Bayesian Inference: Multiple Parameters

More Parameters

- Most statistical models have more than 1 parameter
- can have thousands!
- We need to know how to deal with many parameters
- actually a strength of the Bayesian approach
- It turns out to be simple in practice, but we need some maths first.

A Simple Example

- Estimating the mean and variance of a normal distribution
- Some data (heights in cm):
- $160,170,167,162,170,171,164,175,177,178,184$, 174, 176, 186, 189, 197
- Fit a Normal distribution
- 2 parameters, mean (μ) and variance (σ^{2})
- Likelihood:

$$
P\left(y \mid \mu, \sigma^{r}\right)=\frac{1}{\sqrt{r \pi \sigma^{r}}} \exp \left(-\frac{1}{r} \sigma^{r}(y-\mu)^{r}\right)
$$

The Priors

- First, we will use a prior distribution that is uniform prior on μ and $\log (\sigma)$, for reasons that will become clear.
- The prior is thus

$$
P\left(\mu, \sigma^{r}\right) \propto\left(\sigma^{r}\right)^{-1}
$$

- This is not a proper probability distribution
- the area under the curve is infinite!
- Can prove this still leads to a proper posterior
- Later we will use a different prior

The Posterior

- The posterior distribution for n observations is:

$$
\begin{aligned}
P\left(\mu, \sigma^{r} \mid y\right) & \propto P\left(\mu, \sigma^{r}\right) P\left(y \mid \mu, \sigma^{r}\right) \\
& =\frac{1}{\sigma^{r}} \prod_{i=1}^{n} \frac{1}{\sqrt{r \pi \sigma^{r}}} \exp \left(-\frac{1}{r \sigma^{r}}\left(y_{i}-\mu\right)^{r}\right) \\
& \propto \frac{1}{\sigma^{n+r}} \exp \left(-\frac{1}{r \sigma^{r}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{r}\right)
\end{aligned}
$$

- This is the joint posterior for the parameters
- So, now we have an equation, what do we do with it?

Joint Distributions

- From the definition of a conditional distribution:

$$
P\left(X_{1}, X_{r}\right)=P(X, \mid X T) P\left(X_{r}\right)
$$

- We can read this as slices of conditional distributions, weighted by the size of the slice

Marginal Distributions

-What if we want the distribution of one variable?

- We take the marginal distribution:

$$
P\left(X_{r}\right)=\int P\left(X_{,} \mid X_{r}\right) P\left(X_{r}\right) d X_{r}
$$

-We just sum up the slices

- but we need the marginal for X_{2}

The Normal Distribution

- We can get the marginal posteriors for μ and σ^{2} by some maths:

$$
\begin{aligned}
P\left(\mu, \sigma^{r} \mid y\right) & \propto \frac{1}{\sigma^{n+r}} \exp \left(-\frac{1}{r \sigma^{r}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{r}\right) \\
& =\frac{1}{\sigma^{n+r}} \exp \left(-\frac{1}{r \sigma^{r}}\left[(n-1) s^{r}+n(\bar{y}-\mu)^{r}\right]\right)
\end{aligned}
$$

- \bar{y} and s^{2} are the sample means and variances:

$$
\bar{y}=\frac{\sum y_{i}}{n} \quad s^{r}=\frac{1}{n-1} \sum\left(y_{i}-\bar{y}\right)^{r}
$$

Conditional Posterior for μ

- If we remove the constants that do not depend on μ then we get

$$
P\left(\mu, \mid \sigma^{r}, y\right) \propto \exp \left(-\frac{n}{r \sigma^{r}}(\bar{y}-\mu)^{r}\right)
$$

- Conveniently, this is just a Normal distribution. So

$$
P\left(\mu, \mid \sigma^{r} y\right) \sim N\left(\bar{y}, \sigma^{r} / n\right)
$$

- Which still depends on σ^{2}

Marginal Posterior for σ^{2}

- For σ^{2}, we want to calculate

$$
P\left(\sigma^{r} \mid y\right) \propto \int \frac{1}{\sigma^{n+r}} \exp \left(-\frac{1}{r \sigma^{r}}\left[(n-1) s^{r}+n(\bar{y}-\mu)^{r}\right]\right) d \mu
$$

- This is easier than it looks. We get:

$$
P\left(\sigma^{r} \mid y\right) \propto(\sigma)^{-(n+1) / r} \exp \left(-\frac{(n-1) s^{r}}{r \sigma^{r}}\right)
$$

-Which is an inverse gamma distribution

- also known as a scaled inverse chi-squared

Marginal for μ

- Now we want

$$
P(\mu \mid y) \propto \int P\left(\mu, \sigma^{r} \mid y\right) d \sigma^{r}
$$

