∈ R and g ∈ L1(T ) is left as an exercise. �

It is clear that
sup
m∈Z
|f̂(m)| ≤ ‖f‖L1 ,

where ‖f‖L1 = ‖f‖L1(0,1) =
´ 1

0
|f |. However, more is true even with the minimal

regularity assumption f ∈ L1(T).

1.4. Lemma (Riemann-Lebesgue). If f ∈ L1(T) then

lim
|m|→∞

f̂(m) = 0.

Proof. Using the property (3) of Lemma 1.3 we get thatˆ 1

0

f
(
x− 1

2m

)
e−2πimx dx = τ̂ 1

2m
f(m) = f̂(m)e−πi = −f̂(m).

Therefore, we get the identity

f̂(m) =
1

2

ˆ 1

0

[
f(x)− f

(
x− 1

2m

)]
e−2πimx dx,

and thus the estimate

|f̂(m)| .
ˆ 1

0

∣∣∣f(x)− f
(
x− 1

2m

)∣∣∣ dx.
Here we used that |eix| = 1. The result follows now directly from the next lemma.

�

We need the following intuitive (but non-trivial) result from Real Analysis I.
This is one of the few results we take from that course as given.

1.5. Lemma. Suppose F ∈ Lp(R) (i.e.
´
R |F |

p <∞) for 1 ≤ p <∞. Then

lim
h→0

ˆ
R
|F (x+ h)− F (x)|p dx = 0.

1.6. Corollary. Suppose f ∈ Lp(T) (i.e.
´ 1

0
|f |p < ∞ and f is 1-periodic), 1 ≤ p < ∞.

Then

lim
h→0

ˆ 1

0

|f(x+ h)− f(x)|p dx = 0.

Proof. Define F := f1(−1,2) ∈ Lp(R) and notice that for all small enough hwe haveˆ 1

0

|f(x+ h)− f(x)|p dx =

ˆ 1

0

|F (x+ h)− F (x)|p dx ≤
ˆ
R
|F (x+ h)− F (x)|p dx,

and use Lemma 1.5. �
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1.7. Remark. We introduce here the following highly convenient notation. We
denote A . B if A ≤ CB for some unimportant constant C. This means that C
cannot depend on anything relevant like some important parameter ε. That is, C
can e.g. be some uniform constant, or some constant depending on some fixed
integrability exponent p. We can write A .ε B to mean that A ≤ C(ε)B for some
constant C(ε) that is now allowed to depend on some given parameter ε. We will
also write A ∼ B if A . B . A.

2. CONVOLUTION AND APPROXIMATE IDENTITIES

Let f, g ∈ L1(T), and define for x ∈ [0, 1] the convolution

f ∗ g(x) =

ˆ 1

0

f(y)g(x− y) dy.

This is well-defined, since
´ 1

0
|f(y)g(x − y)| dy < ∞ for a.e. x ∈ [0, 1]. The latter

follows fromˆ 1

0

ˆ 1

0

|f(y)g(x− y)| dy dx =

ˆ 1

0

|f(y)|
ˆ 1

0

|g(x− y)| dx dy =
(ˆ 1

0

|f |
)(ˆ 1

0

|g|
)
.

Therefore, we have f ∗ g ∈ L1(T) and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 .

The following properties of the convolution are left as an exercise (here f, g, h ∈
L1(T)):

(1) f ∗ (g + h) = f ∗ g + f ∗ h;
(2) (λf) ∗ g = λ(f ∗ g), λ ∈ C;
(3) f ∗ g = g ∗ f ;
(4) f ∗ (g ∗ h) = (f ∗ g) ∗ h;
(5) f ∗ g is continuous if f or g is.
(6) f̂ ∗ g(m) = f̂(m)ĝ(m).

2.1. Definition. A family ϕr ∈ L1(T), r > 0, is an approximate identity (as r →∞)
if the following conditions hold.

(1) We have
´ 1/2

−1/2
ϕr = 1 for all r > 0.

(2) We have supr ‖ϕr‖L1(−1/2,1/2) <∞. (Follows from (1) if always ϕr ≥ 0.)
(3) For every δ > 0 we have

lim
r→∞

ˆ
δ≤|x|≤1/2

|ϕr(x)| dx = 0.

Convolutions with approximate identities f ∗ ϕr are a very important way to
approximate a given function f as r → ∞. We will see that f ∗ ϕr → f in many
senses. Before we can prove the convergence results we need one of the abso-
lutely most fundamental inequalities of analysis.

2.2. Lemma (Hölder’s inequality). Let p ∈ (1,∞) and p′ ∈ (1,∞) be defined via the
relation

1

p
+

1

p′
= 1.
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Then
‖fg‖L1 ≤ ‖f‖Lp‖g‖Lp′ ,

where

‖f‖Lp =
(ˆ
|f |p
)1/p

.

Proof. The short proof is given in Real Analysis I, but we also give a quick proof
here. Young’s inequality says that

ab ≤ ap

p
+
bp
′

p′
, a, b ≥ 0.

This can be proved by defining

h(x) =
xp

p
+

1

p′
− x, x ≥ 0,

and noticing that, by elementary analysis (differentiation),

h(x) ≤ h(1) = 0, i.e., x ≤ xp

p
+

1

p′
.

Apply this with x = ab1/(1−p) to get

ab1/(1−p) ≤ ap

p
b−p

′
+

1

p′
.

Here we used that p′ = p/(p− 1). Multiply both sides of this inequality with

b1− 1
1−p = b

−p
1−p = bp

′

to establish Young’s inequality.
Apply Young’s inequality with

a =
|f(x)|
‖f‖Lp

and b =
|g(x)|
‖g‖Lp′

,

and integrate the resulting pointwise inequality to get

1

‖f‖Lp‖g‖Lp′
‖fg‖L1 ≤ 1

p
+

1

p′
= 1.

This is Hölder’s inequality and we are done. �

A small argument involving Hölder’s inequality shows the triangle inequality
of the Lp-norm:

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .
See Real Analysis I.

2.3. Remark. We take this opportunity to remark that Lp(T) ⊂ L1(T) for all 1 ≤
p ≤ ∞ (so that in particular f̂(m) is defined also for f ∈ Lp(T)). To recap, here
f ∈ Lp(T) means that f : R→ C is 1-periodic and ‖f‖Lp <∞, where

‖f‖Lp =
(ˆ 1

0

|f |p
)1/p

5
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for p <∞ and ‖f‖L∞ is the essential supremum, i.e.,

‖f‖L∞ = inf{C ≥ 0: |f(x)| ≤ C for a.e. x ∈ [0, 1]}.

Indeed, from Hölder’s inequality it follows that for p <∞we have

‖f‖L1 =

ˆ 1

0

|f | =
ˆ 1

0

|f | · 1 ≤ ‖f‖Lp‖1‖Lp′ = ‖f‖Lp ,

while the case p =∞ is obvious.

2.4. Proposition. Let 1 ≤ p < ∞, f ∈ Lp(T) and (ϕr)r>0 be an approximate identity.
Then we have

‖f − f ∗ ϕr‖Lp → 0, r →∞.

Proof. Using
´ 1/2

−1/2
ϕr = 1 and f ∗ ϕr = ϕr ∗ f we write the pointwise identity

f(x)− f ∗ ϕr(x) = f(x)

ˆ 1/2

−1/2

ϕr(y) dy −
ˆ 1/2

−1/2

f(x− y)ϕr(y) dy

=

ˆ 1/2

−1/2

[f(x)− f(x− y)]ϕr(y) dy.

For the moment let p > 1. We get using Hölder’s inequality that

|f(x)− f ∗ ϕr(x)| ≤
ˆ 1/2

−1/2

|f(x)− f(x− y)||ϕr(y)|1/p|ϕr(y)1/p′| dy

≤
( ˆ 1/2

−1/2

|f(x)− f(x− y)|p|ϕr(y)| dy
)1/p( ˆ 1/2

−1/2

|ϕr(y)| dy
)1/p′

.
( ˆ 1/2

−1/2

|f(x)− f(x− y)|p|ϕr(y)| dy
)1/p

,

where the last step used that supr ‖ϕr‖L1 . 1. Therefore, we have

|f(x)− f ∗ ϕr(x)|p .
ˆ 1/2

−1/2

|f(x)− f(x− y)|p|ϕr(y)| dy,

which also clearly holds with p = 1. We integrate this over x ∈ [−1/2, 1/2], and
use Fubini’s theorem, to get that

‖f − f ∗ ϕr‖pLp .
ˆ 1/2

−1/2

|ϕr(y)|
ˆ 1/2

−1/2

|f(x)− f(x− y)|p dx dy.

Let ε > 0. Using Corollary (1.6) we find δ > 0 so that
ˆ 1/2

−1/2

|f(x)− f(x− y)|p dx < ε

whenever |y| < δ. Using property (3) of Definition 2.1 we find r0 so thatˆ
δ≤|y|≤1/2

|ϕr(y)| dy < ε

6
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for all r ≥ r0. For all r ≥ r0 we therefore have

‖f − f ∗ ϕr‖pLp . ε

ˆ 1/2

−1/2

|ϕr(y)| dy + ε‖f‖pLp .

The claim follows recalling supr ‖ϕr‖L1 . 1. �

2.5. Proposition. Let f : T→ C be continuous and (ϕr)r>0 be an approximate identity.
Then we have

‖f − f ∗ ϕr‖L∞ → 0, r →∞.

Proof. Given ε > 0 we find, using the uniform continuity of f in the interval
[−1, 1], a δ ∈ (0, 1/2) so that

|f(x)− f(x− y)| < ε

whenever x, y ∈ [−1/2, 1/2] and |y| < δ. We use this in combination with the
estimate from the proof of the previous Proposition:

|f(x)− f ∗ ϕr(x)| .
ˆ 1/2

−1/2

|f(x)− f(x− y)||ϕr(y)| dy

. ε

ˆ
|y|≤δ
|ϕr(y)| dy + ‖f‖L∞

ˆ
δ≤|y|≤1/2

|ϕr(y)| dy

. ε+ ε‖f‖L∞

for large enough r. �

2.6. Remark. If f ∈ L∞(T) is continuous in some single point x, the previous proof
shows that then

lim
r→∞

f ∗ ϕr(x) = f(x).

3. THE DIRICHLET KERNEL

If f ∈ L1(T) and

P (x) =
∑
|m|≤N

ame
2πimx,

then we have the convolution identity

f ∗ P (x) =
∑
|m|≤N

am

ˆ 1

0

f(y)e2πim(x−y) dy =
∑
|m|≤N

amf̂(m)e2πimx.

If we apply this with P (x) = DN(x), where DN is the Dirichlet kernel

DN(x) :=
∑
|m|≤N

e2πimx,

we see that we recover the Fourier series of f , i.e., we have

SNf(x) =
∑
|m|≤N

f̂(m)e2πimx = f ∗DN(x).

7
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By summing up the geometric series we obtain that

DN(x) = e−2πiNx e
2πi(2N+1)x − 1

e2πix − 1
=
e2πi(N+1)x − e−2πiNx

eπix[eπix − e−iπx]
Notice that from eix = cosx+ i sinx it follows that

sinx =
1

2i
(eix − e−ix),

and thus we get an alternative formula for the Dirichlet kernel:

(3.1) DN(x) =
eπi(2N+1)x − e−πi(2N+1)x

eπix − e−iπx
=

sin((2N + 1)πx)

sin(πx)
.

It makes sense to ask whether (DN)∞N=0 is an approximate identity. We at least
have that ˆ 1/2

−1/2

Dn(x) dx =
∑
|m|≤N

ˆ 1

0

e2πimx dx =
∑
|m|≤N

δ0,m = 1.

Unfortunately, we will next show that supN ‖DN‖L1 =∞. As | sin(πx)| ≤ π|x| we
have thatˆ 1/2

−1/2

|DN(x)| dx &
ˆ 1/2

−1/2

| sin((2N + 1)πx)|
|x|

dx ∼
ˆ 1/2

0

| sin((2N + 1)πx)| dx
x
.

Performing the change of variables u = (2N + 1)πx we get
ˆ 1/2

−1/2

|DN(x)| dx &
ˆ (N+1/2)π

0

| sinu| du
u
&

N∑
k=1

1

k

ˆ kπ

(k−1)π

| sin(u)| du ∼
N∑
k=1

1

k
,

since
´ kπ

(k−1)π
| sin(u)| du = 2 for all k. The harmonic series diverges and so we get

that supN ‖DN‖L1 = ∞. Thus, (DN)∞N=0 is not an approximate identity, and un-
derstanding the convergence properties of Fourier series becomes hard. Despite
this, there are still many positive results of varying difficulty, with some of them
very deep, concerning the convergence of Fourier series. We will discuss them
later.

4. THE FEJÉR KERNEL AND APPLICATIONS

Despite the negative result that (DN)∞N=0 is not an approximate identity, we can
still get various interesting results utilising the theory of approximate identities.
The trick is to study the averaged kernels

FN(x) =
1

N + 1
(D0(x) +D1(x) + · · ·+DN(x)) =

1

N + 1

N∑
k=0

Dk(x).

These are called the Fejér kernels, and they turn out to be an approximate identity
– even positive functions. As

´ 1/2

−1/2
Dk = 1 for all k it is clear that also

´ 1/2

−1/2
FN = 1.

To see the other properties we need to perform some algebraic manipulations,
which are left as an exercise. It follows that we can write

(4.1) FN(x) =
1

N + 1

(sin((N + 1)πx)

sin(πx)

)2

≥ 0.

