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1. FREIMAN’S THEOREM

1.1. The Cauchy-Davenport inequality. In the first part of the lectures we will study
the question: if |A+A| ∼ |A|, then what can be said of the structure of A? The following
easy proposition gives an indication of what is to be expected:

Proposition 1.1 (Cauchy-Davenport in R). Let A,B ⊂ R be finite sets with |A| = m and
|B| = n. Then |A + B| ≥ m + n − 1, and equality holds, if and only if A and B are arithmetic
progressions with the same gap.

Proof. Write
A = {a1, . . . , am} and B = {b1, . . . , bn}

with a1 < a2 < . . . < am and b1 < . . . < bn. Then, consider the element ai + bj ∈ A + B
for some fixed 1 ≤ i ≤ m and 1 ≤ j ≤ n. Observe that the set A + B contains at least
i+ j − 1 elements less or equal to ai + bj , namely the i elements

ak + b1, 1 ≤ k ≤ i,
plus the j − 1 elements

ai + bk, 1 < k ≤ j.
Similarly, there are m+ n− i− j strictly larger elements, namely the m− i elements

ak + bj , i < k ≤ m
plus the n− j elements

am + bk, j < k ≤ n.
So, altogether, A+B contains at least (i+ j − 1) + (m+ n− i− j) = m+ n− 1 elements.

Next, assume that indeed |A + B| = m + n − 1, and write A + B = {c1, . . . , cm+n−1}
with c1 < c2 < . . . < cm+n−1. Then, with 1 ≤ i ≤ m and 1 < j ≤ n as before, we have

ai + bj = ci+j−1,

because, as we observed, A+B contains at least i+ j−1 elements less or equal to ai+ bj ,
and also m+ n− i− j strictly larger ones. In particular,

a1 + bi+1 = ci+1 = a2 + bi, 1 ≤ i < n,

which implies bi+1 − bi = a2 − a1 for 1 ≤ i < n. By definition, B is an arithmetic
progression with gap a2− a1. Similarly, ai+1 + b1 = ci+1 = ai + b2 for 1 ≤ i < m, and this
gives the same conclusion about A. �

1.2. Freiman’s theorem in Z. From the previous section, we know that if |A+A| = 2|A|−
1, then A is an arithmetic progression. What if we relaxed the condition |A+A| = 2n− 1
to |A + A| ≤ C|A| for some constant C > 0 – which should be thought to be small in
comparison with |A|. Then A need no longer resemble an arithmetic progression in the
sense above. Indeed, fix integers x0, x1, . . . , xd ∈ Z and natural numbers m1, . . . ,md ∈ N,
and consider

P :=

x0 +
d∑
j=1

λjxj : 0 ≤ λj ≤ mj − 1

 .

A set of this form is called a d-dimensional arithmetic progression. Further, P is called proper,
if |P | = m1 · · ·md.

Exercise 1.2. If P is a proper d-dimensional arithmetic progression, then |P +P | ≤ 2d|P |.
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Of course, if P ′ ⊂ P is a large subset, |P ′| ∼ |P |, the previous exercise implies that
|P ′ + P ′| . 2d|P ′|. A deep result of Freiman states that the converse is also true – with
worse constants, perhaps:

Theorem 1.3 (Freiman). Suppose that A ⊂ Z satisfies |A+A| ≤ C|A|. Then A is contained in
a d-dimensional arithmetic progression P of size |P | ≤ K|A|, where d and K only depend on C.

Remark 1.4. Freiman’s theorem also holds in R – or C, or any torsion-free group – and the
statement is easily reduced to Z, at least as long as one does not care about best constants.
This will be an exercise.

Remark 1.5. In Freiman’s theorem, it is further possible to require that the arithmetic
progression be proper: by a result of Gowers-Walters, any d-dimensional arithmetic pro-
gression P can be contained in a proper one P ′ with |P ′| ≤ dd3 |P |. We will not prove the
Gowers-Walters theorem in these lectures, however.

Unless otherwise noted, our presentation of Theorem 1.3 mixes ingredients from the
lecture notes of B. Green [14], I. Ruzsa [29] and T. Tao [32].

2. PROOF OF FREIMAN’S THEOREM

2.1. Structure of the proof and Ruzsa calculus. In order to explain the outline of the
proof, we first need the following lemma of Ruzsa:

Lemma 2.1 (Ruzsa’s covering lemma). Let A,B ⊂ R be finite sets. Then, there exists a set
X ⊂ R of cardinality |X| ≤ |A+B|/|A| such that

B ⊂ X +A−A.
In other words, we can cover B by at most |A+B|/|A| translates of A−A.

Proof. Let X ⊂ B be maximal with the property that the sets x + A, x ∈ X , are disjoint.
Since each of the disjoint sets x+A is contained in A+B and has size |A|, we have

|X| ≤ |A+B|
|A|

.

Furthermore, by maximality, if b ∈ B, then (b + A) ∩ (x + A) 6= ∅ for some x ∈ X . This
means that b ∈ x+A−A, and so B ⊂ X +A−A. �

Now, let us turn back to the proof of Freiman’s theorem. Assume, for a moment,
that we have found a proper d-dimensional arithmetic progression P such that d only
depends on C and |P + A| ∼C |A| ∼C |P |. Then, by Ruzsa’s covering lemma, A ⊂
X + P − P for some set X with

|X| ≤ |P +A|/|P | .C 1.

But since P is a d-dimensional arithmetic progression, also P − P is a d-dimensional
arithmetic progression, and hence X + P − P is an arithmetic progression of dimension
|X|+ d ∼C 1 and size at most 2d|X||P | ∼C |A|.

So, the main task is to find a d-dimensional arithmetic progression P with |P +A| ∼C
|A| ∼C |P |. To this end, we will demonstrate that there exists a d-dimensional arithmetic
progression P ⊂ 2A−2Awith |P | ∼C |2A−2A|. This will suffice because of the following
inequalities of Plünnecke-Ruzsa:
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Theorem 2.2 (Plünnecke-Ruzsa inequalities). Assume that A ⊂ R with |A + A| ≤ C|A|.
Then

|kA± lA| ≤ Ck+l|A|, k, l ∈ N.

We will prove these inequalities in a moment – using a recent simple approach of
Petridis [27] – but let us first see how they help with Freiman’s theorem. With k = 3 and
l = 2 the inequality gives

|A| ≤ |2A− 2A| ∼C |P | ≤ |P +A| ≤ |2A− 2A+A| = |3A− 2A| .C |A|
Hence, |A| ∼C |P | ∼C |P +A|, and the proof of Freiman’s theorem will be complete.

Proof of Theorem 2.2. We will prove the following statement for two finite sets A,B ⊂ R:
if |A + B| ≤ C|A|, then |kB ± lB| ≤ Ck+l|A| for all k, l ∈ N. The claim then follows by
choosing B = A.

We start by choosing a subset A′ ⊂ A such that the ratio |A′+B|/|A| is minimised. Let
C ′ be this ratio, so that C ′ ≤ C,

|A′ +B| = C ′|A′|,
and

|A′′ +B| ≥ C ′|A′′|, A′′ ⊂ A′. (2.3)
With this notation, we next prove the following claim:

Claim 2.4. If R ⊂ R, then |A′ +B +R| ≤ C ′|A′ +R|.

Proof of Claim. We proceed by induction on the cardinality |R|. For |R| = 1,

|A′ +B +R| = |A′ +B| ≤ C ′|A′| = C ′|A′ +R|.
Then, suppose that the claim holds for all sets R with |R| ≤ r, and we are given a set R′

with |R′| = r + 1. Write R′ = R ∪ {x} for some x ∈ R, so that |R| ≤ r. We wish to bound
the cardinality of A′ +B +R′, and the first instinct is probably to write

A′ +B +R′ = (A′ +B +R) ∪ (A′ +B + x), (2.5)

and then estimate |A′ + B + R′| ≤ |A′ + B + R| + |A′ + B| ≤ C ′|A′ + R| + C ′|A′| by
induction. Clearly, this is not quite good enough, and the inefficiency stems from the fact
that the sets A′ + B + R and A′ + B + x can overlap quite a bit. To mend this, we write
A′ +B +R′ as a union of two sets, which do not overlap quite so much. Let

A′′ := {a ∈ A′ : a+ x ∈ A′ +R} ⊂ A′,
and observe that A′′ +B + x ⊂ A′ +B +R. Thus,

A′ +B +R′ ⊂ (A′ +B +R) ∪ [(A′ +B + x) \ (A′′ +B + x)],

which turns out to be critically better than (2.5). Namely, now we can use induction, and
the minimality hypothesis for A′, to estimate

|A′ +B +R′| ≤ |A′ +B +R|+ |A′ +B| − |A′′ +B| ≤ C ′|A′ +R|+ C ′|A′| − C ′|A′′|,
Finally, observe that

|A′ +R|+ |A′| − |A′′| = |A′ +R|+ |(A′ + x) \ (A′′ + x)| = |A′ +R′|,
because the union (A′ + R) ∪ [(A′ + x) \ (A′′ + x)] is disjoint by definition of A′′. This
completes the proof of the claim. �
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Apply the claim with R = B to obtain |A′ + 2B| ≤ C ′|A′ + B| = (C ′)2|A′|, and more
generally

|A′ + kB| = |A′ +B + (k − 1)B| ≤ C ′|A′ + (k − 1)B| ≤ . . . ≤ (C ′)k|A′|.
We are almost done, but we need one additional easy lemma:

Lemma 2.6 (Ruzsa’s triangle inequality). For any three finite sets U, V,W ⊂ R,

|U ||V −W | ≤ |U + V ||U +W |.
Proof. Consider the mapping ϕ : U × (V −W )→ (U + V )× (U +W ) defined by

ϕ(u, x) = (u+ v(x), u+ w(x)),

where v(x) ∈ V and w(x) ∈ W are some points such that v(x) − w(x) = x. The claim
follows, if we manage to check that ϕ is injective, so assume that ϕ(u, x) = ϕ(u′, x′). Then
v(x)− v(x′) = u′ − u = w(x)− w(x′), which gives

x = v(x)− w(x) = v(x′)− w(x′) = x′.

Then of course v(x) = v(x′), and so u+ v(x) = u′ + v(x′) implies u = u′. �

Exercise 2.7. Prove the following following inequalities of Freiman-Pigarev:

|A+A|3/4 ≤ |A−A| ≤ |A+A|4/3.
Now we can finish the proof of the "minus sign" version of the Plünnecke-Ruzsa in-

equalities. Recall that we already established |A′ + kB| ≤ (C ′)k|A′| for k ∈ N. Applying
the triangle inequality to U = A′, V = kB and W = lB, we have

|A′||kB − lB| ≤ |A′ + kB||A′ + lB| ≤ (C ′)k+l|A′|2.
In particular, |kB − lB| ≤ (C ′)k+l|A′| ≤ Ck+l|A| as claimed. To establish the "plus sign
version", we obviously need a corresponding "plus sign" version of the triangle inequal-
ity above:

Proposition 2.8. For any three finite sets U, V,W ⊂ R,

|U ||V +W | ≤ |U + V ||U +W |.
Proof. The argument is due to Todd Cochrane, and I picked it up from the comments in
Tim Gowers’ blog. It is surprisingly different from the proof with the minus sign! Let
U ′ ⊂ U be a subset minimising the ratio |U ′ + V |/|U ′|, and call this ratio C, whence in
particular

C ≤ |U + V |
|U |

. (2.9)

Then we are in a position to apply Claim 2.4 to R = W , so that

|U ′ + V +W | ≤ C|U ′ +W |,
and finally, using also (2.9),

|U ||V +W | ≤ |U ||U ′ + V +W |
≤ C|U ||U ′ +W |
≤ |U + V ||U ′ +W |
≤ |U + V ||U +W |,

as claimed. �
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This completes the proof of the Plünnecke-Ruzsa inequalities. �

For future reference, we stitch together the "+" and "−" versions of the triangle in-
equality:

Corollary 2.10. For any three sets U, V,W in any abelian group,

|U ||V ±W | ≤ |U + V ||U +W |.

The following exercise is a (simple) lemma of Bourgain, which we will need later:

Exercise 2.11. Assume that A1, A2, A3 are subsets of an Abelian group, satisfying

|A1 ∩A3| ≥
|A1|
K

and |A2 ∩A3| ≥
|A2|
K

and
|Ai +Ai| ≤ K|Ai|, i ∈ {1, 2, 3}.

Then
|A1 +A2| ≤ K5|A3|.

2.2. Freiman homomorphisms and reduction to Zq. During the proof of Freiman’s the-
orem, the constant C will be the one in |A + A| ≤ C|A|, and from this point on, we will
abbreviate ∼C and .C to ∼ and .. Recall that the aim is to find a d-dimensional arith-
metic progression P ⊂ 2A− 2A with |P | ∼ |2A− 2A|. It turns out – in the next section –
that we can do this under the assumption that A ⊂ Zq, where q is a prime with |A| = αq
and α > 0 is a constant depending only on C. So, the task of the present section is to
reduce matters to that case. To this end, we will use Freiman homomorphisms.

Definition 2.12. Let G,H be Abelian groups, and let A ⊂ G. A mapping φ : A → H is
called a Freiman homomorphism of order k, if the following holds. Whenever x1, . . . , xk,
xk+1, . . . , x2k ∈ A, and

x1 + . . .+ xk = xk+1 + . . .+ x2k,

then
φ(x1) + . . .+ φ(xk) = φ(xk+1) + . . .+ φ(x2k).

If φ has an inverse, which is also a Freiman homomorphism of order k, then φ is called
a Freiman isomorphism of order k. Two sets A ⊂ G and B ⊂ H are Freiman k-isomorphic,
denoted A ∼=k B, if there exists a Freiman isomorphism of order k between A and B.

The next proposition, the proof of which I found in lecture notes of Ruzsa, implies that
any set A ⊂ Z with small doubling (i.e. |A + A| ≤ C|A|) has a large subset, which is
Freiman k-isomorphic to a subset of Zq, where |A| ∼ q.

Proposition 2.13 (Ruzsa). Assume that A ⊂ Z and k ≥ 2 is a natural number. Then, for any
q ≥ 4|kA − kA| there exists a set A′ ⊂ A with |A′| ≥ |A|/k, which is Freiman k-isomorphic to
a set in Zq.

Proof. Define
ϕ(x) := [ξx] (mod q), x ∈ Z,

where [ξx] denotes the integer part of ξx, and ξ ∈ [0, q] is a real number to be chosen later.
Write {ξx} for the fractional part of ξx, so that

ξx = [ξx] + {ξx}, (2.14)



LECTURE NOTES ON ADDITIVE COMBINATORICS 7

and define

Aj := Aj(ξ) :=

{
x ∈ A :

j − 1

k
≤ {ξx} < j

k

}
, 1 ≤ j ≤ k.

For a fixed ξ, one of the sets Aj must satisfy |Aj | ≥ m/k, and we will choose A′ = Aj for
this j.

In order to verify that ϕ restricted to Aj is a Freiman isomorphism of order k, for a
suitable ξ, we must demonstrate that

ϕ(x1) + . . .+ ϕ(xk) = ϕ(xk+1) + . . .+ ϕ(x2k) (2.15)

is equivalent to
x1 + . . .+ xk = xk+1 + . . .+ x2k (2.16)

for all x1, . . . , x2k ∈ Aj . By definition of ϕ, (2.15) means that

[ξx1] + . . .+ [ξxk] ≡ [ξxk+1] + . . .+ [ξx2k] (mod q). (2.17)

Before getting properly started, let us quickly observe (the rather trivial fact) that the
equivalence of (2.15) and (2.16) implies the injectivity of ϕ, so that the inverse ϕ−1 exists.
Indeed, if ϕ(x1) = ϕ(x2) for some x1, x2 ∈ Aj , then ϕ(x1) + . . . + ϕ(x1) = ϕ(x2) + . . . +
ϕ(x2), where the sum is k-fold on both sides. Now the implication from (2.15) to (2.16)
gives that kx1 = kx2, and so x1 = x2.

Now, we proceed to verify the equivalence of (2.15) and (2.16). In both implications, it
is useful to write, using (2.14),

k∑
i=1

([ξxi]− [ξxi+k]) =
k∑
i=1

(ξxi − {ξxi} − (ξxi+k − {ξxi+k}))

= ξ
k∑
i=1

(xi − xi+k)−
k∑
i=1

({ξxi} − {ξxi+k}). (2.18)

Now, assume (2.16). Then the first sum on line (2.18) vanishes. The second sum is also
small: recalling that xi, xi+k ∈ Aj , the absolute value of each difference {ξxi} − {ξxi+k}
is strictly less than 1/k. Hence, the absolute value of the whole second sum on line (2.18)
is strictly less than one. But the left hand side is an integer, so it must equal zero. This is
even stronger than (2.17) (because we did not need to take (mod q) to make the left and
right hand sides agree).

Next, assume (2.17). This means that the left hand side of equation (2.18) is lq for some
integer l, whereas the right hand side has the form ξy + δ for some y ∈ kA − kA and
|δ| < 1 (using again that xi, xi+k ∈ Aj). We want to infer that y = 0 (which is precisely
(2.16)), so we need to choose ξ ∈ [0, q] so that the equation lq = ξy+δ, y ∈ (kA−kA)\{0},
can never occur for any l ∈ Z or y ∈ (kA − kA) \ {0}. First of all, if the equation holds,
and recalling that ξ ∈ [0, q], we have

|l|q = |ξy + δ| ≤ |ξy|+ 1 ≤ |y|q + 1,

so we only need to consider |l| ≤ |y|+ 1. Now, in terms of ξ, the equation is equivalent to

ξ =
lq − δ
y

, |l| ≤ |y|+ 1, y ∈ (kA− kA) \ {0}.

Recalling that |δ| < 1, the possible solutions ξ can be found in the union of the intervals
((lq/y − 1)/|y|, (lq/y + 1)/|y|), where |l| ≤ |y| + 1 and y ∈ (kA − kA) \ {0}. These
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intervals have total length < |kA − kA| · (2/|y|) · (1 + |y|) ≤ 4|kA − kA|. Hence, as soon
as 4|kA − kA| ≤ q, there exists a point ξ ∈ [0, q], which is not contained in any of these
intervals, and then, with this choice of ξ and the corresponding choice of A′ = Aj(ξ), the
restriction of ϕ to A′ is a Freiman isomorphism of order k. �

Recall that the aim of this section is to reduce the proof of Freiman’s theorem to the
case where A ⊂ Zq and q is a prime with |A| ≥ αN . Assume for a moment that we
have already established the theorem in that case. More precisely, assume that we have
proved the following result (which is the content of the next sections):

Theorem 2.19. Assume that that q is prime, and A ⊂ Zq is a set with cardinality |A| ≥ αq such
that |A+ A| ≤ C|A|. Then 2A− 2A contains a proper d-dimensional arithmetic progression P
of size |P | ≥ βq, where d = d(α,C) ∈ N and β = β(α,C) > 0 only depend on α and C.

Now, let us see how to combine Theorem 2.19 with Proposition 2.13 and the Plünnecke-
Ruzsa inequalities to complete the proof of Freiman’s theorem in Z.

Proof of Theorem 1.3. The assumption of Freiman’s theorem is that A ⊂ Z with |A+ A| ≤
C|A|. It follows from the Plünnecke-Ruzsa inequalities that |8A − 8A| ≤ C16|A|, and by
the previous proposition, for any prime 4C16|A| < q < 8C16|A|,1 a subset A′ ⊂ A of
cardinality |A′| ≥ |A|/8 is Freiman 8-isomorphic to a set X ⊂ Zq of cardinality

|X| = |A′| ≥ |A|/8 ≥ q

64C16
.

Now, since also
|X +X| = |A′ +A′| ≤ |A+A| ≤ C|A| ≤ 8C|X|,

where the first equation is a consequence of A′ and X being Freiman isomorphic, Theo-
rem 2.19 can be applied to X : there exists a proper d-dimensional arithmetic progession
P ′ ⊂ 2X − 2X of size |P ′| ≥ βq, where d = d((64C16)−1, 8C) and β = β((64C16)−1, 8C)
only depend on C.

