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Introduction

To me, model theory is a study of questions, properties and concepts whose
definition(s) do not rely on mathematical structures or classes of structures being
of some particular kind. E.g. “is π algebraic?” is not a model theoretic question,
it makes sense essentially only in the context of the field of complex numbers, but
algebricity is a model theoretic property: There is a general notion of algebricity
that in the case of complex numbers is the same as what is intended in the question
above but which is such that one can replace complex numbers by, say, some graph
and it still makes sense to ask which elements of the graph are algebraic. Let us look
another example of a model theoretic property namely pseudo finiteness. In the first-
order a.k.a. elementary model theory pseudo finiteness means that every first-order
sentence true in the structure is true also in some finite structure or equivalently, there
is an elementary embedding of the structure into an ultraproduct of finite structures.
So one can think pseudo finiteness as a property that allows one to approximate
the structure with finite structures. Obviously the property does not depend on
what kind structures we are looking and e.g. many (infinite) fields have it as do
vector spaces over a finite field, random graphs etc. Now the reader may ask why
in this property we look first-order sentences and/or why finite structures and not
e.g. finitely generated ones. The answer is, because the theory of pseudo finiteness
is developed in the context of elementary model theory. A critical reader may not be
satisfied to this answer. And, as we will see, she is right.

Elementary model theory completely dominated model theory at least from the
early seventies to the end of the century and it is still going strong. It has been
very successful. Often mentioned example of this is E. Hrushovki’s work on Mordell-
Lang and Manin-Mumford conjectures from algebraic number theory. However it
has limitations. Our example of this comes from metric model theory although in
these lectures we will stick to the discrete case (in non-elementary model theory the
difference between metric and discrete cases is rather small unless one is interested
in concepts like perturbation which appear only in the metric case). We use this
metric example because it demonstrates two main problems simultaneously: First-
order logic can be too strong and too weak at the same time to be useful in studies
of a mathematical structure.

So let us look the standard model from quantum mechanics for a particle in
space. This structure comes with a metric which is a problem in elementary model
theory. First-order logic is not strong enough to express the basic properties of
a metric. One can try to go around this problem by moving to continuous first-
order logic. Unfortunately, in addition, the operators in the standard model are
not bounded, in particular, they are only partial functions. This forces one to deal
with them in first-order logic are predicates. But then continuous first-order logic is
not strong enough to express even the functionality of the operators. Now suppose
that we are interested in studying possibilities of approximating this structure with
finite dimensional substructures (finitely generated Hilbert spaces) - physicists seem
to be interested in this. Now, as pointed out above, there is a lot of theory of a
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question related to this question in the elementary model theory. But if one tries to
do the constructions from elementary model theory (heavily modified) in this case,
one notices that one cannot find elementary embeddings the way one can in the first-
order case. Now the first-order logic is too strong. However, one can find embeddings
instead of elementary embeddings and luckily this is enough: In this context, it is
the equations that one is interested in, not the quantification.

In these lectures our set up will be that of abstract elementary classes (due to
S. Shelah) and we will cover the basic theory as much as the time allows. We will
also spend a fair amount of time looking what our concepts mean in examples. This
topic can be very misleading if one does not test one’s intuition against examples.
Of course, this is the case in mathematics in general but in our topic the problem is
bigger than usually. Our main examples are the class of right-angled Coxeter groups
and its subclasses.

We sometimes refer to the lecture notes of the course Model theory, but, exclud-
ing few exercises, only some very basic information from the course is needed here
and most of that is already included in the course Introduction to Logic II or the
course Elements of set theory and by reading few pages of the lecture notes of the
course Model theory, the needed information can be obtained.

And yes I agree, non-elementary model theory is not a good name for our topic
but it is what is used of it.

