Bayesian Inference: The Basics

Statistical Models

- Most statistical analysis consists of fitting a model to the data
- The model summarises the data
 - should show the main features of the data
- Model has a number of parameters
- Want to estimate the parameters
- Definitions:
 - Data: X Parameters: θ

What is the probability that my bus will be late in the morning?

- Let p be the probability that the bus is late
- Model assumptions:
 - the probability is constant
 - events are independent
- Observe N mornings, bus is late n times, then:

$$Pr(N=n|p) = \frac{N!}{N!(N-n)!}p^{n}(1-p)^{N-n}$$

Binomial Distribution

Bayesian Inference

- We can collect data about the processes that are influenced by the parameters
- Use this data and the models to infer the possible values of the parameters
- Summarise our beliefs about the possible values as probability distributions
- Adding data changes these distributions
 - inference is a learning process

The Inference Problem

- We want to find the distribution of the parameters after we have the data
 - $-\Pr(\theta \mid X)$
- From our model we can write down the probability of getting the data, if we know the parameters
 - $\Pr(X \mid \theta)$
- We need to use $Pr(X | \theta)$ to find $Pr(\theta | X)$
 - to invert the probability

Enter Bayes' Theorem

- We know from probability theory that: $Pr(A|B) = \frac{Pr(B|A)Pr(A)}{Pr(B)}$
- This is Bayes' theorem
- It allows us to invert the probabilities: $Pr(\theta|X) = \frac{Pr(X|\theta)Pr(\theta)}{Pr(X)}$
- But what are $P(\theta)$ and P(X)?

- $P(\theta)$ is the probability distribution for the parameters
- It is not conditioned on the data
- We can interpret this as the probability before we see the data
- We call this the prior distribution

Prior Distributions

- Before we see any data, we have some idea about what values the parameters might take
- This may be "somewhere between minus or plus infinity"
- At other times, may be tighter
 - e.g. there are very few people 3m tall
- Our subjective uncertainty about the parameters before we see the data

Priors for late buses

- The parameter, *p*, is limited to be between 0 and 1
- We could assume total ignorance, and use a uniform distribution as a prior:

- P(p)=1

 Or we could use another distribution, for example the Beta distribution:

$$P(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

The Beta Distribution

- The important bit: $P(p) \propto p^{\alpha-1} (1-p)^{\beta-1}$
- Symmetric
 - replace p by 1-q, and swap a and ß
 - $E(p) = \frac{\alpha}{\alpha + \beta} \qquad Var(p) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$
- Write as $Beta(\alpha,\beta)$

The Shape of the Beta, I

• When increasing α and β , variance gets lower

The Shape of the Beta, II

- When ß increases, distribution shifts down
 - similarly when a increases, distribution shifts up

Using the Beta as a Prior

- We can tune the distribution to reflect our prior knowledge
- If $\alpha = \beta = 1$, we have a uniform distribution
- As we increase α and β , the variance decreases
 - use this if we have more knowledge
- if we were talking about coin tossing, we might use $\alpha = \beta$ = something high

P(X)

- The unconditional distribution of the data
- Can write as:

 $P(X) = \int_{-\infty}^{\infty} P(X|\theta) P(\theta) d\theta$

- Marginal distribution of the data
 - marginalised over the prior
- Called the Prior Predictive Distribution
- Only depends on X, which is fixed
 - hence, P(X) is a constant

Bayesian Inference

 As P(X) is a constant, all we need to estimate P(θ|X) are P(θ) and P(X|θ)

• Bayes' rule becomes:

$$P(\theta|X) \propto P(X|\theta) P(\theta)$$

- $P(\theta | X)$ is called the Posterior Distribution
- Product of the prior and the likelihood
- In practice, the constant of proportionality can usually be ignored

Late Buses

• Firstly, a Uniform Prior:

$$P(p) = 1$$

- The likelihood on N days, bus is late n times: $Pr(N=n|p) = \frac{N!}{N!(N-n)!} p^n (1-p)^{N-n}$
- The Prior Predictive distribution:

$$Pr(N=n) = \int_{0}^{1} \frac{N!}{N!(N-n)!} p^{n} (1-p)^{N-n} dp =$$

Late Buses: The Posterior

• The posterior:

 $Pr(p|n) = \frac{P(p)P(n|p)}{p(n)}$ = $1 \frac{N!}{N!(N-n)!} p^{n} (1-p)^{N-n}$ $\propto p^{n} (1-p)^{N-n}$

- This is a Beta distribution!
 - P(p|n) = Beta(n+1, N-n+1)

The Posterior

• For N=5 (one week), possible posteriors:

р

Late Buses: Beta Prior

• The beta prior:

$$P(p) \propto p^{\alpha-1} (1-p)^{\beta-1}$$

• The posterior:

$$P(p|n) \propto p^{\alpha-1} (1-p)^{\beta-1} p^n (1-p)^{N-n} = p^{\alpha+n-1} (1-p)^{\beta+N-n-1}$$