Next, this arithmetic progression is pulled back inside 2A′−2A′. To this end, we verify
that 2A′ − 2A′ ∼=2 2X − 2X . This is quite mechanical, so the reader may wish to skip the
next few paragraphs. Let ϕ : A′ → X be the Freiman isomorphism of order 8. We claim
that the mapping ψ : 2A′ − 2A′ → 2X − 2X given by

ψ(x1 + x2 − x3 − x4) = ϕ(x1) + ϕ(x2)− ϕ(x3)− ϕ(x4)

is a well-defined Freiman 2-isomorphism between 2A′− 2A′ and 2X − 2X . To check that
ψ is well-defined, assume that x1+x2−x3−x4 = y1+y2−y3−y4. Then x1+x2+y3+y4 =
y1 + y2 + x3 + x4, so that ϕ(x1) + ϕ(x2) + ϕ(y3) + ϕ(y4) = ϕ(y1) + ϕ(y2) + ϕ(x3) + ϕ(x4).
This means that

ψ(x1 + x2 − x3 + x4) = ψ(y1 + y2 − y3 − y4),
so the value of ψ is independent of the representation of a point in 2A′ − 2A′.

To check that ψ is a Freiman 2-isomorphism, we fix points z1, . . . , z4 ∈ 2A′ − 2A′ and
represent them as zi = xi1 + xi2 − xi3 − xi4. Then, by the definition of ψ,

ψ(z1) + ψ(z2) = ψ(z3) + ψ(z4),

1Such a prime exists by Bertrand’s postulate, which states that there always exists a prime strictly be-
tween n and 2n.
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if and only if

[ϕ(x11) + ϕ(x12)− ϕ(x13)− ϕ(x14)] + [ϕ(x21) + ϕ(x22)− ϕ(x23)− ϕ(x24)]

= [ϕ(x31) + ϕ(x32)− ϕ(x33)− ϕ(x34)] + [ϕ(x41) + ϕ(x42)− ϕ(x43)− ϕ(x44)].

By rearranging the terms and using the Freiman 8-isomorphism property of ϕ, this is
eventually equivalent with z1 + z2 = z3 + z4 as desired.

We have established that ψ : 2A′ − 2A′ ∼=2 2X − 2X , and now we claim that P :=
ψ−1(P ′) ⊂ 2A′ − 2A′ ⊂ 2A− 2A is a proper d-dimensional arithmetic progression of size

|P | = |P ′| ≥ βq > 4βC16|A| ≥ 4βC12|2A− 2A|.

This is the content of the following lemma:

Lemma 2.20. Let G,H be Abelian groups, and let ψ : P ∼=2 ψ(P ) ⊂ H be a Freiman 2-
isomorphism, where P ⊂ G is a proper d-dimensional arithmetic progression of size K. Then
ψ(P ) is a proper d-dimensional arithmetic progression of size K.

Proof. Write

P =

x0 +
d∑
j=1

λjxj : 0 ≤ λj ≤ mj − 1

 ,

and define
x′0 := ψ(x0) and x′j := ψ(x0 + xj)− ψ(x0).

We claim that

ψ(P ) =

x′0 +
d∑
j=1

λjx
′
j : 0 ≤ λj ≤ mj − 1

 ,

and this is achieved by demonstrating that

ψ

x0 +
d∑
j=1

λjxj

 = x′0 +
d∑
j=1

λjx
′
j . (2.21)

The properness of ψ(P ) then simply follows from the fact that ψ is injective. We prove
(2.21) by induction on r =

∑
j λj . For r ∈ {0, 1}, this is clear by definition: if r = 0, then

x0 +
∑
λjxj = x0 and ψ(x0) =: x′0. And if r = 1, then x0 +

∑
λjxj = x0 + xj for some j,

whence ψ(x0 + xj) = ψ(x0) + x′j = x′0 + x′j .
Assume next that the claim holds for some r ≥ 1 (and smaller values), and fix

p := x0 +
d∑
j=1

λjxj ∈ P,
d∑
j=1

λj = r + 1 ≥ 2.

Now, one can either find two elements λj1 , λj2 ≥ 1, j1 6= j2, or then just one element
λj1 ≥ 2. In the former case, define λ′ := λj1 and λ′′ := λj2 . In the latter case, write
j2 := j1 and choose λ′, λ′′ ≥ 1 arbitrarily so that λ′ + λ′′ = λj1 . With this notation, define

u := p− λ′xj1 , v := p− λ′′xj2 and w := p− λ′xj1 − λ′′xj2 ,
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so that u, v, w are all points in P with the corresponding
∑
λj -sums being ≤ r. We

denote the λj-coefficients of u, v, w by λuj , λ
v
j , λ

w
j . Since p+ w = u+ v and ψ is a Freiman

homomorphism of order 2, we find

ψ(p) = ψ(u) + ψ(v)− ψ(w)

=

x′0 +
d∑
j=1

λuj x
′
j

+

x′0 +
d∑
j=1

λvjx
′
j

−
x′0 +

d∑
j=1

λwj x
′
j

 = x′0 +
d∑
j=1

λjx
′
j ,

and the induction is complete. �

Continuing where we left off before the proof of the lemma, we have now established
that P := ψ−1(P ′) ⊂ 2A − 2A is a proper d-dimensional arithmetic progression of size
|P | ≥ 4βC12|2A− 2A|. This yields (as we already saw in Section 2.1)

|A| ≤ |2A− 2A| ≤ (4βC12)−1|P | ≤ (4βC12)−1|P +A|
≤ (4βC12)−1|2A− 2A+A|
= (4βC12)−1|3A− 2A| ≤ (4βC7)−1|A|

by another application of the Plünnecke-Ruzsa inequalities. Thus, we have shown that
|A| ∼ |P | ∼ |P + A|, and so A ⊂ X + P − P with |X| . 1 by Ruzsa’s covering lemma
2.1. Here P − P is a d-dimensional arithmetic progression of size |P − P | ≤ 2d|P | . |A|,
and X is an |X|-dimensional arithmetic progression of size |X| . 1. All in all, A can be
covered by a (d+ |X|)-dimensional arithmetic progression of dimension d and size. |A|.
The proof of Freiman’s theorem is complete. �

2.3. Fourier analysis on Zq. In the previous sections, we reduced the proof of Freiman’s
theorem in Z to the following statement in Zq:

Theorem 2.22. Assume that that q is prime, and A ⊂ Zq is a set with cardinality |A| ≥ αq such
that |A+ A| ≤ C|A|. Then 2A− 2A contains a proper d-dimensional arithmetic progression P
of size |P | ≥ βq, where d = d(α,C) ∈ N and β = β(α,C) > 0 only depend on α and C.

The purpose of this section is to prove Theorem 2.22 using a Fourier-analytic tech-
nique. The proof has two parts: the first if to locate something called a Bohr neighbour-
hoodB(K, δ) ⊂ 2A−2A, and the second is to find a d-dimensional arithmetic progression
inside B(K, δ). The Fourier analysis appears in the first part. Here is the definition of a
Bohr neighbourhood:

Definition 2.23. Let K ⊂ Zq and δ > 0. The Bohr δ-neighbourhood of K is

B(K, δ) :=

{
ξ ∈ Zq :

∥∥∥∥ξxq
∥∥∥∥ ≤ δ for all ξ ∈ K

}
.

Here ‖ · ‖ stands for the distance to the nearest integer.

Remark 2.24. It makes no difference whether or not we interpret the multiplication rx
above as ξx ∈ Z or ξx(mod q). Since

ξx

q
=
lq + ξx(mod q)

q
= l +

ξx(mod q)

q

for some l ∈ Z, we clearly have ‖rx/q‖ = ‖rx(mod q)/q‖.
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Observe further that ‖ξx/q‖ = 0, if and only if e−2πiξx/q = 1. Hence, given κ > 0, there
exists δ > 0 depending only on κ such that ‖ξx/q‖ < δ implies |e−2πiξx/q − 1| < κ. In
particular,

B(K, δ) ⊂ B̃(K,κ) := {x ∈ Zq : |e−2πiξx/q − 1| < κ for all ξ ∈ K}.

Now, the two propositions, which combine to give Theorem 2.22 are the following:

Proposition 2.25 (Bohr neighbourhood inside 2A−2A). Assume that q is prime, andA ⊂ Zq
is a set with cardinality |A| ≥ αq such that |A + A| ≤ C|A|. Then, 2A − 2A contains a Bohr
neighbourhood B(K, δ), where |K| ≤ 8C/α and δ ∈ (0, 1/2) is independent of C.

Proposition 2.26 (Arithmetic progression inside B(K, δ)). Let K ⊂ Zq be a set with |K| =
k, and let δ ∈ (0, 1/2). Then, B(K, δ) contains a proper d-dimensional arithmetic progression P
with d = k and |P | ≥ (δ/k)kq.

As we stated earlier, the first proposition will be proved using Fourier analysis on Zq
(and the second one will be established in the next and final section). Here is the basic
definition:

Definition 2.27 (The discrete Fourier transform). Given any function f : Zq → R, we
define the Fourier transform of f by

f̂(ξ) :=
∑
x∈Zq

f(x)e2πixξ/q, ξ ∈ Zq.

To save some typing, define ω := e2πi/q, so that e2πixξ/q = ωxξ. The following standard
properties of f 7→ f̂ are an excercise:

Proposition 2.28. Let f, g : Zq → R. Then
(i) f(x) = q−1

∑
ξ f̂(ξ)ω−xξ.

(ii)
∑

x f(x)g(x) = q−1
∑

ξ f̂(ξ)ĝ(ξ).

(iii) (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ), where f ∗ g is the convolution

f ∗ g(x) :=
∑
y∈Zq

f(y)g(x− y).

(iv) If g(x) = f(−x), then ĝ(ξ) = f̂(ξ).

Most of the time, the relevant functions will be characteristic functions of sets B ⊂ Zq,
or their convolutions. Abusing notation, we simply write B instead of χB or 1B for the
characteristic function of B. Thus

B(x) =

{
1 if x ∈ B,
0 otherwise.

Similarly, the Fourier transform of the characteristic function is abbreviated to B̂.
Before starting the proof of Proposition 2.25 in earnest, we establish a few useful iden-

tities and equivalences. First, it follows immediately from Proposition 2.28(ii) applied to
f = B = g that ∑

ξ∈Zp

|B̂(ξ)|2 = q
∑
x∈Zp

B(x) = q|B|. (2.29)
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Next, we will establish the following equivalence:

x ∈ 2B − 2B ⇐⇒
∑
ξ∈Zq

|B̂(ξ)|4ω−xξ > 0. (2.30)

To begin with, observe that the expression [B ∗ B ∗ (−B) ∗ (−B)](x) counts the number
of quadruples (x1, x2, x3, x3) ∈ B4 such that x1 + x2 − x3 − x4 = x, since

[B ∗B ∗ (−B) ∗ (−B)](x) =
∑
x1∈Zq

B(x1)[B ∗ (−B) ∗ (−B)](x− x1)

=
∑
x1∈B

∑
x2∈Zq

B(x2)[(−B) ∗ (−B)](x− x1 − x2)

=
∑
x1∈B

∑
x2∈B

∑
x3∈Zq

B(−x3)B(x1 + x2 + x3 − x)

=
∑
x1∈B

∑
x2∈B

∑
x3∈B

B(x1 + x2 − x3 − x)

= |{(x1, x2, x3) ∈ B3 : x1 + x2 − x3 − x ∈ B}|
= |{(x1, x2, x3, x4) ∈ B4 : x1 + x2 − x3 − x4 = x}|.

Obviously, this number is non-zero, if and only if x ∈ 2B − 2B. Further, by Proposition
2.28(iii)-(iv), the Fourier transform of B ∗B ∗ (−B) ∗ (−B) is

[B ∗B ∗ (−B) ∗ (−B)]̂ = B̂B̂B̂B̂ = |B̂|4,
so by Proposition 2.28(i),

[B ∗B ∗ (−B) ∗ (−B)](x) = q−1
∑
ξ∈Zq

|B̂(ξ)|4ω−xξ.

This gives (2.30). An important special case is x = 0, namely∑
ξ∈Zq

|B̂(ξ)|4 = q|{(x1, . . . , x4) ∈ B4 : x1 + x2 = x3 + x4}|. (2.31)

With these preliminaries, we are prepared to prove Proposition 2.25.

Proof of Proposition 2.25. Recall that A ⊂ Zq satisfies |A| ≥ αq and |A + A| ≤ C|A|. Re-
defining α if necessary, we assume that in fact |A| = αq. Put ε = α/

√
8C and

K := {ξ ∈ Zq : |Â(ξ)| ≥ εq}.
Then K 6= ∅, because at least 0 ∈ K. The plan is to show that

B̃(K,κ) := {x ∈ Zq : |ω−xξ − 1| < κ for all ξ ∈ K}
is contained in 2A − 2A for some small enough absolute constant κ > 0; recall from
Remark 2.24 that 2A − 2A ⊃ B̃(K,κ) then contains a Bohr neighbourhood B(K, δ) for
some δ > 0 only depending on κ. This will complete the proof.

By (2.30), it suffices to demonstrate that∑
ξ∈Zq

|Â(ξ)|4ω−xξ > 0, x ∈ B̃(K,κ).
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To this end, the definition of K and (2.29) give∑
ξ∈Zq\K

|Â(ξ)|4 < ε2q2
∑

ξ∈Zq\K

|Â(ξ)|2 ≤ ε2q3|A| = α3q4

8C
. (2.32)

Recalling (2.31),∑
ξ∈Zq

|Â(ξ)|4 = q card{(x1, . . . , x4) ∈ A4 : x1 + x2 = x3 + x4}.

It is an exercise to check that |A + A| ≤ C|A| implies that the right hand side is at least
q|A|3/C = α3q4/C.

Exercise 2.33. Assume that |A+A| ≤ C|A|, and prove that

card{(x1, . . . , x4) ∈ A4 : x1 + x2 = x3 + x4} ≥
|A|3

C
.

In particular, using (2.32), we have∑
ξ∈K
|Â(ξ)|4 ≥

∑
ξ∈Zq

|Â(ξ)|4 −
∑

ξ∈Zq\K

|Â(ξ)|4 ≥ α3q4

2C
. (2.34)

Finally, if x ∈ B̃(K,κ) and κ < 1/100, say, then certainly Reω−xξ ≥ 1/2 for all ξ ∈ K,
which gives, using (2.32)-(2.34),∑

ξ∈Zq

|Â(ξ)|4ω−ξx = Re
∑
ξ∈Zq

|Â(ξ)|4ω−ξx

≥ 1

2

∑
ξ∈K
|Â(ξ)|4 −

∣∣∣∣∣∣
∑

ξ∈Zq\K

|Â(ξ)|4ω−xξ
∣∣∣∣∣∣

≥ α3q4

4C
− α3q4

8C
> 0.

As explained above, this proves that B̃(K,κ) ⊂ 2A − 2A. The last thing to verify is that
|K| ≤ 8C/α. Fortunately, this follows immediately from (2.29):

|K| ≤ 1

ε2q2

∑
ξ∈K
|Â(ξ)|2 ≤ q|A|

ε2q2
=
α

ε2
=

8C

α
.

This completes the proof of Proposition 2.25. �

2.4. Lattice theory and the conclusion of the proof of Freiman’s theorem. It remains
to prove Proposition 2.26, that is, to verify that the Bohr neighbourhood B(K, δ) found
in Proposition 2.25 contains a large d-dimensional arithmetic progression. To this end,
we need some tools from lattice theory. A set Λ ⊂ Rn is called a lattice, if it is a discrete
subgroup and is not contained in any n − 1-dimensional subspace of Rn. A fundamental
domain of Λ is a measurable subset F ⊂ Rn with the property that the sets F + x, x ∈ Λ,
cover Rn without overlap. The determinant of the lattice, denoted by |Λ|, is the Lebesgue
measure of a fundamental domain F – and then one can/should check that at least one F
always exists, and the definition of |Λ| does not depend on the particular choice of F . We
will not do this here, but the idea is that every lattice Λ can be written as Λ = {

∑
λivi :
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λi ∈ Z}, where {v1, . . . , vn} ⊂ Λ is a linearly independent collection of vectors (a basis for
the lattice), and then |Λ| = | det(v1, . . . , vn)|. For those interested in the details, see e.g.
the lecture notes on the webpage [8].

If U ⊂ Rn is an open, convex set – which will simply be U = {x ∈ Rn : ‖x‖∞ < 1} in
our application – denote by λk = λk(U,Λ) the positive real number

λk = inf{λ > 0 : λU contains k linearly independent vectors in Λ}.
A theorem of Minkowski gives an upper bound for the numbers λk in terms of |Λ| and
the Lebesgue measure of U :

Theorem 2.35 (Minkowski). Suppose that U ⊂ Rn is open, convex and centrally symmetric.
Then

λ1λ2 · · ·λn|U | ≤ 2n|Λ|.

Proof. See Green’s lecture notes, [14, Theorem 22]. �

If two lattices Λ1,Λ2 satisfy Λ1 ⊂ Λ2, it is natural to view Λ1 as a subgroup of Λ2. In
particular, one can speak of the cosets of Λ1 inside Λ2, namely

λ+ Λ1, λ ∈ Λ2,

and their number is denoted by [Λ1 : Λ2]. The determinants of Λ1 and Λ2 are have a
simple relation in terms of [Λ1 : Λ2]:

Lemma 2.36 (Volume packing lemma). If Λ1 ⊂ Λ2, then |Λ1| = |Λ2|[Λ1 : Λ2].

Proof of Proposition 2.26. Recall that q is prime, and let B(K, δ) ⊂ Zq be the Bohr neigh-
bourhood inside which we are supposed to locate an arithmetic progression. Enumerate
the elements in K as K = {r1, . . . , rk} and let r := (r1, . . . , rk) ∈ Rk; here we commit the
usual abuse of notation, so rj ∈ {0, . . . , q − 1} is the integer corresponding to rj ∈ Zq. As
a technical point, we may assume that rj 6= 0 for all 1 ≤ j ≤ k, since

B(K, δ) = {x ∈ Zq : ‖rjx/q‖ ≤ δ for all 1 ≤ j ≤ k},
is obviously the same set as B(K ′, δ), where K ′ is K minus the zero elements.

Let Λ1 be the lattice qZk, and let Λ2 be the lattice Λ2 = rZ + qZk. The generic element
of Λ2 has the form jr + qm, where j ∈ Z and m ∈ Zk, so the cosets of Λ1 inside Λ2 have
the form

[jr + qm] + qZk = jr + qZk.
The cosets with 0 ≤ j ≤ q − 1 are all disjoint, in fact, since the values of jr1(mod q), for
instance, are distinct for 0 ≤ j ≤ q− 1 by the primality of q and the fact that r1 6= 0. Also,
these are all the cosets: if j /∈ {0, . . . , q − 1}, then j = j0 + sq for some j0 ∈ {0, . . . , q − 1}
and s ∈ Z, so that

jr + qZk = j0r + sqr + qZk = j0r + qZk.
We may now infer from the Volume packing lemma 2.36 that

|Λ2| =
|Λ1|

[Λ1 : Λ2]
=
qk

q
= qk−1.

Next, let U = {x ∈ Rk : ‖x‖∞ < 1}, and λj := λj(U,Λ2). By definition of λj , the
set λjU ∩ Λ2 contains j linearly independent vectors in Λ2. We can choose such vectors
inductively, starting with b1 ∈ λ1U ∩ Λ2. Next, choose b2 ∈ λ2U ∩ Λ2, which is linearly
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independent of b1, then b3 ∈ λ3U ∩ Λ2 independent of b1,b2 and so on. This eventually
produces k linearly independent vectors b1, . . . ,bk with bj ∈ λjU ∩ Λ2.