8
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Recall that in the case of positive functions the property (1) in Definition 2.1 im-
plies the property (2). The property (3) of Definition 2.1 is left as an exercise. We
conclude the following lemma.

4.2. Lemma. The family of Fejér kernels (FN)∞N=0 is an approximate identity consisting
of positive functions.

This means that we can get various convergence results concerning

f ∗ FN(x) =
1

N + 1

N∑
k=0

f ∗Dk(x) =
1

N + 1

N∑
k=0

Skf(x) =: σNf(x).

Notice that σN is the arithmetic mean of the Fourier partial sums. In general,
Cesàro summability of a series

∑
k ak means that the average of the partial sums

sn :=
∑n

k=0 ak, i.e.,
s0 + s1 + · · ·+ sN

N + 1
,

has a limit. It is an exercise to show that if
∑

k ak converges to A, then also

lim
N→∞

s0 + s1 + · · ·+ sN
N + 1

= A.

However, Cesàro summability is a weaker notion – the converse is not true. To
reiterate, we can use Section 2 to at least get results concerning the Cesàro summa-
bility of the Fourier series

∑
m∈Z f̂(m)e2πimx. Indeed, as a corollary of Lemma 4.2,

Proposition 2.4 and Proposition 2.5 we immediately get:

4.3. Theorem. Let 1 ≤ p < ∞ and f ∈ Lp(T), or p = ∞ and f be continuous. Then
we have

‖σNf − f‖Lp → 0, when N →∞.

A useful corollary of this result is the following.

4.4. Corollary. (1) The trigonometric polynomials are dense in Lp(T), 1 ≤ p <∞.
(2) Every continuous function on the torus is a uniform limit of trigonometric poly-

nomials.
(3) If f ∈ L1(T) and f̂(m) = 0 for all m ∈ Z, then f = 0 almost everywhere.

Proof. We notice that (1) and (2) are now obvious as clearly σNf is a trigonometric
polynomial. The part (3) follows by noticing that if f̂(m) = 0 for all m ∈ Z, then
σNf = 0 for all N . Hence ‖f‖L1 = limN→∞ ‖f − σNf‖L1 = 0. �

4.5. Remark. From (3) it follows that if f, g ∈ L1(T) and f̂(m) = ĝ(m) for all m ∈ Z,
then f = g almost everywhere.

We may also give a new proof of the Riemann–Lebesgue lemma, Lemma 1.4.

New proof of Lemma 1.4. Let f ∈ L1(T) and ε > 0. Choose a trigonometric polyno-
mial P so that ‖f − P‖L1 < ε. For large enough |m|we have P̂ (m) = 0, and so for
these m we also have

|f̂(m)| = |f̂(m)− P̂ (m)| ≤ ‖f − P‖L1 < ε.

We have shown that lim|m|→∞ f̂(m) = 0. �

9
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Finally, we record the following consequence.

4.6. Proposition. Suppose that f ∈ L1(T) is such that∑
m∈Z

|f̂(m)| <∞.

Then for almost every x we have

f(x) =
∑
m∈Z

f̂(m)e2πimx.

Proof. Under the assumptions that
∑

m |f̂(m)| <∞ the function

g(x) =
∑
m∈Z

f̂(m)e2πimx

satisfies g ∈ L1(T) and f̂(m) = ĝ(m). Therefore f = g a.e. �

4.7. Remark. Notice that the function g in the above proof is actually continu-
ous under the assumptions of the Proposition. Indeed, by Weierstrass M -test the
series converges uniformly (as |f(m)e2πimx| = |f̂(m)|). A uniform limit of contin-
uous functions is continuous. Thus, in this situation f agrees with a continuous
function almost everywhere.

5. POINTWISE CONVERGENCE OF THE FEJÉR MEANS σNf : IMPROVED RESULTS

In view of Lemma 4.2 and Remark 2.6 we know that if f ∈ L∞(T) is continuous
in some point x, then

lim
N→∞

σNf(x) = f(x).

In fact, for this we only need that f ∈ L1(T) is continuous in some point x (and not
that f ∈ L∞(T)). This is because the Fejér kernels actually satisfy the pointwise
bound

(5.1) sup
δ≤|y|≤1/2

FN(y) .δ
1

N

instead of just the property (3) in Definition 2.1. Mimicking the proof of the
Proposition 2.5 it is then easy to see that f ∈ L1(T) is enough (see also the ex-
ercises). It follows that if f ∈ L1(T) is continuous in x and we know that the limit
limN→∞ SNf(x) exists, then we must have

f(x) = lim
N→∞

σNf(x) = lim
N→∞

SNf(x).

The latter equality follows from the discussion concerning Cesàro summability.
This result can be further improved – and we do this below.

5.2. Theorem. Suppose that a function f ∈ L1(T) has the left and right limits at a point
x0, denoted by f(x0−) and f(x0+), respectively. Then we have

lim
N→∞

σNf(x0) =
f(x0+) + f(x0−)

2
.

10
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Proof. Let ε > 0 and choose δ ∈ (0, 1/2) so that

(5.3)
∣∣∣f(x0 + y) + f(x0 − y)

2
− f(x0+) + f(x0−)

2

∣∣∣ < ε

whenever 0 < y < δ. Using (5.1) we find N0 so that for all N ≥ N0 we have

(5.4) sup
δ≤|y|≤1/2

FN(y) < ε.

By usual manipulations we get the identities

σNf(x0)− f(x0+) =

ˆ 1/2

−1/2

FN(−y)[f(x0 + y)− f(x0+)] dy

=

ˆ 1/2

−1/2

FN(y)[f(x0 + y)− f(x0+)] dy

and

σNf(x0)− f(x0−) =

ˆ 1/2

−1/2

FN(y)[f(x0 − y)− f(x0−)] dy.

This leads to the identity

σNf(x0)− f(x0+) + f(x0−)

2

=

ˆ 1/2

−1/2

FN(y)
[f(x0 + y) + f(x0 − y)

2
− f(x0+) + f(x0−)

2

]
dy

= 2

ˆ 1/2

0

FN(y)
[f(x0 + y) + f(x0 − y)

2
− f(x0+) + f(x0−)

2

]
dy,

where we used the fact that the integrand is even. Split this into two pieces I and
II , where in I we integrate over y ∈ [0, δ) and in II we integrate over y ∈ [δ, 1/2].
By (5.3) we have that

|I| . ε

ˆ 1/2

−1/2

FN(y) dy = ε.

By (5.4) we have for all N ≥ N0 that

|II| ≤ ε(‖f − f(x0+)‖L1 + ‖f − f(x0−)‖L1) = εC(f, x0).

This proves the claim as C(f, x0) is just a finite constant depending on f and
x0. �

The corresponding elementary corollary about the behaviour of Fourier series
is recorded below.

5.5. Proposition. Suppose that a function f ∈ L1(T) has the left and right limits at
a point x0, denoted by f(x0−) and f(x0+), respectively. Suppose also that the limit
limN→∞ SNf(x0) exists. Then we must have

lim
N→∞

SNf(x0) =
f(x0+) + f(x0−)

2
.

11
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Proof. If A = limN→∞ SNf(x0) then we know (see the discussion about Cesàro
summability and the exercises) that also limN→∞ σNf(x) = A. But so using Theo-
rem 5.2 we have

f(x0+) + f(x0−)

2
= lim

N→∞
σNf(x) = A = lim

N→∞
SNf(x0).

�

While Proposition 5.5 is not so satisfactory as we need to assume that the limit
limN→∞ SNf(x) exists, it is still quite useful. The following example showcases
a situation, where such principles can be used. However, in the example we
actually only need the easier version where f is continuous at a given point, and
not this further refined version.

5.6. Example. In the exercises we show that if

f(x) = 1/2− |x|, −1/2 ≤ |x| ≤ 1/2,

(and then continued periodically) we have

f̂(m) =


1
4

if m = 0;
0 if m 6= 0 is even;

1
π2m2 if m is odd.

It is clear that f is continuous at x = 0 and also that the limit

lim
N→∞

SNf(0) =
∑
m∈Z

f̂(m) =
1

4
+

2

π2
(1 + 3−2 + 5−2 + · · · ) =

1

4
+

2

π2

∞∑
k=1

1

(2k − 1)2

exists. Therefore, we know that

1

4
+

2

π2

∞∑
k=1

1

(2k − 1)2
= lim

N→∞
SNf(0) = f(0) =

1

2
,

and we can conclude that
∞∑
k=1

1

(2k − 1)2
=
π2

8
.

5.1. Almost everywhere convergence of σNf . We return to discussing the con-
vergence properties of σNf (as opposed to SNf ). Theorem 5.2 shows that if
f ∈ L1(T) is relatively nice (it has left and right limit everywhere), then σNf(x)
converges pointwise everywhere (but not necessarily to f(x)). A lot can be said
assuming only that f ∈ L1(T) – and this is what we will aim to do next. Our goal
is to prove the following theorem.

5.7. Theorem. Let f ∈ L1(T). Then we have that

σNf(x)→ f(x)

for almost every x.

12
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The proof contains many very important principles of real analysis. For the fol-
lowing few lemmas, we will be working with ordinary (non-periodic) functions
defined in R. As previously, we denote such functions usually by F instead of f .
For x ∈ R define

m(x) =
1

1 + |x|2
and mε(x) =

1

ε
m
(x
ε

)
.

5.8. Lemma. The operator

G(F )(x) := sup
ε>0

ˆ
R
mε(y)|F (x− y)| dy

satisfies for all x ∈ R the pointwise bound

G(F )(x) .M(F )(x),

where M is the (centred) Hardy–Littlewood maximal function

M(F )(x) := sup
r>0

1

2r

ˆ x+r

x−r
|F (y)| dy.

Proof. Fix an arbitrary ε > 0. We have by change of variables thatˆ
R
mε(y)|F (x− y)| dy =

ˆ
R

1

ε
m
(y
ε

)
|F (x− y)| dy

=

ˆ
R
m(y)|F (x− εy)| dy =

ˆ
R

|F (x− εy)|
1 + |y|2

dy.

We now estimateˆ
R

|F (x− εy)|
1 + |y|2

dy ≤
ˆ 1

−1

|F (x− εy)| dy +
∞∑
k=1

ˆ
2k−1≤|y|≤2k

|F (x− εy)|
1 + |y|2

dy

.
∞∑
k=0

2−2k

ˆ 2k

−2k
|F (x− εy)| dy

=
∞∑
k=0

2−2kε−1

ˆ x+ε2k

x−ε2k
|F (y)| dy .M(F )(x)

∞∑
k=0

2−k = 2M(F )(x).

�

Define the space L1,∞(R) (the weak-L1) via the requirement that F ∈ L1,∞(R) if

‖F‖L1,∞(R) := sup
λ>0

λ|{x ∈ R : |F (x)| > λ}| <∞.

Here |A| denotes the Lebesgue measure of a set A ⊂ R.

5.9. Lemma. We have that G : L1(R)→ L1,∞(R) boundedly – i.e.,

‖G(F )‖L1,∞(R) . ‖F‖L1(R).

Proof. Fix λ > 0. If G(F )(x) > λ then by Lemma 5.8 we have that

M(F )(x) > c0λ

13
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for some absolute constant c0. This implies that

sup
λ>0

λ|{x ∈ R : G(F )(x) > λ}| . sup
λ>0

λ|{x ∈ R : M(F )(x) > λ}|.

It is a fundamental basic fact of real analysis – see Real Analysis I or the lemma
below – that

sup
λ>0

λ|{x ∈ R : M(F )(x) > λ}| .
ˆ
R
|F |.

This ends the proof. �

5.10. Lemma. We have that M : L1(R)→ L1,∞(R) boundedly – i.e.,

‖M(F )‖L1,∞(R) . ‖F‖L1(R).

Proof. Fix λ > 0 and define

Ωλ := {x ∈ R : M(F )(x) > λ}.

Let K ⊂ Ωλ be an arbitrary compact set, and for every x ∈ K choose an interval
Ix = (x− rx, x+ rx) so that

1

|Ix|

ˆ
Ix

|F | > λ.

By compactness choose a finite subfamily Ix1 , . . . , Ixm so that

K ⊂
m⋃
j=1

Ixj .

By reordering we may assume that rxj ≥ rxj+1
for j = 1, . . . ,m − 1. Let I1 = Ix1 ,

and then let I2 be the biggest interval Ixj so that Ixj 6⊂ 3I1 (if it exists). Let then
I3 be the biggest interval Ixj so that Ixj 6⊂ 3I1 ∪ 3I2 (if it exists). We continue this
selection process as long as possible – the process finishes after a finite, say M ,
number of steps. It is clear that

K ⊂
m⋃
j=1

Ixj ⊂
M⋃
i=1

3Ii.

What is of real importance is that the intervals Ii, i = 1, . . . ,M , are disjoint. To see
this suppose that Ii1 ∩ Ii2 6= ∅ for some 1 ≤ i1 < i2 ≤ M . We have that |Ii1| ≥ |Ii2|
and so Ii2 ⊂ 3Ii1 – a contradiction with the selection process.

We now get

|K| ≤
M∑
i=1

|3Ii| .
M∑
i=1

|Ii| ≤
1

λ

M∑
i=1

ˆ
Ii

|F | ≤ 1

λ

ˆ
R
|F |.

As K ⊂ Ωλ was an arbitrary compact subset, the claim follows. �

5.11. Remark. It follows that ‖M(F )‖Lp(R) . ‖F‖Lp(R) for every 1 < p <∞. Indeed
this follows from the previous lemma and the trivial estimate ‖M(F )‖L∞(R) .
‖F‖L∞(R) by standard interpolation – see the very straightforward Marcinkiewicz
interpolation theorem, Theorem A.1 in the Appendix.

