Bayesian Inference: The Basics

Statistical Models

- Most statistical analysis consists of fitting a model to the data
- The model summarises the data
- should show the main features of the data
- Model has a number of parameters
- Want to estimate the parameters
- Definitions:
- Data: $X \quad$ Parameters: θ

What is the probability that my bus will be late in the morning?

- Let p be the probability that the bus is late
- Model assumptions:
- the probability is constant
- events are independent
- Observe N mornings, bus is late n times, then:

$$
\operatorname{Pr}(N=n \mid p)=\frac{N!}{N!(N-n)!} p^{n}(1-p)^{N-n}
$$

- Binomial Distribution

Bayesian Inference

- We can collect data about the processes that are influenced by the parameters
- Use this data and the models to infer the possible values of the parameters
- Summarise our beliefs about the possible values as probability distributions
- Adding data changes these distributions
- inference is a learning process

The Inference Problem

- We want to find the distribution of the parameters after we have the data
$-\operatorname{Pr}(\theta \mid X)$
- From our model we can write down the probability of getting the data, if we know the parameters

$$
-\operatorname{Pr}(X \mid \theta)
$$

- We need to use $\operatorname{Pr}(X \mid \theta)$ to find $\operatorname{Pr}(\theta \mid X)$
- to invert the probability

Enter Bayes' Theorem

- We know from probability theory that:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

- This is Bayes' theorem
- It allows us to invert the probabilities:

$$
\operatorname{Pr}(\theta \mid X)=\frac{\operatorname{Pr}(X \mid \theta) \operatorname{Pr}(\theta)}{\operatorname{Pr}(X)}
$$

- But what are $P(\theta)$ and $P(X)$?

$P(\theta)$

- $P(\theta)$ is the probability distribution for the parameters
- It is not conditioned on the data
- We can interpret this as the probability before we see the data
- We call this the prior distribution

Prior Distributions

- Before we see any data, we have some idea about what values the parameters might take
- This may be "somewhere between minus or plus infinity"
- At other times, may be tighter
- e.g. there are very few people $3 m$ tall
- Our subjective uncertainty about the parameters before we see the data

Priors for late buses

- The parameter, p, is limited to be between 0 and 1
- We could assume total ignorance, and use a uniform distribution as a prior:
$-P(p)=1$
- Or we could use another distribution, for example the Beta distribution:

$$
P(p)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

The Beta Distribution

- The important bit:

$$
P(p) \propto p^{\alpha-1}(1-p)^{\beta-1}
$$

- Symmetric
- replace p by 1-q, and swap a and B

$$
E(p)=\frac{\alpha}{\alpha+\beta} \quad \operatorname{Var}(p)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

- Write as $\operatorname{Beta}(\alpha, \beta)$

The Shape of the Beta, I

- When increasing α and β, variance gets lower

The Shape of the Beta, II

- When B increases, distribution shifts down
- similarly when a increases, distribution shifts up

Using the Beta as a Prior

- We can tune the distribution to reflect our prior knowledge
- If $\alpha=\beta=1$, we have a uniform distribution
- As we increase α and β, the variance decreases
- use this if we have more knowledge
- if we were talking about coin tossing, we might use $\alpha=\beta=$ something high

$P(X)$

- The unconditional distribution of the data
- Can write as:

$$
P(X)=\int_{-\infty}^{\infty} P(X \mid \theta) P(\theta) d \theta
$$

- Marginal distribution of the data
- marginalised over the prior
- Called the Prior Predictive Distribution
- Only depends on X, which is fixed
- hence, $P(X)$ is a constant

Bayesian Inference

- As $P(X)$ is a constant, all we need to estimate $P(\theta \mid X)$ are $P(\theta)$ and $P(X \mid \theta)$
- Bayes' rule becomes:

$$
P(\theta \mid X) \propto P(X \mid \theta) P(\theta)
$$

- $\mathrm{P}(\theta \mid \mathrm{X})$ is called the Posterior Distribution
- Product of the prior and the likelihood
- In practice, the constant of proportionality can usually be ignored