1. Basic definitions and examples

We fix a vocabulary and call it τ . Unless otherwise said, by a model/structure
we mean one with vocabulary τ . If A is a model and f : A → X is one-to-one, then
by f(A) we mean a model B such that the universe of B (dom(B)) is f(dom(A)),
for all (n -ary) relation symbols R ∈ τ and b1, ..., bn ∈ dom(B), (b1, ..., bn) ∈ RB iff
(f−1(b1), ..., f

−1(bn)) ∈ RA , for all function symbols F ∈ τ and b1, ..., bn ∈ dom(B),
FB(b1, ..., bn) = f(FA(f−1(b1), ..., f

−1(bn)))) and for all constant symbols c ∈ τ ,
cB = f(cA) (so f is an isomorphism from A to B ). When there is no risk of
confusion, we usually write A also for dom(A). For models A and B , A ⊆ B means
that A is a substructure of B (i.e. for all n -ary relation symbols R ∈ τ , RA =
RB ∩ dom(A)n , for all function symbols F ∈ τ , FA(a1, ..., an) = FB(a1, ..., an) for
a1, ..., an ∈ A and for all constant symbols c ∈ τ , cA = cB , for better understanding
on submodels, see the lecture notes of the course Model theory). We write A , B , C
etc. for models and A , B , C , X , Y etc. for sets.

We say that a pair (X,≤) is a directed system if ≤ is a partial order of X (i.e.
it is transitive and a = b iff a ≤ b and b ≤ a) and for all a, b ∈ X , there is c ∈ X
such that a, b ≤ c . Notice that if ≤ is a linear order of X , then (X,≤) is a directed
system. Now suppose that X is a set of models and (X,≤) is a directed system such
that A ≤ B implies A ⊆ B . The model A = ∪X = ∪B∈XB is defined as follows:

(a) The universe of A is ∪B∈Xdom(B).
(b) For all R ∈ τ and a1, ..., an ∈ A , (a1, ..., an) ∈ RA if there is B ∈ X such

that (a1, ..., an) ∈ RB .
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(c) For all F ∈ τ , a1, ..., an+1 ∈ A , FA(a1, ..., an) = an+1 , if there is B ∈ X
such that (a1, ..., an+1 ∈ B and) FB(a1, ..., an) = an+1 .

(d) for all c ∈ τ , cA = a if there is B ∈ X such that cB = a .

1.1 Exercise. Let A and X be as above.
(i) Show that, FA is a function and that cB = cC for all B, C ∈ X .
(ii) Show that for all B ∈ X , B ⊆ A .

By a ∈ A we often mean that a is a finite tuple of elements of dom(A) and if
by this we mean that a is an element of dom(A) it is either clear from the context
or we say this explicitly. By A ⊆ A we mean that A is a subset of dom(A) and |A|
means the cardinality of dom(A).

1.2 Definition. Let K be a class of structures and ≼ a partial order on K .
(I) We say that K = (K,≼) is an abstract class if the following holds:
(i) K and ≼ are closed under isomorphisms i.e. if A ∈ K and f : A → B is an

isomorphism, then B ∈ K and if in addition C ≼ A , then f(C) ≼ B .
(ii) A ≼ B implies A ⊆ B .
(II) We say that K = (K,≼) is an abstract elementary class (AEC) if the

following holds:
(i) (K,≼) is an abstract class.
(ii) (Coherence) If A,B ≼ C and A ⊆ B , then A ≼ C .
(iii) Suppose that (Ai)i<α , α ∈ On , is a sequence of elements of K and it is

≼ -increasing i.e. for all i < j < α , Ai ≼ Aj , and continuous i.e. for all limit β < α ,
Aβ = ∪i<βAi , then the following holds:

(a) ∪i<αAi ∈ K ,
(b) for all j < α , Aj ≼ ∪i<αAi ,
(c) (Smoothness) if in addition there is B ∈ K such that for all i < α , Ai ≼ B ,

then ∪i<αAi ≼ B .
(iv) (Löwenheim-Skolem property) There is a cardinal LS(K) ≥ ω such that for

all A ∈ K and A ⊆ A , if |A| ≤ LS(K) , then there is B ≼ A such that A ⊆ B and
|B| ≤ LS(K) .