14
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We return to the periodic setting. Using Lemma 5.9 we will show that the
maximal function

H f(x) := sup
N∈N
|σNf(x)|, f ∈ L1(T),

satisfies ‖H f(x)‖L1,∞(T) . ‖f‖L1(T). (As in the previous remark this implies the
Lp(T)→ Lp(T), 1 < p <∞, boundedness of H immediately.)

5.12. Theorem. We have for every f ∈ L1(T) that

‖H f(x)‖L1,∞(T) . ‖f‖L1(T).

Proof. In combination with the identity (4.1) for the Fejér kernels we use the ele-
mentary facts that | sin y| ≤ |y| for all y ∈ R and | sin y| ≥ 2

π
|y| if |y| ≤ π

2
. This gives

that for all |y| ≤ 1/2 we have

FN(y) =
1

N + 1

∣∣∣sin((N + 1)πy)

sin(πy)

∣∣∣2 . 1

N + 1

∣∣∣sin((N + 1)πy)

y

∣∣∣2
= (N + 1)

∣∣∣sin((N + 1)πy)

(N + 1)y

∣∣∣2
. (N + 1) min

(
1,

1

(N + 1)2|y|2
)

.
N + 1

1 + (N + 1)2|y|2
= mε(y),

where ε = ε(N) = (N + 1)−1. In the last estimate we used that min(1, 1/t) .
1/(1 + t) for t ≥ 0.

Define F = f1[−1,1] ∈ L1(R), and notice that we now have for |x| ≤ 1/2 that

H f(x) = sup
N∈N

∣∣∣ ˆ 1/2

−1/2

FN(y)f(x− y) dy
∣∣∣

. sup
ε>0

ˆ
R
mε(y)|F (x− y)| dy = G(F )(x).

Using Lemma 5.9 we now get

‖H f(x)‖L1,∞(T) = sup
λ>0

λ|{x ∈ [−1/2, 1/2] : H f(x) > λ}|

. sup
λ>0

λ|{x ∈ R : G(F )(x) > λ}|

.
ˆ
R
|F (x)| dx =

ˆ 1

−1

|f(x)| dx = 2

ˆ 1/2

−1/2

|f(x)| dx,

and so we are done. �

We are now ready to prove Theorem 5.7. The proof involves again an important
standard argument of real analysis.

Proof Theorem 5.7. The standard way to show almost everywhere convergence for
integrable functions is via the following two steps: 1) show convergence in a
dense subset and then 2) prove the boundedness of a relevant maximal operator.

15
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If you have taken Real Analysis I compare to the proof of Lebesgue differentiation
theorem via Lemma 5.10.

Let now f ∈ L1(T). It is enough to show that

|{|x| ≤ 1/2: lim sup
N→∞

|σNf(x)− f(x)| > 0}| = 0.

We fix an arbitrary λ > 0 and show that

|{|x| ≤ 1/2: lim sup
N→∞

|σNf(x)− f(x)| > λ}| = 0,

which is enough. Let ε > 0. Choose a continuous g ∈ L1(T) (e.g. a trigonometric
polynomial using Corollary (4.4)) so thatˆ 1/2

−1/2

|f(x)− g(x)| dx < ε.

We know that because g is continuous we have

lim
N→∞

σNg(x) = g(x)

for every x ∈ [−1/2, 1/2]. Estimating

|σNf(x)− f(x)| ≤ |σN(f − g)(x)|+ |σNg(x)− g(x)|+ |g(x)− f(x)|
we see that

lim sup
N→∞

|σNf(x)− f(x)| ≤ sup
N∈N
|σN(f − g)(x)|+ 0 + |f(x)− g(x)|

= H (f − g)(x) + |f(x)− g(x)|.
Therefore, we have by Theorem 5.12 and the trivial inequality (Chebyshev’s in-
equality)

|{x ∈ A : |h(x)| > λ}| =
ˆ
A

1|h|>λ = λ−1

ˆ
A

λ1|h|>λ ≤ λ−1

ˆ
A

|h|

that ∣∣∣{|x| ≤ 1

2
: lim sup

N→∞
|σNf(x)− f(x)| > λ

}∣∣∣
≤
∣∣∣{|x| ≤ 1

2
: H (f − g)(x) >

λ

2

}∣∣∣+
∣∣∣{|x| ≤ 1

2
: |f(x)− g(x)| > λ

2

}∣∣∣
.

1

λ

ˆ 1/2

−1/2

|f(x)− g(x)| dx < ε

λ
.

This ends the proof. �

6. CRITERIA FOR THE POINTWISE CONVERGENCE OF FOURIER SERIES

Thus far we have a very satisfactory theory of the convergence properties of
σNf , including the following key results:

(1) If f ∈ Lp(T), 1 ≤ p <∞, then

lim
N→∞

‖σNf − f‖Lp = 0

by Theorem 4.3.

16
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(2) If f ∈ L1(T) has the left and right limits at a point x0, denoted by f(x0−)
and f(x0+), respectively, then we have

lim
N→∞

σNf(x0) =
f(x0+) + f(x0−)

2

by Theorem 5.2.
(3) For all f ∈ L1(T) we have that

lim
N→∞

σNf(x) = f(x)

for almost every x by Theorem 5.7.
The only result we have so far about SNf concerns the pointwise behaviour
recorded in Proposition 5.5. While useful, it requires the a priori knowledge of
the convergence of the series limN→∞ SNf(x0). In this section we look at some
pointwise results for SNf(x) – but these will require more than continuity. Later
we will discuss the convergence in Lp norm. We warn the reader that some re-
sults that hold for σNf fail spectacularly for SNf . The following proposition is
the first warning sign.

6.1. Proposition (duBois Reymond). There exists a continuous function f : T→ C so
that for some x0 we have

lim sup
N→∞

|SNf(x0)| =∞.

Proof. Such a function can be constructed explicitly, but it is less tedious to show
its existence abstractly. Recall the Banach–Steinhaus theorem (also known as the
uniform boundedness principle) from functional analysis: a family of bounded
linear operators Ts : X → Y between Banach spaces X and Y is either uniformly
bounded (sups ‖Ts‖X→Y < ∞) or there is some single vector x ∈ X such that
sups ‖Tsx‖Y =∞. For N ∈ N we define the functionals TN : C(T)→ C by

TN(f) := SNf(0) =

ˆ
|y|≤1/2

DN(y)f(y) dy.

Notice that if we could choose f = fN = sgnDN then we would get by Section 3.

TN(fN) =

ˆ
|y|≤1/2

|DN(y)| dy &
N∑
k=1

1

k
.

This is not a continuous function as DN has zeroes – the idea is to simply modify
this choice of a f a little bit.

Let N ≥ 100 be an integer and let fN ∈ C(T) be an even function bounded by
1, which is equal to sgnDN except at small intervals of length (2N)−2 around the
2N zeos of DN . Let IN denote the union of these intervals. Then we have

‖TN‖C(T)→C = sup
g∈C(T)
‖g‖L∞≤1

|TN(g)| ≥ |TN(fN)| =
∣∣∣ˆ
|y|≤1/2

DN(y)fN(y) dy
∣∣∣

so that by triangle inequality we have

‖TN‖C(T)→C ≥
ˆ

[− 1
2
, 1
2

]\IN
|DN(y)| dy −

∣∣∣ ˆ
IN

DN(y)fN(y) dy
∣∣∣

17
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=

ˆ
|y|≤ 1

2

|DN(y)| dy −
ˆ
IN

|DN(y)| dy −
∣∣∣ ˆ

IN

DN(y)fN(y) dy
∣∣∣

≥
ˆ
|y|≤ 1

2

|DN(y)| dy − 2(2N + 1)|IN |

≥
ˆ
|y|≤ 1

2

|DN(y)| dy − 6N(2N)−1 ≥ c0

N∑
k=1

1

k
− 3.

It follows that supN ‖TN‖C(T)→C =∞ and so by the uniform boundedness princi-
ple there has to be an f ∈ C(T) for which we have

∞ = sup
N
|TN(f)| = sup

N
|SNf(0)|.

It follows that supN≥N0
|SNf(0)| =∞ for all N0, and the claim follows. �

If f is somewhat more than just continuous, we have positive results. The
results are very local in nature.

6.2. Theorem (Dini). Let f ∈ L1(T). Suppose that for some x and δ > 0 we haveˆ
|y|<δ

|f(x+ y)− f(x)|
|y|

dy <∞.

Then we have
lim
N→∞

SNf(x) = f(x).

Proof. It follows that ˆ
|y|≤ 1

2

|f(x− y)− f(x)|
|y|

dy <∞.

Using
´ 1/2

−1/2
DN(y) dy = 1 write

SNf(x)− f(x) =

ˆ
|y|≤ 1

2

[f(x− y)− f(x)]DN(y) dy

=

ˆ
|y|≤ 1

2

[f(x− y)− f(x)]
sin((2N + 1)πy)

sin(πy)
dy.

For y ∈ [−1/2, 1/2) define

g(y) =
1

2i

f(x− y)− f(x)

sin(πy)
.

Recalling that | sin y| ≥ 2
π
|y| if |y| ≤ π

2
we have

|g(y)| ≤ |f(x− y)− f(x)|
|y|

,

and so g ∈ L1(T). Writing

sin((2N + 1)πy) =
1

2i
[e2πiNyeiπy − e−2πiNye−iπy]

18



Fourier Analysis I Martikainen

we see that
SNf(x)− f(x) = ĝeiπ·(−N)− ĝe−iπ·(N).

The claim now follows from the Riemann–Lebesgue lemma, Lemma 1.4. �

We readily get the following corollary.

6.3. Corollary. Let f ∈ L1(T).
(1) Suppose that for some α ∈ (0, 1], C <∞, and for some xwe have |f(x)−f(y)| ≤

C|x− y|α for all y in some interval around x. Then limN→∞ SNf(x) = f(x).
(2) Suppose f is differentiable at x. Then limN→∞ SNf(x) = f(x).

Another direct corollary of Dini’s criterion is the following.

6.4. Corollary (Riemann’s localisation principle). If f ∈ L1(T) vanishes in some
interval around x, then

lim
N→∞

SNf(x) = 0.

7. L2 CONVERGENCE OF FOURIER SERIES

We recall the following fundamental proposition from functional analysis.

7.1. Proposition. Let H be a Hilbert space with the inner product 〈x | y〉, x, y ∈ H .
Let (em)m∈Z be an orthonormal sequence in H – i.e., 〈em1 | em2〉 = δm1,m2 . Then the
following are equivalent:

(1) The sequence (em)m∈Z is a complete orthonormal system – i.e.,

span({em : m ∈ Z}) = H.

(2) We have 〈x | em〉 = 0 for all m if and only if x = 0.
(3) For all x ∈ H we have

lim
N→∞

∥∥∥x− ∑
|m|≤N

〈x | em〉em
∥∥∥
H

= 0.

(4) For all x ∈ H we have

‖x‖2
H =

∑
m∈Z

|〈x | em〉|2.

(5) For all x, y ∈ H we have

〈x | y〉 =
∑
m∈Z

〈x | em〉〈y | em〉.

Notice that fg ∈ L1(T) for f, g ∈ L2(T) by Hölder’s inequality. We consider the
Hilbert space L2(T) equipped with the inner product

〈f | g〉 =

ˆ 1

0

f(x)g(x) dx.

The completeness of L2 (and Lp spaces) is proved at least in Real Analysis I, so L2

is a Hilbert space. This is why L2 is very special compared to Lp, p 6= 2. Conse-
quently, the L2 convergence, together with some additional important properties,
of Fourier series turns out to be simple.
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Let em(x) := e2πimx, m ∈ Z. As we have
ˆ 1

0

em1(x)em2(x) dx =

ˆ 1

0

e2πi(m1−m2)x dx = δm1,m2 ,

(em)m∈Z is an orthonormal sequence in H . Moreover, if

0 = 〈f |em〉 =

ˆ 1

0

f(x)e−2πimx dx = f̂(m)

for all m ∈ Z, then f = 0 by Corollary 4.4. Therefore, by Proposition 7.1 we have
that (em)m∈Z is a complete orthonormal system in L2(T). We are ready to state the
L2 theory of Fourier series.

7.2. Theorem. For f, g ∈ L2(T) the following holds.
(1) We have

lim
N→∞

‖SNf − f‖L2 = 0.

(2) We have the Plancherel’s identity

‖f‖2
L2 =

∑
m∈Z

|f̂(m)|2.

(3) We have the Parseval’s relationˆ 1

0

f(x)g(x) dx =
∑
m∈Z

f̂(m)ĝ(m).

(4) The map f 7→ (f̂(m))m∈Z is an isometry from L2(T) onto `2(Z).
(5) For all k ∈ Z we have

f̂ g(k) =
∑
m∈Z

f̂(m)ĝ(k −m) =
∑
m∈Z

f̂(k −m)ĝ(m).

Proof. Notice that (1), (2) and (3) follow directly from Proposition 7.1. For (4) it
only remains to show that the mapping is onto (i.e., surjective). We leave this and
(5) as an exercise. �

8. DECAY OF FOURIER COEFFICIENTS AND SOBOLEV SPACES

We know by the Riemann-Lebesgue lemma that if f ∈ L1(T) then |f̂(m)| → 0
when |m| → ∞. It can be shown that given a sequence of positive real numbers dm
with dm → 0 as |m| → ∞, there exists f ∈ L1(T) so that |f̂(m)| ≥ dm for all m ∈ Z.
That is, the convergence in the Riemann-Lebesgue lemma can be arbitrarily slow.
See Grafakos [2].