Since bj ∈ Λ2, it can be written as

bj = bjr + qmj = (bjr1 + qmj
1, . . . , b

jrk + qmj
k), 0 ≤ bj ≤ q − 1, mj ∈ Zk.

Here
|bjri + qmj

i | ≤ λj (2.37)
by virtue of bj ∈ λjU . Now consider the k-dimensional arithmetic progression

P =


k∑
j=1

njb
j : |nj | ≤

δq

kλj

 .

Then P ⊂ B(K, δ), because if ri ∈ K, 1 ≤ i ≤ k, we have∥∥∥∥∥∥
ri

(∑k
j=1 njb

j
)

q

∥∥∥∥∥∥ =

∥∥∥∥∥
∑k

j=1 nj(b
jri + qmj

i )

q

∥∥∥∥∥ ≤ 1

q

k∑
j=1

|nj ||bjri + qmj
i | ≤

1

q

k∑
j=1

njλj ≤ δ

by (2.37) and the restriction |nj | ≤ δq/(kλj). So, it suffices to show that P is proper and
estimate its size from below. Note that

k∑
j=1

njb
j =

 k∑
j=1

nj(b
jr1 + qmj

1), . . . ,
k∑
j=1

nj(b
jrk + qmj

k)

 .

Again by (2.37) and the restriction on |nj |, the absolute values of each coordinate of this
vector is bounded by δq. Now, in order to prove that P is proper (that is to say: different
sums in the definition of P result in distinct points) assume that

k∑
j=1

njb
j =

k∑
j=1

n′jb
j

for some |nj |, |n′j | ≤ δq/(kλj). Then

k∑
j=1

(nj − n′j)bj =

 k∑
j=1

(nj − n′j)qm
j
1, . . . , (nj − n

′
j)qm

j
k

 ∈ qZk,
and ∥∥∥∥∥∥

k∑
j=1

(nj − n′j)bj
∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
k∑
j=1

njb
j

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
k∑
j=1

njb
j

∥∥∥∥∥∥
∞

≤ 2δq < q,

since δ < 1/2. The previous two equations force
∑
njb

j =
∑
n′jb

j , and since the vectors
bj are linearly independent, nj = n′j for 1 ≤ j ≤ k. We have established that P is proper,
and now it is a simple task to estimate its size from below, using Minkowski’s theorem
2.35 and the previously shown fact that |Λ2| = qk−1:

|P | ≥
k∏
j=1

δq

kλj
=

(
δq

k

)k k∏
j=1

1

λj
≥
(
δq

k

)k |U |
2k|Λ2|

=

(
δq

k

)k 1

qk−1
=

(
δ

k

)k
q.

This completes the proof of Proposition 2.26, and that of Freiman’s theorem. �
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Exercise 2.38. Prove Freiman’s theorem in R by exhibiting a Freiman isomorphism of
arbitrary order between A ⊂ R and a certain subset B ⊂ Z. You may first wish to find a
linear isomorphism ψ between the integer span

span(A) :=

{∑
x∈A

rxx : rx ∈ Z

}
⊂ R

and Zn for a suitable n = n(A) ∈ N. After that, you just need to check that ϕ restricted to
ψ(A),

ϕ(r1, . . . , rn) :=

n∑
j=1

rjM
j−1,

is a Freiman m-isomorphism for M = M(A,m) ∈ N large enough. As a further remark,
using a similar proof, you could also prove Freiman’s theorem in Rd – or more generally
in any torsion-free group G (but the exercise only concerns R).

3. THE BALOG-SZEMERÉDI-GOWERS LEMMA

In this section, we still remain close to the theme of the previous ones. Now we un-
derstand quite well the structure of sets A ⊂ R with |A + A| ∼ |A|. In applications,
however, one often has somewhat weaker information available than this. Here is an
example. Equip Z with the counting measure µ, and assume that A ⊂ Z is a set such that
the L2(µ)-norm of A ∗A is large. Can we say something about the structure of A?

This question is related to the size of A+A, because the support of A ∗A is contained
in A+A. In fact, the assumption |A+A| ∼ |A| forces ‖A ∗A‖L2(µ) to be large:

|A|2 = ‖A ∗A‖2L1(µ) ≤ |A+A|1/2‖A ∗A‖L2(µ) ∼ |A|1/2‖A ∗A‖L2(µ),

so ‖A ∗A‖2L2(µ) & |A|
3. This is about as large as the L2(µ)-norm of A ∗A can get, because

A ∗A(x) =
∑
y∈Z

A(y)A(x− y) =
∑
a∈A

A(x− a) ≤ |A|,

so that always ‖A ∗A‖2L2(µ) ≤ |A|
3.

This hopefully demonstrates that there is a strong analogue between the assumptions

|A+A| ∼ |A| and ‖A ∗A‖2L2(µ) ∼ |A|
3.

However, the first one is more restrictive. For instance, consider the case A = B ∪C ⊂ Z,
where |B| = |C| = n, B is contained in a low-dimensional arithmetic progression of size
∼ n, and C contains n arbitrary points. Then the second assumption is always satisfied
– simply because ‖A ∗A‖2L2(µ) ≥ ‖B ∗B‖

2
L2(µ) & n

3 – whereas the validity of the first one
depends on B. In a sense, the second assumption is more robust.

The example above shows that the strongest structural conclusion for A, which can be
deduced from the assumption ‖A ∗ A‖2L2(µ) ≥ C|A|3, is the following: A contains a large
subset A′, which is covered by a generalised arithmetic progression, whose dimension
and size are bounded by constants depending only on C. This begins to sound a lot
like the conclusion of Freiman’s theorem, except for the "large subset" part. In order to
apply Freiman’s theorem directly, we would need another result, which states that there
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exists a large subset A0 ⊂ A with the property that |A0 + A0| ≤ C0|A0|. Such a result is
available, in fact, and is known as the Balog-Szemerédi-Gowers lemma/theorem:

Theorem 3.1 (BSGT). Let A be a finite non-empty set in an abelian group G. Write

T (A) := |{(a1, a2, a3, a4) ∈ A4 : a1 − a2 = a3 − a4}|,

and suppose that T (A) ≥ γ|A|3 for some constant γ ∈ (0, 1). Then there exists a subset A0 ⊂ A
with |A0| ≥ (γ2/40)|A| such that

|{(x1, . . . , x4, y1, . . . , y4) ∈ A8 : a1 − a2 = x1 + · · ·+ x4 − y1 − · · · − y4}| ≥ 2−28γ10|A|7

for any a1, a2 ∈ A0. In particular,

|A0 −A0| < 228γ−10|A|.

Remark 3.2. If µ is the counting measure on G, then T (A) = ‖A ∗ A‖2L2(µ) according to
the computation leading to (2.31). Note that, according to Exercise 2.33, the conclusion
|A0 −A0| . |A0| also gives

T (A) ≥ T (A0) & |A0|3 & |A|3.

So, the Balog-Szemerédi-Gowers lemma is, in a sense, an "if and only if" result.

3.1. Proof of the Balog-Szemerédi-Gowers lemma. Before starting the proof, we should
mention that this version of the theorem is due to W. T. Gowers [13] from 1998. The
original version due to A. Balog and E. Szemerédi [3], from 1994, has worse constants.
The proof of Theorem 3.1 proceeds through a few lemmas. The intuition behind the first
lemma is the following. Suppose that A is a finite set, and A1, . . . , An ⊂ A are subsets
with cardinality at least δ|A|, where n large compared to δ. Then, the average intersection
of Ai ∩ Aj contains at least δ2|A| elements. The lemma below says that one can actually
find a large selection A among the subsets Ai, 1 ≤ i ≤ n, such that "most" intersections
of pairs of sets Ai, Aj ∈ A have "almost" the expected cardinality.

Lemma 3.3. Let A be a finite set with m := |A|, and suppose that A1, . . . , An ⊂ A are subsets
of size at least |Ai| ≥ δm, where δ > 0 is a constant. Then, there exists a set of indices I ⊂
{1, . . . , n} such that |I| ≥ δn/2 and

|{(i, j) ∈ I × I : |Ai ∩Aj | ≤ 0.03δ2m}| < |I|
2

25
.

Proof. For a ∈ A, let Ia = {i ∈ {1, . . . , n} : a ∈ Ai}. Then,

n∑
i,j=1

|Ai ∩Aj | =
n∑

i,j=1

∑
a∈A

(Ai ∩Aj)(a) =
∑
a∈A

n∑
i=1

Ai(a)

 n∑
j=1

Aj(a)


=
∑
a∈A

n∑
i=1

Ai(a) · |Ia| =
∑
a∈A
|Ia|2

C-S
≥ |A|−1

(∑
a∈A
|Ia|

)2

=
1

m

(∑
a∈A

n∑
i=1

Ai(a)

)2

=
1

m

(
n∑
i=1

|Ai|

)2

≥ δ2mn2.
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This means exactly that the average intersection Ai ∩ Aj has at least δ2m elements. We
claim that we can take I = Ia for some a ∈ A. Let us choose a at random. Taking
expectations with respect to this random choice, we have

Ea∈A|Ia|2 =
1

m

∑
a∈A
|{(i, j) : i, j ∈ Ia}| =

1

m

∑
a∈A
|{(i, j) : a ∈ Ai ∩Aj}|

=
1

m

n∑
i,j=1

∑
a∈A

(Ai ∩Aj)(a) =
1

m

n∑
i,j=1

|Ai ∩Aj | ≥ δ2n2,

using the previous estimate in the final inequality. On the other hand, we have the upper
bound

Ea∈A|{(i, j) ∈ Ia × Ia : |Ai ∩Aj | ≤ 0.03δ2m}| = 1

m

∑
a∈A

n∑
i,j=1

|Ai∩Aj |≤0.03δ2m

(Ia × Ia)(i, j)

=
1

m

n∑
i,j=1

|Ai∩Aj |≤0.03δ2m

∑
a∈A

(Ai ∩Aj)(a)

=
1

m

n∑
i,j=1

|Ai∩Aj |≤0.03δ2m

|Ai ∩Aj | ≤ 0.03δ2n2.

Since 25 · 0.03 = 0.75, using linearity of expectation now leads to

Ea∈A
{
|Ia|2 − 25 · |{(i, j) ∈ Ia × Ia : |Ai ∩Aj | ≤ 0.03δ2m}|

}
≥ δ2n2

4
.

In particular, there has to exist a ∈ A such that

|Ia|2 − 25 · |{(i, j) ∈ Ia × Ia : |Ai ∩Aj | ≤ 0.03δ2m} ≥ δ2n2

4
.

For this a, we have |Ia| ≥ δn/2 and

|{(i, j) ∈ Ia × Ia : |Ai ∩Aj | ≤ 0.03δ2m}| ≤ |Ia|
2

25
− δ2n2

100
<
|Ia|2

25
,

as required. �

In fact, we will eventually use the lemma in the following form:

Lemma 3.4. Let A,B be two finite non-empty sets with m := |A|. Suppose that to every b ∈ B
there corresponds a set N(b) ⊂ A of cardinality |N(b)| ≥ δm, where δ > 0 is a constant. Then,
there exists a set B′ ⊂ B with |B′| ≥ δ|B|/2 such that

|{(b, b′) ∈ B′ ×B′ : |N(b) ∩N(b′)| ≤ 0.03δ2m}| < |B
′|2

25
.

Of course, this lemma is precisely the same as the one above; now the sets Ai are
simply denoted by N(b). Next, we introduce a simple lemma in graph theory.
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Lemma 3.5. Let G be an undirected graph on a vertex set V (it is allowed that G has loops, i.e.
that v → v is an edge). Suppose that the average degree2 of G satisfies v̄ ≥ (1 − λ)|V |. Then V
contains at least (1−

√
λ)|V | vertices of degree higher than (1−

√
λ)|V |.

Proof. Let k := |{v ∈ V : deg(v) > (1−
√
λ)|V |}|. Then

d̄ =
1

|V |
∑

deg(v)≤(1−
√
λ)|V |

deg(v) +
1

|V |
∑

deg(v)>(1−
√
λ)|V |

deg(v) ≤ (1−
√
λ)(|V | − k) + k,

which gives

(1− λ)|V | ≤ d̄ ≤ (1−
√
λ)(|V | − k) + k = (1−

√
λ)|V |+

√
λk,

and so

k ≥

(√
λ− λ√
λ

)
|V | = (1−

√
λ)|V |.

�

Combining the results so far leads to our final lemma:

Lemma 3.6. Let A,B be finite sets with m := |A|; as in Lemma 3.4, suppose that to every
element b ∈ B there exists a set N(b) ⊂ A of cardinality |N(b)| ≥ δm. Then there exist subsets
B0 ⊂ B′ ⊂ B with |B0| ≥ 4|B′|/5 > 2δ|B|/5, such that for any b0 ∈ B0 we have

|{b′ ∈ B′ : |N(b0) ∩N(b′)| > 0.03δ2m}| > 4|B′|
5

.

Proof. Start by finding B′ ⊂ B as in Lemma 3.4. Thus, we have |B′| ≥ δ|B|/2, and

|{(b, b′) ∈ B′ ×B′ : |N(b) ∩N(b′)| ≤ 0.03δ2m}| < |B
′|2

25
. (3.7)

Next, construct a graph G on the vertex set V = {N(b′) : b′ ∈ B′} by joining N(b′) to
N(b′′), if and only if |N(b′) ∩ N(b′′)| > 0.03δ2m. In particular, each set N(b′) is joined to
itself (this is called a loop edge). How many non-loop edges are there in G? Well, there are(|B′|

2

)
two-element subsets {b′, b′′} ⊂ B′, and to every one of these sets there corresponds

a non-loop edge except if |N(b′)∩N(b′′)| ≤ 0.03δ2m. According to (3.7), there are at most
|B′|2/50 subsets {b′, b′′} with the latter property (observing that no pair (b′, b′) can have
the property), so the number of non-loop edges is at least

(|B′|
2

)
− |B′|2/50. Thus, adding

the |B′| loop edges, the average degree of G is

|B′|+ 2 · |{non-loop edges in G}|
|V |

≥
|B′|+ 2 ·

(|B|′
2

)
− |B′|2/25

|B′|
=

24 · |B′|
25

.

Applying Lemma 3.5 with λ = 1/25, we find a set B0 ⊂ B′ with at least (1 −
√
λ)|B′| =

4|B′|/5 elements such that if b0 ∈ B0, then the degree of b0 is higher than 4|B′|/5. In other
words,

|{b′ ∈ B′ : |N(b0) ∩N(b′)| > 0.03δ2m}| > 4|B′|
5

, b0 ∈ B0,

just as we wanted. �

Now we are prepared to prove the Balog-Szemerédi-Gowers theorem.

2The ’degree of v’ means the same as the ’number of edges starting/ending at v’.
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Proof of Theorem 3.1. Recall that A is a finite subset of an abelian group, and write m :=
|A|. Also, recall that

vA(d) = |{(a1, a2) ∈ A×A : d = a1 − a2}|, d ∈ G,

and
T (A) := |{(a1, a2, a3, a4) ∈ A4 : a1 − a2 = a3 − a4}|.

We are assuming that T (A) ≥ γ|A|3 for some constant γ ∈ (0, 1). We say that an element
d ∈ G is a popular difference, if vA(d) ≥ γm/2; writeD for the set of all popular differences.
We construct a graph Γ on the vertex set A by joining a1 to a2, if and only if a1 − a2 ∈ D
(since 0 ∈ D, we also loop a to a for every a ∈ A). Observe that the graph so constructed
is undirected: if a1 is joined to a2, then also a2 is joined to a1 by virtue of the equation
−D = D. To estimate the average degree d̄ of Γ, we first write

d̄ :=
1

m

∑
a∈A

deg(a) :=
1

m

∑
a∈A
|{a′ ∈ A : a′ − a ∈ D}|

=
1

m
|{(a, a′) ∈ A×A : a′ − a ∈ D}| = 1

m

∑
d∈D

vA(d).

Next, using the equation

T (A) =
∑

d∈A−A
(vA(d))2,

justified during the proof of Proposition ??, we estimate

γm3 ≤ T (A) =
∑

d∈A−A
(vA(d))2 =

∑
d∈(A−A)\D

(vA(d))2 +
∑
d∈D

(vA(d))2

≤ γm

2

∑
d∈A−A

vA(d) +m
∑
d∈D

vA(d) =
γm3

2
+m2d̄.

This gives

d̄ ≥ γm

2
.

We then apply the graph-theoretic Lemma 3.5 to Γ with λ = 1 − γ/2; observing that
d̄ ≥ (1 − λ)m, we obtain a subset B ⊂ A with |B| ≥ (1 −

√
λ)m > γm/4 such that

deg(b) > γm/4 for any b ∈ B. To rephrase this, if N(b) stands for the neighbourhood of b
in Γ – including b – then |N(b)| > γm/4 for any b ∈ B.

Then, we apply Lemma 3.6 with δ = γ/4 to the collection of sets N(b) ⊂ A, b ∈ B.
Thus, we find subsets A0 ⊂ A′ ⊂ B such that

|A0| ≥
4|A′|

5
≥ 2δ|B|

5
>
γ2m

40
, (3.8)

and

|{a′ ∈ A′ : |N(a0) ∩N(a′)| > 0.03(γ/4)2m}| > 4|A′|
5

(3.9)

for any a0 ∈ A0. We now claim that

|{(x1, . . . , x4, y1, . . . , y4) ∈ A8 : a1 − a2 = x1 + · · ·+ x4 − y1 − · · · − y4}| ≥ 2−28γ10|A|7
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for any pair of elements a1, a2 ∈ A0. According to (3.8), this will finish the proof of
Theorem 3.1, except for the easy ’in particular’ part. Fix a1, a2 ∈ A0. According to (3.9),
the set

S = {a′ ∈ A′ : |N(ai) ∩N(a′)| > 0.03(γ/4)2m for i = 1, 2}
is the intersection of two subsets of A′ with cardinality > 4|A′|/5, so |S| > 3|A′|/5, using
the equation |U ∩ V | = |U |+ |V | − |U ∪ V |. Now, at the end, things become a bit compli-
cated. Fix a′ ∈ S. Note that, if a ∈ N(a1)∩N(a′), then a1 − a and a′ − a are both popular
differences, so

|{(x1, y1) ∈ A×A : a1 − a = x1 − y1}| ≥
γm

2
and

|{(x′1, y′1) ∈ A×A : a′ − a = x′1 − y′1}| ≥
γm

2
.

This means that

|{(x1, y1, x′1, y′1) ∈ A4 : a1 − a′ = (x1 − y1)− (x′1 − y′1)}| ≥
(γm

2

)2
.

Notice how the point a has disappeared completely from above; since a ∈ N(a1)∩N(a′)
can be chosen in > 0.03(γ/4)2m ways, we may actually multiply (γm/2)2 above with
this constant to end up with

|{(x1, y1, x′1, y′1) ∈ A4 : a1 − a′ = (x1 − y1)− (x′1 − y′1)}| > 0.03 · 2−6γ4m2.

An important point used above is this: the same quadruple (x1, y1, x
′
1, y
′
1) cannot ap-

pear multiple times for different choices of a, since a is determined by each quadruple it
produces; e.g. a = a1 − x1 + y1. Using the same reasoning with a2 instead of a1 yields

|{(x2, y2, x′2, y′2) ∈ A4 : a2 − a′ = (x2 − y2)− (x′2 − y′2)}| > 0.03 · 2−6γ4m2.

