
  

MCMC etc.

Fitting Models



  

The Story So Far
● We can use Bayes' Theorem as the basis for 

statistical inference: 
● P (θ|X) ∝ P(X|θ).P(θ)
● With any non-trivial problem, it is impossible in 

practice to derive the equations for P(θ|X) 
● This use to be a problem, but no longer! 
● Now we use computer intensive algorithms to 

estimate P(θ|X) 



  

The Basics
● Computers can do lots of boring calculations 
● The challenge is to develop algorithms that are 

efficient 
– i.e. which don't take too much time 

● Computers can generate “pseudo-random 
numbers” 
– numbers that look random 
– Uniform distribution 
– want to use these to simulate other distributions 



  

The Output
● We want to estimate probability distributions 
● In particular, the posterior distribution, P(θ|X) 
● Simulate the distribution
● Should look like the underlying distribution: 
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Simple Simulations 
● What if we want to simulate an exponential 

distribution? 

● We can do this by transforming a uniform 
distribution: 

f x =١

e
−x


y=− lnx



  

Simple Simulations 
● Some distributions can be simulated in this way 

– exponential 
– normal 
– uniform 

● But the transformation may be difficult to 
calculate 

● Or it may take a long time 
– use quicker approaches 



  

Markov Chain Monte Carlo
● Often the solution to fitting complex models 

– but not without problems 
● Enables us to simulate posterior distributions 

– in many dimensions 
● Now used in almost every Bayesian analysis 
● Can also be used for frequentist analyses 

– but is often slower than other methods 



  

What MC and MC mean 
● Monte Carlo simulation 

– numerical simulation 
– stochastic 

● Markov Chain 
– discrete time stochastic model 
– each time step depends on the previous one 
– common population model 
– often interested in the stationary distribution 

● the probability distribution after a long time 



  

MCMC
● . Create a Markov chain whose stationary 

distribution is the distribution we want 
● . Then run a Monte Carlo simulation for a long 

time, and store the values 
● – this will be from the distribution we want 



  

The burn-in 
● .Once the chain has got to the stationary state, 

all values are from the required distribution 
● .We remove the first few values, the burn-in 
● Chop 

Chop



  

The Rest
● . After the burn-in, the values are from the 

target distribution 
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Updating Algorithms
● Several algorithms available

– minor industry in computational statistics
● Metropolis-Hastings

– propose a new point, accept if good enough
– if not good enough, stay there
– can prove it works

● Gibbs Sampler
– Simulate one parameter from its conditional 

distribution
● conditioned on all the other parameters



  

Into Several Dimensions
● We could use M-H or Gibbs sampler in several 

dimensions 
– propose several dimensions simultaneously

● But gets difficult in many dimensions
● Good news: We don't have to update all at once 
● We can propose each parameter on its own 
● Rotate through the parameters 
● Even do some parameters several times 



  

An Example
● Knee heights – Regression 
● Model: 

● yi: knee height

● xi: total height

y i~N ٠١ x i−x  ,٢
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From A Previous Course

● Want to estimate posteriors for β0, β1 and σ2 
● Priors: 

– β0 ~ N(42, 1.52) 

– β1 ~ N(0.25, 0.022) or β1 ~ N(0.33, 0.052) 

– σ2 ~ Inv-χ2(4, 0.5) 
● Mainly interested in β1 

– look at marginal distribution 



  

Gibbs Sampler 
● A form of M-H algorithm 
● Update each parameter individually 
● Propose from the conditional distribution 

– e.g. P(β0| β1,σ2)
● Can prove we will always accept 
● Needs an additional assumption 

– “conditional independence” 
● Most regression problems fulfil this criterion 



  

What we get 
● Run 2 chains 
● Take the marginal distribution of β0 by dropping 

the other parameters 
– we sum over their variation 

● Yes, it is that simple 
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Marginal Distributions 
● Red lines: prior, black lines: posteriors 
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Joint Posterior 

● β0 and β1 only 
● No correlation

– ρ=0.00089

44.0 44.5 45.0 45.5 46.0 46.5 47.0

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

β 0

β 1


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