For more regular f we get better decay. Let C(T) = C0(T) consist of continuous
1-periodic functions f : R → R, Ck(T) consist of k-times differentiable 1-periodic
functions f : R → R, and let C∞(T) =

⋂
k≥0C

k(T). Let us denote ordinary point-
wise derivatives as f ′(x) = f (1)(x), f ′′(x) = f (2)(x) or d

dx
f(x), d2

dx2
f(x), and so

on.
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8.1. Definition. Let f ∈ L1(T) and k = 1, 2, . . .. If there exists g ∈ L1(T) so that for
all ϕ ∈ C∞(T) we have ˆ 1

0

fϕ(k) = (−1)k
ˆ 1

0

gϕ,

then g is called the kth weak derivative of f , and we denote g = Dkf .

If g1 and g2 are both kth weak derivatives of f , then g1 = g2 almost everywhere.
Indeed, if for g ∈ L1(T) we have

0 =

ˆ 1

0

g(y)ϕ(y) dy

for all ϕ ∈ C∞(T), then g = 0 almost everywhere. To see this, fix x,N and let
ϕ(y) = FN(x− y). Then we have

0 = FN ∗ g(x) = σNg(x)

but σNg → g in L1(T).

8.2. Definition. Let 1 ≤ p < ∞ and k = 1, 2, . . .. We say that f ∈ W k,p(T) if
f ∈ Lp(T) has weak-derivatives D1f, . . . , Dkf ∈ Lp(T). We norm this space with
the norm

‖f‖Wk,p(T) :=
( k∑
i=0

‖Dif‖pLp
)1/p

,

where we agree D0f = f . These are called Sobolev spaces.

8.3. Example. Suppose f(x) = x for 0 ≤ x < 1 and f(1) = 0, and extend f
periodically. Then f ∈ L1(T) \W 1,1(T). To see this, let ϕ ∈ C∞(T) and notice that
by integration by parts we have

(8.4)
ˆ 1

0

f(x)ϕ′(x) dx =

ˆ 1

0

xϕ′(x) dx = (1 · ϕ(1)− 0 · ϕ(0))−
ˆ 1

0

ϕ(x) dx.

Therefore, we have

ϕ(1) =

ˆ 1

0

f(x)ϕ′(x) dx+

ˆ 1

0

ϕ(x) dx

Aiming for a contradiction suppose that g := D1f ∈ L1 exists. Then we have

ϕ(1) = −
ˆ 1

0

g(x)ϕ(x) dx+

ˆ 1

0

ϕ(x) dx =

ˆ 1

0

(1− g(x))ϕ(x) dx.

Choose a sequence ϕj ∈ C∞(T) with 0 ≤ ϕj ≤ 1, ϕj(m) = 1 for all m ∈ Z and
limj→∞ ϕj(x) = 0 for all x ∈ R \ Z. Then by dominated convergence we have

1 = lim
j→∞

ϕj(1) = lim
j→∞

ˆ 1

0

(1− g(x))ϕj(x) dx =

ˆ 1

0

(1− g(x)) lim
j→∞

ϕj(x) dx = 0.

If f ∈ W k,1(T) there is an easy but useful formula connecting f̂(m) and D̂kf(m).
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8.5. Lemma. Suppose f ∈ W k,1(T) for some k ≥ 1. Then for m ∈ Z \ {0} we have

f̂(m) =
1

(2πim)k
D̂kf(m)

and D̂kf(0) = 0.

Proof. Using e−2πimx = (−1)k

(2πim)k
dk

dxk
e−2πimx and that x 7→ e−2πimx is in C∞(T) we get

that

f̂(m) =

ˆ 1

0

f(x)e−2πimx dx =
1

(2πim)k

ˆ 1

0

Dkf(x)e−2πimx dx =
1

(2πim)k
D̂kf(m).

We also have

D̂kf(0) =

ˆ 1

0

Dkf · 1 = (−1)k
ˆ 1

0

f
dk

dxk
1 = 0.

�

8.6. Corollary. Suppose f ∈ W k,1(T) for some k ≥ 1. Then we have

lim
|m|→∞

|m|k|f̂(m)| = 0

and for all m ∈ Z we have

|f̂(m)| .k
max(‖f‖L1 , ‖Dkf‖L1)

(1 + |m|)k
.

Proof. For m 6= 0 we have

|m|k|f̂(m)| = 1

(2π)k
|D̂kf(m)| → 0

by applying the Riemann-Lebesgue lemma with Dkf ∈ L1. The desired estimate
follows by using that |D̂k(m)| ≤ ‖Dkf‖L1 and |f̂(m)| ≤ ‖f‖L1 (the latter is needed
for m = 0). �

8.7. Example. We continue with the Example 8.3. So let again f(x) = x for 0 ≤
x < 1 and f(1) = 0, and extend f periodically. Applying Equation (8.4) with
ϕ(x) = ϕm(x) = e−2πimx (i.e., integration by parts) we get for m 6= 0 that

(−2πim)f̂(m) =

ˆ 1

0

xϕ′(x) dx = 1−
ˆ 1

0

ϕ(x) dx = 1.

Thus, we have lim|m|→∞ |f̂(m)| = 0 as we should have by the Riemann-Lebesgue
lemma. However, we have

|m||f̂(m)| = 1

2π
,

and so in particular lim|m|→∞ |m||f̂(m)| 6= 0. We can again conclude that f 6∈
W 1,1(T) by Corollary 8.6.
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8.1. Absolutely continuous functions. We now introduce/recall the notion of
absolute continuity from Real Analysis I as it is very closely related.

8.8. Definition. A function F : [a, b]→ R is absolutely continuous on the interval
[a, b] if for all ε > 0 there is a δ > 0 so that for any finite collection of disjoint
intervals (a1, b1), . . . , (am, bm) ⊂ [a, b] with

m∑
i=1

(bi − ai) < δ

we have
m∑
i=1

|f(bi)− f(ai)| < ε.

We do not need the definition too much – rather, the following fundamental
basic facts that are proved in Real Analysis I are useful:

(1) If G ∈ L1([a, b]) then the function

H(x) :=

ˆ x

a

G, x ∈ [a, b],

is absolutely continuous and H ′(x) = G(x) for almost every x ∈ [a, b].
(2) F is absolutely continuous if and only if F ′(x) exists for almost every x ∈

[a, b], F ′ ∈ L1([a, b]) and

F (x)− F (a) =

ˆ x

a

F ′

for every x ∈ [a, b].
Suppose now F,G : [a, b] → R are absolutely continuous. The product FG is
absolutely continuous and for almost every y ∈ [a, b] we have

(FG)′(y) = F ′(y)G(y) + F (y)G′(y).

Integrating this over y ∈ [a, x], where x ∈ [a, b], we get

F (x)G(x)− F (a)G(a) =

ˆ x

a

(FG)′ =

ˆ x

a

F ′G+

ˆ x

a

FG′.

Written in a different order we arrive at the integration by parts formulaˆ x

a

FG′ = [F (x)G(x)− F (a)G(a)]−
ˆ x

a

F ′G, x ∈ [a, b].

8.9. Proposition. A function f ∈ L1(T) satisfies f ∈ W 1,1(T) if and only if f = f̃

almost everywhere, where f̃ ∈ L1(T) is absolutely continuous on [0, 1].

Proof. Suppose f ∈ L1(T) is such that f = f̃ almost everywhere, where f̃ ∈ L1(T)
is absolutely continuous on [0, 1]. Then for every ϕ ∈ C∞(T) we haveˆ 1

0

fϕ′ = [f̃(1)ϕ(1)− f̃(0)ϕ(0)]−
ˆ 1

0

f̃ ′ϕ = −
ˆ 1

0

f̃ ′ϕ,

where we used that f̃(1) = f̃(0) and ϕ(1) = ϕ(0). Therefore, we have that the
weak derivative D1f exists and equals f̃ ′ ∈ L1, and so f ∈ W 1,1(T).
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Conversely, suppose that f ∈ W 1,1(T). Define

f̃(x) =

ˆ x

0

D1f(y) dy, 0 ≤ x ≤ 1.

Then f̃ is absolutely continuous on [0, 1], andD1f̃(x) = f̃ ′(x) = D1f(x) for almost
every x ∈ [0, 1]. It follows (see the exercises) that f(x) = f(0) + f̃(x) for almost
every x ∈ [0, 1]. Notice also that

f̃(1) =

ˆ 1

0

D1f(y) dy = −
ˆ 1

0

f(y)
dy

y
(1) dy = 0 = f̃(0).

We conclude that f agrees almost everywhere with the function f(0) + f̃ ∈ L1(T),
which is absolutely continuous on [0, 1]. �

8.10. Remark. We have to be careful not to get confused. Suppose again f(x) = x

for 0 ≤ x < 1 and f(1) = 0, and extend f periodically. Define f̃(x) = x, 0 ≤ x ≤ 1.
Of course f(x) = f̃(x) for almost every x ∈ [0, 1] and f̃ is absolutely continuous
on [0, 1]. However, as f̃(0) 6= f̃(1) we cannot extend f̃ into a 1-periodic function.

9. SOBOLEV SPACES Hs(T) AND SOBOLEV EMBEDDINGS

The exponent p = 2 is again in a special role even in the Sobolev range W k,p(T).
We now study

Hk(T) := W k,2(T), k = 1, 2, . . . .

For m ∈ Z denote
〈m〉 := (1 + |m|2)1/2.

This is sometimes called the Japanese bracket of m.

9.1. Proposition. For k = 1, 2, . . ., we have that f ∈ L1(T) satisfies f ∈ Hk(T) if and
only if (∑

m∈Z

|〈m〉kf̂(m)|2
)1/2

<∞.

Moreover, for f ∈ Hk(T) we have

‖f‖Hk(T) ∼
(∑
m∈Z

|〈m〉kf̂(m)|2
)1/2

.

Proof. For convenience we assume that k = 1. Suppose that f ∈ H1(T) ⊂ W 1,1(T).
Then we have by Lemma 8.5 and Theorem 7.2 that∑

m∈Z

|〈m〉f̂(m)|2 =
∑
m∈Z

|f̂(m)|2 +
∑
m∈Z

||m|f̂(m)|2

∼
∑
m∈Z

|f̂(m)|2 +
∑
m∈Z

|D̂1f(m)|2

= ‖f‖2
L2 + ‖D1f‖2

L2 = ‖f‖2
H1(T).

24



Fourier Analysis I Martikainen

We now suppose that f ∈ L1(T) is such that(∑
m∈Z

|〈m〉f̂(m)|2
)1/2

<∞.

It follows that ((2πim)f̂(m))m∈Z ∈ `2(Z). By (4) of Theorem 7.2 it follows that
f ∈ L2(T) and we find g ∈ L2(T) so that ĝ(m) = (2πim)f̂(m) for all m ∈ Z. We
will show that g = D1f . Let ϕ ∈ C∞(T). Notice that for all N we have∣∣∣ ˆ 1

0

fϕ′ +

ˆ 1

0

gϕ
∣∣∣

≤
∣∣∣ ˆ 1

0

(f − SNf)ϕ′
∣∣∣+
∣∣∣ˆ 1

0

SNfϕ
′ +

ˆ 1

0

SNgϕ
∣∣∣+
∣∣∣ˆ 1

0

(g − SNg)ϕ
∣∣∣.

As SNf → f and SNg → g in L2(T), we have by Hölder’s inequality that the first
and second term vanish at the limit N →∞. Thus, we only need to note thatˆ 1

0

SNfϕ
′ = −

ˆ 1

0

(SNf)′ϕ

and that

(SNf)′(x) =
∑
|m|≤N

f̂(m)(2πim)e2πimx =
∑
|m|≤N

ĝ(m)e2πimx = SNg,

so that the term in the middle vanishes for all N . It follows that f ∈ L2(T) and
D1f = g ∈ L2(T). Thus f ∈ H1(T), and we are done. �

By redefining (switching to an equivalent norm)

‖f‖Hk(T) :=
(∑
m∈Z

|〈m〉kf̂(m)|2
)1/2

we have
Hk(T) = {f ∈ L1(T) : ‖f‖Hk(T) <∞}.

This is convenient: we do not need the a priori existence of the weak derivatives
– everything is determined simply by the finiteness of this constant which makes
sense even with the minimal assumption f ∈ L1(T). We can even make sense of
non-integer values of k by defining things in the Fourier side like this.

9.2. Definition. Let s ∈ [0,∞). Define

Hs(T) = {f ∈ L1(T) : ‖f‖Hs(T) <∞},
where

‖f‖Hs(T) :=
(∑
m∈Z

|〈m〉sf̂(m)|2
)1/2

.

Notice that for s ≥ 0 we always have 1 ≤ 〈m〉s, and so by Theorem 7.2 we have
Hs(T) ⊂ L2(T) (with H0(T) = L2(T)).

9.3. Theorem. Let s ∈ (0,∞). The spaceHs(T) is a Hilbert space with the inner product

〈f | g〉Hs(T) =
∑
m∈Z

〈m〉2sf̂(m)ĝ(m)
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Proof. Exercise. �

Let us also denote

‖f‖Ḣs(T) :=
(∑
m 6=0

|m|2s|f̂(m)|2
)1/2

.

9.1. Sobolev embeddings.

9.4. Definition. For 0 < α < 1 define

‖f‖Λ̇α(T) := sup
x,y∈[0,1]

|f(x+ y)− f(x)|
|y|α

and
‖f‖Λα(T) = ‖f‖L∞ + ‖f‖Λ̇α(T).

