
  

Bayesian Inference: 
The Basics



  

Statistical Models
● Most statistical analysis consists of fitting a 

model to the data 
● The model summarises the data 

– should show the main features of the data
● Model has a number of parameters 
● Want to estimate the parameters 
● Definitions: 

– Data: X Parameters: θ



  

What is the probability that my bus 
will be late in the morning?

● Let p be the probability that the bus is late 
● Model assumptions: 

– the probability is constant 
– events are independent 

● Observe N mornings, bus is late n times, then:

● Binomial Distribution 

Pr N=n∣p= N!
N!N−n!

pn1−pN−n



  

Bayesian Inference
● We can collect data about the processes that 

are influenced by the parameters 
● Use this data and the models to infer the 

possible values of the parameters 
● Summarise our beliefs about the possible 

values as probability distributions 
● Adding data changes these distributions 

– inference is a learning process 



  

The Inference Problem
● We want to find the distribution of the 

parameters after we have the data 
– Pr(θ | X) 

● From our model we can write down the 
probability of getting the data, if we know the 
parameters 
– Pr(X | θ) 

● We need to use Pr(X | θ) to find Pr(θ | X) 
– to invert the probability 



  

Enter Bayes' Theorem 
● We know from probability theory that: 

● This is Bayes' theorem 
● It allows us to invert the probabilities: 

● But what are P(θ) and P(X)? 

Pr A∣B =Pr B∣APr A
Pr B

Pr ∣X =
Pr X∣Pr 

Pr X 



  

P(θ)
● P(θ) is the probability distribution for the 

parameters
● It is not conditioned on the data 
● We can interpret this as the probability before 

we see the data 
● We call this the prior distribution 



  

Prior Distributions
● Before we see any data, we have some idea 

about what values the parameters might take 
● This may be “somewhere between minus or 

plus infinity” 
● At other times, may be tighter 

– e.g. there are very few people 3m tall 
● Our subjective uncertainty about the 

parameters before we see the data 



  

Priors for late buses
● The parameter, p, is limited to be between 0 

and 1 
● We could assume total ignorance, and use a 

uniform distribution as a prior: 
– P(p)=1 

● Or we could use another distribution, for 
example the Beta distribution: 

P p=
 
 

p−11−p−1



  

The Beta Distribution 
● The important bit:

P p∝p−11−p−1

● Symmetric 
– replace p by 1-q, and swap a and ß 

● Write as Beta(α,β)

E p=



Var p=


21



  

The Shape of the Beta, I 

● When increasing α and β, variance gets lower 
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The Shape of the Beta, II
● When ß increases, distribution shifts down 

– similarly when a increases, distribution shifts up  
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Using the Beta as a Prior 
● We can tune the distribution to reflect our prior 

knowledge 
● If α =β = 1, we have a uniform distribution 
● As we increase α and β, the variance 

decreases 
– use this if we have more knowledge 

● if we were talking about coin tossing, we might 
use α = β = something high 



  

P(X)
● The unconditional distribution of the data 
● Can write as: 

● Marginal distribution of the data 
– marginalised over the prior 

● Called the Prior Predictive Distribution 
● Only depends on X, which is fixed 

– hence, P(X) is a constant 

P X =∫
−∞

∞

P X∣P d 



  

Bayesian Inference
● As P(X) is a constant, all we need to estimate 

P(θ|X) are P(θ) and P(X|θ) 
● Bayes' rule becomes: 

● P(θ |X) is called the Posterior Distribution 
● Product of the prior and the likelihood 
● In practice, the constant of proportionality can 

usually be ignored 

P ∣X ∝P X∣P 



  

Late Buses
● Firstly, a Uniform Prior: 

                  P(p)=1 
● The likelihood – on N days, bus is late n times: 

Pr N=n∣p= N!
N!N−n!

pn1−pN−n

● The Prior Predictive distribution:

Pr N=n=∫
0

1 N!
N !N−n!

pn 1−pN−ndp=1



  

Late Buses: The Posterior 
● The posterior: 

● This is a Beta distribution! 
● P(p|n) = Beta(n+1, N-n+1) 

Pr p∣n=P pP n∣p
p n

=1 N!
N!N−n!

pn1−pN−n

∝pn 1−pN−n



  

The Posterior
● For N=5 (one week), possible posteriors:
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Late Buses: Beta Prior
● The beta prior: 

P p∝p−11−p−1

● The posterior: 

● Also a Beta distribution! 
– P(p|n) = Beta(n+α, N-n+β) 

P p∣n∝p−11−p−1pn1−pN−n

=pn−11−pN−n−1



  

Beta Distribution Priors
● Not restricted to a uniform distribution 

– e.g. Assume we observe 1 late bus in a week 
● Look at different priors: 