Thus, corresponding to each a′ ∈ S, we find

(0.03 · 2−6γ4m2)2

octuples (x1, y1, x
′
1, y
′
1, x2, y2, x

′
2, y
′
2) ∈ A8 such that

a1 − a2 = (x1 − y1)− (x′1 − y′1)− (x2 − y2) + (x′2 − y′2). (3.10)

Again, we may freely choose a′ ∈ S; there are at least 3|A′|/5 such choices, so we have,
all in all,

> (0.03 · 2−6γ4m2)2 · 3|A′|
5

> 2−28γ10m7 (3.11)

octuples (x1, y1, x
′
1, y
′
1, x2, y2, x

′
2, y
′
2) ∈ A8 such that (3.10) holds. As before, it is important

that a′ be determined by each octuple it produces; consequently, the same octuple is not
produced by multiple choices of a′. The number on the r.h.s of (3.11) is as claimed in
Theorem 3.1, so all that remans of the proof is the ’in particular’ part.

To prove that |A0 −A0| < 228γ−10|A|, note that, altogether, there are exactly |A|8 octu-
ples of the form (x1, . . . , x4, y1, . . . , y4) ∈ A8. If a1−a2 6= a′1−a′2, then the sets of octuples
corresponding to the differences a1−a2 and a′1−a′2 (via (3.10) or the corresponding equa-
tion in the statement of Theorem 3.1) are clearly disjoint. Given that there are |A0 − A0|
distinct differences, and each difference generates at least 2−28γ10|A|7 octuples, we end
up with

|A0 −A0| · 2−28γ10|A|7 ≤ |A|8.
This completes the proof. �
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4. EXISTENCE OF ARITHMETIC PROGRESSIONS IN SUBSETS OF Z

In this section, we discuss Roth’s theorem on the existence of 3-term arithmetic pro-
gressions in dense subsets of Z. This result is the simplest non-trivial case of the following
fundamental theorem of Szemerédi:

Theorem 4.1 (Szemerédi’s theorem). Assume that δ > 0 and k ∈ N, k ≥ 3. Then, there
is a number n(δ, k) ∈ N with the following property: if n ≥ n(δ, k), and A ⊂ {1, . . . , n} has
|A| ≥ δn, then A contains a k-term arithmetic progression.

In this section, "arithmetic progression" should be interpreted in the classical sense,
so the theorem asserts the existence of a set of the form {x, x + y, x + 2y, . . . , x + (k −
1)y} ⊂ A, y ≥ 1. There are essentially three different proofs of this theorem, which was
originally conjectured by Erdős and Turán in 1936. The first was found in 1974 by E.
Szemerédi, who used a complicated combinatorial argument. The second proof is due to
H. Furstenberg from 1977, using ergodic theory. The third proof from 2001 is due to W. T.
Gowers, and employs Fourier analysis. Gowers’ proof generalises – in a very nontrivial
way! – a previous argument by Roth from 1953 (also based on Fourier analysis), which
already gave Szemerédi’s theorem in the case k = 3. So, in these lecture notes we will, in
fact, prove Roth’s theorem, and in doing so we will follow Gowers’ argument from 2001.

4.1. Heuristics of the proof. A large random subset of {1, . . . , N} contains plenty of 3-
term arithmetic progressions in expectation:

Exercise 4.2. Prove that a random subsetA ⊂ {1, . . . , N}with |A| = δN contains roughly
δ3N2 3-term arithmetic progressions in expectation, if N is large compared to δ.

The idea in the proof of Roth’s theorem is to define a concept of "pseudorandomness",
and to establish the following alternative:

(i) If the set A is pseudorandom to begin with, then it behaves like a random set in
the sense that there are roughly δ3N2 3-term arithmetic progressions inside A.3

(ii) If the set A is not pseudorandom and has |A| = δ′N , δ′ ≥ δ, then there is a long
arithmetic progression P ⊂ {1, . . . , N} such that |A ∩ P | ≥ (δ′ + δ2/1000)|P |.

After these claims have been established, a simple iteration will give Roth’s theorem:
if A is pseudorandom, (i) gives the claim. If not, then forget about A and consider
A1 := A∩P , defined in (ii), and observe that P can be identified with {1, . . . , |P |}. IfA1 is
pseudorandom in {1, . . . , |P |}, we are again done by (i), and if not, iterate with (ii). Even-
tually, we either end up in alternative (i), or then find a setAm ⊂ Awith |Am| > (2/3)|P ′|
for some (long, depending on δ, ε) arithmetic progression P ′ ⊂ {1, . . . , N}. Then, it is a
simple matter to check that Am – hence A – contains a 3-term arithmetic progression.4

4.2. Recapping Fourier analysis and basic definitions. As in the proof of Freiman’s the-
orem, most of the work will take place in Zq instead of {1, . . . , N}. Here q is a large prime.

3Of course this is roughly what we are claiming even without the assumption of pseudorandomness, but
the point is that in the pseudorandom case the existence of arithmetic progressions can be easily proved
with a direct argument.

4If Am is a subset of {1, . . . , k}with |A| > (2/3)k, then A contains {j, j + 1, j + 2} for some j.
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Gowers likes to define the Fourier transform with a different sign than we did before,
namely

f̂(ξ) =
∑
x∈Zq

f(r)ω−xξ.

Here f : Zq → C and ω−xξ = e−2πixξ/q as before. We will adopt this convention in order
to minimise sign errors caused by T.O. With this convention, the Fourier inversion and
Plancherel formulae look like this:

Proposition 4.3. Let f, g : Zq → C, and B ⊂ Zq.

(i) f(x) = q−1
∑
f̂(ξ)ωxξ.

(ii)
∑
f(x)g(x) = q−1

∑
f̂(ξ)ĝ(ξ), so that

∑
|f(x)|2 = q−1

∑
|f̂(ξ)|2.

As before, the indicator function of a set B ⊂ Zq is denoted by B. The notion of
"pseudorandomness" of A from the previous subsection will not be officially defined
anywhere, but if it were, it would require that

|Â(ξ)| ≤ αq for all ξ 6= 0,

where α is some small constant (in particular much smaller than δ = |A|/q). Under this
assumption, the existence of roughly δ3q2 3-term arithmetic progressions is not hard to
show directly; in fact we will do so at the very end of the proof.

Definition 4.4 (Balanced indicator). If B ⊂ Zq is a set with |B| = δq, we define the
balanced indicator function fB by fB(x) = B − δ, that is,

fB(x) :=

{
1− δ, if x ∈ B,
−δ, if x /∈ B.

Observe that f̂B(ξ) = B̂(ξ) for all ξ 6= 0. Of course, B̂(0) =
∑
B(x) = |B| and

f̂B(0) =
∑
f(x) = 0.

4.3. Proof of Roth’s theorem on 3-term arithmetic progressions. Below, the diameter of
a set B ⊂ Zq, denoted diam(B), is the smallest natural number s such that

B ⊂ {n, n+ 1, . . . , n+ s} (mod q)

for some n ∈ Zq. For instance

diam({0, q − 1}) = 1.

Lemma 4.5. Let r, s ∈ {1, . . . , q} with rs ≥ q, and let φ : {0, 1, . . . , r − 1} → Zq be the linear
mapping φ(x) = ξx (mod q) for some ξ ∈ Zq. Then, the set {0, 1, . . . , r − 1} can be partitioned
into arithmetic progressions P1, . . . , PM such that

diam(φ(Pj)) ≤ s and
(
rs

4q

)1/2

≤ |Pj | ≤
(
rs

q

)1/2

for 1 ≤ j ≤M .
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Proof. We may assume that rs > 4q, since otherwise we may prove the lemma by using
arithmetic progressions of length one. To avoid using floor and ceiling functions exces-
sively, we will – unrealistically – assume that various quantities below are integer-valued.
One such example is

t :=
(rq

4s

)1/2
.

Two of the numbers φ(0), φ(1), . . . , φ(t) ∈ {0, . . . , q− 1}must be within q/t of each other,
say |φ(x1)− φ(x2)| ≤ q/t, where x1 < x2. Setting u := x2 − x1, we have

0 < u ≤ t and |φ(u)| ≤ q/t. (4.6)

Now, split {0, 1, . . . , r−1} into congruence classes modulo u; these congruence classes
are arithmetic progressions in {0, 1, . . . , r − 1}, with length in [r/u − 1, r/u + 1].5 The
sets Pj are then defined by partitioning these congruence classes further into blocks of
consecutive elements, where each block has length roughly (but at most) st/q. Here

st

q
=
s(rq/4s)1/2

q
=

1

2
·
(
rs

q

)1/2

, (4.7)

which means that this procedure yields arithmetic progressions of the desired length. Of
course, for this to make sense, we need to know that st/q ≥ 1 (which follows from (4.7)
and rs > 4q), and that st/q ≤ r/u− 1, which is the following computation:

st

q
=

1

2
·
(
rs

q

)1/2

=
1

4
· r

(rq/4s)1/2
=

1

4
· r
t

(4.6)
≤ 1

4
· r
u
≤ r

u
− 1.

Now, each Pj has the form Pj = {m,m + u,m + 2u, . . . ,m + ku} with k ≤ (st/q − 1),
so φ(Pj) is an arithmetic progression with gap ≤ q/t by (4.6). The claim about diameters
then follows from |Pj | · (t/q) ≤ (st/q) · (q/t) = s. �

Lemma 4.8. Let f : {0, 1, . . . , r − 1} → D, let φ : {0, 1, . . . , r − 1} → Zq be a linear function
as in the previous lemma, and let α ∈ (0, 1). If q, r ≥ 8π/α, and∣∣∣∣∣

r−1∑
x=0

f(x)ω−φ(x)

∣∣∣∣∣ ≥ αr,
then there is a partition of {0, 1, . . . , r − 1} into M ≤ (32πr/α)1/2 arithmetic progressions
P1, . . . , PM such that

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)

∣∣∣∣∣∣ ≥ αr

2
,

and (αr/32π)1/2 ≤ |Pj | ≤ (αr/6π)1/2 for all 1 ≤ j ≤M .

Proof. Choose an integer s between αq/(8π) and αq/(6π). Then rs ≥ q, so the previous
lemma partitions {0, 1, . . . , r − 1} into arithmetic progressions P1, . . . , PM such that( αr

32π

)1/2
≤
(
rs

4q

)1/2

≤ |Pj | ≤
(
rs

q

)1/2

≤
(αr

6π

)1/2
5Here r/u ≥ r/t = 2(rs/q)1/2 > 4.
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and diam(φ(Pj)) ≤ s for all 1 ≤ j ≤ M . The upper bound for M follows from the lower
bound for |Pj |. By the triangle inequality,

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)ω−φ(x)

∣∣∣∣∣∣ ≥
∣∣∣∣∣
r−1∑
x=0

f(x)ω−φ(x)

∣∣∣∣∣ ≥ αr. (4.9)

Fix an arbitrary element xj ∈ Pj . If x ∈ Pj is another element, then |φ(x)−φ(xj)+kq| ≤ s
for some k ∈ Z by diam(φ(Pj)) ≤ s. Now

|ω−φ(x) − ω−φ(xj)| = |1− ωφ(x)−φ(xj)+kq| = |1− e2πi(φ(x)−φ(xj)+kq)/q|.
Here |2π(φ(x)−φ(xj) + kq)/q| ≤ |2πs/q| ≤ α/3, so writing ρ := 2π(φ(x)−φ(xj) + kq)/q,
we have

|1− eiρ| =

∣∣∣∣∣1−
∞∑
k=0

(iρ)k

k!

∣∣∣∣∣ ≤
∞∑
k=1

(α/3)k ≤ 1

1− (α/3)
− 1 =

α

3− α
≤ α

2
.

This proves that |ω−φ(x) − ω−φ(xj)| ≤ α/2, and consequently

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)

∣∣∣∣∣∣ =
M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)ω−φ(xj)

∣∣∣∣∣∣
≥

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)ω−φ(x)

∣∣∣∣∣∣−
M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)[ω−φ(xj) − ω−φ(x)]

∣∣∣∣∣∣
≥

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

f(x)ω−φ(x)

∣∣∣∣∣∣−
M∑
j=1

(α/2)|Pj | ≥
αr

2

by (4.9), and |f(x)| ≤ 1, and the fact that the progressions Pj partition {0, . . . , r−1}. This
completes the proof of the lemma. �

The next corollary says that if A is not "pseudorandom", then there exists a long arith-
metic progression P , where A has increased density. This is essentially the second alter-
native from Subsection 4.1.

Corollary 4.10. Let A ⊂ Zq, and assume that |Â(ξ)| ≥ αq for some ξ 6= 0. Then, there
exists an arithmetic progression P ⊂ {0, 1, . . . , q − 1} of length at least (αq/32π)1/2 such that
|A ∩ P | ≥ (δ + α/10)|P |.

Proof. Let φ be the linear function φ(x) := xξ, so that∣∣∣∣∣
q−1∑
x=0

fA(x)ω−φ(x)

∣∣∣∣∣ = |f̂A(ξ)| = |Â(ξ)| ≥ αq.

Now, the previous lemma states that {0, 1, . . . , q−1} can be partitioned intoM ≤ (32πq/α)1/2

arithmetic progressions P1, . . . , PM such that

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

fA(x)

∣∣∣∣∣∣ ≥ αq

2
,
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and (αq/32π)1/2 ≤ |Pj | ≤ (αq/6π)1/2 for all 1 ≤ j ≤ M . Let J be the set of indices
1 ≤ j ≤M such that

∑
x∈Pj f(x) ≥ 0. Then∑

j∈J

∑
x∈Pj

fA(x) ≥ αq

4
. (4.11)

Indeed, we have∑
j∈J

∑
x∈Pj

fA(x) =
∑
x∈Zq

fA(x)−
∑
j /∈J

∑
x∈Pj

fA(x) = −
∑
j /∈J

∑
x∈Pj

fA(x),

so if (4.11) failed, we would get the contradiction

M∑
j=1

∣∣∣∣∣∣
∑
x∈Pj

fA(x)

∣∣∣∣∣∣ =
∑
j∈J

∑
x∈Pj

fA(x)−
∑
j /∈J

∑
x∈Pj

fA(x) <
αq

2
.

Now, (4.11), and the bounds for M and |Pj |, imply that

∑
x∈Pj

fA(x) ≥ αq

4M
≥ αq

4
·
(

α

32πq

)1/2

=
α

4
√

16/3
·
(αq

6π

)1/2
≥ α|Pj |

10

for some j ∈ J . Writing out the definition of fA, this means that

|A ∩ Pj | − δ|Pj | =
∑

x∈A∩Pj

(1− δ) +
∑

x∈Pj\A

(−δ) =
∑
x∈Pj

fA(x) ≥ α|Pj |
10

,

or |A ∩ Pj | ≥ (δ + α/10)|Pj |, as desired. �

We are ready to prove the main result of the section:

Proof of Roth’s theorem. Assume that A0 ⊂ {0, . . . , q0 − 1} with |A| = δ0q0. There will be
several cases treated below, but in each one the strategy will be the following: either
we find a long arithmetic progression, wherein A0 has increased density, and iterate the
proof immediately from the beginning – or then (in the last case) there is a direct argu-
ment showing that A0 contains plenty of 3-term progressions.

Case 1. (reduction to prime field) Assume that q = |P | is the length of some subpro-
gression P found in the course of the proof – so q = q0 on the first round – and assume
that A := A0 ∩ P has |A| ≥ δq with δ0 ≤ δ < 1/2. Also, assume that P = {0, 1, . . . , q − 1}.
If q is not prime – or even if it is – we may always find a prime p between q/3 and 2q/3
by Bertrand’s postulate. Then, either

|A ∩ {0, . . . , p− 1}| ≥ δ(1− δ/200)p or |A ∩ {0, . . . , p− 1}| < δ(1− δ/200)p.

The latter case is actually easier, because then

|A ∩ {p, . . . , q − 1}| ≥ δ(q − (1− δ/200)p) = δ((q − p) + δp/200) ≥ δ(1 + δ/400)(q − p),

which means that we can iterate inside the progression P ′ = {p, . . . , q − 1}, where A has
density at least δ(1 + δ/400) > δ.
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Case 2. (reduction to the middle third) So, we only need to worry about the case
|A ∩ {0, . . . , p − 1}| ≥ δ′p, where p is prime and δ′ = δ(1 − δ/200).6 The density is
temporarily a little smaller than δ, but in this case we will find a subprogression inside
which the density increases again markedly above δ. Let B := A ∩ [p/3, 2p/3). If |B| <
δ′p/5, then eitherA∩ [0, p/3) orA∩ [2p/3, p) has cardinality at least 2δ′p/5 = (6δ′/5)(p/3).
Since 6δ′/5 = 6δ(1− δ/200)/5 > δ(1 + δ/1000), in this case we can continue the iteration
inside either A ∩ [0, p/3) or A ∩ [2p/3, p). So, we may assume that

|B| ≥ δ′p/5 (4.12)

in the sequel. This will be used to guarantee that an arithmetic progression inside A ∩
{0, . . . , p − 1} actually lies inside the "middle third" B, so that it must be a genuine pro-
gression (and not something like {p− 2, p− 1, 0}).

Case 3. (non-pseudorandom case) WriteAp := A∩{0, . . . , p−1}, and let α := (δ′)2/10.
If |Âp(ξ)| > αp for some ξ ∈ {1, . . . , p− 1} (where the Fourier transform is taken with re-
spect to Zp), then the previous corollary states that there exists an arithmetic progression
P ′ ⊂ {0, . . . , p− 1} of cardinality |P ′| ≥ (αp/32π)1/2 such that

|Ap ∩ P ′| ≥ (δ′ + (δ′)2/100)|P ′|
= (δ(1− δ/200) + δ2(1− δ/200)2/100)|P ′|
≥ (δ + δ2/500)|P ′|.

So, in this case we may continue the iteration inside P ′.
Case 4. (pseudorandom case) The remaining case is where |Âp(ξ)| ≤ αp for all ξ ∈

{1, . . . , p− 1}. Now we will directly find plenty of 3-term arithmetic progressions inside
Ap. Observe that these correspond to the triples (x, y, z) ∈ A3

p such that x+ z− 2y = 0, so
the strategy will be to find plenty of such triples. For technical reasons alluded to above,
we will in fact search for such triples insideAp×B2. Here we use the very useful formula

p−1∑
ξ=0

ωxξ =

{
p, if x = 0,

0, if x 6= 0.

With this in mind, the number of triples (x, y, z) ∈ A×B2 such that x+ z − 2y = 0 is

1

p

∑
x∈Ap

∑
y∈B

∑
z∈B

p−1∑
ξ=0

ωξ(2y−x−z) =
1

p

p−1∑
ξ=0

Âp(ξ)B̂(−2ξ)B̂(ξ)

≥ 1

p
|Ap||B|2 −

1

p
max
ξ 6=0
|Âp(ξ)|

∑
ξ 6=0

|B̂(−2ξ)|2
1/2∑

ξ 6=0

|B̂(ξ)|2
1/2

≥ δ′|B|2 − α|B|p = |B|(δ′|B| − αp) ≥
(
δ′p

5

)(
(δ′)2p

5
− (δ′)2p

10

)
=

(δ′)3p2

50
.

6I’m not sure whether the primality assumption gets used anywhere in the proof. Gowers seems to think
so, and I chose to play it safe and write the argument in this way, so the assumption is readily available. I’m
grateful to anyone, who could point out to me, where primality is needed.
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using Cauchy-Schwarz, Proposition 4.3(ii), (4.12) and the definition of α. Any triple
(x, y, z) ∈ Ap × B2 with x+ z = 2y clearly corresponds to a genuine arithmetic progres-
sion in Ap (i.e. the quad-sum above does not accidentally count triples like (x, y, z) =
(p − 2, p − 1, 0)). The only issue remaining is that we have not ruled out the possibility
x = y = z, but because there are at most p such triples, and (δ′)3p2/50 > p for large p, this
is no real issue either. So, in this last remaining case, we have found a genuine three-term
arithmetic progression inside Ap, and the proof of Roth’s theorem is complete. �

Remark 4.13. The proof above gives the following more quantitative result: if δ > 0, and
if n ≥ exp exp(Cδ−1) for some absolute constant C ≥ 1, then any set A ⊂ {1, . . . , n} of
size at least δn contains a 3-term arithmetic progression.