We prove the following Sobolev embedding stating that functions in Hs(T),
s > 1/2, are continuous and in fact belong to some space Λα.

9.5. Theorem. Suppose s = 1
2

+ α, α ∈ (0, 1). Then we have the Sobolev embedding

‖f‖Λα(T) . ‖f‖Hs(T).

9.6. Remark. Strictly speaking f = g a.e. for some g ∈ Hs(T) ∩ Λα(T).

Proof of Theorem 9.5. Notice that as 2s > 1 we have∑
m∈Z

|f̂(m)| =
∑
m∈Z

〈m〉−s|〈m〉sf̂(m)| ≤
(∑
m∈Z

〈m〉−2s
)1/2(∑

m∈Z

|〈m〉sf̂(m)|2
)1/2

.
(∑
m∈Z

|〈m〉sf̂(m)|2
)1/2

= ‖f‖Hs(T).

By Proposition 4.6 we have that

f(x) =
∑
m∈Z

f̂(m)e2πimx

almost everywhere. We replace f by this continuous representative. Notice first
that

‖f‖L∞ ≤
∑
m∈Z

|f̂(m)| . ‖f‖Hs(T).

We now prove that ‖f‖Λ̇α(T) . ‖f‖Ḣs(T), s = 1/2 + α. Fix x, y ∈ [−1/2, 1/2]. We
have

|f(x+ y)− f(x)| =
∣∣∣∑
m6=0

f̂(m)[e2πimy − 1]e2πimx
∣∣∣

=
∣∣∣∑
m6=0

|m|sf̂(m) · [e2πimy − 1]e2πimx|m|−s
∣∣∣

≤
(∑
m6=0

|m|2s|f̂(m)|2
)1/2(∑

m 6=0

|e2πimy − 1|2|m|−2s
)1/2
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= ‖f‖Ḣs(T)

(∑
m6=0

|e2πimy − 1|2|m|−2s
)1/2

.

We will prove that for |y| ≤ 1/2 we have∑
m6=0

|e2πimy − 1|2|m|−2s . |y|2α,

which ends the proof. We estimate using the facts that |eit| = 1 and |eit − 1| ≤ |t|,
t ∈ R, and get that

|e2πimy − 1|2|m|−2s . min(|m|−2s, |y|2|m|2−2s).

We may then estimate only the part m > 0. Here m−2s is the better estimate of the
two precisely when m ≥ |y|−1. Accordingly, given y satisfying 0 < |y| ≤ 1/2 we
fix A ∈ {2, 3, . . .} so that A ≤ |y|−1 < A+ 1, and then write

∞∑
m=1

min(m−2s, |y|2m2−2s) = |y|2
A∑

m=1

m2−2s +
∞∑

m=A+1

m−2s = I + II.

We have

II =
∞∑

m=A+1

ˆ m

m−1

m−2s dt ≤
∞∑

m=A+1

ˆ m

m−1

t−2s dt =

ˆ ∞
A

t−2s dt

and ˆ ∞
A

t−2s dt ∼ A−2s+1 ∼ |y|2s−1 = |y|2α.

It remains to estimate I . We prove
∑A

m=1m
2−2s . |y|2α−2. For θ > −1 we have

by the integral test (similarly as above) that
A∑

m=1

mθ . Aθ+1 + 1,

and so
A∑

m=1

m2−2s . A3−2s + 1 ∼ |y|2α−2 + 1 . |y|2α−2.

We are done. �

9.7. Remark. The case s = 1 can also be proved as follows. Notice H1(T) =
W 1,2(T) ⊂ W 1,1(T) so that f is absolutely continuous with f ′ ∈ L2. Writing
f(t) = f(0) +

´ t
0
f ′, 0 ≤ t ≤ 2, we have for x, y ∈ [0, 1] that

|f(x+ y)− f(x)| =
∣∣∣ ˆ x+y

0

f ′ −
ˆ x

0

f ′
∣∣∣ ≤ ˆ x+y

x

|f ′| ≤ ‖f ′‖L2|y|1/2.

In the last step we applied Hölder’s inequality with p = p′ = 2. This proves
that ‖f‖Λ̇1/2(T) . ‖f‖Ḣ1(T). The estimate ‖f‖L∞ . ‖f‖H1(T) is proved as in the
beginning of the above proof.

What happens when s ≤ 1
2
? We aim to answer this next. We need the following

estimate first.
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9.8. Proposition (Hausdorff-Young). Let 0 ≤M < N <∞ and let a = (am)M≤|m|≤N
be a sequence of complex numbers. Define

SM,Na(x) :=
∑

M≤|m|≤N

ame
2πimx.

Let 1 ≤ p ≤ 2. Then we have

‖SM,Na‖Lp′ (T) ≤ ‖a‖`p .

Proof. Let p = 2. Then p = p′ = 2, and we have by Plancherel’s identity that

‖SM,Na‖L2(T) =
(∑
m∈Z

|ŜM,Na|2
)1/2

=
( ∑
M≤|m|≤N

|am|2
)1/2

= ‖a‖`2 .

Let p = 1 so that p′ =∞. Then we have

‖SM,Na‖L∞(T) ≤
∑

M≤|m|≤N

|am| = ‖a‖`1 .

We now use the Riesz–Thorin interpolation theorem, Theorem A.3, with p0 = 1,
q0 =∞ and p1 = q1 = 2. It follows that for all θ ∈ (0, 1) we have

‖SM,Na‖Lqθ (T) ≤ ‖a‖`pθ ,
where

1

pθ
=

1− θ
1

+
θ

2
= 1− θ

2

and
1

qθ
=

1− θ
∞

+
θ

2
=
θ

2
.

It follows that
1

pθ
+

1

qθ
= 1,

and so qθ = p′θ, and pθ is an arbitrary number in the interval (1, 2). �

9.9. Corollary. Let 1 ≤ p ≤ 2. For a = (am)m∈Z ∈ `p define

SNa(x) =
∑
|m|≤N

ame
2πimx.

Then (SNa)N∈N is a Cauchy sequence in Lp′(T) and converges to

Sa =:
∑
m∈Z

ame
2πimx ∈ Lp′(T)

satisfying
‖Sa‖Lp′ (T) ≤ ‖a‖`p(Z).

9.10. Corollary. Let 1 ≤ p ≤ 2 and suppose f ∈ L1(T) is such thatFf := (f̂(m))m∈Z ∈
`p(Z) – i.e., we have

‖(f̂(m))m∈Z‖`p(Z) =
(∑
m∈Z

|f̂(m)|p
)1/p

<∞.
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Then we have f ∈ Lp′(T) with

‖f‖Lp′ (T) ≤ ‖(f̂(m))m∈Z‖`p(Z)

and
lim
N→∞

‖SNf − f‖Lp′ (T) = 0.

Proof. Let a = (f̂(m))m∈Z ∈ `p(Z). Notice that SNf(x) = SNa(x) (with the obvious
abuse of notation that SN can hit functions or sequences), and so by the previ-
ous corollary (SNf)N∈N converges in Lp

′
(T) to some function g ∈ Lp

′
(T) with

‖g‖Lp′ (T) ≤ ‖a‖`p(Z). It remains to prove that f = g almost everywhere. Notice
that we have for every k ∈ Z that

|ŜNf(k)− ĝ(k)| ≤ ‖SNf − g‖L1(T) ≤ ‖SNf − g‖Lp′ (T) → 0

as N → ∞. But ŜNf(k) = f̂(k) if N ≥ |k|, and so f̂(k) = ĝ(k) for every k ∈ Z. It
follows that f = g almost everywhere, and we are done. �

We are ready to prove Sobolev’s embedding theorem in the range s ≤ 1/2.
Given s ≤ 1/2 define

p(s) =
2

1− 2s
.

Notice that p(0) = 2 and p(1/2) =∞. Recall that if f ∈ Hs(T) then f ∈ L2(T). The
following shows that in fact f is always p-integrable with p > 2.

9.11. Theorem. Let f ∈ Hs(T), where 0 < s ≤ 1/2. Then for all 2 ≤ q < p(s) we have

‖f‖Lq(T) . ‖f‖Hs(T).

Proof. Fix q ∈ (2, p(s)) and let p := q′ ∈ (1, 2). By Corollary 9.10 it is enough to
prove that

‖(f̂(m))m∈Z‖`p(Z) . ‖f‖Hs(T).

We estimate using Hölder’s inequality with t = 2/p > 1 and t′ = 2/(2 − p) as
follows:(∑

m∈Z

|f̂(m)|p
)1/p

=
(∑
m∈Z

〈m〉sp|f̂(m)|p〈m〉−sp
)1/p

≤
(∑
m∈Z

〈m〉spt|f̂(m)|pt
)1/(pt)(∑

m∈Z

〈m〉−spt′
)1/(pt′)

=
(∑
m∈Z

〈m〉2s|f̂(m)|2
)1/2(∑

m∈Z

〈m〉−sp
2

2−p

) 2−p
2p

= ‖f‖Hs(T)

(∑
m∈Z

〈m〉−sp
2

2−p

) 2−p
2p
.

It is enough to prove that

sp
2

2− p
> 1.
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But this is seen to be equivalent to
1

p
<

2s+ 1

2
.

Therefore, as 1/p+ 1/q = 1, we get that this is further equivalent to

q <
2

1− 2s
= p(s).

But this is our assumption, and so we are done. �

9.12. Remark. If s < 1/2 the theorem is true even with q = p(s), but this requires a
different proof.

9.2. Compact embeddings. A general philosophy is that sequences bounded in
a high regularity space (and constrained to lie in a compact domain such as the
torus) usually have convergent subsequences in low regularity spaces.

9.13. Theorem (Rellich–Kondrachov theorem). Let s > 0 and 0 ≤ s0 < s. Suppose
fn, n = 1, 2, 3 . . ., is a sequence of functions in Hs(T) such that

sup
n
‖fn‖Hs(T) <∞.

Then there is a function f ∈ Hs(T) and a subsequence fnk , k ∈ N, of fn, n ∈ N, such
that

lim
k→∞
‖fnk − f‖Hs0 (T) = 0.

Proof. Let M = supn ‖fn‖Hs(T) <∞. For every l ∈ Z we have

sup
n
|f̂n(l)|2 ≤

∑
m∈Z

|〈m〉sf̂n(m)|2 = ‖fn‖2
Hs(T) ≤M2.

Bounded sequences of scalars have convergent subsequences. First, choose a sub-
sequence (n0,k)k∈N of (n)n∈N so that

lim
k→∞

f̂n0,k
(0) = a0.

Then choose a subsequence (n1,k)k∈N of (n0,k)k∈N so that

lim
k→∞

f̂n1,k
(1) = a1.

Next, choose a subsequence (n−1,k)k∈N of (n1,k)k∈N so that

lim
k→∞

f̂n−1,k
(−1) = a−1,

and then a subsequence (n2,k)k∈N of (n−1,k)k∈N so that

lim
k→∞

f̂n2,k
(2) = a2.

Continue like this and let nk = nk,k, k ∈ N. Then we have for all m ∈ Z that

lim
k→∞

f̂nk(m) = am.

Notice that ∑
m∈Z

|〈m〉sam|2 = lim
k→∞

∑
m∈Z

|〈m〉sf̂nk(m)|2 ≤M2.
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Define f ∈ Hs(T) by setting

f =
∑
m∈Z

ame
2πim·.

For an arbitrary k,N ∈ N we estimate ‖fnk − f‖Hs0 (T) up by( ∑
|m|≤N

〈m〉2s0|f̂nk(m)− am|2
)1/2

+
( ∑
|m|>N

〈m〉2s0|f̂nk(m)− am|2
)1/2

=: Ik,N + IIk,N .

We further estimate

IIk,N ≤
( ∑
|m|>N

〈m〉2(s0−s)〈m〉2s|f̂nk(m)|2
)1/2

+
( ∑
|m|>N

〈m〉2(s0−s)〈m〉2s|am|2
)1/2

≤ N s0−s
[(∑

m∈Z

〈m〉2s|f̂nk(m)|2
)1/2

+
(∑
m∈Z

〈m〉2s|am|2
)1/2]

≤ 2M

N s−s0
.

Let ε > 0. First choose N so that IIk,N < ε for all k ∈ Z. Then choose k0 ∈ N so
that for all k ≥ k0 we have for all |m| ≤ N that

|f̂nk(m)− am| <
ε

2s0/2N s0(3N)1/2
.

Then for all k ≥ k0 we have by trivial upper bounds that Ik,N < ε. We conclude
that for k ≥ k0 we have

‖fnk − f‖Hs0 (T) ≤ Ik,N + IIk,N < 2ε.

�

9.14. Remark. Because of this result we say that Hs(T) is compactly embedded to
Hs−ε(T). A particular case is that Hs(T), s > 0, is compactly embedded to L2(T).

10. PERIODIC DISTRIBUTIONS

Thus far we have only been able to define f̂(m) and the associated Fourier
series SNf if f ∈ L1(T). We now develop a more general viewpoint, where a
Fourier series can be formed of objects which are not even functions.

10.1. Test functions. We call the space C∞(T) (consisting of smooth periodic
functions) the space of test functions. We equip this space with the metric

dC∞(T)(f, g) :=
∞∑
N=0

2−N
‖f − g‖CN (T)

1 + ‖f − g‖CN (T)

,

where
‖f‖CN (T) =

∑
|m|≤N

‖f (m)‖L∞ .

