MCMC etc.

Fitting Models



The Story So Far

 WWe can use Bayes' Theorem as the basis for
statistical inference:

* P (6X) O P(X]6).P(6)
* With any non-trivial problem, it is impossible in
practice to derive the equations for P(4X)

* This use to be a problem, but no longer!

 Now we use computer intensive algorithms to
estimate P(§X)



The Basics

 Computers can do lots of boring calculations

* The challenge is to develop algorithms that are
efficient

- I.e. which don't take too much time

» Computers can generate “pseudo-random
numbers”

- numbers that look random
— Uniform distribution
- want to use these to simulate other distributions



The Output

* \We want to estimate probability distributions

* |In particular, the posterior distribution, P(8X)

e Simu
 Shou

ate the distribution
d look like the underlying distribution:




Simple Simulations

 What if we want to simulate an exponential
distribution?
r<h

f(X)=Xe

* We can do this by transforming a uniform

distribution:
y=—AME>




Simple Simulations

« Some distributions can be simulated in this way

- exponential
- normal
— uniform

 But the transformation may be difficult to
calculate

e Orit may take a long time

— use quicker approaches



Markov Chain Monte Carlo

» Often the solution to fitting complex models
- but not without problems

 Enables us to simulate posterior distributions
- In many dimensions

« Now used in almost every Bayesian analysis

» Can also be used for frequentist analyses

— but is often slower than other methods



What MC and MC mean

e Monte Carlo simulation

— numerical simulation
— stochastic

« Markov Chain

— discrete time stochastic model
— each time step depends on the previous one
— common population model

- often interested in the stationary distribution
» the probability distribution after a long time



MCMC

» . Create a Markov chain whose stationary
distribution is the distribution we want

* . Then run a Monte Carlo simulation for a long
time, and store the values

e — this will be from the distribution we want




The burn-in

» .Once the chain has got to the stationary state,
all values are from the required distribution

 \\We remove the first few values, the burn-in
 Chop




The Rest

o . After the burn-in, the values are from the
target distribution
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Updating Algorithms

« Several algorithms available
— minor industry in computational statistics
* Metropolis-Hastings
- propose a new point, accept if good enough
— If not good enough, stay there
— can prove it works
* Gibbs Sampler

- Simulate one parameter from its conditional
distribution

e conditioned on all the other parameters



Into Several Dimensions

 We could use M-H or Gibbs sampler in several
dimensions

- propose several dimensions simultaneously
» But gets difficult in many dimensions

» Good news: We don't have to update all at once
* \We can propose each parameter on its own

* Rotate through the parameters

 Even do some parameters several times



An Example

Knee heights — Regression

Model:

yi~N(B.+Bi(x,~%X),0")

y:: knee height
x. total height
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From A Previous Course

« Want to estimate posteriors for 3, 8, and &

* Priors:
- B, ~N(42, 1.52)
- B~ N(0.25, 0.022) or 3, ~ N(0.33, 0.052)
- 0° ~ Inv-x4(4, 0.5)

« Mainly interested in S,

- look at marginal distribution



Gibbs Sampler

e A form of M-H algorithm

Update each parameter individually
Propose from the conditional distribution

- €.0. P(ﬁol 181502)
Can prove we will always accept

Needs an additional assumption
- “conditional independence”
Most regression problems fulfil this criterion



What we get

e Run 2 chains

 Take the marginal distribution of 3, by dropping
the other parameters

— we sum over their variation
e Yes, it is that simple
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Marginal Distributions

* Red lines: prior, black lines: posteriors
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Joint Posterior

« 3,and [, only

 No correlation
- p=0.00089
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