If (K,≼) is an AEC, then we refer to ≼ as strong submodel relation. The
elements of K are called K -models. We now fix some AEC K = (K,≼) i.e. when
we talk about K and/or ≼ (outside examples) we always assume that (K,≼) is an
AEC.

1.3 Exercise.
(i) Suppose that A is a K -model and A ⊆ A . Show that there is a K -model

B ≼ A such that A ⊆ B and |B| ≤ |A|+ LS(K) (= max{|A|, LS(K)}).
(ii) Show that if one drops the continuity assumption from Definition 1.2 (II)(iii),

one gets an equivalent condition.
(iii) Suppose that X is a set of K -models and (X,≤) is a directed system such

that A ≤ B implies that A ≼ B . Show that C = ∪A∈XA ∈ K , for all A ∈ X ,
A ≼ C and if there is a K -model B such that A ≼ B for all A ∈ K , then C ≼ B .
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If A and B are K -models and f : A → B , then we say that f is a strong
embedding if it is one-to-one and f(A) ≼ B . Notice that A ≼ B iff id : A → B is a
strong embedding (id(x) = x for all x ∈ A).

Let us now look at examples. We start with classical but misleading examples.

1.4 Exercise.
(i) Let T be a complete first-order theory, K = mod(T ) (the class of all models

of T ) and let ≼ be the elementary submodel relation. Show that (K,≼) is an AEC.
(ii) Let T be an ∀∃-axiomatizable theory (see the lecture notes of the course

Model theory) and ≼=⊆ . Show that (K,≼) is an AEC.
(iii) Let ϕ be an Lω1ω -sentence and F = Fϕ be the least fragment that contains

ϕ (see the lecture notes of the course Model theory). Let K = mod(ϕ) and ≼ the
following relation: A ≼ B if A ⊆ B and for all ψ(x) ∈ F and a ∈ A , A |= ψ(a) iff
B |= ψ(a) . Show that (K,≼) is an AEC.

Let us then look at some a bit more unusual examples of AEC’s/abstract classes
and their properties.

1.5 Exercise.
(i) Let K be the class of linear orders A = (A, <) such that for some α ≤ ω1 ,

A is isomorphic with (α,<) . Let ≼ be the initial segment relation i.e. A ≼ B if
A ⊆ B and for all a ∈ A and b ∈ B , if b <B a , then b ∈ A . Show that K = (K,≼)
is an AEC with LS(K) = ω and notice that K has a largest model i.e. a model A
such that for all K -models B there is a strong embedding from B to A and also a
maximal model i.e. a model that has no proper strong extension.

(ii) (Suppose (K,≼) is an AEC.) Show that if A is a largest model, then it is
also a maximal model. Conclude that if A and B are largest models, then A ∼= B .
Show that there is an AEC that has maximal models but not a largest model. Hint
for the first claim: Assume not and construct a K -model that is too large.

(iii) Let τ consist of two unary relation symbols P0 and P1 and one binary
relation symbol R . Let K be the class of all τ -models A such that

(a) PA
0 ∪ PA

1 = dom(A) and PA
0 ∩ PA

1 = ∅ ,
(b) if (a, b) ∈ RA , then a ∈ PA

0 and b ∈ PA
1 ,

(c) for all X ⊆ PA
1 there is at most one a ∈ PA

0 such that

RA(a,A)(= {b ∈ A| (a, b) ∈ RA}) = X.

Let ≼ be such that A ≼ C if A ⊆ B and for all a ∈ PB
0 , if RB(a,B) ⊆ PA

1 , then
a ∈ A . Show that K = (K,≼) satisfies all the requirements of AEC except coherence,
smoothness and Löwenheim-Skolem property and that these three requirements are
not satisfied.

Let us then look a real example. This right-angled Coxeter groups example is
from geometric/combinatorial group theory and these groups were originally intro-
duced by H.S.M. Coxeter and later popularized by J. Tits. Here we will get only a
rough picture of what is going on, for more detailed picture, see [HP].
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The right-angled Coxeter groups are by far the best understood ones among
all Coxeter groups. Our definition of them is not the original/usual one but it is
equivalent by a theorem due to Tits and our definition, unlike the usual one, can be
understood without any knowledge from group theory.