10.1. Proposition. The following holds.
(1) The mapping (f, g) 7→ dC∞(T)(f, g) is a metric on C∞(T).
(2) We have that fj → f in the metric space (C∞(T), dC∞(T)) if and only if for all

m = 0, 1, 2, . . . we have

lim
j→∞
‖f (m)

j − f (m)‖L∞ = 0.
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(3) The space C∞(T) is a complete metric space.

Proof. Exercise. �

10.2. Proposition. The following operations are continuous maps fromC∞(T)→ C∞(T).
(1) f 7→ f̃ , where f̃(x) = f(−x). (reflection)
(2) f 7→ f̄ (conjugation)
(3) f 7→ τyf , where τyf := f(x− y), y ∈ R. (translation)
(4) f 7→ f (m) (derivative)
(5) f 7→ fg, where g ∈ C∞(T). (multiplication)
(6) f 7→ f ∗ g, where g ∈ C∞(T). (convolution) Moreover, we have (f ∗ g)(m) =

f (m) ∗ g = f ∗ g(m).

Proof. Exercise. �

10.3. Definition. A sequence a = (am)m∈Z is said to be rapidly decreasing if for
any N = 0, 1, 2, . . . we have

(〈m〉Nam)m∈Z ∈ `∞(Z).

This sequence space is denoted by S (Z) and is equipped with the metric

dS (Z)(a, b) :=
∞∑
N=0

2−N
‖a− b‖SN (Z)

1 + ‖a− b‖SN (Z)

,

where
‖a‖SN (Z) := ‖(〈m〉Nam)m∈Z‖`∞(Z).

10.4. Remark. If ak, a ∈ S (Z) then again ak → a in S (Z) if and only if

lim
k→∞
‖ak − a‖SN (Z) = 0

for all N .

We denote
F : C∞(T)→ S (Z), Ff = (f̂(m))m∈Z.

10.5. Proposition. F is an isomorphism (a linear bijective continuous map with contin-
uous inverse) from C∞(T) onto S (Z). Moreover, we have

SNf → f

in C∞(T).

Proof. We essentially already know all the claims made here. For example, that
the target space is indeed S (Z) is a very special case of Corollary 8.6. Injectivity
follows from Corollary 4.4. For surjectivity remember arguments like in Propo-
sition 4.6 and the remark after that (involving Weierstrass M -test). You should
think through the details.

We only comment in detail on the new aspect involving the metric topologies
introduced above. We show the continuity of F : C∞(T)→ S (Z). Suppose fk →
0 in C∞(T). We need to show that Ffk → 0 in S (Z). For this we need to fix N
and show that

lim
k→∞
‖Ffk‖SN (Z) = 0.
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But
‖Ffk‖SN (Z) = ‖(〈m〉N f̂k(m))m∈Z‖`∞(Z) = sup

m∈Z
〈m〉N |f̂k(m)|

and for every m ∈ Z we have

〈m〉N |f̂k(m)| . |f̂k(m)|+ |m|N |f̂k(m)| . |f̂k(m)|+ |f̂ (N)
k (m)| ≤ ‖fk‖L∞ + ‖f (N)

k ‖L∞ .
The claim follows. Think how to prove the continuity of the inverse. �

10.2. Distributions. For convenience we denote the test functions also by D =
D(T) = C∞(T) (equipped with the notion of convergence as above). Then we
define that D′ consists of all the continuous linear functionals on D, that is,

D′ := {T : D → C : T is linear and Tϕj → 0 whenever ϕj → 0 in D}.
Elements of D′ are called periodic distributions. If T ∈ D′ we also denote

〈T, ϕ〉 := Tϕ, ϕ ∈ D.

10.6. Example. Suppose f ∈ L1(T) and define the functional Tf : D → C by set-
ting

〈Tf , ϕ〉 =

ˆ 1

0

f(x)ϕ(x) dx.

To check that Tf ∈ D′ let ϕj → 0 in D. Then we have

|〈Tf , ϕ〉| ≤ ‖f‖L1‖ϕj‖L∞ → 0

as j →∞.
The argument after the definition of weak derivatives, Definition 8.1, shows

that if Tf = Tg, then f = g almost everywhere. This means that any f ∈ L1(T)
determines a unique element of D′.

Therefore, D′ is a set that contains all reasonable periodic functions (if we iden-
tify f ∈ L1(T) with the associated distribution Tf ). However, it contains much
more.

10.7. Example. For ϕ ∈ D set

〈δ0, ϕ〉 = ϕ(0).

It is clear that δ0 ∈ D′. An argument analogous to the one in Example 8.3 shows
that δ0 is not given by an L1(T) function: δ0 6= Tf for all f ∈ L1(T).

Most operations that are defined on test functions can also be defined for dis-
tributions by duality. This is the whole point of this theory. For example, consider
the simple operation of reflection ϕ̃(x) = ϕ(−x), ϕ ∈ D. We want to define the
reflection T̃ of T ∈ D′ so that if it happens that T = Tf for some f ∈ D, then
T̃ = Tf̃ . For this to be true we need that for all f, ϕ ∈ D we have

〈T̃f , ϕ〉 = 〈Tf̃ , ϕ〉 =

ˆ 1

0

f(−x)ϕ(x) dx =

ˆ 1

0

f(x)ϕ(−x) dx = 〈Tf , ϕ̃〉.

Motivated by this we define the reflection of T ∈ D′ as the distribution T̃ ∈ D′
given by

〈T̃ , ϕ〉 := 〈T, ϕ̃〉, ϕ ∈ D.

33



Fourier Analysis I Martikainen

Similar computations motivate other natural definitions like

〈τyT, ϕ〉 := 〈T, τ−yϕ〉.
There is even a natural notion of a derivative of a distribution. For f ∈ D we

again want DkTf = Tf (k) which leads by integration by parts to the requirement

〈DkTf , ϕ〉 =

ˆ 1

0

f (k)ϕ = (−1)k
ˆ 1

0

fϕ(k) = (−1)k〈Tf , ϕ(k)〉.

10.8. Definition. For T ∈ D′ and k = 1, 2, . . . we define DkT ∈ D′ by setting

〈DkT, ϕ〉 := (−1)k〈T, ϕ(k)〉.

DkT is clearly a continuous linear functional onD as differentiation is a contin-
uous operation in D. The distribution DkT is called the kth distributional deriva-
tive or weak derivative of T .

10.9. Example. Let f ∈ L1(T). We can always differentiate f in the distributional
sense by forming D1Tf . This is an extremely weak notion of a derivative as even
very irregular functions have a derivative in this sense. For f to have a weak
derivative in the sense of Definition 8.1 we require that D1Tf is a function – i.e.,
there is g ∈ L1(T) so that D1Tf = Tg. In this situation we denoted g = D1f . So if f
has a weak derivative D1f ∈ L1, then D1Tf = TD1f , and conversely if D1Tf = Tg
for some g ∈ L1(T), then D1f exists and is equal to g.

In Example 8.3 we studied the L1(T) function f(x) = x for 0 ≤ x < 1 and
f(1) = 0. From those calculations it follows that the distributional derivative
D1Tf = 1− δ0. Notice further that

〈D1δ0, ϕ〉 = −〈δ0, ϕ
′〉 = −ϕ′(0).

We continue to define operations for distributions. The pointwise multiplica-
tion of T ∈ D′ by a fixed function f ∈ D is defined by

〈fT, ϕ〉 := 〈T, fϕ〉.
To define a convolution we again want Tf∗g = Tf∗g, and thus calculate for f, g, ϕ ∈
D that

〈Tf ∗ g, ϕ〉 = 〈Tf∗g, ϕ〉

=

ˆ 1

0

ˆ 1

0

f(y)g(x− y)ϕ(x) dy dx

=

ˆ 1

0

f(y)

ˆ 1

0

g(x− y)ϕ(x) dx dy =

ˆ 1

0

f(y)g̃ ∗ ϕ(y) dx = 〈Tf , g̃ ∗ ϕ〉.

Here we used Fubini’s theorem. For a general T ∈ D′ and g ∈ D we thus define
T ∗ g ∈ D′ by

〈T ∗ g, ϕ〉 := 〈T, g̃ ∗ ϕ〉.
This defines a continuous linear functional as ϕ 7→ g ∗ ϕ is continuous operation
D → D by Proposition 10.2. It turns out that T ∗g is in fact a function inD, but we
do not prove this now – we prove it soon using Fourier analysis. This is in line
with the usual philosophy that convolution is a nice object if one of the objects
involved in the convolution is nice.
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The following is an important result that finally utilises the assumed continuity
of distributions.

10.10. Theorem (All periodic distribution have finite order). For all T ∈ D′ there
exists N > 0 and C <∞ such that

|〈T, ϕ〉| ≤ C

N∑
m=0

‖ϕ(m)‖L∞ , ϕ ∈ D.

Proof. Fix T ∈ D′. To reach a contradiction assume that for all N > 0 there is
ϕN ∈ D such that

|〈T, ϕN〉| ≥ N

N∑
m=0

‖ϕ(m)
N ‖L∞ .

Define

ψN :=
1

N

( N∑
m=0

‖ϕ(m)
N ‖L∞

)−1

ϕN .

For any fixed m we have for all N ≥ m that

‖ψ(m)
N ‖L∞ ≤

1

N
.

It follows that ψN → 0 in D. By the continuity of the linear functional T we
have 〈T, ψN〉 → 0 as N → ∞. But by construction we also have for all N that
|〈T, ψN〉| ≥ 1 – a contradiction. �

10.3. Fourier series of periodic distributions. For a distribution of a form Tf ,
f ∈ D, we have

f̂(m) =

ˆ 1

0

f(x)e−2πimx dx = 〈Tf , e−2πim·〉.

This motivates the following definition.

10.11. Definition. If T ∈ D′ we define its Fourier coefficients via the formula

T̂ (m) = 〈T, e−2πim·〉, m ∈ Z.

Now F can act on T ∈ D′ and F(T ) := (T̂ (m))m∈Z. A sequence a = (am)m∈Z is
said to have polynomial growth if for some N > 0 we have

‖(〈m〉−Nam)m∈Z‖`∞(Z) <∞.
We denote the set of such sequences by S ′(Z). Do not confuse this with the
notation S (Z) – the sequences of rapid decay.

The following is the main result concerning the Fourier series of periodic dis-
tributions.

10.12. Theorem. The mapping F is a bijective map from the set of periodic distributions
D′ to the set of sequences of polynomial growth S ′(Z). If T ∈ D′ we have

lim
N→∞

ˆ 1

0

( ∑
|m|≤N

T̂ (m)e2πimx
)
ϕ(x) dx = 〈T, ϕ〉, ϕ ∈ D.
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This means that the sequence of L1(T) functions

SN(T )(x) :=
∑
|m|≤N

T̂ (m)e2πimx

converge to T in the sense of distributions.

Proof. Let T ∈ D′. Theorem 10.10 gives an N such that

|〈T, ϕ〉| .
N∑
k=0

‖ϕ(k)‖L∞ , ϕ ∈ D.

In particular, we have

|T̂ (m)| = |〈T, e−2πim·〉| .
N∑
k=0

|m|k . 〈m〉N ,

and so F(T ) ∈ S ′(Z).
For the converse direction, suppose that (am)m∈Z ∈ S ′(Z). Let N > 1 be such

that 〈m〉−N |am| . 1, m ∈ Z. Let bm = 〈m〉−2Nam. As |bm| . 〈m〉−N and N > 1
we have that bm ∈ `1(Z). Using Proposition 4.6 we can define the continuous
function

f(x) =
∑
m∈Z

bme
2πimx

with f̂(m) = bm. Define the differential operator L = 1 − 1
4π2D

2, and then define
the periodic distribution

T := LNTf ∈ D′

with
T̂ (m) = 〈m〉2N f̂(m) = 〈m〉2Nbm = am

as desired.
It remains to show that given T ∈ D′ we have

lim
N→∞

ˆ 1

0

( ∑
|m|≤N

T̂ (m)e2πimx
)
ϕ(x) dx = 〈T, ϕ〉, ϕ ∈ D.

Notice simply thatˆ 1

0

( ∑
|m|≤N

T̂ (m)e2πimx
)
ϕ(x) dx =

∑
|m|≤N

T̂ (m)ϕ̂(−m)

=
∑
|m|≤N

〈T, e−2πim·〉ϕ̂(−m)

=
〈
T,
∑
|m|≤N

ϕ̂(−m)e−2πim·
〉

= 〈T, SNϕ〉.

As SNϕ→ ϕ in D by Proposition 10.5 and T is continuous, the claim follows. �

10.13. Corollary. If T ∈ D′ and T̂ (m) = 0 for all m ∈ Z, then T = 0.
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10.14. Proposition. If T ∈ D′ has Fourier series

T =
∑
m∈Z

T̂ (m)e2πim·

then for all k = 1, 2, . . . we have

DkT =
∑
m∈Z

T̂ (m)(2πim)ke2πimx

with convergence in the sense of distributions.

Proof. Exercise. �

Recall that we can perform various natural operations on distributions – we
can e.g. take T ∈ D′ and g ∈ D and form T ∗ g ∈ D′. It then makes sense to
calculate T̂ ∗ g(m). All the natural formulas extend to this setting, and e.g.

T̂ ∗ g(m) = 〈T ∗ g, e−2πim·〉
= 〈T, g̃ ∗ e−2πim·〉

=
〈
T,

ˆ 1

0

g(−y)e−2πim(·−y) dy
〉

= 〈T, e−2πim·〉ĝ(m) = T̂ (m)ĝ(m).