Late Buses

- Firstly, a Uniform Prior:

$$
P(p)=1
$$

- The likelihood - on N days, bus is late n times:

$$
\operatorname{Pr}(N=n \mid p)=\frac{N!}{N!(N-n)!} p^{n}(1-p)^{N-n}
$$

- The Prior Predictive distribution:

$$
\operatorname{Pr}(N=n)=\int_{0}^{1} \frac{N!}{N!(N-n)!} p^{n}(1-p)^{N-n} d p=1
$$

Late Buses: The Posterior

- The posterior:

$$
\begin{aligned}
\operatorname{Pr}(p \mid n) & =\frac{P(p) P(n \mid p)}{p(n)} \\
& =1 \frac{N!}{N!(N-n)!} p^{n}(1-p)^{N-n} \\
& \propto p^{n}(1-p)^{N-n}
\end{aligned}
$$

- This is a Beta distribution!
- $\mathrm{P}(p \mid n)=\operatorname{Beta}(n+1, N-n+1)$

The Posterior

- For $\mathrm{N}=5$ (one week), possible posteriors:

Late Buses: Beta Prior

- The beta prior:

$$
P(p) \propto p^{\alpha-1}(1-p)^{\beta-1}
$$

- The posterior:

$$
\begin{aligned}
P(p \mid n) & \propto p^{\alpha-1}(1-p)^{\beta-1} p^{n}(1-p)^{N-n} \\
& =p^{\alpha+n-1}(1-p)^{\beta+N-n-1}
\end{aligned}
$$

- Also a Beta distribution!
$-\mathrm{P}(p \mid n)=\operatorname{Beta}(n+\alpha, N-n+\beta)$

Beta Distribution Priors

- Not restricted to a uniform distribution
- e.g. Assume we observe 1 late bus in a week
- Look at different priors:
- uniform - Beta(1,1)
- British prior - Beta $(2,5)$
- Finnish prior - Beta(10,1)

Informative Priors

- Prior - green
- Posteriors -red

Adding More Data

- Observe data, X_{1}, get a posterior distribution:

$$
\operatorname{Pr}\left(\theta \mid X_{1}\right) \propto \operatorname{Pr}\left(X_{1} \mid \theta\right) \operatorname{Pr}(\theta)
$$

- What if we later observe more data, X_{2} ?
- If this is independent of the first data set, then $P\left(X_{1}\right.$ and $\left.X_{2} \mid \theta\right)=P\left(X_{1} \mid \theta\right) \cdot P\left(X_{2} \mid \theta\right)$. Hence

$$
\begin{aligned}
\operatorname{Pr}\left(\theta \mid X_{1}, X_{2}\right) & \propto \operatorname{Pr}(\theta) \operatorname{Pr}\left(X_{1} \mid \theta\right) \operatorname{Pr}\left(X_{2} \mid \theta\right) \\
& =\operatorname{Pr}\left(\theta \mid X_{1}\right) \operatorname{Pr}\left(X_{2} \mid \theta\right)
\end{aligned}
$$

- i.e. we use the first posterior as the prior for the second posterior

Adding More Data

- After 10 weeks, observe 10 late buses
- out of 50

- As evidence accumulates, our beliefs converge

Learning

- The Bayesian approach is often talked about as a learning process
- As we get more data, we add it to our store of information by multiplying it by our current posterior distribution.
- It has been argued that this can form the basis of a philosophy of science
- Philosophers of science are not know for their success at explaining science

Terminology

- Uninformative prior
- Uniform, as wide as possible
- sometimes called flat priors
- problem: often difficult to define
- Informative Prior
- not uniform
- assume we have some prior knowledge
- Conjugate Prior
- prior and posterior have same distribution
- often makes the maths easier

