
  

Hierarchical Models



  

Where We Are
● We now know how to carry out a Bayesian 

analysis for simple models. 
– t-tests 
– regression 
– use MCMC 

● But most real problems are more complicated 
● Now we find out how to deal with a lot of them! 



  

A Problem
● How big are Swedish frogs? 

– and how does the size vary? 
● Variation at several levels 

– between individuals 
– between populations  (i.e. ponds)
– between regions 

● Firstly, look at the population and individual 
levels 
– sample several frogs from different ponds 



  

How to Model
● We want to model the variation between 

individuals and between ponds 
● Treat the pond mean as coming from a random 

distribution 
– e.g. Normal 
– Random effect 

● Quantify the amount of variation



  

The Model
● Individual i from pond j 
● xij – Size (“Snout Ventral Length”) 

xij ~ N(µj, τ) 
● Common variance 
● Means differ between ponds 
● Model this as a Normal distribution: 

● µj ~ N(µ0, τ0) 



  

Something Interesting
● For the pond means, we have this: 

 µj ~ N(µ0, τ0)
● If we knew the means, this would be a normal 

inference 
– treating the µjs as data 

● We don’t know them, but we estimate them: 

 xij ~ N(µj, τ)

● The posterior for µ0 and τ is then integrated 
over the uncertainty in the µi's 



  

DAGs

x

µ
τ

Parent of x

● DAGs are very convenient ways of drawing 
hierarchical models 

Child of µ and τ

x ~ N(µ, τ)



  

Priors

● For the data (xij), we can view the distribution of 
µi as the prior for its mean 

● So xij only depends on µ0 and τ through µi 
● This makes things easier 

– we can follow the dependencies more easily
● This is a simple hierarchical model 



  

Hierarchical Models
● The essence of a hierarchical model is that the 

dependencies between variables can be 
defined easily 

● Variables only depend on those below them 
– through the likelihood 

● And those above them 
– through the prior 

● This gives us a nice way of describing our 
models 



  

The Maths
● The full probability model can be worked out 

from the graph: 
● If v is a stochastic node 

– i.e. an oval 
● and V is the set of all nodes 

– i.e. all stochastic parts of the model 
● Then P(V) is the probability density for the 

model, and: 

Pr V =∏
V∈v

P v∣Parents [v ]



  

The Bayesian Bit

● For Bayesian analysis, v is a parameter, so P(v) 
is the posterior distribution 

● As we all know:

Pr V =∏
V∈v

P v∣Parents [v ]

●  So, P(v) depends on its parents... 
– through P(θ) 

● . ... and its children 
– through P(X | θ) 

P ∣X ∝P X∣P 



  

Fitting the Model

● We can calculate P(v) [=P(θ|X)] conditionally on 
its parents and children 

● Given these, it is independent of the rest of the 
model 

● Therefore, we can use a Gibbs sampler to 
estimate the parameters 
– Gibbs sample = cunning MCMC method 



  

Frogs: The Model
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Summarising the Results
● We can summarise the amount of variation that 

is regional by the proportion of total variation 
due to the region = ρ: 

– “intraclass correlation” 
● To calculate this we use each draw from the 

posterior for τ and τ0 and calculate it from this... 

= 1 /
1/1/0



  

The Estimation

● If we have τ and τ0, we calculate ρ:

● And this gives the correct posterior:

       τ          τ0         ρ
1.380   4.347   0.241
1.748   3.421   0.338
1.842   1.939   0.487
1.598   3.429   0.318
1.947   3.084   0.387
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More Models
● The response does not have to be normally 

distributed 
● Some alternatives: 

– Binomial 
– Poisson 
– Negative Binomial 
– Gamma 

● Likelihood different, but use same approach 
– extend generalised linear models



  

Frog Survival
● Rather than look at size, we can look at survival 

of offspring 
● Treat this as a trait, like size 

– each offspring has a probability p of surviving 
● Of Nij offspring from individual i, from population 
j, nij survive

 nij ~ Bin(Nij, pij)

● Then model logit pij:

 logit(pij) ~ N(µi, τ)



  

Frog Survival
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Quantitative Genetics
● Interested in genetics of variation in traits 
● Set up crosses, look at offspring 
● Partition variation into different components 

– Genetic (additive, dominance) 
– Maternal 
– Environmental 

● Traditionally calculate by subtraction 
● Bayesian approach: use all the information 



  

The Model

● The trait has a value ηi for individual i
– trait either measured, e.g. size
– or latent, e.g. probability of surviving

● Look at variation between crosses 
● Partition the total variation into variation 

– between female parents 
– between male parents 
– between full sibs 



  

Genetics Variances
● Each component of experimental variation is a 

sum of causal components 
– e.g. Sire = Additive/4 
– Dam = Additive/4 + Dominance/4 + Maternal

● We then put priors on Additive etc. 
● Use all of the information 

– variation in posterior correct 
● And now – the full model 
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The Message
● Hierarchical models can get complicated 
● We can keep control with the DAG 

– still able to fit them to the data 
● Great flexibility available 
● When do we stop adding to the model?

– when we can no longer interpret the results 
– when the data is not rich enough 

● e.g. too few values 
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