From here we may also conclude that as F(T ) ∈ S ′(Z) and Fg ∈ S (Z) we have
that F(T ∗ g) = (T̂ (m)ĝ(m))m∈Z ∈ S (Z). But this means that T ∗ g ∈ D as by
Proposition 10.5 there is some f ∈ D such that T̂f (m) = f̂(m) = T̂ ∗ g(m), which
means by Corollary 10.13 that Tf = T ∗ g. In fact, we have f(x) = 〈T, τxg̃〉. We can
now even convolve two periodic distributions.

10.15. Definition. Let T, S ∈ D′. Then we define

〈T ∗ S, ϕ〉 := 〈T, S̃ ∗ ϕ〉, ϕ ∈ D.
This makes sense as S̃ ∗ ϕ ∈ D.

11. SOBOLEV SPACES H−s(T) AND ELLIPTIC REGULARITY

With the periodic distributions we can now even make sense of H−s(T) for
s > 0.

11.1. Definition. Let s > 0. We say that T ∈ H−s(T) if T ∈ D′ satisfies

‖T‖H−s(T) :=
(∑
m∈Z

|〈m〉−sT̂ (m)|2
)1/2

<∞.

11.2. Remark. Therefore, for all s ∈ R we have that T ∈ Hs(T) if T ∈ D′ satisfies

‖T‖Hs(T) :=
(∑
m∈Z

|〈m〉sT̂ (m)|2
)1/2

<∞.

11.3. Example. Notice that

δ̂0(m) = 〈δ0, e
−2πim·〉 = e−2πim·0 = 1

for all m ∈ Z. Thus δ0 ∈ H−s(T) for s > 1/2.
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Hs(T) is a Hilbert space for all s ∈ R with the inner product

〈T |S〉Hs(T) =
∑
m∈Z

〈m〉2sT̂ (m)Ŝ(m).

Moreover, we have ⋃
s∈R

Hs(T) = D′.

These are exercises.

11.4. Proposition. The trigonometric polynomials are dense in Hs(T) for every s ∈ R.
In particular, the space C∞(T) is dense in Hs(T).

Proof. Exercise. �

11.1. Differential equations, elliptic regularity. Define the polynomial

P (t) =
N∑
k=0

(2πi)kαkt
k,

where α0, . . . , αN are constants and αN 6= 0. The associated constant coefficient
differential operator is

P (D)T :=
N∑
k=0

αkD
kT, T ∈ D′,

in the sense that for all T ∈ D′ and m ∈ Z we have

P̂ (D)T (m) =
N∑
k=0

αkD̂kT (m) =
N∑
k=0

αk(2πim)kT̂ (m) = P (m)T̂ (m).

Suppose now that S ∈ Hs(T) for some s ∈ R and T ∈ D′ solves (in the distri-
butional sense) the differential equation

P (D)T = S.

It follows that for all m ∈ Z we have

P (m)T̂ (m) = Ŝ(m).

To estimate |T̂ (m)| from up we estimate |P (m)| from below. Notice that for c0 =
|(2πi)NαN | > 0 and some C0 <∞we have

|P (m)| =
∣∣∣(2πi)NαNmN +

N−1∑
k=0

(2πi)kαkm
k
∣∣∣

≥ c0|m|N −
N−1∑
k=0

|(2πi)kαk||m|k

≥ c0|m|N − C0|m|N−1.

Thus, there is some M so that for all |m| ≥M we have

|P (m)| ≥ c0

2
|m|N .
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For |m| ≥M we thus have

|T̂ (m)| = |Ŝ(m)|
|P (m)|

. |m|−N |Ŝ(m)|.

Finally, we conclude that∑
|m|≥M

|〈m〉s+N T̂ (m)|2 .
∑
m∈Z

|〈m〉sŜ(m)|2 <∞,

where we used the assumption S ∈ Hs(T). We conclude that T ∈ Hs+N(T). This
is an example of Elliptic regularity theory – here the solution T has N degrees
more regularity than the given S.

Suppose for example that S ∈ H−1/2(T) and N > 2. Then T ∈ Hs0(T) for
s0 := −1/2 + N > 3/2. As D1T ∈ Hs0−1(T), where s0 − 1 > 1/2, it follows by the
Sobolev embedding, Theorem 9.5, that T ∈ C1(T).

Similarly, if e.g. S ∈ C∞(T) then always T ∈ C∞(T).

11.2. Duality. Recall that the dual of a normed space X is denoted by X∗ and
that it consists of all the continuous linear functionals Λ: X → C and is equipped
with the operator norm

‖Λ‖X∗ := ‖Λ‖X→C := sup
‖x‖X≤1

|Λx|.

11.5. Theorem. Let s ∈ R. For every S ∈ H−s(T) define the linear functional

ΛS : Hs(T)→ C, ΛST :=
∑
m∈Z

T̂ (m)Ŝ(m).

Then ΛS ∈ (Hs(T))∗ (the dual of Hs(T)) with

‖ΛS‖(Hs(T))∗ = ‖ΛS‖Hs(T)→C = sup
‖T‖Hs(T)≤1

|ΛST | ≤ ‖S‖H−s(T).

Conversely, let Λ ∈ (Hs(T))∗ be arbitrary. Then there exists S ∈ H−s(T) such that
‖S‖H−s(T) = ‖Λ‖(Hs(T))∗ and Λ = ΛS .

It follows that for T ∈ D′ we have

‖T‖Hs(T) = sup
{∣∣∣∑

m∈Z

T̂ (m)f̂(m)
∣∣∣ : f ∈ C∞(T), ‖f‖H−s(T) = 1

}
.

Proof. Exercise (with hints). �

12. Lp CONVERGENCE OF FOURIER SERIES

We aim to prove here that ‖SNf − f‖Lp → 0 for f ∈ Lp(T) and 1 < p < ∞. We
already know the p = 2 result, which is much easier. We will also prove that this
result is not true for p = 1 in general.

For a bounded sequence a = (am)m∈Z ∈ `∞(Z) define

Saϕ(x) =
∑
m∈Z

amϕ̂(m)e2πimx, ϕ ∈ P .
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Here P = P(T) denotes the set of trigonometric polynomials. Saϕ is clearly well-
defined as the sum is finite for ϕ ∈ P (as ϕ̂(m) = 0 for all but finitely many m).
This could also be defined for ϕ ∈ D as then (ϕ̂(m))m ∈ S (Z). For each N define

Sa,Nf(x) =
∑
|m|≤N

amf̂(m)e2πimx, f ∈ L1(T).

This is well-defined for all N and all f ∈ L1(T) simply because it is a finite sum
and f̂(m) is well-defined.

12.1. Lemma. Let 1 ≤ p <∞ and a ∈ `∞(Z). We have that the sequence (Sa,Nf)N is a
converging sequence in Lp(T) for all f ∈ Lp(T) if and only if

sup
N
‖Sa,N‖Lp→Lp <∞.

Moreover, if this holds then Sa extends to a bounded operator from Lp(T)→ Lp(T) with

‖Sa‖Lp→Lp ≤ sup
N
‖Sa,N‖Lp→Lp ,

and for all f ∈ Lp(T) we have

lim
N→∞

‖Sa,Nf − Saf‖Lp = 0.

Proof. Suppose that the sequence (Sa,Nf)N is a converging sequence in Lp(T) for
all f ∈ Lp(T). Then in particular supN ‖Sa,Nf‖Lp <∞ for all f ∈ Lp(T). It follows
from the Banach–Steinhaus theorem that supN ‖Sa,N‖Lp→Lp <∞.

Suppose now that ‖Sa,Nf‖Lp ≤ C‖f‖Lp for all N and f ∈ Lp(T). Notice that we
have for all ϕ ∈ P that for N = degϕ there holds that

‖Saϕ‖pLp = ‖Sa,Nϕ‖pLp ≤ Cp‖ϕ‖pLp .
By the density of P in Lp(T) we know that Sa extends to a bounded operator from
Lp(T)→ Lp(T), and then we have ‖Sa‖Lp→Lp ≤ C.

Fix f ∈ Lp(T). We will show that limN→∞ ‖Sa,Nf − Saf‖Lp = 0. Let ε > 0 and
choose a trigonometric polynomial ϕ so that ‖f − ϕ‖Lp < ε. We estimate

‖Sa,Nf − Saf‖Lp ≤ ‖Sa,N(f − ϕ)‖Lp + ‖Sa,Nϕ− Saϕ‖Lp + ‖Sa(ϕ− f)‖Lp
≤ 2Cε+ ‖Sa,Nϕ− Saϕ‖Lp .

Notice that Sa,Nϕ = Saϕ for all N ≥ degϕ – we are done. �

12.2. Remark. A particular case is that am = 1 for all m. Then we have that SNf →
f in Lp(T) for all f ∈ Lp(T) if and only if we have supN ‖SN‖Lp→Lp <∞.

We can already show the failure of the L1 result.

12.3. Proposition. There exists f ∈ L1(T) so that ‖f − SNf‖L1 6→ 0 when N →∞.

Proof. By Lemma 12.1 (i.e. essentially because of Banach–Steinhaus theorem) it is
enough to show that

sup
N
‖SN‖L1→L1 =∞.

Fix N . Recall that ‖FM‖L1 = 1 for all M . Therefore, we have

‖SN‖L1→L1 = sup
‖f‖L1=1

‖SNf‖L1 ≥ ‖SN(FM)‖L1 = ‖DN ∗ FM‖L1 = ‖σMDN‖L1 .
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Letting M →∞we get by Theorem 4.3 that

‖SN‖L1→L1 ≥ lim
M→∞

‖σMDN‖L1 = ‖DN‖L1 .

From Section 3 we know that supN ‖DN‖L1 = ∞, and so it also follows that
supN ‖SN‖L1→L1 =∞. We are done. �

12.4. Definition. For ϕ ∈ P (or ϕ ∈ D) define the conjugate function ϕ̃ by

ϕ̃(x) = −i
∑
m∈Z

sgn(m)ϕ̂(m)e2πimx,

where sgn(m) = 1 for m > 0, −1 for m < 0, and 0 for m = 0. Define also the Riesz
projections

P+ϕ(x) =
∞∑
m=1

ϕ̂(m)e2πimx,

P−ϕ(x) =
−1∑

m=−∞

ϕ̂(m)e2πimx.

Notice that ϕ(x) = P+ϕ(x) + P−ϕ(x) + ϕ̂(0), while ϕ̃(x) = −iP+ϕ(x) + iP−ϕ(x).

12.5. Remark. The conjugate function ϕ̃, ϕ ∈ D, also has the form

ϕ(x) = lim
r→1−

Qr ∗ f(x), Qr(x) =
2r sin(2πx)

1− 2r cos(2πx) + r2
, 0 < r < 1.

This is in a sense an analog of the so-called Hilbert transform, which is the sim-
plest singular integral operator in R. We will not use this viewpoint in the lecture
notes. However, see the exercises for some further context.

12.6. Proposition. Let 1 ≤ p < ∞. Then SNf → f in Lp(T) for all f ∈ Lp(T) if and
only if for all ϕ ∈ P we have

‖ϕ̃‖Lp(T) . ‖ϕ‖Lp(T).

Proof. Notice that

P+ϕ(x) =
1

2
(ϕ+ iϕ̃− ϕ̂(0)).

Thus ‖ϕ̃‖Lp(T) . ‖ϕ‖Lp(T) if and only if ‖P+ϕ‖Lp(T) . ‖ϕ‖Lp(T).
Then we notice that as f̂ e2πiN ·(m) = f̂(m−N) we have

SNf(x) = e−2πiNx

2N∑
m=0

f̂ e2πiN ·(m)e2πimx.

Since multiplying by exponentials does not affectLp norms we have that ‖SN‖Lp→Lp
is equal to ‖S ′N‖Lp→Lp , where

S ′Nf(x) :=
2N∑
m=0

f̂(m)e2πimx.

This means that supN ‖SN‖Lp→Lp = supN ‖S ′N‖Lp→Lp .
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Therefore, we have that SNf → f in Lp(T) for all f ∈ Lp(T) if and only if
supN ‖SN‖Lp→Lp < ∞ if and only if supN ‖S ′N‖Lp→Lp < ∞. We only need to show
that supN ‖S ′N‖Lp→Lp <∞ if and only if ‖P+ϕ‖Lp(T) . ‖ϕ‖Lp(T) for all ϕ ∈ P .

Suppose now that supN ‖S ′N‖Lp→Lp < ∞. Define the sequence am = 1 if m ≥ 0
and am = 0 otherwise. Then we have S ′N = Sa,2N . By Lemma 12.1 we have that

Saϕ = P+(ϕ) + ϕ̂(0), ϕ ∈ P ,
extends to a bounded operator in Lp(T). Hence also P+ is bounded in Lp(T).

Assume then that ‖P+ϕ‖Lp(T) . ‖ϕ‖Lp(T) for all ϕ ∈ P . For ϕ ∈ P and an
arbitrary N (which might also be significantly smaller than degϕ) write

S ′Nϕ(x) = P+ϕ(x) + ϕ̂(0)−
∞∑

m=2N+1

ϕ̂(m)e2πimx

= P+ϕ(x) + ϕ̂(0)− e2πi(2N)x

∞∑
m=1

ϕ̂(m+ 2N)e2πimx

= P+ϕ(x) + ϕ̂(0)− e2πi(2N)x

∞∑
m=1

F(ϕe−2πi(2N)·)(m)e2πimx

= P+ϕ(x)− e2πi(2N)xP+(ϕe−2πi(2N)·)(x) + ϕ̂(0).

It follows that
sup
N
‖S ′Nϕ‖Lp(T) . ‖ϕ‖Lp(T), ϕ ∈ P .

