PROBABILISTIC LIMIT SHAPES AND HARMONIC FUNCTIONS

István Prause

UNIVERSITY OF EASTERN FINLAND

joint work with

Rick Kenyon (Yale)

CAvid seminar - October 2021

TWO SIDES

Gradient variational problems in \mathbb{R}^2 arXiv:2006.01219, 2020

The genus-zero five-vertex model arXiv:2101.04195, 2021

LIMIT SHAPE OF 2D YOUNG DIAGRAMS Vershik

integer partitions
17=5+4+4+2+1+1

typical shape of a large integer partition

 $e^{-cx} + e^{-cy} = I$

3D YOUNG DIAGRAM LIMIT SHAPE

Cerf-Kenyon, Okounkov-Reshetikhin

"melting" equilibrium crystal

planar projection: lozenge tilings, algebraic geometry

THE AZTEC DIAMOND

consider a uniformly random tiling by dominos (2x1)

How does it look like?

THE ARCTIC CIRCLE

harmonic functions ?

ZOO OF LIMIT SHAPES

general boundary conditions & a variety of models

variational approach

dimer model (domino/lozenge tilings etc)

random Young tableaux

five-vertex model

HEIGHT FUNCTION Thurston

<u>3d surface</u> (simulations by A. & M. Borodin)

 \mathcal{N} = unit triangle

height function

LIMIT SHAPE THEOREM Cohn-Kenyon-Propp

The random surfaces as mesh size $\rightarrow 0$ concentrate around a deterministic surface, called limit shape

The limit shape is a minimizer of a variational problem

'minimal surface' spanning a wire-frame

$$h: \Omega \to \mathbb{R}$$
 Lipschitz
 $\min_{h} \int_{\Omega} \sigma(\nabla h), \quad \begin{aligned} \nabla h \in \mathcal{N} \\ h_{|\partial\Omega} = h_0 \end{aligned}$

analytic, strictly convex surface tension in the interior

singular and degenerates on the boundary

LIMIT SHAPE THEOREM

'minimal surface' spanning a wire-frame

$$h: \Omega \to \mathbb{R}$$
 Lipschitz
 $\min_{h} \int_{\Omega} \sigma(\nabla h), \quad \begin{aligned} \nabla h \in \mathcal{N} \\ h_{|\partial\Omega} = h_0 \end{aligned}$

analytic, strictly convex surface tension in the interior

singular and degenerates on the boundary

WULFF SHAPE

Wulff shape - Legendre dual of surface tension itself a limit shape

(lozenge tilings ↔ 3D Young diagram)

"fundamental solution"

(facets, facet-rough transition, phases, algebraic boundary etc)

Kenyon-Okounkov-Sheffield

det $D^2 \sigma \equiv \pi^2$ for the dimer model (determinantal)

DETERMINANTAL MODEL Kasteleyn

The number of dimer covers for G (a subgraph of hexagonal lattice) is $|\det(K)|$, where

K is the (bi)adjacency matrix of the bipartite graph G.

 $\det(K) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n K(b_i, w_{\sigma(i)}) \right)$

determinant counts perfect matchings with signs key point: signs are consistent

a hexagon flip move changes σ by a 3-cycle (even permutation)

adds/removes cubes

INTEGRABLE PDE ?

Don'ł jump, "complexify to simplify" ! a not-so-"hidden" complex variable (fluctuations, integrability, isothermal)

ISOTHERMAL COORDINATE Gauss

Riemannian metric associated to the Wulff shape let z be the isothermal coordinate

$$\sigma_{ss}ds^2 + 2\sigma_{st}dsdt + \sigma_{tt}dt^2 = \rho |dz|^2$$

 $(s,t) \in \mathcal{N} \leftrightarrow z \in \mathbb{C}$

$$(x, y) \in \mathscr{L} \mapsto \nabla h(x, y) \mapsto z(x, y)$$

iiquid

this is the conformal coordinate of the model

"Write everything in terms of z"

 κ -HARMONIC ENVELOPE Kenyon-Prause $\kappa(z) = \sqrt{\det D^2 \sigma} \text{ as a function of } z$ $\nabla \cdot \kappa \nabla u = 0$

Thm: s, t and h-(sx+ty) are all κ -harmonic(z) in the liquid region (multi-valued in z)

Corollary:

Limit shapes in the dimer model are envelopes of harmonically moving planes in R³

minimal surfaces (x, y, h(x, y)) $\mu_7 = 0$

•

dimer limit shapes $(h_x, h_y, h - \nabla h \cdot (x, y))$ $\mu_{\overline{z}} = 0$ κ -HARMONIC ENVELOPE Kenyon-Prause $\kappa(z) = \sqrt{\det D^2 \sigma} \text{ as a function of } z$ $\nabla \cdot \kappa \nabla u = 0$