– uniform – Beta(1,1) 
– British prior – Beta(2,5) 
– Finnish prior – Beta(10,1) 



  

Informative Priors
● Prior – green 
● Posteriors -red 
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Adding More Data 

● Observe data, X1, get a posterior distribution: 

Pr ∣X 1∝Pr X 1∣Pr 

● i.e. we use the first posterior as the prior for the 
second posterior 

● What if we later observe more data, X2? 
● If this is independent of the first data set, then 

P(X1 and X2|θ)=P(X1|θ).P(X2|θ). Hence 

Pr ∣X 1 , X 2∝Pr Pr X 1∣Pr X 2∣
=Pr ∣X 1Pr X 2∣



  

Adding More Data 
● After 10 weeks, observe 10 late buses 

– out of 50 

● As evidence accumulates, our beliefs converge 
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Learning
● The Bayesian approach is often talked about as 

a learning process 
● As we get more data, we add it to our store of 

information by multiplying it by our current 
posterior distribution. 

● It has been argued that this can form the basis 
of a philosophy of science 
– Philosophers of science are not know for their 

success at explaining science 



  

Terminology
● Uninformative prior 

– Uniform, as wide as possible 
– sometimes called flat priors 
– problem: often difficult to define 

● Informative Prior 
– not uniform 
– assume we have some prior knowledge

● Conjugate Prior 
– prior and posterior have same distribution 
– often makes the maths easier 



  

Summarising Posteriors
● Giving the full posterior distribution can be an 

awkward way of presenting the results of an 
analysis 
– especially if we have a lot of parameters. 

● Often we are only interested in some 
parameters, or have particular questions to 
answer 



  

Probabilities of events
● The posterior distribution is a probability density 

from which we can calculate probabilities of 
events 
– e.g. P(θ>1) 

● This is a straightforward interpretation of the 
probability. 

● Contrast this with a frequentist p-value: 
– The probability of getting a statistic above a certain 

value, if the model and the parameter estimates are 
correct 



  

Summaries
● Rather than give the full posterior for a 

parameter, we can give summary statistics 
– e.g. the posterior mode 

● equivalent to the ML estimate 
● the most likely value 

– Posterior mean or median 
● average values 
● consensus values 
● may not be very likely! 



  

Late buses
● Uniform prior, observe 1 late bus in a week 

– Posterior: Beta(2, 5) 
● Mode Median Mean 
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Measures of Spread 
● Posterior standard deviation 

– equivalent to standard error - the standard deviation 
of a statistic 

● Bayesians don't make a distinction between 
parameters and statistics 

● Late buses: 

sd p= 
21

– One bus late: sd(p) = 0.160 
– 10 out of 50: sd(p) = 0.056 



  

95% Confidence Intervals
● An interval where there is a probability of 95% 

that the parameter is within the interval 
– Bayesian Confidence Interval 
– Credible Interval 

● Frequentist CI defined as an interval that the 
statistic will be in 95% of the time if the ML 
estimate is correct. 

● Problem: asymmetric distributions 



  

Traditional CIs 
● Set at 2.5% and 97.5% limits 
● An extreme example: Beta(1,3) 

– mode is 0 
– CI does not include the mode! 
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Solution
● Highest Posterior Densities 

– shortest 95% interval 
– all points inside interval have higher densities than 

those outside 
– For bimodal data, can get 2 intervals 
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Hypothesis Tests

● If we have 2 models, M1 and M2, how can we 
choose between them? 

● From Bayes' Rule: 
– Pr(M1|X) = Pr(X|M1).Pr(M1)

– Pr(M2|X) = Pr(X|M2).Pr(M2)
● Usually compare these with a Bayes' Factor: 

● Change in odds of the models as we get data 

B.F.=
Pr M 1∣X 
Pr M 2∣X 

=
Pr X∣M 1
Pr X∣M 2

×
Pr M1
Pr M 2



  

Prediction
● One practical use of statistics 
● A usual problem: using point estimates ignores 

the uncertainty in the estimates 
● Our predictions are calculated as: 

P X new∣X =∫P X new∣.P ∣X d 
● Posterior Predictive Distribution 
●  Include the uncertainty in the parameters 
● Less precise than predictions from point 

estimates 



  

How many times will my bus be late 
this week?

● 5 days. Last week, late once out of 5 times 
● Uniform prior 
● The posterior predictive distribution is difficult to 

calculate 
● Instead, we use Monte Carlo simulation 
● First, we simulate pnew from a Beta(2,5) 

distribution a lot of times
● Then for each pnew, we simulate nnew from a 

Binomial distribution with p=pnew



  

The Prediction
● Posterior Predictive 

Standard Deviation 
1.4 times larger than 
for the prediction 
from the point 
estimate 
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