- Also a Beta distribution!
 - $P(p|n) = Beta(n+\alpha, N-n+\beta)$

Beta Distribution Priors

- Not restricted to a uniform distribution
 - e.g. Assume we observe 1 late bus in a week
- Look at different priors:
 - uniform Beta(1,1)
 - British prior Beta(2,5)
 - Finnish prior Beta(10,1)

Informative Priors

- Prior green
- Posteriors -red

р

Adding More Data

• Observe data, X_1 , get a posterior distribution:

 $Pr(\theta|X_1) \propto Pr(X_1|\theta) Pr(\theta)$

- What if we later observe more data, X_2 ?
- If this is independent of the first data set, then $P(X_1 \text{ and } X_2 | \theta) = P(X_1 | \theta) \cdot P(X_2 | \theta)$. Hence

 $Pr(\theta|X_1, X_2) \propto Pr(\theta) Pr(X_1|\theta) Pr(X_2|\theta)$ = $Pr(\theta|X_1) Pr(X_2|\theta)$

i.e. we use the first posterior as the prior for the second posterior

Adding More Data

- After 10 weeks, observe 10 late buses
 - out of 50

As evidence accumulates, our beliefs converge

Learning

- The Bayesian approach is often talked about as a learning process
- As we get more data, we add it to our store of information by multiplying it by our current posterior distribution.
- It has been argued that this can form the basis of a philosophy of science
 - Philosophers of science are not know for their success at explaining science

Terminology

- Uninformative prior
 - Uniform, as wide as possible
 - sometimes called flat priors
 - problem: often difficult to define
- Informative Prior
 - not uniform
 - assume we have some prior knowledge
- Conjugate Prior
 - prior and posterior have same distribution
 - often makes the maths easier

Summarising Posteriors

- Giving the full posterior distribution can be an awkward way of presenting the results of an analysis
 - especially if we have a lot of parameters.
- Often we are only interested in some parameters, or have particular questions to answer

Probabilities of events

- The posterior distribution is a probability density from which we can calculate probabilities of events
 - e.g. P(*θ*>1)
- This is a straightforward interpretation of the probability.
- Contrast this with a frequentist p-value:
 - The probability of getting a statistic above a certain value, if the model and the parameter estimates are correct

Summaries

- Rather than give the full posterior for a parameter, we can give summary statistics
 - e.g. the posterior mode
 - equivalent to the ML estimate
 - the most likely value
 - Posterior mean or median
 - average values
 - consensus values
 - may not be very likely!

Late buses

- Uniform prior, observe 1 late bus in a week
 - Posterior: Beta(2, 5)
 - Mode Median Mean

Measures of Spread

- Posterior standard deviation
 - equivalent to standard error the standard deviation of a statistic
- Bayesians don't make a distinction between parameters and statistics
- Late buses:

$$sd(p) = \sqrt{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}$$

- One bus late: sd(p) = 0.160
- -10 out of 50: sd(p) = 0.056

95% Confidence Intervals

- An interval where there is a probability of 95% that the parameter is within the interval
 - Bayesian Confidence Interval
 - Credible Interval
- Frequentist CI defined as an interval that the statistic will be in 95% of the time if the ML estimate is correct.
- Problem: asymmetric distributions

Traditional Cls

- Set at 2.5% and 97.5% limits
- An extreme example: Beta(1,3)
 - mode is 0
 - CI does not include the mode!

Solution

- Highest Posterior Densities
 - shortest 95% interval
 - all points inside interval have higher densities than those outside
 - For bimodal data, can get 2 intervals

Hypothesis Tests

- If we have 2 models, M_1 and M_2 , how can we choose between them?
- From Bayes' Rule:
 - $\Pr(M_1|X) = \Pr(X|M_1).\Pr(M_1)$
 - $\Pr(M_2|X) = \Pr(X|M_2).\Pr(M_2)$
- Usually compare these with a Bayes' Factor: $B.F. = \frac{Pr(M_1|X)}{Pr(M_2|X)} = \frac{Pr(X|M_1)}{Pr(X|M_2)} \times \frac{Pr(M_1)}{Pr(M_2)}$
- Change in odds of the models as we get data

Prediction

- One practical use of statistics
- A usual problem: using point estimates ignores the uncertainty in the estimates
- Our predictions are calculated as: $P(X_{new}|X) = \int P(X_{new}|\theta) P(\theta|X) d\theta$
- Posterior Predictive Distribution
- Include the uncertainty in the parameters
- Less precise than predictions from point estimates

How many times will my bus be late this week?

- 5 days. Last week, late once out of 5 times
- Uniform prior
- The posterior predictive distribution is difficult to calculate
- Instead, we use Monte Carlo simulation
- First, we simulate p^{new} from a Beta(2,5) distribution a lot of times
- Then for each p^{new}, we simulate n_{new} from a Binomial distribution with p=p^{new}

The Prediction

Posterior Predictive Standard Deviation
1.4 times larger than for the prediction
from the point
estimate