Let Γ = (Γ, E) be a graph. In this context the elements of Γ are called also
letters. We define a group GΓ as follows. Let X be the set of all (finite) words made
of letters from Γ (i.e. finite sequences of letters). We define two moves that can be
used to manipulate words w = w0w1...wn :

(M1) If wi = wi+1 , then cancel the letters wi and wi+1 .

(M2) If (wi, wi+1) ∈ E , then exchange wi and wi+1 .

We say that w′ is a normal form of w if w′ can be got from w by using moves (M1)
and (M2) and the length of w′ is minimal among these. Notice that these normal
forms need not be unique. We define a binary relation E∗ to X by wE∗w′ if w
and w′ have identical normal forms. Notice that if Γ′ is a substructure (=induced
subgraph - subgraph usually means something else) of a graph Γ and w and w′ are
words made of letters from Γ′ , then it does not matter whether one calculates their
normal forms in Γ or in Γ′ and thus they decide whether wE∗w′ holds or not the
same way. Notice also that in the following fact only one direction is trivial.

1.6 Fact. wE∗w′ iff w = w′ or there are words wi , i ≤ n , such that w0 = w ,
wn = w′ and for all i < n , either wi+1 is got from wi by applying (M1) or (M2) or
wi is got from wi+1 by applying (M1) or (M2) . In particular, E∗ is an equivalence
relation.

Then we let the set of elements of GΓ be X/E∗ and multiplication is defined
to GΓ by (w/E∗)(w′/E∗) = ww′/E∗ , where by ww′ we mean the concatenation
of w and w′ . It is easy to check that this definition does not depend of the choice
of the representatives of the equivalence classes and that this multiplication makes
GΓ a group (∅/E∗ is the neutral element and (w/E∗)−1 = w′/E∗ where w′ is w
in reverse order). We write w also for w/E∗ and words of length 1 are identified
with their only letter. Notice that each letter is an involution and letters a and b
commute iff (a, b) ∈ E (in an appropriate sense, these requirements determine GΓ ).

For the next exercise, we make the following definition: We say that an element
a of a group G is divisible if for all n ∈ ω − {0} there is b ∈ G such that bn = a .
Fact: Excluding the neutral element, (right-angled) Coxeter groups do not contain
divisible elements.

1.7 Exercise. Suppose Γ = (Γ, E) is a graph that contains a and b such
that (a, b) ̸∈ E , U is an ultrafilter on ω which does not contain finite sets and for
all i < ω , Ai = GΓ . Show that Πi<ωAi/U contains a divisible element that is not
the neutral element (for the ultraproducts, see the lecture notes of the course Model
theory). Conclude that if K is a class of right-angled Coxeter groups and at least
one of the groups is not commutative, then K is not first-order axiomatizable. Hint:
Keep in mind the original definition of E∗ , not Fact 1.6.
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Let K0 be a class of graphs and let K be the class of groups isomorphic to
GΓ for some Γ ∈ K0 . If K0 is the class of all graphs, then K is the class of all
right-angled Coxeter groups. If A ∈ K , Γ ∈ K0 and f is an isomorphism from A
to GΓ , then S = f−1(Γ) is called a basis of A . Notices that G can have more than
one basis. However, unlike with all Coxeter groups in general, the right-angled ones
are rigid:

1.8 Fact. If S and S′ are bases of A , then there is f ∈ Aut(A) such
that f(S) = S′ . In particular, if GΓ and GΓ′ are isomorphic, then Γ and Γ′ are
isomorphic. (Exercise: prove the in particular part using the main fact.)

Now we look these groups as models. For this we need to choose a vocabulary
for groups. We use the one that contain one binary function symbol for the multi-
plication, one unary function symbol for the inverse and a constant symbol for the
neutral element.

The subgroup relation used in geometric group theory for Coxeter groups is
the parabolic subgroup relation: A ≼ B if A is a subgroup (=submodel in our
vocabulary) of B and A has a basis that extends to a basis of B .