5. SUM-PRODUCT THEORY

The typical example of a set A ⊂ R with |A + A| ∼ |A| is a generalised arithmetic
progression – and Freiman’s theorem says that the typical example is roughly the only
example. Then, what is the typical example of a setA ⊂ R with |A ·A| ∼ |A|? By analogy,
this would be the geometric progression

G = G(x, y) = {x · yk : k ∈ Z},
or some d-dimensional variant thereof. It is clear intuitively that arithmetic and geomet-
ric progressions "look quite different", so any set cannot "simultaneously look like both".
Since |A + A| ∼ |A| implies that "A looks like an arithmetic progression" by Freiman,
this heuristic suggests that |A · A| � |A|. Erdős and Szemerédi took this heuristic very
seriously and conjectured the following in 1983:

Conjecture 5.1 (Sum-product conjecture). For any ε > 0, there is a constant c(ε) > 0 such
that

max{|A+A|, |A ·A|} ≥ cε|A|2−ε.

Observe that |A · A| ≤ |A|2 for any set A ⊂ R, so the conjecture is the strongest pos-
sible. This conjecture has been the subject of vigorous research recently; you will get a
good idea of this by googling "sum-product theorem", and hence a comprehensive bib-
liography is omitted. As far as I know, the best bound as of 2015 is the following by S.
Konyagin and I. Skhredov [24]:

Theorem 5.2 (Konyagin and Skhredov (2015)). For any set A ⊂ R,

max{|A+A|, |A ·A|} & |A|4/3+c,
where c > 0 is an absolute constant.

The proof of Konyagin and Skhredov builds heavily on a breakthrough result of Soly-
mosi [31] from 2008:

Theorem 5.3. For any set A ⊂ R,

max{|A+A|, |A ·A|} & |A|
4/3

log |A|
.

We will prove Solymosi’s result below. According to some, "the proof is short enough
to fit on a napkin", but one still needs quite small handwriting.
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5.1. Solymosi’s sum-product theorem. We start with a heuristic proof, then give the full
details. They heuristic proof actually suggests that

max{|A+A|, |A/A|} & |A|4/3,

where A/A = {b/a : a, b ∈ A}, but making the argument rigorous will eventually cost us
the 1/ log |A| -factor. It does not matter much, whether we study A · A or A/A, but the
latter has a clearer geometric interpretation. Assume that A consists entirely of positive
reals, so A/A is certainly well-defined. Observe that any pair (a, b) ∈ A × A ⊂ R2 is
contained on the half-line

La,b = {(t, bt/a) : t > 0} ⊂ R2.

So, A × A is contained on precisely N := |A/A| such half-lines, see Figure 1. Enumerate

(0,0)

La,b

(a,b)

L1

L2

(a ,b )
1 1

(a ,b )
2 2

(a ,b )
1 1 +(a ,b )

2 2 =(a +a ,b +b )
1 2 1 2

LN

FIGURE 1. The proof of Solymosi’s theorem.

this lines as {L1, L2, . . . , LN} in increasing order according to slope (so L1 is the "most
horizontal" one and LN is the "most vertical one"). Assume that each Lj contains equally
many points of A × A: this number is of course |A|2/|A/A|. Then, fix a pair Lj , Lj+1 of
consecutive half-lines, and consider vector sums of the form

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) ∈ (A+A)× (A+A), (5.4)

where (a1, b1) ∈ Lj and (a2, b2) ∈ Lj+1. As the points on Lj and Lj+1 vary, such vector
sums are never repeated, because the lines (rather: the spanning vectors of) Lj and Lj+1

are linearly independent. The conclusion is that, for each pair Lj , Lj+1, we obtain exactly

|Lj ∩ (A×A)| · |Lj+1 ∩ (A×A)| = |A|2

|A/A|
· |A|

2

|A/A|
=
|A|4

|A/A|2

vector sums of the form (5.4) in (A+A)×(A+A). There are |A/A|−1 pairs of consecutive
half-lines, and the vector sums corresponding to distinct pairs are clearly distinct (as they
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lie "between the lines"), so we obtain the lower bound

|A+A|2 = |(A+A)× (A+A)| ≥ (|A/A| − 1) · |A|
4

|A/A|2
∼ |A|4

|A/A|
.

In other words, |A/A||A+ A|2 & |A|4, and this yields max{|A+ A|, |A/A|} & |A|4/3. The
heuristic proof of Solymosi’s theorem is complete; next, we show how to get rid of the
assumption that all the lines Lj contain an equal number of points in A×A, and how to
deduce a statement about A ·A rather than A/A.

Detailed proof of Theorem 5.3. The connection between the sets A · A and A/A can be seen
by studying the concept of multiplicative energy

E×(A) = |{(a, b, c, d) ∈ A4 : ad = bc}|.

(This is the multiplicative analogue of the "additive energy" T (A) we saw in connection
with the Balog-Szemerédi-Gowers lemma). Similarly to the heuristic proof above, we are
aiming for the estimate

|A+A|2 & |A|4

|A ·A| log |A|
,

and this will follow from the following two inequalities:

|A+A|2 & E×(A)

log |A|
≥ |A|4

|A ·A| log |A|
. (5.5)

The latter one is a simple application of Cauchy-Schwarz:

|A|2 =
∑
r∈A·A

|{(a, b) ∈ A2 : ab = r}|

≤ |A ·A|1/2
( ∑
r∈A·A

|{(a, b) ∈ A2 : ab = r}|2
)1/2

= |A ·A|1/2|{(a, b, c, d) ∈ A4 : ad = bc}|1/2 = |A ·A|1/2E×(A)1/2.

So, it remains to prove the first inequality in (5.5). Assume that A ⊂ (0,∞), and log |A| ∈
N. Now, the benefit of considering the multiplicative energy becomes clear: E×(A) is
clearly the same number as the "divisive energy"

|{(a, b, c, d) ∈ A4 : a/c = b/d}| =
∑
r∈A/A

|{(a, b) ∈ A2 : b/a = r}|2,

and now we are back in the picture of the "heuristic proof", counting pairs (a, b) ∈ R2,
which lie on a common half-line through the origin. Write further

E×(A) =

log |A|−1∑
j=0

∑
r∈A/A

2j≤|{(a,b)∈A2:b/a=r}|≤2j+1

|{(a, b) ∈ A2 : a/b = r}|2.

Now, we may fix j ∈ {0, 1, . . . , log |A| − 1} such that

E×(A)

log |A|
. 22j |{r ∈ A/A : 2j ≤ |{(a, b) ∈ A2 : b/a = r}| ≤ 2j+1}|. (5.6)
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It remains to estimate the size of the set R := {r ∈ A/A : 2j ≤ |{(a, b) ∈ A2 : b/a = r}| ≤
2j+1}|. The geometric interpretation is something we have seen before: the quantity
N := |R| counts the number of half-lines containing roughly 2j points of A × A. Let
L1, . . . , LN be an enumeration of the half-lines Lr = {(t, rt) ∈ R2 : t > 0}, with r ∈ R,
and in increasing order of slope (as in the "heuristic proof"). Then,

2j ≤ |Li ∩ (A×A)| ≤ 2j+1, 1 ≤ i ≤ N.
For each pair Li, Li+1 of consecutive half-lines, consider the collection of vector sums of
the form

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) ∈ (A+A)× (A+A),

where (a1, b1) ∈ Li and (a2, b2) ∈ Li+1. As we discussed in the "heuristic proof", these
vectors sums are distinct, and their total number (for all pairs of consecutive half-lines)
is

N−1∑
i=0

|Li ∩ (A×A)||Li+1 ∩ (A×A)| ∼ 22jN.

As the vector sums are contained in (A × A) + (A × A) = (A + A) × (A + A), we can
combine the estimate above with (5.6) to infer that

|A+A|2 & 22jN &
E×(A)

log |A|
.

The proof of (5.5) – and Theorem 5.3 – is complete. �

5.2. The Bourgain-Katz-Tao Sum-product theorem in prime fields. In this subsection,
we consider the sum-product problem in a the finite field F = Zp, p prime, where a
geometric argument such as the one above no longer works. In this context, we prove
the following theorem of J. Bourgain, N. Katz and T. Tao:

Theorem 5.7 (Sum-product theorem in finite fields). Let F = Zp, and assume that A ⊂ F
satisfies |F|δ < |A| < |F|1−δ for some δ > 0. Then,

max{|A+A|, |A ·A|} ≥ c(δ)|A|1+ε,
where ε > 0 depends only on δ.

The proof below follows mostly the original article [6], but also incorporates some
simplifications from [4]. In particular, the proof of the following proposition is from [4]:

Proposition 5.8. Assume that A ⊂ F, where F is an arbitrary field, and

|A+A| . |A|1+ε and |A ·A| . |A|1+ε.
Then, there exists a subset A1 ⊂ A with |A1| & |A|1−ε such that |kAk1| .k |A|1+Ckε for all
k ∈ N.

Before giving the proof, we recall Exercise 2.11:

Exercise 5.9. Assume that B1, B2, B3 are subsets of an Abelian group, satisfying

|B1 ∩B3| ≥
|B1|
K

and |B2 ∩B3| ≥
|B2|
K

and
|Bi +Bi| ≤ K|Bi|, i ∈ {1, 2, 3}.
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Then
|B1 +B2| ≤ K5|B3|.

Proof of Proposition 5.8. We start by repeating a Cauchy-Schwarz estimate from the proof
of Theorem 5.3, and using the assumption |A ·A| ∼ |A|:

|A|2 =
∑
r∈A·A

|{(a, b) ∈ A2 : ab = r}|

≤ |A ·A|1/2|{(a, b, c, d) ∈ A4 : ab = cd}|1/2

. |A|(1+ε)/2
∑
a,c∈A

|{(b, d) ∈ A2 : ab = cd}|

1/2

.

Here |{(b, d) ∈ A2 : ab = cd}| = |{b ∈ A : ab ∈ cA}| = |aA ∩ cA|. Consequently,

1

|A|
∑
a∈A

[∑
c∈A
|aA ∩ cA|

]
& |A|2−ε,

whence there exists a0 ∈ A such that∑
c∈A
|a0A ∩ cA| ≥ κ|A|2−ε

for some constant κ > 0. Furthermore, the set

A1 := {c ∈ A : |a0A ∩ cA| ≥ κ|A|1−ε/2}
satisfies

|A1| ≥
κ|A|1−ε

2
,

because otherwise

κ|A|2−ε <
∑
c∈A1

|A|+
∑
A\A1

κ|A|1−ε/2 ≤ κ|A|2−ε

2
+
κ|A|2−ε

2
= κ|A|2−ε.

Now, we claim that A1 is the subset we are after; the size is correct, at least.

Claim 5.10. Let y1, y2 ∈ Ak1 . Then

|y1A+ y2A| .k |A|1+5kε.

Proof of claim. To establish a basis for induction, fix x1, x2 ∈ A1. Then, let

B1 := x1A, B2 := x2A and B3 := a0A.

Since |A + A| . |A|1+ε, we have |Bi + Bi| . |A|ε|Bi| for i ∈ {1, 2, 3}. Also, by definition
of A1,

|Bi ∩B3| = |a0A ∩ xiA| ≥
|Bi|

2κ−1|A|ε
, i ∈ {1, 2},

so the hypotheses of Exercise 5.9 are valid with K = 2κ−1|A|ε. It follows that

|x1A+ x2A| = |B1 +B2| ≤ K5|B3| = 32κ−5|A|5ε|A|,
which proves the case k = 1 of the claim.
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For k ≥ 2, fix y1 = x11 · · ·x1k ∈ Ak1 and y2 = x21 · · ·x2k ∈ Ak1 . To apply Exercise 5.9 again,
we set

B1 := y1A, B2 := y2A and B3 := x11 · · ·x1k−1a0A ∪ x21 · · ·x2k−1a0A.
It is clear that |B1 + B1| ≤ |A|ε|B1| and |B2 + B2| ≤ |A|ε|B2|. By induction, we may also
assume that

|(x11 · · ·x1k−1A) + (x21 · · ·x2k−1A)| .k |A|5
k−1ε|A|,

which gives |B3 +B3| .k |A|5
k−1ε|A|. Again, it follows from the definition of A1 that

|Bi ∩B3| ≥ |xikA ∩ a0A| ≥
|Bi|

2κ−1|A|ε
, i ∈ {1, 2}.

So, applying Exercise 5.9 with K ∼k |A|5
k−1ε gives

|y1A+ y2A| = |B1 +B2| ≤ K5|B3| ∼k |A|5
kε|A|.

This proves the claim. �

Observe that the previous claim also holds, if y1, y2 ∈ A−11 Ak1 . This follows by writing
y1 = x−11 ỹ1 and y2 = x−12 ỹ2 and doing the following manipulation:

|y1A+ y2A| =
∣∣∣∣ ỹ1Ax1 +

ỹ2A

x2

∣∣∣∣ =

∣∣∣∣x2ỹ1A+ x1ỹ2A

x1x2

∣∣∣∣ .k |A|1+5k+1ε. (5.11)

We can now complete the proof of Proposition 5.8. It suffices to show that

|Ak1 +Ak1| .k |A|1+Ckε . |A|(Ck+1)ε|Ak1|, (5.12)

because then
|kAk1| .k |A|k(Ck+1)ε|Ak1| .k |A|k(Ck+k+1)ε|A|,

by two applications of the Plünnecke-Ruzsa inequalities (both in the additive and multi-
plicative groups of F).

To prove (5.12), write

χAk1(x)
≤ 1

|A1|
∑

y∈A−1
1 Ak1

χyA1(x),

Indeed, if x ∈ Ak1 , then x ∈ yA1, whenever y ∈ xA−11 , and there are |xA−11 | = |A1| such
choices of y ∈ xA−11 ⊂ A

−1
1 Ak1 .

Now, assume that x ∈ Ak1 +Ak1 , so that x = y + (x− y), where y, x− y ∈ Ak1 . Then

χAk1+Ak1
(x) ≤ χAk1 (y)χAk1

(x− y)

≤ 1

|A1|2
∑

y1,y2∈A−1
1 Ak1

χy1A1(y)χy2A1(x− y)

≤ 1

|A1|2
∑

y1,y2∈A−1
1 Ak1

χy1A1+y2A1(x).

This, along with (5.11), implies that

|Ak1 +Ak1| ≤
1

|A1|2
∑

y1,y2∈A−1
1 Ak1

|y1A+ y2A| .k
|A−1Ak|2

|A1|2
|A|1+5k+1ε. (5.13)
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Here, using the multiplicative version of the Plünnecke-Ruzsa inequalities,

|A−1Ak| .k |A|(k+1)ε|A| ≤ 2|A|(k+2)ε

κ
|A1|.

Plugging this into (5.13) proves (5.12) and completes the argument for Proposition 5.8.
�

Recall that we are in the process of proving the the sum-product theorem in finite
fields, Theorem 5.7. By assumption, F is a finite field, andA ⊂ F is a set with |F|δ < |A| <
|F|1−δ for some positive parameter δ > 0.

Lemma 5.14. Assume that |A| ≥ |F|δ > 2. There exist a positive integer k ∼ 1/δ, and invertible
elements ξ1, . . . , ξk ∈ F such that the linear mapping Λ: Ak → F defined by

Λ(x1, . . . , xk) := x1ξ1 + . . .+ xkξk

is a surjection, that is, F = ξ1A+ . . .+ ξkA.

Proof. We find the elements ξj ∈ F∗ := F \ {0} one by one, using the following claim
iteratively:

Claim 5.15. Let A,B ⊂ F be non-empty. Then, there exists an element ξ ∈ F∗ such that

|A+ ξB| ≥ min{|A||B|/2, |F|/10}. (5.16)

Proof of Claim. We prove that if |A||B| ≤ (|F| − 1)/2, then we can find ξ ∈ F∗ such that
|A+ξB| ≥ |A||B|/2. Why is this sufficient also if |A||B| > (|F|−1)/2? In this case, choose
any subsets A′ ⊂ A and B′ ⊂ B with |F|/4 ≤ |A′||B′| ≤ (|F| − 1)/2. Then, we can find
ξ ∈ F∗ such that

|A+ ξB| ≥ |A′ + ξB′| ≥ |A′||B′|/2 ≥ |F|/10.

So, for the remainder of the proof, assume that |A||B| ≤ (|F| − 1)/2. We use the
following standard inequality:∣∣∣∣∣∣

⋃
j∈J

Bj

∣∣∣∣∣∣ ≥
∑
j∈J
|Bj | −

1

2

∑
j 6=j′
|Bj ∩Bj′ |.

Given an arbitrary element ξ ∈ F∗, this gives

|A+ ξB| =

∣∣∣∣∣⋃
a∈A

a+ ξB

∣∣∣∣∣ ≥∑
a∈A
|a+ ξB| − 1

2

∑
a6=a′
|(a+ ξB) ∩ (a′ + ξB)|

(∗)
= |A|||B| − 1

4

∑
a6=a′

∑
b 6=b′

χa+bξ=a′+b′ξ

= |A||B| − 1

4

∑
a6=a′

∑
b 6=b′

χ(a−a′)/(b−b′)=ξ.

Here (∗) follows by observing that to each point in (a+ξB)∩(a′+ξB), there corresponds
a unique two-element set {b, b′} ⊂ B with b 6= b′ such that a+ bξ = a′ + b′ξ, and the sum
over the pairs (b, b′), b 6= b′, counts each {b, b′} twice.
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Next, we average the inequality over the elements ξ ∈ F∗ to obtain

1

|F∗|
∑
ξ∈F∗
|A+ ξB| ≥ |A||B| − 1

4

∑
a6=a′

∑
b6=b′

1

|F| − 1
≥ |A|||B| − 1

4

|A|2|B|2

|F| − 1
.

Using |A||B| ≤ (|F| − 1)/2, Claim 5.15 follows. �

To prove Lemma 5.14, we require the finite field version of the Cauchy-Davenport
inequality – our very first proposition – which says that

|A+B| ≥ min{|A|+ |B| − 1, |F|} (5.17)

for all non-empty sets A,B ⊂ F. Despite the resemblance to Proposition 1.1, the inequal-
ity (5.17) is a bit harder; we will omit the proof here, but you can find various arguments
in the lecture notes [32] of Tao.

Using Claim 5.15, choose ξ1 ∈ F∗ such that

|A+ ξ1A| ≥ min{|A|2/2, |F|/10}.

If the min is |F|/10, stop. Otherwise choose another element ξ2 ∈ F∗ such that

|(A+ ξ1A) + ξ2A| ≥ min{|A|3/4, |F|/10}.

Again, if the min is |F|/10, stop. Otherwise, iteration eventually gives

|A+ ξ1A+ . . .+ ξkA| ≥ min{|A|k+1/2k, |F|/10}.

Since |A| > 2, we have |A|ρ = 2 for some ρ ∈ (0, 0.99), so |A|k+1/2k ≥ |A|(1−ρ)(k+1) ≥
|F|0.1δ(k+1). This quantity becomes larger than |F|/10 in k ∼ 1/δ steps, and then we have

|A+ ξ1A+ . . .+ ξkA| ≥ |F|/10.

Finally, we sum A + ξ1A + . . . + ξkA with itself a few times, until (5.17) shows that the
resulting sumset has cardinality precisely |F|. This completes the proof of the lemma. �

Having now found an initial surjection Λ: Ak → F, the next step is to modify Λ to
a surjection from a certain lower-order product set to F. Here we need the assumption
F = Zp.

Lemma 5.18. Let B ⊂ F = Zp be non-empty, assume that k > 1, and suppose that Λ: Bk → F
is a linear surjection,

Λ(x1, . . . , xk) = x1ξ1 + . . .+ xkξk.

Then, there exists a linear surjection Λ̃ : B̃k−1 → F of the same form, where

B̃ = B · (B −B)−B · (B −B).