- Which, with some maths, becomes

$$
P(\mu \mid y) \propto\left[1+\frac{n(\mu-\bar{y})^{r}}{(n-1) s^{r}}\right]^{-n / r}
$$

- This is just a t distribution, with $n-1$ df!

$$
\frac{\mu-\bar{y}}{s / \sqrt{n}} \sim t_{n-1}
$$

Prediction

- What if we want to predict a new value? We need

$$
P\left(y_{\text {new }} \mid y\right)=\iint P\left(y_{\text {new }} \mid \mu, \sigma^{r}\right) P\left(\mu, \sigma^{r} \mid y\right) d \sigma^{r} d \mu
$$

- Which is also a t-distribution:

$$
y_{\text {new }} \sim t_{n-1}\left(\bar{y},\left(1+\frac{1}{n}\right) s^{r}\right)
$$

Summary

- We have the following posterior distributions:
- Conditional for μ

$$
-\mu \sim \mathrm{N}\left(\bar{y}, \sigma^{2}\right)
$$

- Marginal for μ

$$
-\mu \sim t_{n-1}\left(\bar{y}, s^{2} / n\right)
$$

- Marginal for σ^{2}

$$
-\sigma^{2} \sim \chi^{2}\left(n-1, s^{2}\right)
$$

- Predictive

$$
-\mathrm{y}_{\text {new }} \sim t_{n-1}\left(\bar{y},(1+1 / n) s^{2}\right)
$$

Simulation

- It is often easier to deal with these distributions by simulation
- sometimes easier to see what is going on
- Here we need RNGs for normal and chisquared distributions
- Most real work is done by simulation
- Draw the parameters many times from the right distribution
- The easy one: Conditional for $\mu_{s} \mid \sigma^{2}$
- Simulate from a $\mathrm{N}\left(\bar{y}, \sigma^{2}\right)$

Simulation

- Marginal for μ
1.Draw σ_{s}^{-2} from a $\chi^{2}\left(n-1, s^{2}\right)$
2.Draw μ_{s} from a $\mathrm{N}\left(\bar{y}, \sigma_{s}^{-2}\right)$
- Marginal for σ_{s}^{2}
- Draw σ_{s}^{-2} from a $\chi^{2}\left(n-1, s^{2}\right)$, then take inverse
- Predictive for $y_{\text {new }}$

1. Draw σ_{s}^{-2} and μ_{s} as above
2. Draw $y_{\text {new }}$ from a $\mathrm{N}\left(\mu_{s}, \sigma_{s}^{-2}\right)$

Different Priors

- What if we want informative priors
- e.g. if we have information to use?
- One possible set of priors:
$-\mu \mid \sigma^{2} \sim \mathrm{~N}\left(\mu_{0}, \sigma_{0}^{2} / \kappa_{0}\right)$
$-\sigma^{2} \sim \operatorname{lnv}-\chi^{2}\left(v_{0}, \sigma_{0}^{2}\right)$
-Why these priors? Because the posterior has the same distribution
- conjugate

Different Posteriors

- $\mu \mid y, \sigma^{2} \sim \mathrm{~N}\left(\mu_{n}, \sigma^{2} / \kappa_{n}\right)$

$$
\mu_{n}=\frac{\kappa \cdot \mu_{1}+n \bar{y}}{\kappa .+n} \quad \kappa_{n}=\kappa .+n
$$

- $\sigma^{2} \mid y \sim \ln v-\chi^{2}\left(v_{n}, \sigma_{n}^{2}\right)$
$v_{n}=\nu .+n \quad v_{n} \sigma_{n}^{r}=v . \sigma^{r}+(n-1) s^{r}+\frac{\kappa . n}{\kappa .+n}(\bar{y}-\mu .)^{r}$
- $\mu \mid y \sim \mathrm{t}_{v_{n}}\left(\mu_{n}, \sigma_{n}^{2} / \kappa_{n}\right)$

What do we want?

- The basic calculations are as outlined above
- From the joint posterior, we calculate the marginal distributions
- can calculate a joint distribution for a subset of the parameters by marginalising over the rest
- For real models the calculations get difficult
- Instead, we use simulation
- makes things easier

Marginalisation by Simulation

- To simulate a conditional distribution, we plug in the parameters we are conditioning on:
- Simulate $P\left(\mu, \mid \sigma^{r} y\right) \sim N\left(\bar{y}, \sigma^{r} / n\right)$ by plugging in \bar{y} and σ^{2} / n
- To simulate the marginal, we use the relationship

$$
P\left(X_{1}\right)=\int P\left(X_{,} \mid X_{r}\right) P\left(X_{r}\right) d X_{r}
$$

- If we can do $P\left(X_{1} \mid X_{2}\right)$ and $P\left(X_{2}\right)$, then we just draw X_{2}, then $X_{1} \mid X_{2}$ and repeat this many times - we just ignore X_{2}

