Prediction and Missing Data

Summarising Distributions

- Models are often large and complex
- Often only interested in some parameters
 - e.g. not so interested in the intercept
- Need to deal with the other parameters

Marginal Distributions

- A model with two parameters, θ_1 and θ_2
- Suppose we are only interested in θ_1
- Calculate the marginal distribution: $P(\theta_{1}|X) = \int P(\theta_{1}, \theta_{1}|X) P(\theta_{1}|X) d\theta_{1}$
- Weighted sum of the joint distribution
- In practice, use MCMC, just look at the output for θ_1 and ignore θ_2

Example: Regression

• For each value of β_0 , take the distribution of β_1 and add them together

Marginal Distributions

- Marginal distributions include the uncertainty in the parameters they are marginalised over
- The Bayesian approach: take the uncertainty into account
 - don't know parameter values, only estimate them
- We condition on what we know: the data
 - this is measured
 - the parameters are not

Prediction

- We sometimes want to predict new data
 - e.g. population viability analysis
- We have to use estimated parameter values
 - but these are not certain
- Want to make predictions which include the uncertainty in the parameters
 - natural in the Bayesian approach

Prediction: The Maths

- If we have data, X, and parameters, θ , then the posterior is $P(\theta | X)$
- We want to predict some new data, X_{new}
- We have a model to do this: $P(X|\theta)$
 - the likelihood
- If we want to make predictions, we should make predictions based on what we know
 - i.e. the data
 - so, we want $P(X_{new}|X)$

How Do We Get $P(X_{new}|X)$?

- For each value of θ make a prediction of X_{new} , using P(X| θ)
- We can then take a weighted sum so that the values of θ that are more likely contribute more to the prediction

- i.e. take $P(X_{new}|\theta) \times P(\theta | X)$ and add them up

Mathematical statement of this:

 $P(X_{new}|X) = \int P(X_{new}|\theta) P(\theta|X) d\theta$

In Practice: MCMC

- If we do MCMC, then we draw a lot of values from the posterior
 - Each value is equally likely
 - the parameter regions with higher densities are represented by more values
- So, each prediction based on a value is equally likely
- Therefore, we can take each value from the posterior, and simulate the new data using the likelihood

How long with the next Harry Potter book be?

- Model: $P_i \sim N(\alpha + \beta Y_i, \sigma^2)$
- Predict for $Y_7 = 2007$

Posterior Predictive Distribution

Plot of the Posterior Predictive Distribution

Missing Data

- In many real problems we do not observe all of the data
- It may be unobservable
 - e.g. patients who survive beyond the duration of a medical trial
- The observation may have been lost
 - e.g. someone stood on your tray of samples
- How should we deal with this?

Missing Data Example

- Suppose we do not know when the fourth Harry Potter book was published
 - missing covariate
- We could drop the data point, but that loses information
 - even worse when there are many covariates, with some data missing in all
- We do know the range when it could have been published
 - between books 3 and 5!

Estimation of Missing Data

- The data does tell us something about the missing covariates:
 - the observed covariates
 - the data (through the relationship with the covariates)
- Therefore we can learn about the missing covariates from the observed data
- We can easily formalise this

Missing Data

- If some covariates are not observed, they can be estimated
- Treat them as extra parameters

Inference

- Making the missing data extra parameters means we can get a joint posterior
 - $\mathsf{P}(\sigma^2, \alpha, \beta, Y_i),$
 - *i* indexes missing data
- But we are not interested in Y,
- Being Bayesians, we can integrate it out:

 $P(\sigma', \alpha, \beta | P) = \int P(\sigma', \alpha, \beta, Y_i | P) P(Y_i | P) dY_i$

• With MCMC: just drop the Y, estimates

Multiple Imputation

- With MCMC we are repeatedly estimating the parameters
 - drawing them from their posteriors
 - same applies to missing data
- Mirror of an older approach to missing data
 - Called "multiple imputation"

A Model

- $P_i \sim N(\alpha + \beta Y_i, \sigma^2)$
- Assume Y, is random
 - put a simple prior on it
 - but could use a more complex model
- For us, $Y_i \sim U(Y_{i-1}, Y_{i+1})$
 - and round to the nearest integer

Predicted of Year of Publication

Prediction Length of Book 7

Making it Work

- In this case, the missing data does not affect the point estimates
 - but the uncertainty is higher
- In other cases it can have an effect
 - especially if the data is not missing at random
- With several covariates, removing data points with missing covariates will remove information
- Rather than remove the data points with missing data, estimate the missing data

- increases precision

When We Need The Missing Data

- Sometimes we need to include the missing data
- e.g. censored data
 - there may be a reason why someone survived the experiment
- We might need to model how the data becomes missing
 - e.g. model that a person survived to the end of the experiment

When Missing Data Helps

- Sample beetles on 200 islands
- For one species, get these abundances:

Frequency

Might be a Poisson distribution, but too many zeroes!

The Model: ZIP

 If the rate of capture on each island was constant, then we would expect a Poisson distribution:

$$Pr(N=r) = \frac{\lambda' e^{-\lambda}}{\lambda!}$$

- But we have too many zeroes.
- One explanation: the species only occurs on some islands
- Model: occurrence is binomially distributed
- If species occurs, follows a Poisson distribution

Zero Inflated Poisson

 $r = \cdot$

 $r = 1, \tau, \tau, \dots$

- We end up with a Zero Inflated Poisson Distribution (ZIP)
- Probability:

$$Pr(N=r) = \begin{cases} p + (\gamma - p)e^{-\lambda} \\ (\gamma - p)\frac{\lambda^{r}e^{-\lambda}}{\lambda!} \end{cases}$$

- Two parameters: λ and p
- How do we fit this?
 - not a standard distribution

An Indirect Approach

- We do not have to fit the distribution directly
- . Instead we can split the distribution into two:
 - -I = 1 if the species is present, else I = 0 and N = 0
 - P(I=1) = p
 - I has a Bernoulli distribution
 - Binomial with 1 trial
- If the species is present, N follows a Poisson distribution
- We augment the data with the un-observed /
 - treat it as missing data

Data Augmentation

- Data augmentation is a common technique
- Makes estimation easier
- But uses more parameters
- Works because we can integrate out the extra parameters
 - take the marginal distribution

The Punchline

- For the missing data, we simulate to estimate the posterior
- We use the posterior to simulate the predicted data
- We could think about the predicted data as missing data, and use data augmentation
- Conceptually, little difference
 - only that the predictions have no observed data after them
- It's all the same framework!