
  

Bayesian Inference: 
Multiple Parameters



  

More Parameters
● Most statistical models have more than 1 

parameter
– can have thousands!

● We need to know how to deal with many 
parameters
– actually a strength of the Bayesian approach

● It turns out to be simple in practice, but we need 
some maths first.



  

A Simple Example
● Estimating the mean and variance of a normal 

distribution 
● Some data (heights in cm):
● 160, 170, 167, 162, 170, 171, 164, 175, 177, 178, 184, 

174, 176, 186, 189, 197
● Fit a Normal distribution

– 2 parameters, mean (µ) and variance (σ2)
● Likelihood:
P y∣ ,٢= ١

٢٢
exp−١

٢
٢ y−٢



  

The Priors
● First, we will use a prior distribution that is 

uniform prior on µ and log(σ), for reasons that 
will become clear.

● The prior is thus
P  ,٢∝٢−١

● This is not a proper probability distribution
– the area under the curve is infinite!

● Can prove this still leads to a proper posterior
● Later we will use a different prior



  

The Posterior
● The posterior distribution for n observations is:

P  ,٢∣y ∝P  ,٢P y∣ ,٢

= ١
٢∏

i=١

n ١
٢٢

exp− ١
٢٢ y i−٢

∝ ١
n٢ exp− ١

٢٢∑
i=١

n

y i−٢
● This is the joint posterior for the parameters
● So, now we have an equation, what do we do 

with it?



  

Joint Distributions
● From the definition of a conditional distribution:

P X ١ , X ٢=P X ١∣X٢ P X ٢

● We can read this as slices of conditional 
distributions, weighted by the size of the slice



  



  

Marginal Distributions
● What if we want the distribution of one variable?
● We take the marginal distribution:

P X ١=∫P X ١∣X ٢P X ٢dX ٢

● We just sum up the slices
– but we need the marginal for X2

+ + + + + +



  

The Normal Distribution

● We can get the marginal posteriors for µ and σ2  
by some maths:

P  ,٢∣y ∝ ١
n٢ exp− ١

٢٢∑
i=١

n

y i−٢
= ١
n٢ exp− ١

٢٢ [n−١s٢n y−٢ ]
● y and s2 are the sample means and variances:

y=∑ y i
n

s٢= ١
n−١∑ y i−y ٢



  

Conditional Posterior for µ
● If we remove the constants that do not depend 

on µ then we get 

P  ,∣٢,y ∝exp− n
٢٢ y−٢

● Conveniently, this is just a Normal distribution.  
So

P  ,∣٢ y ~N y ,٢ /n
● Which still depends on σ2



  

Marginal Posterior for σ2

● For σ2, we want to calculate 

P ٢∣y ∝∫ ١
n٢ exp− ١

٢٢ [n−١s٢n y−٢ ]d 
● This is easier than it looks.  We get:

P ٢∣y ∝−n١/٢ exp−n−١s٢

٢٢ 
● Which is an inverse gamma distribution

– also known as a scaled inverse chi-squared



  

Marginal for µ
● Now we want 

P ∣y ∝∫P  ,٢∣y d٢

● Which, with some maths, becomes

P ∣y ∝[١n −y ٢

n−١s٢ ]
−n /٢

● This is just a t distribution, with n-1 df!
−y
s /n

~t n−١



  

Prediction
● What if we want to predict a new value?  We 

need 

P y new∣y =∫∫P y new∣ ,
٢P  ,٢∣y d٢d 

● Which is also a t-distribution:

y new~t n−١y ,١١
n
s٢



  

Summary
● We have the following posterior distributions:
● Conditional for µ

– µ ~ N(y, σ2)
● Marginal for µ

– µ ~ tn-1(y, s2/n)

● Marginal for σ2

– σ2 ~ χ-2 (n-1, s2)
● Predictive

– ynew  ~ tn-1(y, (1+1/n)s2)



  

Simulation
● It is often easier to deal with these distributions 

by simulation
– sometimes easier to see what is going on

● Here we need RNGs for normal and chi-
squared distributions

● Most real work is done by simulation
● Draw the parameters many times from the right 

distribution
● The easy one: Conditional for µs | σ2

– Simulate from a N(y, σ2) 



  

Simulation

● Marginal for µ
1.Draw σs-2 from a χ2 (n-1, s2)

2.Draw µs from a N(y, σs-2) 

● Marginal for σs
2

– Draw σs-2 from a χ2(n-1, s2), then take inverse

● Predictive for ynew
1. Draw σs-2 and µs as above

2. Draw ynew from a N(µs, σs-2) 



  

Different Priors
● What if we want informative priors

– e.g. if we have information to use?
● One possible set of priors:

– µ|σ2 ~ N(µ0, σ0
2/κ0)

– σ2 ~ Inv-χ2(υ0, σ0
2)

● Why these priors?  Because the posterior has 
the same distribution
– conjugate



  

Different Posteriors

● µ|y,σ2 ~ N(µn, σ2/κn)

● σ2|y ~ Inv-χ2(νn, σn2)

n=
٠٠n y
٠n

n=٠n

n=٠n nn
٢=٠٠

٢n−١s٢
٠n
٠n

y−٠
٢

● µ|y ~ tνn
(µn, σn2/κn)



  

What do we want?
● The basic calculations are as outlined above
● From the joint posterior, we calculate the 

marginal distributions
– can calculate a joint distribution for a subset of the 

parameters by marginalising over the rest
● For real models the calculations get difficult
● Instead, we use simulation

– makes things easier



  

Marginalisation by Simulation
● To simulate a conditional distribution, we plug in 

the parameters we are conditioning on:
● Simulate                                       by plugging in 
y and σ2/n

● To simulate the marginal, we use the 
relationship

P  ,∣٢ y ~N y ,٢ /n

P X ١=∫P X ١∣X ٢P X ٢dX ٢

● If we can do P(X1|X2) and P(X2), then we just 
draw X2, then X1|X2 and repeat this many times

– we just ignore X2
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