By density supN ‖S ′N‖Lp(T)→Lp(T) <∞, and we are done. �

As the convergence SNf → f fails in general in L1(T), we know that the con-
jugate operator ϕ → ϕ̃ is not bounded in L1(T). However, we will show that it
is bounded in Lp(T) for 1 < p < ∞, and thus limN→∞ ‖SNf − f‖Lp(T) = 0 for all
f ∈ Lp(T), 1 < p <∞.

12.7. Theorem (Lp, 1 < p <∞, convergence of the Fourier series). Let 1 < p <∞.
Then we have for all ϕ ∈ P that

‖ϕ̃‖Lp(T) . ‖ϕ‖Lp(T).

Consequently, we have limN→∞ ‖SNf − f‖Lp(T) = 0 for all f ∈ Lp(T).

Proof. We assume that ϕ is a trigonometric polynomial of degree N0. We first also
assume that ϕ is real-valued and

´ 1

0
ϕ = 0 – i.e., ϕ̂(0) = 0. We have ϕ̂(−m) = ϕ̂(m)

as ϕ is real-valued. Thus, (by using z + z̄ = 2 Re z) we have

ϕ̃(x) = −iP+ϕ(x) + iP−ϕ(x)

= −i
∑
m>0

ϕ̂(m)e2πimx + i
∑
m<0

ϕ̂(m)e2πimx

= −i
∑
m>0

ϕ̂(m)e2πimx + i
∑
m>0

ϕ̂(m)e−2πimx

= −i
∑
m>0

ϕ̂(m)e2πimx + (−i)
∑
m>0

ϕ̂(m)e2πimx
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= 2 Re
[
− i
∑
m>0

ϕ̂(m)e2πimx
]
.

This implies that also ϕ̃ is real-valued, which will be useful somewhat later.
Recalling ϕ̂(0) = 0 we can write

ϕ(x) + iϕ̃(x) = P+ϕ(x) + P−ϕ(x) + P+ϕ(x)− P−ϕ(x)

= 2P+ϕ(x) = 2
∑
m>0

ϕ̂(m)e2πimx = 2

N0∑
m=1

ϕ̂(m)e2πimx.

This implies that for all u ∈ {1, 2, . . .}we have

ˆ 1

0

(ϕ(x) + iϕ̃(x))u dx = 2u
ˆ 1

0

( N0∑
m=1

ϕ̂(m)e2πimx
)u

dx

= 2u
N0∑

m1,...,mu=1

u∏
j=1

ϕ̂(mj)

ˆ 1

0

e2πi(
∑u
j=1mj)x dx = 0

simply because
u∑
j=1

mj 6= 0.

This calculation was based only on the fact that only strictly positive frequencies
appear here.

We now expand this when u = 2k, k ∈ {1, 2, . . .}, is a positive even integer.
Using the binomial formula we have

(ϕ(x) + iϕ̃(x))2k

=
2k∑
j=0

(
2k

j

)
ϕ(x)j(iϕ̃(x))2k−j

=
k∑
j=0

(
2k

2j

)
ϕ(x)2j(iϕ̃(x))2k−2j +

k−1∑
j=0

(
2k

2j + 1

)
ϕ(x)2j+1(iϕ̃(x))2k−2j−1

=
k∑
j=0

(−1)k−j
(

2k

2j

)
ϕ(x)2jϕ̃(x)2k−2j

− i
k−1∑
j=0

(−1)k−j
(

2k

2j + 1

)
ϕ(x)2j+1ϕ̃(x)2k−2j−1.

Since both ϕ and ϕ̃ are real-valued we have that the real-part is

Re (ϕ(x) + iϕ̃(x))2k =
k∑
j=0

(−1)k−j
(

2k

2j

)
ϕ(x)2jϕ̃(x)2k−2j.
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Therefore, we also have

0 = Re

ˆ 1

0

(ϕ(x) + iϕ̃(x))2k dx =
k∑
j=0

(−1)k−j
(

2k

2j

)ˆ 1

0

ϕ(x)2jϕ̃(x)2k−2j dx.

Writing
k∑
j=0

(−1)k−j
(

2k

2j

) ˆ 1

0

ϕ(x)2jϕ̃(x)2k−2j dx

= (−1)k
ˆ 1

0

ϕ̃(x)2k dx+
k∑
j=1

(−1)k−j
(

2k

2j

) ˆ 1

0

ϕ(x)2jϕ̃(x)2k−2j dx

we get that

‖ϕ̃‖2k
L2k ≤

k∑
j=1

(
2k

2j

) ˆ 1

0

ϕ̃(x)2k−2jϕ(x)2j dx.

We now apply Hölder’s inequality with the exponent 2k/(2k − 2j) > 1 and the
dual exponent 2k/2j to get

‖ϕ̃‖2k
L2k ≤

k∑
j=1

(
2k

2j

)
‖ϕ̃‖2k−2j

L2k ‖ϕ‖2j
L2k .

Therefore, we have

1 ≤
k∑
j=1

(
2k

2j

)
‖ϕ̃‖−2j

L2k ‖ϕ‖2j
L2k =

k∑
j=1

(
2k

2j

)
R(ϕ)−2j,

where we set

R(ϕ) =
‖ϕ̃‖L2k

‖ϕ‖L2k

.

If there would exist trigonometric polynomials (ϕu)
∞
u=1 so that R(ϕu) → ∞ as

u→∞we can e.g. establish the contradiction 1 ≤ 1/2. Therefore, we must have

‖ϕ̃‖Lp ≤ Cp‖ϕ‖Lp

whenever p = 2k for some k ∈ {1, 2 . . .} and ϕ ∈ P is real-valued and satisfies
ϕ̂(m) = 0.

We first dispose of the assumption ϕ̂(m) = 0. So suppose ϕ ∈ P is real-
valued. Apply what we proved to the real-valued trigonometric polynomial
ϕ0 := ϕ − ϕ̂(0) = ϕ −

´ 1

0
ϕ satisfying ϕ̂0(0) = 0. Observe that ϕ̃0 = ϕ̃ (as

Ĉ(m) = Cδ0,m). We get

‖ϕ̃‖Lp = ‖ϕ̃0‖Lp ≤ Cp‖ϕ0‖Lp .
As |ϕ̂(0)| ≤ ‖ϕ‖L1 ≤ ‖ϕ‖Lp we have ‖ϕ0‖Lp ≤ 2‖ϕ‖Lp . We conclude that

‖ϕ̃‖Lp ≤ 2Cp‖ϕ‖Lp

whenever p = 2k for some k ∈ {1, 2 . . .} and ϕ ∈ P is real-valued.
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Next, take a general ϕ ∈ P of some degree N0 and let p = 2k for some k. We
write

ϕ(x) =
∑
|m|≤N0

ame
2πimx = ϕ1(x) + iϕ2(x),

where

ϕ1(x) =
∑
|m|≤N0

am + a−m
2

e2πimx

and

ϕ2(x) =
∑
|m|≤N0

am − a−m
2i

e2πimx.

Notice that

ϕ2(x) =
∑
|m|≤N0

am − a−m
−2i

e−2πimx =
∑
|m|≤N0

a−m − am
−2i

e2πimx = ϕ2(x)

and similarly ϕ1(x) = ϕ1(x). Thus, ϕ1, ϕ2 ∈ P are real-valued. We have

‖ϕ̃‖Lp = ‖ϕ̃1 + iϕ̃2‖Lp ≤
2∑
j=1

‖ϕ̃j‖Lp ≤ 2Cp

2∑
j=1

‖ϕj‖Lp ≤ 4Cp‖ϕ‖Lp .

The last inequality is simply the fact that e.g. ϕ1 = Reϕ and |Re z| ≤ |z|.
We have now proved that

‖ϕ̃‖Lp ≤ 4Cp‖ϕ‖Lp

whenever p = 2k for some k ∈ {1, 2 . . .} and ϕ ∈ P . This can also be extended
to all ϕ ∈ Lp(T), p = 2k, by density. We can then get any p ≥ 2 by choosing
k = {1, 2, . . .} so that p ∈ [2k, 2k + 2] and interpolating the estimates valid for 2k
and 2(k + 1).

Finally, let 1 < p < 2. We will prove this range by a standard duality argument.
To this end, let ϕ1, ϕ2 ∈ P . We have∣∣∣ ˆ 1

0

ϕ̃1(x)ϕ2(x) dx
∣∣∣ =

∣∣∣ˆ 1

0

ϕ1(x)(−ϕ̃2(x)) dx
∣∣∣

≤
ˆ 1

0

|ϕ1(x)||ϕ̃2(x)| dx ≤ ‖ϕ1‖Lp‖ϕ̃2‖Lp′ . ‖ϕ1‖Lp‖ϕ2‖Lp′ .

Here the first equality is an easy direct calculation, while the last estimate uses
that p′ > 2 and the bound we just proved above in this regime. In the middle we
used Hölder’s inequality. It is an easy direct calculation (and also follows from
the duality of Lp and Lp

′) that

‖ϕ̃1‖Lp = sup
ϕ2∈P

‖ϕ2‖
Lp
′=1

∣∣∣ˆ 1

0

ϕ̃1(x)ϕ2(x) dx
∣∣∣ . ‖ϕ1‖Lp .

We are done. �
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It is also true that we have

SNf(x)→ f(x)

pointwise almost everywhere whenever f ∈ Lp(T), 1 < p < ∞. This is a very
difficult result of Carleson (p = 2) and Hunt (p ∈ (1,∞)). Before Carleson’s result
the answer was not known even for continuous functions. The almost every-
where result is not true for p = 1, and in fact Kolmogorov gave an example of
an L1(T) function whose Fourier series diverges at almost every point. Compare
this with Theorem 5.7.

APPENDIX A. INTERPOLATION

Let (X,µ) be a measure space. For 0 < p < ∞ and a measurable f : X → C
define

‖f‖Lp(X) =
(ˆ

X

|f |p dµ
)1/p

,

‖f‖Lp,∞(X) = sup
λ>0

λµ({x ∈ X : |f(x)| > λ})1/p,

‖f‖L∞(X) = inf{C ≥ 0: |f(x)| ≤ C for µ-a.e. x ∈ X},
‖f‖L∞,∞(X) = ‖f‖L∞(X).

A.1. Theorem (Marcinkiewicz interpolation theorem). Let (X,µ) and (Y, ν) be mea-
sure spaces and let 0 < p0 < p1 ≤ ∞. Let T be a sublinear operator defined on the space
Lp0(X) + Lp1(X) and taking values in the space of measurable functions on Y . Assume
that there exists two constants A0 and A1 such that

‖Tf‖Lp0,∞(Y ) ≤ A0‖f‖Lp0 (X), f ∈ Lp0(X),

‖Tf‖Lp1,∞(Y ) ≤ A1‖f‖Lp1 (X), f ∈ Lp1(X).

Let p ∈ (p0, p1) and write

1

p
=

1− θ
p0

+
θ

p1

, θ ∈ (0, 1).

Then we have

‖Tf‖Lp(Y ) ≤ 2
( p

p− p0

+
p

p1 − p

)1/p

A1−θ
0 Aθ1‖f‖Lp(X).

A.2. Remark. Sublinearity means that we have the pointwise estimates

|T (f + g)| ≤ |Tf |+ |Tg| and |T (λf)| = |λ||Tf |, λ ∈ C.

Marcinkiewicz interpolation theorem is an easy but very useful interpolation
theorem. The good points are:

(1) We can assume only Lq → Lq,∞ type estimates at the endpoints q ∈ {p0, p1}
but conclude strong Lp → Lp estimates for p0 < p < p1.

(2) T does not need to be linear – for example, T can be some maximal func-
tion.
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This theorem has a rather simple proof using the important identityˆ
X

|f |p dµ = p

ˆ ∞
0

λp−1µ({x ∈ X : |f(x)| > λ}) dλ, 0 < p <∞.

The weak point of the Marcinkiewicz interpolation theorem is that we cannot
interpolate estimates like Lp0 → Lq0 and Lp1 → Lq1 , but rather need to have
p0 = q0 and p1 = q1.

A.3. Theorem (Riesz-Thorin interpolation theorem). Let (X,µ) and (Y, ν) be mea-
sure spaces. Let T be a linear operator defined on the set of all simple functions on X and
taking values in the set of measurable functions on Y . Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and
assume that

‖Tf‖Lq0 (Y ) ≤ A0‖f‖Lp0 (X),

‖Tf‖Lq1 (Y ) ≤ A1‖f‖Lp1 (X),

for all simple functions f on X . Let θ ∈ (0, 1) and define pθ, qθ via
1

pθ
=

1− θ
p0

+
θ

p1

and
1

qθ
=

1− θ
q0

+
θ

q1

.

Then we have

‖Tf‖Lqθ (Y ) ≤ A1−θ
0 Aθ1‖f‖Lpθ (X), f ∈ Lpθ(X).

This is mainly useful when we need to interpolate estimates like Lp0 → Lq0 and
Lp1 → Lq1 , where p0 6= q0 and p1 6= q1. However, note that even in the case p0 = q0

and p1 = q1 the conclusion of the Riesz–Thorin theorem is somewhat stronger
compared to Marcinkiewicz interpolation theorem: the estimate only involves
A1−θ

0 Aθ1 and does not have the additional constant

2
( p

p− p0

+
p

p1 − p

)1/p

in front. This is not important to us. Riesz–Thorin requires a linear operator and
we cannot allow Lp,∞ type estimates, and so Marcinkiewicz interpolation theo-
rem is often more useful. Riesz–Thorin is trickier to prove and requires complex
analysis (Hadamard’s three lines lemma). For both proofs consult Grafakos [2].
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