Proof. The mapping Λ is a surjection, but it cannot be a bijection, because otherwise p =
|B|k, contradicting the primality of p. So, we find two distinct elements (b1, . . . , bk) and
(b′1, . . . , b

′
k) such that

(b1 − b′1)ξ1 + . . .+ (bk − b′k)ξk = 0. (5.19)
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For instance, assume that bk 6= b′k. Then, using the assumption on Λ, and (5.19), we get

F = (bk − b′k)[ξ1B + . . .+ ξkB] = ξ1(bk − b′k)B + . . .+ ξk(bk − b′k)B
= [(bk − b′k)ξ1B + . . .+ (bk − b′k)ξk−1B]− ((b1 − b′1)ξ1 + . . .+ (bk−1 − b′k−1)ξk−1)B
⊂ [(bk − b′k)B − (b1 − b′1)B]ξ1 + . . .+ [(bk − b′k)B − (bk−1 − b′k−1)B]ξk−1

⊂ B̃ξ1 + . . .+ B̃ξk−1.

This means that Λ̃(x1, . . . , xk−1) = x1ξ1 + . . .+ xk−1ξk−1 is a surjection on B̃k−1. �

We are ready to finish the proof of Theorem 5.7:

Proof of Theorem 5.7. Assume that max{|A · A|, |A + A|} . |A|1+ε for some small ε ∈
(0, 1/2). By Proposition 5.8, we may find a subset A1 ⊂ A such that |A1| & |A|1−ε ≥
|F|(1−ε)δ ≥ |F|δ/2, and

|kAk1| .k |A|1+Ckε . |A1|(1+Ckε)/(1−ε) ≤ |A1|1+2(Ck+1)ε, k ∈ N. (5.20)

We aim for a lower bound on ε, depending only on δ. Let Λ: Ak1 → F be the initial
surjection given by Lemma 5.14, where k . 1/δ. Since |A| ≤ |F|1−δ, we have k > 1. Let
F be the "set-valued function"

F (B) := B · (B −B)−B · (B −B), B ⊂ F.

By Lemma 5.18, we can find a linear surjection [F (A1)]
k−1 → F. Another iteration gives

a linear surjection [F 2(A1)]
k−2 → F, and exactly k − 1 iterations gives a linear surjection

F k−1(A1)→ F.

In particular,

|F k−1(A1)| ≥ |F|.

On the other hand,

F (B) = B · (B −B)−B · (B −B) ⊂ 2(B ·B)− 2(B ·B), (5.21)

so

|F (A1)| ≤ |2(A1 ·A1)− 2(A1 ·A1)| . |A1|8(C2+1)ε|A1 ·A1| . |A|[8(C2+1)+1]ε|A|.

by (5.20) with k = 2, the Plünnecke-Ruzsa inequalities and the assumption |A · A| .
|A|1+ε. Similarly, applying (5.21) with B = F j−1(A1), 1 ≤ j ≤ k − 1, one can show that

|F j(A1)| . |A|Djε|A|,

where Dj is some large constant depending only on the (absolute) constants Cj in (5.20).
The precise argument is an easy induction. With j = k − 1, we obtain

|F| ≤ |F k−1(A1)| ≤ |A|Dk−1ε|A| . |F|(1−δ)(1+Dk−1ε).

Since k . 1/δ, here Dk depends only on δ, and we see that ε > 0 must have a lower
bound depending only on δ. The proof is complete. �
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Remark 5.22. Soon after Theorem 5.7 appeared in 2003, S. Konyagin [23] observed that
the assumption |A| ≥ |F|δ is unnecessary. Later, in 2007, M. Garaev [11] obtained a
quantitative version of Theorem 5.7, which was subsequently refined by Katz and Shen,
Bourgain and Garaev [5] and Shen [30]. Shen’s result,

max{|A+A|, |A ·A|} & A|13/12

log1/3 |A|
,

is the world record in the prime field setting, as far as I know, although M. Rudnev [28]
proved an even slightly better bound for sets A ⊂ F with |A| < |F|1/2 in 2011. Katz and
Shen [22] have also established a quantitative sum-product theorem in finite fields not of
prime order, which has probably been improved by many other authors by today.

6. INCIDENCE GEOMETRY

Here is a stereotypical problem in incidence geometry: you are given a set of points
P , and a family of geometric objects L such as lines, circles, hyperplanes – you name it –
and the problem is to bound the number of incidences

I(P,L) := {(p, l) ∈ P × L : p ∈ L}.
between P and L from above. Often there are further restrictions on P and L, requiring
that not all point in P lie on a single line, or not all lines in L lie on a single plane etc.

It may appear somewhat inaccurate to use the title "Incidence geometry" only for this
section, since the sum-product problem is very much a question in incidence geometry
– at least in Solymosi’s perspective! On the other hand, there are hardly any geometric
objects "L" visible in the proof of the Bourgain-Katz-Tao theorem, and that argument
seems to belong purely to the realm of additive combinatorics. For exactly this reason,
the sum-product problem makes for such a nice transition between the topics of the early
course to the ones below: the two proofs in the previous section demonstrate how closely
these areas are interconnected.

6.1. Tools from topology. When counting incidences, it is often very efficient to parti-
tion space – and the points in P therein – into "cells", then count incidences in the cells
separately, and finally sum up the results. We will see a basic example of this shortly,
in the proof of the Szemerédi-Trotter theorem. This theorem was found in 1983, and the
idea of "cell partitioning" was present already then; back in those days, the geometric ob-
jects in L were used for the purpose of partitioning, but we will not speak more of that.
A breakthrough idea from around 2011 – due to L. Guth and N. Katz [18], based on an
earlier related idea of Z. Dvir [9] from 2005 – has been the use of zero-sets of polynomials
(also known as algebraic varieties) for the purpose of partitioning. The technique not
only tidies up the details of the partitioning procedure immensely, but also adds tools
from algebraic geometry to the equation.

Those students, who have attended Topology I at the University of Helsinki should
know the following very basic case of polynomial cell partitioning. The ham sandwich
theorem, due to Banach from the 30’s, states that if U1, U2 are finite volume open sets in
R2, then some line bisects both U1 and U2 simultaneously, that is, cuts the volumes of U1

and U2 into half. Apparently, the right way to think about this result is the following:
the line is the zero-set of a degree one polynomial in R2. This motivates the following
theorem:
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Theorem 6.1 (Polynomial ham sandwich theorem for open sets). Let V = V (n, d) be the
vector space of real polynomials in Rn of degree at most n. If U1, . . . , UN are finite sets of finite
volume, and N < dimV =

(
d+n
n

)
, then there exists a polynomial f ∈ V such that the zero set of

f , denoted by Z(f) := {x ∈ Rn : f(x) = 0}, bisects every set Ui.

To be precise, the claim says that

Hn(Ui ∩ {f > 0}) =
Hn(Ui)

2
= Hn(Ui ∩ {f < 0}), 1 ≤ i ≤ N.

Theorem 6.1 is easy to prove, IF you know the Borsuk-Ulam theorem:

Theorem 6.2 (Borsuk-Ulam). Let n ≥ 1, and write Sn := {x ∈ Rn+1 : |x| = 1}. Suppose
that φ : Sn → Rn is a continuous map such that φ(−x) = −φ(x) for x ∈ Sn. Then 0 ∈ φ(Sn).

Unfortunately, we have no chance to prove the Borsuk-Ulam theorem, which is a
rather deep result in algebraic topology. We will use it nevertheless:

Proof of Theorem 6.1. Assume without loss of generality that N = dimV − 1 (otherwise
add dummy sets). Then, identify V (n, d) with RN+1, so that and let SN ⊂ V be the
unit sphere of V obtained from this identification. Define φ : SN → RN by φ(f) =
(φ1(f), . . . , φN (f)), where

φj(f) = Hn(Ui ∩ {f > 0})−Hn(Ui ∩ {f < 0}).

One can easily check (using the boundedness of the volumes of the sets Ui, for details see
[16, p. 4]) that φ is continuous, and clearly φ(−f) = −φ(f) for all f ∈ SN . It follows from
the Borsuk-Ulam theorem that φ(f) = 0 for some polynomial f ∈ SN , and then Z(f)
bisects all the sets Ui. �

In the leader to this subsection, we stated that it is efficient to partition the points
P ⊂ Rn into cells. Now, what is the relation between the open sets in Theorem 6.1 and
the set P ? In analogy with the definition above, we say that Z(f) bisects P , if

|P ∩ {f < 0}| ≤ |P |
2

and |P ∩ {f > 0}| ≤ |P |
2
.

There is a innocent-looking but rather major difference to the definition for open sets:
now, a large portion of the set P can lie onZ(f) (which was completely negligible earlier).
With this deifnition, we have the following analogue of Theorem 6.1

Lemma 6.3 (Polynomial ham sandwich theorem for finite sets). Let P1, . . . , PN be finite
sets in Rn. If N < dimV (n, d) =

(
d+n
n

)
, there exists a non-zero polynomial f ∈ V (n, d) such

that Z(f) bisects all the sets Pj , 1 ≤ j ≤ N .

Proof. Let Pi(δ) be the open δ-neighbourhood of Pi. By Theorem 6.1, a non-zero poly-
nomial fδ ∈ V (n, d) bisects every Pi(δ). Moreover, recall from the proof of Theorem 6.1
that |fδ| = 1 for every δ > 0, where | · | is the norm we obtained by identifying V (n, d)

with RdimV (n,d). Since the unit sphere of V (n, d) is compact, we can find a subsequence
(fδj )j∈N converging to a polynomial f ∈ V (n, d) with |f | = 1. In particular, f is non-zero.
We claim that f bisects every set Pi.
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It is easy to check that fδj → f uniformly on compact sets, using the fact that the the
coefficients of the polynomials fδj converge to those of f .7 Now, if f did not bisect Pi,
then {f > 0}, say, would contain more than half of the points in Pi. Call these points
P+
i . For ε > 0 sufficiently small, it follows that f > 0 on the closure of the set P+

i (ε)
(which is a union of disjoint ε-balls for ε > 0 small enough). By uniform convergence on
compact sets, fδj > 0 on the set P+

i (ε) for large enough j ∈ N. Once δj < ε, this implies
that {fδj > 0} contains all the balls constituting P+

i (δj), and the total mass of these balls
is strictly larger thanHn(Pi(δ))/2. Thus, fδj does not bisect Pi(δ), a contradiction. �

Remark 6.4. Observe that
(
d+n
n

)
≥ dn/n!, so

N <

(
Cn

n!

)
N ≤

(
CN1/n + n

n

)
,

as soon as C > (n!)1/n. In particular, this holds if C = 2(n!)1/n. Consequently, given N
sets P1, . . . , PN as in Lemma 6.3, we can find a non-zero polynomial of degree d ≤ CN1/n,
which bisects each set Pi.

Now we are fully prepared to partition the set P into cells:

Theorem 6.5 (Polynomial cell partitions). Let P ⊂ Rn be a finite set, and let d ∈ N be a fixed
degree. Then, there exists a non-zero polynomial f of degree at most d such that Rn \Z(f) can be
partitioned into open sets U1, . . . , Um, m ≤ dn, such that ∂Uk ⊂ Z(f) and |P ∩ Uk| . |P |d−n
for each 1 ≤ k ≤ m.

Remark 6.6. It is worth noting that Theorem 6.5 gives no lower bound for the number of
points of P in the open sets Uj , and indeed there is none to be had: it will be possible in
practical situations that P is entirely contained in Z(f).

Proof. The proof is an iteration of Lemma 6.3. First, choose a first degree polynomial f1,
which bisects the points in P , and let

P 1
1 := P ∩ {f1 > 0} and P 1

2 := P ∩ {f1 < 0}.

Then |P1| ≤ |P |/2 and |P2| ≤ |P |/2. Next, assume that we have already defined a se-
quence of polynomials f1, . . . , fj and associated sets P j1 , . . . , P

j
2j
⊂ P such that |P ji | ≤

|P |/2j for 1 ≤ i ≤ 2j , and each P ji has the form P ji = P ∩ U ji , where U ji is one of the
2j sets specified by requiring that each fi is either strictly negative or positive in U ji (for
example, U3

i might look like {f1 < 0, f2 > 0, f3 > 0}). Moreover, we assume that the
degree of each fi is bounded by C2(i−1)/n, where C ≥ 1 only depends on n. It follows
that the degree of Fj := f1 · · · fj is bounded by

∑
i≤j C2i/n ≤ C ′2j/n, where C ′ ≥ 1 also

only depends on n.
If j is the largest integer such thatC ′2j/n ≤ d, we stop the process. Then 2j = cdn ≤ dn,

where c ∈ (0, 1) again only depends on n. In this case, we let f = Fj , and relabel the
sets U ji , 1 ≤ i ≤ 2j , as U1, . . . , Um. Then m = 2j ≤ dn as claimed, and it is clear that

7This follows from the fact that all norms in the finite dimensional vector space V (n, d) are equivalent,
and one possible choice for |f | is the maximum absolute value of the coefficients of f . Then, convergence in
this norm means precisely that the coefficients converge.
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∂Uk ⊂ Z(f) for 1 ≤ k ≤ m. Moreover, with Uk = U ji , we have |P ∩Uk| = |P ji | ≤ |P |/2j =
c−1|P |d−n, so the proof is complete in this case.

In the opposite case, where C ′2(j+1)/n ≤ d, we continue with the construction of fj+1.
By Remark 6.4, we can find a polynomial fj+1 with degree ≤ C2j/n, such that Z(fj+1)

bisects each of the finite sets P j1 , . . . , P
j
2j

. Thus, for 1 ≤ i ≤ 2j , we have

|P ∩ [U ji ∩ {fj+1 > 0}]| = |P ji ∩ {fj+1 > 0}| ≤ |P ji |/2 ≤ |P |/2
j+1

and similarly

|P ∩ [U ji ∩ {fj+1 < 0}]| ≤ |P |/2j+1

The sets U j+1
i , 1 ≤ i ≤ 2j+1, are defined to be all sets of the form U ji ∩ {fj+1 > 0}

and U ji ∩ {fj+1 < 0}, where 1 ≤ i ≤ 2j . Then, as required by the induction, we set
P j+1
i := P ∩ U j+1

i . By the inequalities above, the sets P j+1
i satisfy the correct cardinality

estimates, and the proof of the theorem is complete. �

6.2. The Szemerédi-Trotter theorem via polynomial cell decompositions. The material
in this subsection is largely taken from T. Tao’s blog entry dated 18/02/2011.

Given a set of points P ⊂ R2 and family of lines L also in R2 in arbitrary position, the
Szemerédi-Trotter theorem gives a sharp bound on the number of incidences I(P,L) =
{(p, l) ∈ P × L : p ∈ L}:

Theorem 6.7 (Szemerédi-Trotter). For any set of points P ⊂ R2, and any set of lines L in R2,
we have

|I(P,L)| . |P |2/3|L|2/3 + |P |+ |L|.

As we advertised in the previous section to motivate the cell decompositions, the strat-
egy of proof will be to split P into cells using Theorem 6.5, perform a "trivial estimate"
for incidences inside each cell individually, and finally add up the outcomes. This way,
however, we are only counting the incidences between L and the points of P contained
in the union of the (open) cells: a further – fortunately simple – argument will be needed
to handle the points of P contained in the boundary of the cells – which is, as we know,
the zero-set of a relatively low-degree polynomial.

We start with the "trivial estimate" used to bound incidences in individual cells:

Lemma 6.8. For any set of points P ⊂ R2 and any set of lines L in R2, we have

|I(P,L)| . |P ||L|1/2 + |L|.

and

|I(P,L)| . |P |1/2|L|+ |P |.
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Proof. We only prove the first inequality; the proof of the second is essentially the same,
with the roles of P and L interchanged. By the definition of incidences, and Cauchy-
Schwarz,

|I(P,L)| =
∑
L∈L
|P ∩ L|

≤ |L|1/2
(∑
L∈L
|{(p, q) ∈ P 2 : p, q ∈ L}|

)1/2

= |L|1/2
∑
p,q∈P

|{L ∈ L : p, q ∈ L}|

1/2

≤ |L|1/2
∑
p∈P
|{L : p ∈ L}|+

∑
p 6=q
|{L : p, q ∈ L}|

1/2

.

The first sum inside the brackets is simply I(P,L). To estimate the second sum, note that
at most one line can pass through two distinct point in R2. So, the second sum is at most
|P |(|P | − 1) ≤ |P |2. All in all,

|I(P,L)| . |L|1/2|I(P,L)|1/2 + |P ||L|1/2,

which gives the claim after rearranging terms. �

We are ready to prove Theorem 6.7:

Proot of Theorem 6.7. Before starting the proof in earnest, we dismiss a few simple special
cases, namely that either |P | > |L|2/10 or |P | < 10|L|1/2. In the first case, for instance,
the previous lemma gives

|I(P,L)| . |P |1/2|L|+ |P | . |P |,

and we are done. The second case is handled similarly, using the other inequality in the
previous lemma. So, we assume that

10|L|1/2 ≤ |P | ≤ |L|2/10 (6.9)

in the future.
We apply the cell partition from Theorem 6.5 with a degree d ∈ N to be optimised later:

we obtain a real-valued polynomial f on R2 with deg(f) ≤ d, and the sets U1, . . . , Um,
m ≤ d2, such that ∂Uk ⊂ Z(f) and |P ∩ Uk| . |P |d−2 for all 1 ≤ k ≤ m. Writing
Z := Z(f), we can count the incidences I(P,L) as follows:

|I(P,L)| =
m∑
k=1

|I(P ∩ Uk,L ∩ Uk)|+ |I(P ∩ Z,L)|,
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where L∩Uk stands for the lines in L, which intersect Uk. By the Lemma 6.8 and Cauchy-
Schwarz,

m∑
k=1

|I(P ∩ Uk,L ∩ Uk)| .
m∑
k=1

(|P ∩ Uk||L ∩ Uk|1/2 + |L ∩ Uk|)

.
|P |
d2

m∑
k=1

|L ∩ Uk|1/2 +
m∑
k=1

|L ∩ Uk|

≤ |P |
d

(
m∑
k=1

|L ∩ Uk|

)1/2

+
m∑
k=1

|L ∩ Uk|.

Next comes one of main highlights of the proof: in order to estimate the sum
∑
|L ∩Uk|,

we wish to find an upper bound for the number of cells Uk that any individual line in L
can intersect. If this bound is C ≥ 1, say, then

m∑
k=1

|L ∩ Uk| =
∑
L∈L
|{k : L ∩ Uk 6= ∅}| ≤ C|L|,

and the proof can proceed. Now, we claim that C ≤ d+1. Indeed, if L intersected at least
d+2 of the setsUk, then it would intersectZ(f) in at least d+1 different places. Restricting
f to the line L would, hence, produce a one-variable polynomial of degree ≤ d, which
has d + 1 zeroes. This would force the said restriction to be the zero polynomial, and
consequently L ⊂ Z(f) – a clear contradiction!

By the estimates above,

|I(P,L)| . |P |
d

(d|L|)1/2 + d|L|+ |I(P ∩ Z,L)| = |P ||L|
1/2

d1/2
+ d|L|+ |I(P ∩ Z,L)|.

It remains to estimate |I(P ∩ Z,L)| and optimise the degree d. Towards the former task,

|I(P ∩ Z,L)| = |I(P ∩ Z,L1)|+ |I(P ∩ Z,L2)|,

where L1 = {L ∈ L : L ⊂ Z} and L2 = L \ L1. By the argument above, every line
in L2 can only meet Z – hence P ∩ Z – in at most d + 1 different places. Consequently,
|I(P ∩ Z,L2)| ≤ (d+ 1)|L2| ≤ (d+ 1)|L|.

To estimate |I(P∩Z,L1)|, we use induction: we may assume that Theorem 6.7 holds for
all sets of lines with cardinality strictly smaller than |L|. This is useful, because |L1| ≤ d.
Indeed, a generic line in R2 hits all the lines in L1 (which are contained in Z) so |L1| > d
would imply that a generic line in R2 hits Z in more than d places. This would force the
generic line in R2 to be contained in Z, and consequently f ≡ 0.

