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Summarising Distributions
● Models are often large and complex 
● Often only interested in some parameters 

– e.g. not so interested in the intercept 
● Need to deal with the other parameters 



  

Marginal Distributions

● A model with two parameters, θ1 and θ2

● Suppose we are only interested in θ1

● Calculate the marginal distribution: 
P ١∣X =∫P ١ ,٢∣X P ٢∣X d ٢

● Weighted sum of the joint distribution 
● In practice, use MCMC, just look at the output 

for θ1 and ignore θ2 



  

Example: Regression

● For each value of β0, take the distribution of β1 
and add them together 
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Marginal Distributions
● Marginal distributions include the uncertainty in 

the parameters they are marginalised over 
● The Bayesian approach: take the uncertainty 

into account 
– don't know parameter values, only estimate them 

● We condition on what we know: the data 
– this is measured 
– the parameters are not 



  

Prediction
● We sometimes want to predict new data 

– e.g. population viability analysis 
● We have to use estimated parameter values

– but these are not certain 
● Want to make predictions which include the 

uncertainty in the parameters 
– natural in the Bayesian approach 



  

Prediction: The Maths

● If we have data, X, and parameters, θ, then the 
posterior is P(θ | X) 

● We want to predict some new data, Xnew 
● We have a model to do this: P(X|θ) 

– the likelihood 
● If we want to make predictions, we should make 

predictions based on what we know 
– i.e. the data 
– so, we want P(Xnew|X) 



  

How Do We Get P(Xnew|X)?

● For each value of θ make a prediction of Xnew, 
using P(X|θ) 

● We can then take a weighted sum so that the 
values of θ that are more likely contribute more 
to the prediction 
– i.e. take P(Xnew|θ)×P(θ | X) and add them up 

● Mathematical statement of this:

P X new∣X =∫P X new∣P ∣X d 



  

In Practice: MCMC
● If we do MCMC, then we draw a lot of values 

from the posterior 
– Each value is equally likely 
– the parameter regions with higher densities are 

represented by more values 
● So, each prediction based on a value is equally 

likely 
● Therefore, we can take each value from the 

posterior, and simulate the new data using the 
likelihood 



  

How long with the next Harry Potter 
book be?

● Model: Pi ~ N( α + βYi, σ2)

● Predict for Y7 = 2007
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Posterior Predictive Distribution
● Plot of the Posterior Predictive Distribution 
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Missing Data
● In many real problems we do not observe all of 

the data 
● It may be unobservable 

– e.g. patients who survive beyond the duration of a 
medical trial 

● The observation may have been lost 
– e.g. someone stood on your tray of samples

● How should we deal with this?



  

Missing Data Example
● Suppose we do not know when the fourth Harry 

Potter book was published
– missing covariate

● We could drop the data point, but that loses 
information
– even worse when there are many covariates, with 

some data missing in all
● We do know the range when it could have been 

published
– between books 3 and 5!



  

Estimation of Missing Data
● The data does tell us something about the 

missing covariates: 
– the observed covariates 
– the data (through the relationship with the 

covariates)
● Therefore we can learn about the missing 

covariates from the observed data 
● We can easily formalise this 



  

Missing Data
● If some covariates are not observed, they can 

be estimated
● Treat them as extra parameters



  

Inference
● Making the missing data extra parameters 

means we can get a joint posterior 
– P(σ2, α, β, Yi), 

● i indexes missing data 
● But we are not interested in Yi 
● Being Bayesians, we can integrate it out: 

● With MCMC: just drop the Yi estimates 

P ٢ , ,∣P =∫P ٢ , , ,Y i∣P P Y i∣P d Y i



  

Multiple Imputation
● With MCMC we are repeatedly estimating the 

parameters 
– drawing them from their posteriors 
– same applies to missing data 

● Mirror of an older approach to missing data 
● Called “multiple imputation” 



  

A Model

● Pi ~ N( α + βYi, σ2)

● Assume Yi is random
– put a simple prior on it
– but could use a more complex model

● For us, Yi ~ U(Yi-1 , Yi+1)
– and round to the nearest integer
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Making it Work
● In this case, the missing data does not affect 

the point estimates
– but the uncertainty is higher

● In other cases it can have an effect 
– especially if the data is not missing at random

● With several covariates, removing data points 
with missing covariates will remove information 

● Rather than remove the data points with 
missing data, estimate the missing data 
– increases precision 



  

When We Need The Missing Data
● Sometimes we need to include the missing data 
● e.g. censored data 

– there may be a reason why someone survived the 
experiment 

● We might need to model how the data becomes 
missing
– e.g. model that a person survived to the end of the 

experiment



  

When Missing Data Helps
● Sample beetles on 200 islands 
● For one species, get these abundances: 
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zeroes!



  

The Model: ZIP
● If the rate of capture on each island was 

constant, then we would expect a Poisson 
distribution: 

● But we have too many zeroes. 
● One explanation: the species only occurs on 

some islands 
● Model: occurrence is binomially distributed
● If species occurs, follows a Poisson distribution 

Pr N=r =r e−

!



  

Zero Inflated Poisson
● We end up with a Zero Inflated Poisson 

Distribution (ZIP) 
● Probability: 

● Two parameters: λ and p 
● How do we fit this? 

– not a standard distribution 

Pr N=r ={p١−pe− r=٠

١−p 
r e−

!
r=١,٢,٣,. .



  

An Indirect Approach
● We do not have to fit the distribution directly 
● . Instead we can split the distribution into two: 

– I = 1 if the species is present, else I = 0 and N = 0 
– P(I=1) = p
– I has a Bernoulli distribution 

● Binomial with 1 trial 
● If the species is present, N follows a Poisson 

distribution 
● We augment the data with the un-observed I 

– treat it as missing data 



  

Data Augmentation
● Data augmentation is a common technique 
● Makes estimation easier 
● But uses more parameters 
● Works because we can integrate out the extra 

parameters 
– take the marginal distribution 



  

The Punchline
● For the missing data, we simulate to estimate 

the posterior 
● We use the posterior to simulate the predicted 

data 
● We could think about the predicted data as 

missing data, and use data augmentation 
● Conceptually, little difference 

– only that the predictions have no observed data 
after them 

● It's all the same framework! 
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