Summarising Posteriors

- Giving the full posterior distribution can be an awkward way of presenting the results of an analysis
- especially if we have a lot of parameters.
- Often we are only interested in some parameters, or have particular questions to answer

Probabilities of events

- The posterior distribution is a probability density from which we can calculate probabilities of events
- e.g. $P(\theta>1)$
- This is a straightforward interpretation of the probability.
- Contrast this with a frequentist p-value:
- The probability of getting a statistic above a certain value, if the model and the parameter estimates are correct

Summaries

- Rather than give the full posterior for a parameter, we can give summary statistics
- e.g. the posterior mode
- equivalent to the ML estimate
- the most likely value
- Posterior mean or median
- average values
- consensus values
- may not be very likely!

Late buses

- Uniform prior, observe 1 late bus in a week
- Posterior: Beta $(2,5)$
- Mode Median Mean

Measures of Spread

- Posterior standard deviation
- equivalent to standard error - the standard deviation of a statistic
- Bayesians don't make a distinction between parameters and statistics
- Late buses:

$$
s d(p)=\sqrt{\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}}
$$

- One bus late: $\operatorname{sd}(p)=0.160$
- 10 out of $50: \operatorname{sd}(p)=0.056$

95\% Confidence Intervals

- An interval where there is a probability of 95% that the parameter is within the interval
- Bayesian Confidence Interval
- Credible Interval
- Frequentist Cl defined as an interval that the statistic will be in 95% of the time if the ML estimate is correct.
- Problem: asymmetric distributions

Traditional Cls

- Set at 2.5% and 97.5% limits
- An extreme example: Beta(1,3)
- mode is 0
- Cl does not include the mode!

Solution

- Highest Posterior Densities
- shortest 95\% interval
- all points inside interval have higher densities than those outside
- For bimodal data, can get 2 intervals

Hypothesis Tests

- If we have 2 models, M_{1} and M_{2}, how can we choose between them?
- From Bayes' Rule:

$$
\begin{aligned}
& -\operatorname{Pr}\left(M_{1} \mid X\right)=\operatorname{Pr}\left(X \mid M_{1}\right) \cdot \operatorname{Pr}\left(M_{1}\right) \\
& -\operatorname{Pr}\left(M_{2} \mid X\right)=\operatorname{Pr}\left(X \mid M_{2}\right) \cdot \operatorname{Pr}\left(M_{2}\right)
\end{aligned}
$$

- Usually compare these with a Bayes' Factor:

$$
B . F .=\frac{\operatorname{Pr}\left(M_{1} \mid X\right)}{\operatorname{Pr}\left(M_{2} \mid X\right)}=\frac{\operatorname{Pr}\left(X \mid M_{1}\right)}{\operatorname{Pr}\left(X \mid M_{2}\right)} \times \frac{\operatorname{Pr}\left(M_{1}\right)}{\operatorname{Pr}\left(M_{2}\right)}
$$

- Change in odds of the models as we get data

Prediction

- One practical use of statistics
- A usual problem: using point estimates ignores the uncertainty in the estimates
- Our predictions are calculated as:

$$
P\left(X_{\text {new }} \mid X\right)=\int P\left(X_{\text {new }} \mid \theta\right) \cdot P(\theta \mid X) d \theta
$$

- Posterior Predictive Distribution
- Include the uncertainty in the parameters
- Less precise than predictions from point estimates

How many times will my bus be late this week?

- 5 days. Last week, late once out of 5 times
- Uniform prior
- The posterior predictive distribution is difficult to calculate
- Instead, we use Monte Carlo simulation
- First, we simulate $p^{\text {new }}$ from a Beta $(2,5)$ distribution a lot of times
- Then for each $p^{\text {new }}$, we simulate $n_{\text {new }}$ from a Binomial distribution with $p=p^{\text {new }}$

The Prediction

- Posterior Predictive Standard Deviation 1.4 times larger than for the prediction from the point estimate