So, if we are able to choose d < |L|, we have |L1| < |L|, and so

|I(P ∩ Z,L1)| . |P |2/3|L1|2/3 + |P |+ |L1|.

Finally, let d = |P |2/3/|L|1/3 (or the closest integer). Then 1 < d < |L|/2 by our starting
assumption (6.9), and hence

|I(P,L)| . |P ||L|1/2

|P |1/3/|L|1/6
+
|P |2/3

|L|1/3
|L|+ |I(P ∩ Z,L1)| . |P |2/3|L|2/3 + |P |+ |L|.

The proof is complete. �
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Exercise 6.10. Demonstrate that the Szemerédi-Trotter theorem is sharp. Hint: take P to
be a grid.

We close this section with a useful – but almost immediate – corollary of the Szemerédi-
Trotter bound:

Corollary 6.11 (Corollary to Theorem 6.7). Let k > 1, let P ⊂ R2 be a finite set, and let L be
a finite set of lines in R2 such that |L ∩ P | ≥ k for all L ∈ L. Then,

|L| . |P |
2

k3
+
|P |
k
.

Proof. Since k > 1, we have the trivial bound |Lk| ≤ |P |2, and this already implies the
corollary for k ≤ k0, say (if the implicit constant is chosen large enough, depending on
k0). So, we may assume that k ≥ k0 for some absolute k0 ∈ N to be picked momentarily.

Clearly |I(P,L)| ≥ k|L|, and so

|L| ≤ |I(P,L)|
k

≤ C |P |
2/3|L|2/3 + |P |+ |L|

k
,

where C ≥ 1 is the absolute constant from the Szemerédi-Trotter bound. Assuming
that k ≥ k0 ≥ 2C, we see that the third term on the right hand side of the inequality
above is C|L|/k ≤ |L|/2. So, we may flip it to the left hand side, arriving at |L| ≤
2C(|P |2/3|L|2/3 + |P |)/k. Next, if |P |2/3|L|2/3 ≤ |P |, we have |L| ≤ 4C|P |/k, which is
good enough. In the opposite case, we have |L| ≤ 4C|P |2/3|L|2/3/k, which also yields
the required bound by rearranging terms. �

6.2.1. An application of Szemerédi-Trotter: Beck’s theorem. The Szemerédi-Trotter bound is
a fundamental tool in (planar) incidence geometry and as such has many applications;
for instance, one can prove the sum-product bound max{|A + A|, |A · A|} & |A|5/4 by
applying Szemerédi-Trotter to P = (A · A)× (A+ A) and the |A|2 lines La,b := {(x, y) ∈
R2 : y = a−1x + b}, where a ∈ A and b ∈ A. Then each such line has ≥ |A| indicences
with P , since

{(aa′, a′ + b) : a′ ∈ A} ⊂ P ∩ La,b,
and then one just plugs all the information into Corollary 6.11. Of course, this bound is
weaker than Solymosi’s elementary bound in Theorem 5.3.

We next demonstrate another application of Szemerédi-Trotter, a result of Beck [1]
from 1983:

Theorem 6.12. Let P ⊂ R2 be a finite set, and let L be the set of all lines containing at least 2
points of P (the lines "spanned" by P ). Then, at least one of the following two alternatives hold:

(i) |L| & |P |2.
(ii) There exists L ∈ L with |L ∩ P | & |P |.

Proof. For k ≥ 1, let Lk := {L ∈ L : 2k ≤ |L ∩ P | < 2k+1}, so by Corollary 6.11,

|Lk| ≤ C
|P |2

23k
+
|P |
2k

(6.13)

for some absolute constant C ≥ 1. Moreover, L is contained in the union of the set Lk,
k > 1.
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Assume that (ii) fails, so Lk = ∅ for 2k > c|P |, where c is some small constant. Then,
each pair of distinct points (p, q) ∈ P × P lies on some line L ∈ Lk with 2k ≤ c|P |. To
write this down in symbols, let

(P × P )k := {(p, q) ∈ P × P : p 6= q and p, q ∈ L for some line L ∈ Lk}.

Thus each pair (p, q) ∈ P × P with p 6= q belongs to (P × P )k for some 2k ≤ c|P |, and in
particular ∣∣∣∣∣∣

⋃
2≤2k≤c|P |

(P × P )k

∣∣∣∣∣∣ ≥ |P |
2

2
. (6.14)

On the other hand, by (6.13), we have

|(P × P )k| ≤ 22k|Lk| ≤ C
[
|P |2

2k
+ 2k|P |

]
,

whence ∣∣∣∣∣∣
⋃

1/c≤2k≤c|P |

(P × P )k

∣∣∣∣∣∣ ≤ |P |
2

10
,

if c is small enough. Combining this with (6.14) gives

|P |2

5
≤

∣∣∣∣∣∣
⋃

2≤2k≤1/c

(P × P )k

∣∣∣∣∣∣ ≤
(

1

c

)2
∣∣∣∣∣∣
⋃

2≤2k≤1/c

Lk

∣∣∣∣∣∣ ≤
(

1

c

)2

|L|.

This gives (i) and completes the proof. �

6.3. Finite field Kakeya and the Joints problem. In this subsection, we give two further
applications of the polynomial method. The main tool will be the "limiting case" of the
polynomial ham sandwich theorem, Lemma 6.3, where the sets P1, . . . , PN are singletons.
However, we now need this result in the generality of arbitrary fields (instead of just R),
and that stops us from deriving it as an immediate corollary of previous results:

Lemma 6.15. Let P ⊂ Fn be a finite set, where F is a field, and let V (n, d) be the vector space
of F-valued polynomials in Fn of degree at most d. If |P | < dimV (n, d) =

(
d+n
n

)
, there exists

non-zero polynomial f ∈ V (n, d) such that P ⊂ Z(f).

Proof. Let VP be the vector space of all functions V → F. Then dimVP = |P | < dimV (n, d),
so the restriction mapping f 7→ f |P from V (n, d) to VP is not injective. Hence, f1|P = f2|P
for two distinct f1, f2 ∈ V (n, d), and then f = f1−f2 is the polynomial we were after. �

6.3.1. The Kakeya problem. Suppose that a Borel set E ⊂ Rn contains a unit line segment
with all possible orientations. What is the best lower bound for dimE? The claim that
the answer should be "n" is known as the Kakeya conjecture – one of the most famous open
problems in both geometric measure theory and Euclidean harmonic analysis. Despite
considerable effort, this is only verified in R2 (by A. Córdoba in 1977), whereas in higher
dimensions only partial results are available. I will not give a full bibliography here, but
in R3, for instance, the world record is dimE ≥ 2.5, due to T. Wolff [33] from 1995. Later,
in 2000, N. Katz, I. Laba and T. Tao [20] obtained dimBE ≥ 2.5 + ε, where dimB is the
upper box-dimension, a quantity larger than Hausdorff dimension.
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It was T. Wolff’s idea to study the "finite field Kakeya-problem" as a toy model for the
actual problem:

Conjecture 6.16 (Finite field Kakeya conjecture). Let F = Zq, where q is prime. A setK ⊂ Fn
is called a Kakeya set, if K contains a line of the form {x+ tv : t ∈ F} for all v ∈ Fn \ {0}. The
finite field Kakeya conjecture states that cardK &n qn for all Kakeya sets K ⊂ Zq.

This problem seemed just as intractable as the real Kakeya problem, until Z. Dvir [9]
solved it using polynomials in 2005 (this event probably marks the birth of the "polyno-
mial method"):

Theorem 6.17 (Dvir). Conjecture 6.16 is true. In fact, |K| ≥ (q − 1)n/n!.

Proof. Assume that |K| < (q−1)n/n! ≤
(
(q−1)+n

n

)
. Hence, Lemma 6.15 states that we may

find a non-zero polynomial f ∈ V (n, q − 1) such that K ⊂ Z(f). Let d ≤ q − 1 be the
degree of f ,8 and write

f = fd + g =
∑

α1+...+αn=d

c(α1,...,αn)x
α1
1 · · ·x

αn
n + g,

so that fd consists of the monomials of degree d and g contains the lower-order terms.
Note that fd is not identically zero.

Now, consider the restriction of f to a line of the form {x+ tv : t ∈ F}:

f(x+ tv) =
∑

α1+...+αn=d

c(α1,...,αn)(x1 + tv1)
α1 · · · (xn + tvn)αn + g(x+ tv)

=:

 ∑
α1+...+αn=d

c(α1,...,an)v
α1
1 · · · v

αn
n

 td + hx,v(t)

= fd(v)td + hx,v(t).

Here hx,v is a polynomial of degree at most d− 1 in the variable t. Since t 7→ f(x+ tv) is
a one-variable polynomial of degree d < q, and it vanishes identically (since {x+ tv : t ∈
F} ⊂ K), we infer that t 7→ f(x+ tv) is the zero polynomial. In particular, the coefficient
of the order d term is zero, and this coefficient happens to be fd(v). So, we have proven
that fd(v) = 0 for all v ∈ F \ {0}. It is also clear that fd(0) = 0, so fd ≡ 0. So, the degree of
f is, in fact, strictly lower than d, and this is a contradiction. The proof is complete. �

6.3.2. The Joints problem. As a further demonstration of the usefulness Lemma 6.15, we
discuss the Joints problem: assume that L is a collection of lines in R3, and let P be the set
of "joints", that is, points, where three non-coplanar lines in L meet (thus the said three
lines are not permitted to share a common plane). How large can P be in terms of |L|?
I am not sure of the motivation of this problem, but it was raised in 1990 and remained
open for 20 year, attracting several people to prove partial results.

To formulate a reasonable conjecture, consider a collection ofN planes in R3 in generic
position. Then, every intersection of two planes determines a line, and every intersection

8By this, we mean the lowest possible degree of any representation of f . In the finite field setting, one has
to be a bit careful here, because for instance x 7→ xq coincides with x 7→ x in Zq by Fermat’s little theorem.
The following familiar fact is still true in this setting: if f ∈ V (1, d) has strictly more than d zeroes, then all
of the coefficients of f vanish.
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of three planes determines a joint. Thus, a collection of ∼ N2 lines can determine ∼ N3

joints, and hence a reasonable conjecture could be |P | . |L|3/2. This was proven by L.
Guth and N. Katz [19] in 2010:

Theorem 6.18. A set of N lines in R3 can determine at most 32N3/2 joints.

Proof. It suffices to prove the following claim: If P is the collection of joints, then there
exists a line L ∈ Lwith |L∩P | ≤ 10|P |1/3. Indeed, if this is the case, then we may bound
the number of joints iteratively: first, choose a line L1 ∈ L with |L1 ∩ P | ≤ 10|P |1/3.
The family of lines L \ {L1} again generates some joints, say P1 ⊂ P , and we note that
P = P1 ∪ [L1 ∩ P ]. Again, we may find a line L2 ∈ L \ {L1} with |L2 ∩ P1| ≤ 10|P1|1/3.
Then, L \ {L1, L2} generates some joints P2 ⊂ P , and P = P2 ∪ [L2 ∩ P1] ∪ [L1 ∩ P ].
Iterating, we eventually end up with L \ {L1, . . . , LN−2} containing just two lines, and
hence generating no joints. At this stage, we estimate

|P | ≤ |LN−2 ∩ PN−3|+ |LN−3 ∩ PN−4|+ . . .+ |L1 ∩ P | ≤ 10N |P |1/3,
and this implies the theorem, since 103/2 ≤ 32.

To prove the claim, we make a counter-assumption: every line in L contains strictly
more than 10|P |1/3 joints in P . Choose a non-zero polynomial f ∈ V (3, d) such that d ≤
10|P |1/3 and P ⊂ Z(f) (recall that there always exists such a polynomial with deg(f) ≤
C|P |1/3, and now simply the best constant C is smaller than 2(3!)1/3 < 10 by Remark
6.4). Assume that f has the least degree among all such non-zero polynomials. Now,
the assumption that |L ∩ P | > 10|P |1/3 for each L ∈ L forces f to vanish identically on
each line L ∈ L. In particular, for each p ∈ P , f vanishes on three non-coplanar lines
meeting at p. This forces ∇f(p) = 0, and hence ∂if is a polynomial vanishing on P for
every i ∈ {1, 2, 3}. Since ∂if has lower degree than f , we conclude that ∂if ≡ 0 for all
i ∈ {1, 2, 3}, and hence f ≡ constant. This is absurd, and the proof is complete. �

6.4. A generalised Loomis-Whitney inequality. A classical inequality of Loomis and
Whitney [25] from 1949 states the Lebesgue measure of a set in Rn can be estimated by
the Lebesgue measures of its coordinate projections. More precisely,

Hn(E) .
n∏
j=1

Hn−1(πj(E))1/(n−1),

where πj is the projection onto the plane {xj = 0}. This is not a hard theorem: the length
of Loomis and Whitney’s paper is two pages, introduction included.

Now, assume for a moment that each projection πj(E) is the union of a collection Bj of
balls of diameter one. Then, any pre-image π−1j (B), B ∈ Bj , is a tube of width one, and

E ⊂
n⋂
j=1

⋃
B∈Bj

π−1j (B).

So, an essentially equivalent reformulation of the Loomis-Whitney inequality is the fol-
lowing: given n collections of tubes Tj of width one such that the tubes in Tj are parallel
to the xj-axis, then the Lebesgue measure of

⋂d
j=1

⋃
T∈Tj T is bounded by

∏n
j=1 |Tj |1/(n−1).

Things get significantly more difficult, if the tubes in Tj are allowed to be slightly tilted.
The following theorem is due to J. Bennett, A. Cabery and T. Tao [2] and L. Guth [16]:
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Theorem 6.19. Suppose that Tj , 1 ≤ j ≤ n, are collections of tubes of width one, such that
each tube in Tj makes an angle of < (100n)−1 with the xj-axis. Assume that |Tj | ≤ A for all
1 ≤ j ≤ n. Then the set

E :=
n⋂
j=1

⋃
T∈Tj

T

satisfiesHn(E) .n An/(n−1).

The original proof of Bennett-Carbery-Tao was hard, using something called "heat
flow monotonicity", and gave a slightly weaker result. Subsequently, a much simpler
proof – and exactly the statement above – using the polynomial method was discovered
by L. Guth, and this is the argument we present below. Unlike in some previous appli-
cations, the polynomial method is not indispensable here, and may not even give the
shortest (self-contained) argument: recently, L. Guth [15] has found yet another proof
based on an elementary "induction of scales" technique, which is hardly more difficult
than the next argument.

Before starting the proof, we introduce the concept of directed volume. Let S ⊂ Rn be
an (n− 1)-dimensional smooth hypersurface (such as a zero-set of a polynomial). Given
a unit vector v ∈ Sn−1, we write

VS(v) :=

∫
S
|v ·N(x)| dHn−1(x)

for the directed volume of S in direction v. Here N(x) is the unit normal of S at x. Larry
Guth claims – and I could not find a justification for this anywhere, unfortunately – that

VS(v) =

∫
v⊥
|S ∩ π−1

v⊥
(y)| dHn−1(y),

where | · | stands for cardinality as usual, and πv⊥ is the projection onto v⊥. Using these
two formulae for directed volume, we prove two simple lemmas:

Lemma 6.20. Let T ⊂ Rn be a tube or width r, and let v be a unit vector parallel to a line
contained in T . Then, if f is any polynomial of degree d, the v-directed volume of Z(f) inside T
is bounded as follows:

VZ(f)∩T (v) . rn−1d.

Proof. Let B(x, r/2) := πv⊥(T ) ⊂ v⊥. Then, using the second formula for directed vol-
ume,

VZ(f)∩T (v) =

∫
B(x,r/2)

|Z(f) ∩ π−1
v⊥

(y)| dHn−1(y)

If |Z(f) ∩ π−1
v⊥

(y)| > d, then π−1
v⊥

(y) ⊂ Z(f) by the already familiar "restrict f to a
line" argument. Since Hn(Z(f)) = 0, this can happen only for a Hn−1-null set of lines
π−1
v⊥

(y), and the for the rest of the lines the integrand above is bounded by d. Since
Hn−1(B(x, r/2)) ∼ rn−1, the desired estimate follows. �

Lemma 6.21. Let v1, . . . , vn ∈ S1, and assume that the angle between vj and the j-axis is at
most (100n)−1. Then

Hn−1(S) .
n∑
j=1

VS(vj).
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Proof. Let N(x) ∈ S1 be a unit normal of S at x. Using the defining formula for directed
volume, we obtain

Hn−1(S) =

∫
S
|N(x)| dHn−1(x) .

∫
S

n∑
j=1

|N(x) · vj | dHn−1(x) =
n∑
j=1

VS(vj)

as desired. �

Proof of Theorem 6.19. LetQ1, . . . , QV be the dyadic cubes of side-length one, which inter-
sect E. It suffices to prove that V .n An/(n−1).

To this end, we use the polynomial ham sandwich theorem, Theorem 6.1, to find a
polynomial f of degree d . V 1/n, which bisects all the interiors of the cubes Qj . In order
for the polynomial f to bisect Qj , the zero set Z(f) must have significant surface are
inside Qj , namely

Hn−1(Z(f) ∩Qj) & 1.

Fixing one of the cubes Qj , let Ti(Qj) ∈ Ti be a tube intersecting Qi (by definition of E,
there is at least one such a tube for every 1 ≤ i ≤ n). If v(Ti(Qj)) is a unit vector parallel
to Ti(Qj), Lemma 6.21 gives

n∑
i=1

V∑
j=1

VZ(f)∩Qj (v(Ti(Qj))) =

V∑
j=1

n∑
i=1

VZ(f)∩Qj (v(Ti(Qj))) &
V∑
j=1

Hn−1(Z(f) ∩Qj) & V.

Thus, for some i ∈ {1, . . . , n}, we have∑
T∈Ti

∑
1≤j≤V
Ti(Qj)=T

VZ(f)∩Qj (v(T )) =
V∑
j=1

VZ(f)∩Qj (v(Ti(Qj))) &n V,

and since |Ti| ≤ A, there exists a tube T ∈ Ti such that∑
1≤j≤V
Ti(Qj)=T

VZ(f)∩Qj (v(T )) &n
V

A
. (6.22)

Unwrapping the notation, this means that there are many cubes Qj intersecting T such
that VZ(f)∩Qj (v(T )) is large. All of the cubes Qj intersecting T are disjoint and contained
in 2T , so the right hand side of (6.22) is a lower bound for VZ(f)∩2T (v(T )). This can be
compared with the upper bound given by Lemma 6.20:

V

A
.n VZ(f)∩2T (v(T )) . d . V 1/n.

Hence V .n An/(n−1), as claimed. �

7. POSSIBLE TOPICS FOR PRESENTATIONS

Here are some topics for your consideration. The presentations should be preferably
written down in LaTeX, and the length could be about ten pages. So, if some of the topics
below require way more than ten pages, you can skip some of the intermediate steps in
the proof.
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• Applications of sum-product theory to exponential sums. For instance, you could
prove the following theorem of Bourgain: If H ⊂ Zp \ {0} is a multiplicative sub-
group, and |H| > pε for some ε > 0, then

max
gcd(ξ,p)=1

|Ĥ(ξ)| = max
gcd(ξ,p)=1

∣∣∣∣∣∑
x∈H

e2πiξx/p

∣∣∣∣∣ . |H|1−δ,
where δ only depends on ε. The proof can be found in Bourgain’s lecture notes Sum-
product theorems and applications, which you can access for free online. Bourgain’s
notes may be hard to read, so you may wish to look elsewhere, too. You can skip
some of the preliminary steps in the proof, like the proof of the particular version
of the Balog-Szemerédi-Gowers lemma etc.
• The following theorem of Guth and Katz (answering a question of Bourgain): Let
L be a set of N2 lines in R3, and let P ⊂ R3 be a finite set. Suppose that no more than
N lines on L lie on a common plane, and each line in L contains at least N points of P .
Then |P | & N3. The proof is the main result of [19].
• Another incidence theorem of Guth and Katz in R3: Let L be a set of N2 lines in R3

such that no more than N lie in a common plane, and no more than . N lie in a common
regulus. Then, the number of intersection points of at least k lines in L is. N3/k2. This
is one of the main results in [18], see [18, Theorem 2.10] in particular, and is a key
ingredient in solving the Erdős distinct distance problem in the plane (the problem
and the connection is explained very clearly in [18]). In fact, if you don’t care to
find out what a regulus is, you could also prove slightly weaker theorem, which
has an easier – and probably clearer – proof, check out Guth’s recent paper [17].
• Explicit bounds in finite-field sum-product theorems. What is the state of the art?