Thm: s, t and h-(sx+ty) are all κ -harmonic(z) in the liquid region (multi-valued in z)

Corollary: Limit shapes in the dimer model are envelopes of harmonically moving planes in R³

> limit shape algorithm

tangent method Colomo-Sportiello

YOUNG TABLEAUX EXAMPLE

Dan Romik's MacTableaux square shape Pittel-Romik Biane

YoungPackage

W. Sun variational principle $\kappa \equiv 1 \longrightarrow \frac{\text{harmonic coordinates}}{\text{for surface tension}}$

limit surface as harmonic envelope (use harmonic extension of boundary facets)

SLANTED STAIRCASE

À 0.0

Х

0 1 -1 Х

2

0.0

Y 0.6

ZOO OF LIMIT SHAPES

TRIVIAL POTENTIAL Kenyon-Prause $\nabla \cdot \kappa \nabla u = 0$

reduction to Schrödinger equation

 $(-\Delta + q)(\kappa^{1/2}u) = 0$ $q = \frac{\Delta \kappa^{1/2}}{\kappa^{1/2}}$ potential

Def: a surface tension has trivial potential if $\sqrt[4]{\det D^2 \sigma}$ is a harmonic function of the intrinsic coordinate z

Then *κ*-harmonic:

 $\frac{\operatorname{harmonic}(z)}{\sqrt[4]{\det D^2 \sigma}} \qquad (q=0)$

lozenge tilings with (blue-green) *interaction*

monotone non-intersecting lattice paths with corners penalized

5-VERTEX BOXED PLANE PARTITION

r=0.6

BPP EXAMPLE

6 facets+ 2 neutral regions envelope $u(\zeta)$ degree

8 intervals on $\partial \mathbb{H}$ full boundary information

envelope of planes $\zeta \in \mathbb{H}_{3^{\circ}}$ ($u(\zeta)$ degree 2 cover of \mathbb{H})

$$x_3 = s(\zeta)x + t(\zeta)y + c(\zeta)$$

are all *ratios* of linear combinations of *harmonic measures*

GENUS-ZERO 5-VERTEX MODEL Kenyon-Prause staggered model $m_1 \times m_2$ fundamental domain $\vec{\boldsymbol{\alpha}} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{m_1}) \qquad \vec{\boldsymbol{\beta}} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_{m_2})$ β_4 V $\mathbf{v} = (\mathbf{i}, \mathbf{j})$ β₃ $r_v = \alpha_i \beta_i$ β₂ β_1 α_2 α_1 α_3 α_4 α_5 ł $|1 - r_v^2| = 1$ 1 r_v r_v "small r" all $\alpha_i \beta_j > I$ (attractive) (repulsive) all $\alpha_i\beta_j < 1$ or

SURFACE TENSION

(small r) convex in \mathcal{N} strictly convex in $\mathring{\mathcal{N}}'$ piecewise linear on $\partial \mathcal{N}$

(large r) convex in \mathcal{N} stritcly convex in $\mathring{\mathcal{N}}$ piecewise linear on $\partial \mathcal{N}$ slope discontinuity at (1/2,1/2)

non-uniqueness

 $\sigma|_{\mathcal{N} \setminus \mathcal{N}'} \equiv \mathbf{0}$

 $u \in \mathbb{H}$ conformal coordinate

trivial potential

unique minimizer

 $\sqrt{\det D^2\sigma} = \frac{1}{\pi}(2\pi - \arg u)^2$

-0.5

0.0

DARBOUX INTEGRABILITY

Thm: In any component of the liquid region the tangent planes to the limit shape can be parametrized by a complex ζ $\nabla h(x, y) = (s(u), t(u)) \qquad h(x, y) - \nabla h(x, y) \cdot (x, y) = G(\zeta)/\theta(u)$ with $u(\zeta)$ holomorphic, $G(\zeta)$ harmonic, $\theta(u) = \begin{array}{c} \arg u & (r < I) \\ 2\pi - \arg u & (r > I) \\ \sqrt{\kappa} = \sqrt[4]{\det D^2 \sigma} \end{array}$

Corollary: In any component of the liquid region

 $(s\theta)_{\mathcal{L}}x + (t\theta)_{\mathcal{L}}y + G_{\mathcal{L}} - \theta_{\mathcal{L}}h(x, y) = 0$ (shear phenomenon)

all holomorphic functions

2x2 EXAMPLES

DARBOUX HIERARCHY

free fermionic	constant Hessian det
5-vertex	trivial potential
six-vertex	?
•••	?

LIFE BEYOND THE ARCTIC CIRCLE