Some results were mentioned in Remark 5.22 above.
• Edgar and Miller’s paper [10] on Borel subrings of the reals.
• Find your own topic! If you’re not tempted by the proposals above, cook up

something else and discuss with me.

APPENDIX A. GUTH’S "INDUCTION ON SCALES" PROOF OF THE NON-ENDPOINT
MULTILINEAR KAKEYA INEQUALITY, BY LAURA VENIERI

A.1. Introduction. The multilinear Kakeya inequality yields an estimate of the measure
of the intersection of cylindrical tubes in Rn pointing in different directions.

This inequality is a multilinear version of the so called linear Kakeya conjecture, which
is a quantitative version of the Kakeya conjecture. The latter states that every Borel set in
Rn containing a segment of unit length in every direction must have Hausdorff dimen-
sion n. There exist such sets of Lebesgue measure zero. They are known as Kakeya (or
Besicovitch) sets because of a question that Kakeya asked in 1917: what is the smallest
area in which a unit line segment can be rotated 180 degrees in the plane? Besicovitch
proved that this can be done in arbitrarily small area.

The Kakeya conjecture was proved only in the plane by Davies but it is still an open
problem for n ≥ 3.

The linear Kakeya conjecture (which is stronger than the Kakeya conjecture) states the
following. Given 0 < δ < 1, we define a δ-tube as a rectangular box in Rn with one side
of length 1 and the others of length δ. Let T1, . . . , TN be a collection of δ-tubes whose
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sides of length 1 have directions that form a δ-separated set of points in the unit sphere.
Then the conjecture states that∥∥∥∥∥∥

N∑
j=1

χTj

∥∥∥∥∥∥
Ln/(n−1)(Rn)

≤ Cn,εδ−ε(δn−1N)(n−1)/n,

for every ε > 0, where χTj denotes the characteristic function of Tj and Cn,ε is a constant
depending only on n and ε.

Also this conjecture is still open for n ≥ 3. Chapters 11, 22 and 23 in [26] contain a
discussion of the known partial results and connections to other problems.

In the multilinear Kakeya inequality we consider n families of tubes of width 1 such
that tubes in the jth family have directions close to the xj-axis. More precisely, let lj,a,
j = 1, . . . , n, a = 1, . . . , Nj , be lines in Rn and let Tj,a be their 1 neighbourhoods.

Theorem A.1. (Multilinear Kakeya) Suppose that each line lj,a, a = 1, . . . , Nj , makes an angle
≤ (10n)−1 with the xj-axis. Then for any ε > 0 and S ≥ 1, we have∫

QS

n∏
j=1

 Nj∑
a=1

χTj,a

1/(n−1)

≤ CεSε
n∏
j=1

N
1/(n−1)
j , (A.2)

where QS denotes a cube of side length S (and edges parallel to the coordinate axes).

In this case lines within the same family can be parallel, but lines in different families
have almost orthogonal directions.

The multilinear Kakeya inequality was conjectured by Bennett, Carbery and Tao (2006)
in [2], where they proved it except for the endpoint case. In particular, they proved the
following, where the tubes Tj,a are δ-tubes whose directions belong to some sufficiently
small fixed neighbourhood of ej , the jth vector of the standard basis of Rn.

Theorem A.3. (Near-optimal multilinear Kakeya) If n
n−1 < q ≤ ∞, then there exists a constant

C = Cq,n such that ∥∥∥∥∥∥
n∏
j=1

Nj∑
a=1

χTj,a

∥∥∥∥∥∥
Lq/n(Rn)

≤ C
n∏
j=1

(δn/qNj). (A.4)

They formulated the inequality using δ-tubes but it is equivalent, just by scaling, to
formulate it for tubes of width 1 and arbitrary (possibly infinite) length. The proof was
hard and used something called heat flow and its monotonicity properties.

The endpoint case of the conjecture was proved by Guth (2010) in [16]. His proof (seen
partially in the lectures) relies on the polynomial method.

Theorem A.1 is a slightly weaker version: in the strongest form the factor Sε does not
appear. It was proved by Guth in [15] (2015). Here we will show that proof, which is
quite short and relies on multiscale analysis.

The idea of the proof is first to reduce to the case when the angle (10n)−1 is replaced
by a very small angle δ, then use multiscale analysis, working at a sequence of scales δ−k,
k = 1, 2, . . . up to an arbitrary scale S. To get from one scale to the next one we use the
Loomis-Whitney inequality ([25]), which gives (A.2) in the case when the lines lj,a are
parallel to the xj-axis.
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In Section 2 we recall the Loomis-Whitney inequality (1949) and its proof then in Sec-
tion 3 we prove Theorem A.1. In Section 4 we mention some applications of the multi-
linear Kakeya inequality.

A.2. The Loomis-Whitney inequality. The Loomis-Whitney inequality bounds the vol-
ume of a set in terms of the measures of its projections onto the coordinate hyperplanes.

Let πj be the orthogonal projection onto the hyperplane {xj = 0}.

Theorem A.5. Let U ⊂ Rn be open. Then

Ln(U) ≤
n∏
j=1

Ln−1(πj(U))1/(n−1). (A.6)

We use Ln to denote the Lebesgue measure in Rn.
We will show the proof of Theorem A.5 given in [25]. Before that, we will state a

more general form of the Loomis-Whitney inequality, which gives the multilinear Kakeya
inequality in the case when the lines lj,a are parallel to the xj- axis.

In the following Pj : Rn → Rn−1 denotes the map that forgets the j-th coordinate,

Pj(x1, . . . , xn) = (x1, . . . , xj−1, xj+1, . . . , xn).

Theorem A.7. Let fj : Rn−1 → R be measurable functions. Then∫
Rn

n∏
j=1

fj(Pj(x))1/(n−1) ≤
n∏
j=1

‖fj‖1/(n−1)L1(Rn−1)
. (A.8)

The proof can be found for example in [12] (Theorem 5.7.1).
If the line lj,a is parallel to the xj-axis, then it can be written as Pj(x) = ya for some

ya ∈ Rn−1. Thus we have
∑Nj

a=1 χTj,a(x) =
∑Nj

a=1 χB(ya,1)(Pj(x)), where B(ya, 1) denotes

the ball with center ya and radius 1. Applying (A.8) with fj =
∑Nj

a=1 χB(ya,1), we have

∫
Rn

n∏
j=1

 Nj∑
a=1

χTj,a(x)

1/(n−1)

≤
n∏
j=1

∥∥∥∥∥∥
Nj∑
a=1

χB(ya,1)

∥∥∥∥∥∥
1/(n−1)

L1(Rn−1)

= Cn

n∏
j=1

N
1/(n−1)
j ,

which is the multilinear Kakeya inequality.
Let us now prove Theorem A.5. We will reduce the proof of to the following combina-

torial lemma.

Lemma A.9. Let S be a collection of N pairwise non overlapping cubes in Rn with fixed side
length and edges parallel to the coordinate axes. For j = 1, . . . , n let Sj be the collection of
(n−1)-dimensional cubes that are projections onto {xj = 0} of cubes in S. Let Nj be the number
of cubes in Sj . Then

N ≤
n∏
j=1

N
1/(n−1)
j . (A.10)

Proof. The proof proceeds by induction on n. For n = 2 the claim holds trivially. Assume
that (A.10) holds for n− 1. Projecting the cubes in S onto the x1 axis we obtain intervals
I1, . . . , Im. Suppose that for a fixed i there are ai cubes projecting onto Ii. Now project
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these cubes onto {xj = 0} for j = 2, . . . , n and let aij be the number of such projections
for each j. Then we have

m∑
i=1

ai = N (A.11)

and
m∑
i=1

aij = Nj , j = 2, . . . , n. (A.12)

By the inductive hypothesis we have for every i = 1, . . . ,m,

an−2i ≤
n∏
j=2

aij .

Since {x1 = 0} is orthogonal to the x1 axis, we have ai ≤ N1 for every i = 1, . . . ,m.
Thus

an−1i ≤ N1

n∏
j=2

aij . (A.13)

Using (A.11) and (A.13) we get

N =
m∑
i=1

ai ≤
m∑
i=1

N
1/(n−1)
1

n∏
j=2

a
1/(n−1)
ij .

Applying repeatedly Hölder’s inequality, we then get

N ≤ N1/(n−1)
1

n∏
j=2

(
m∑
i=1

aij)
1/(n−1),

thus by (A.12)

N ≤
n∏
j=1

N
1/(n−1)
j .

�

To prove Theorem A.5 observe that given any ε > 0 there exists δ > 0 so small that if
we take a partition of Rn into cubes of side length δ (and sides parallel to the coordinate
axes), then Ln(U \ Q) < ε, where Q is the union of cubes contained in the interior of
U . Let N be the number of cubes contained in Q and Nj be the number of cubes in the
projection of Q onto the coordinate hyperplanes. Then by (A.10) we have

Ln(Q)n−1 = (Nδn)n−1 ≤ δn(n−1)
n∏
j=1

Nj =
n∏
j=1

(Njδ
n−1) ≤

n∏
j=1

Ln−1(πj(U)).

Since ε is arbitrary, (A.6) follows.

A.3. Proof of the multilinear Kakeya inequality.
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A.3.1. Reduction to small angle. The first step of the proof of Theorem A.1 consists in re-
ducing to the case when the lines lj,a make a very small angle with the xj-axis, that is
reducing to prove the following.

Theorem A.14. Let ε > 0. Then there exists δ > 0 such that the following holds. Suppose that
each line lj,a, a = 1, . . . , Nj makes an angle ≤ δ with the xj-axis. Then for any S ≥ 1, we have

∫
QS

n∏
j=1

 Nj∑
a=1

χTj,a

1/(n−1)

≤ CεSε
n∏
j=1

N
1/(n−1)
j , (A.15)

where QS denotes a cube of side length S.

Let us see why this implies Theorem A.1. Suppose that each line lj , a makes an angle
≤ (10n)−1 with the xj-axis, that is the direction of lj,a is contained in the spherical cap
B(ej , (10n)−1) ∩ Sn−1, where ej is the j-th coordinate vector.

Given ε, Theorem A.14 gives δ. Divide the spherical cap intoM smaller capsB(ujk, δ/10)∩
Sn−1, ujk ∈ S

n−1, where M . δ1−n .ε 1. Denote by vj,a the unit vector giving the direc-
tion of lj,a. Then we have

∫
QS

n∏
j=1

 Nj∑
a=1

χTj,a

1/(n−1)

.
M∑
k=1

∫
QS

n∏
j=1

( ∑
vj,a∈B(ujk,δ/10)

χTj,a

)1/(n−1)

.ε max
k

n∏
j=1

( ∑
vj,a∈B(ujk,δ/10)

χTj,a

)1/(n−1)
.

If ujk = ej then we can apply Theorem A.14 because the lines make an angle at most
δ with the xj-axis. Otherwise we need to perform a linear change of coordinates that
maps ujk to ej . Since the angle between lj,a and ej is at most (10n)−1, this linear change of
coordinates distorts length by a factor of at most 2 and volume by at most 2n. Then the
integral in the new coordinates can be bounded using (A.15).

A.3.2. Multiscale analysis. Now we will prove Theorem A.14. Instead of proving it di-
rectly at scale S, the idea is to work at scales δ−1, δ−2, . . . up to any scale S. To get from
one scale to the other we use the Loomis-Whitney inequality. This is done in the follow-
ing lemma, in which we denote by TWj,a the W neighbourhood of the line lj,a.

Lemma A.16. Suppose that lj,a are lines that make an angle at most δ with the xj-axis. If
S ≥ δ−1W , and QS is any cube of side length S, then

∫
QS

n∏
j=1

 Nj∑
a=1

χTWj,a

1/(n−1)

≤ Cnδn
∫
QS

n∏
j=1

 Nj∑
a=1

χ
T δ
−1W
j,a

1/(n−1)

. (A.17)

Proof. Divide the cubeQS into subcubes of side length between (20nδ)−1W and (10nδ)−1W .
Then it suffices to show that (A.17) holds when we integrate over any such cube Q.

Observe that the intersection of any tube TWj,a and Q is contained in a 2W tube with
direction parallel to the xj-axis (since the side length of Q is at most (10nδ)−1W ). More
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precisely, there exists a tube T̃ 2W
j,a with direction parallel to the xj-axis such that for every

x ∈ Q, χTWj,a(x) ≤ χT̃ 2W
j,a

(x). Thus

∫
Q

n∏
j=1

 Nj∑
a=1

χTWj,a

1/(n−1)

≤
∫
Q

n∏
j=1

 Nj∑
a=1

χT̃ 2W
j,a

1/(n−1)

.

To estimate this we can use the Loomis-Whitney inequality. We get by (A.8)

∫
Q

n∏
j=1

 Nj∑
a=1

χT̃ 2W
j,a

1/(n−1)

≤ CnWn
n∏
j=1

Nj(Q)1/(n−1),

where Nj(Q) denotes the number of tubes TWj,a that intersect Q.
But if TWj,a ∩Q 6= ∅ then T δ

−1W
j,a ∩Q = Q because the diameter ofQ is at most (10δ)−1W .

Hence

CnW
n

n∏
j=1

Nj(Q)1/(n−1) ≤ Cn
Wn

Ln(Q)

∫
Q

n∏
j=1

 Nj∑
a=1

χ
T δ
−1W
j,a

1/(n−1)

= Cnδ
n

∫
Q

n∏
j=1

 Nj∑
a=1

χ
T δ
−1W
j,a

1/(n−1)

,

which completes the proof. �

To prove Theorem A.14 we apply this lemma repeatedly.

Proof of Theorem A.14. We are given ε > 0 and we need to choose δ such that the theorem
holds. We will first work with a given δ and then specify how to choose it.

We first prove the theorem when S = δ−M for an integer M > 0. Applying Lemma
A.16 M times we get

∫
QS

n∏
j=1

 Nj∑
a=1

χTj,a

1/(n−1)

≤ Cnδn
∫
QS

n∏
j=1

 Nj∑
a=1

χ
T δ
−1
j,a

1/(n−1)

≤ · · · ≤ CMn δMn

∫
QS

n∏
j=1

 Nj∑
a=1

χ
T δ
−M
j,a

1/(n−1)

.

Since
∑Nj

a=1 χT δ−Mj,a
≤ Nj , we get

CMn δ
Mn

∫
QS

n∏
j=1

 Nj∑
a=1

χ
T δ
−M
j,a

1/(n−1)

≤ CMn δMnδ−Mn
n∏
j=1

N
1/(n−1)
j

= CMn

n∏
j=1

N
1/(n−1)
j .
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Since S = δ−M , we have M = logS
log δ−1 , thus

CMn = S
logCn
log δ−1 .

Choosing δ so that logCn
log δ−1 ≤ ε, we obtain

∫
QS

n∏
j=1

 Nj∑
a=1

χTj,a

1/(n−1)

≤ Sε
n∏
j=1

N
1/(n−1)
j ,

which is the desired bound.
For an arbitrary S ≥ 1, we can cover QS with cδ = Cε cubes of side length δ−M for a

certain integer M > 0. Then we get

∫
QS

n∏
j=1

 Nj∑
a=1

χTj,a

1/(n−1)

≤ CεSε
n∏
j=1

N
1/(n−1)
j ,

which proves Theorem A.14. �

A.4. Some applications. We give here some examples of applications of the multilinear
Kakeya inequality.

(1) In [2] the multilinear Kakeya inequality was applied to prove a multilinear re-
striction estimate. The restriction problem is an important problem in harmonic
analysis, asking when the restriction of the Fourier transform of a function f to
the unit sphere Sn−1 makes sense. We will not go into the details here but Ben-
nett, Carbery and Tao considered a multilinear version of the problem, proving
the equivalence of multilinear Kakeya and multiliar restriction.

(2) Another application given in [2] regards the joint problems. As we have seen in
the lectures, it asks what is the maximum number of joints determined by a col-
lection L of N lines in R3 in terms of N . We recall that a joint is the intersection of
three lines in L which are not coplanar. The conjectured bound N3/2 was proved
by Guth and Katz in [19] in 2010. Bennett, Carbery and Tao had used the mul-
tilinear Kakeya inequality to progress towards the conjecture provided that the
joints are sufficiently transverse.

For 0 < θ ≤ 1, they say that three lines are θ-transverse if the parallelepiped
generated by the unit vectors parallel to the lines has volume at least θ. Then they
define a θ-transverse joint as the intersection of three θ-transverse lines and prove
the following.

Theorem A.18. For any 0 < θ ≤ 1, the number of θ-transverse joints is

≤ CεN3/2+εθ−1/2−ε

for any ε > 0.

Proof. We only give the proof in the case θ ≈ 1 to show how the multilinear
Kakeya inequality is used.

Cover the unit sphere S2 with O(1) finitely overlapping spherical caps of ra-
dius θ/1000. If three lines l, l′, l′′ are θ-transverse then their directions lie in three
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distinct caps, call them Ci, Ci′ , Ci′′ . Then it is enough to show that

#Ji,i′,i′′ = #{p ∈ R3 : p ∈ l, l′, l′′ for some l ∈ Li, l′ ∈ Li′ , l′′ ∈ Li′′} . N3/2

for each such transverse triple Ci, Ci′ , Ci′′ , where Lj denotes the collection of lines
in L whose directions are in Cj .

By rescaling, we can assume that the joints are all contained in the ball of radius
1/1000 centred at the origin. For a small δ > 0, let Tl denote the δ-tube with axis
l ∈ L and center the closest point of l to the origin. If p ∈ Ji,i′,i′′ then for j = i, i′, i′′∑

l∈Lj

χTl(x) ≥ 1

when |x − p| < cδ, where c > 0 is a constant depending on the transversality
constant of (Ci, Ci′ , Ci′′). Since the number of joints is finite, if δ is small enough
the balls {x ∈ R3 : |x− p| < cδ} are disjoint for p ∈ Ji,i′,i′′ . Thus∥∥∥∥∥∥

∑
l∈Li

χTl

∑
l∈Li′

χTl

∑
l∈Li′′

χTl

∥∥∥∥∥∥
Lq/3(R3)

≥ Cq(#Ji,i′,i′′)3/qδ9/q

for any 3
2 < q ≤ ∞. But applying Theorem A.3 the left-hand side can be estimated

by
≤ Cq(δ3/q#Li)(δ3/q#Li′)(δ3/q#Li′′),

hence we get
#Ji,i′,i′′ ≤ Cq(#Li#Li′#Li′′)q/3.

Since #Li,#Li′ ,#Li′′ ≤ N and q can get arbitrarily close to 3/2 we get the claim.
�

(3) In [16] Guth obtains, as a corollary of his method, a ’planiness’ estimate for unions
of tubes in Rn, proving the following.

Theorem A.19. (Box estimate) There exists a constant C(n) > 0 such that the following
holds. IfX ⊂ Rn is a collection of cylinders of radius 1 and length L >> 1 then for every
x ∈ X there exists a rectangular box B(x) with the following properties:
(a) B(x) is centred at x, it can be oriented in any direction andLn(B(x)) ≤ C(n)Ln(X);
(b) for every cylinder T ⊂ X , if x ∈ T is a random point then T ⊂ B(x) with proba-

bility at least 9/10.
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