Notice that by Exercise 1.4 (ii), if K0 is the class of all graphs, then (K0,⊆) is
an AEC.

We start by sketching a proof for the fact that (K,≼) need not be an AEC even
if (K0,⊆) is. For this we need the following definition: Let G be a group. We say
that f ∈ Aut(G) is an inner automorphism if there is a ∈ G such that for all x ∈ G ,
f(x) = axa−1 . We write InnAut(G) for the set of all inner automorphisms. Notice
that for all a ∈ G , x 7→ axa−1 is an automorphism of G .

1.9 Lemma. If K0 is (e.g.) the class of all graphs, then smoothness fails for
(K,≼) .

Proof. (Sketch) We define a graph Γ so that the set of its elements is A ∪ B
where A = {ai| i < ω} and B = {bi| i < ω1} . The edge relation is defined so that
xEy if x ̸= y and x, y ∈ B or {x, y} = {ai, bj} and j < i . Let B = GΓ . For all
n < ω , we write cn = a0a1...an and en = cnbnc

−1
n . Notice that for n < m < ω , en =

cmbnc
−1
m . Thus if we let Bn be the subgroup (submodel) generated by {e0, ..., en} ,

Bn ≼ B (if B′
n is the subgroup generated by {b0, ..., bn} , then B′

n ≼ B and Bn is the
image B′

n in the inner automorphism x 7→ cnxc
−1
n of B ). Let Bω = ∪n<ωBn . Notice

that Bω is commutative and that a word w is in Bω iff w can be written in a form
cmw

′c−1
m where w′ contains only letters from the set {bi| i ≤ m} and cmw

′c−1
m is in

normal form if in addition all letters in w′ are different and bm appears in w′ . In
particular each cnbnc

−1
n is in normal form. Now it is enough to show that Bω is not

a parabolic subgroup of B . For a contradiction, we suppose that it is.
Now pick a basis S for B so that S′ = S∩Bω is a basis of Bω . Then there is an

automorphism f of B such that f(S) = A ∪ B . Since all elements of S′ commute
with each other, f(S′) ⊆ B . Now there is d ∈ B− f(S′) and then it commutes with
every element of f(Bω ) and d ̸∈ f(Bω). Let c = f−1(d). Then c ∈ B − Bω and it
commutes with every element of Bω . Let wc be a normal form for c in basis A∪B .
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Now we need the following fact:
(*) If v = v0...vn is a word in normal form and u is a letter, then u commutes

with v iff u commutes with every letter vi .
Now if wc contains only letters from B , then c−1

0 wcc0 does not commute with
b0 = c−1

0 e0c0 by (*) because c−1
0 wcc0 is in normal form, a contradiction. So let m < ω

maximal such that am appears in wc . Now since c−1
m ccm commutes with bm =

c−1
m emcm and this is not possible by (*), if the normal form of c−1

m ccm contains letters
from A . Thus c can be written in the form cmwc

−1
m where w contains only letters

from B . We can choose w also so that it is in normal form i.e. there is no repetition.
Then w does not contains letters bn for any n > m , since otherwise c−1

m+1ccm+1 =

a−1
m+1wam+1 does not commute with c−1

m+1em+1cm+1 = bm+1 again by (*) and the

fact that a−1
m+1wam+1 is in normal form. But then c ∈ Bω , a contradiction.

When one analyses the difficulties in proving that a class of right-angled Coxeter
groups is an AEC (and difficulties in proving other properties for the class, see below),
one notices that to behave very well, the groups should be more rigid. By looking
the theory of Coxeter groups one finds that exactly the right property has already
been isolated and studied:

1.10 Definition. Let G be a right-angled Coxeter group.
(i) We say that G is strongly rigid if for all bases S and S′ , there is f ∈

InnAut(G) such that f(S) = S′

(ii) We say that a graph Γ is strongly rigid if the group GΓ is strongly rigid.

There is no graph-theoretic characterization for a graph to be strongly rigid (i.e.
this is an open question) but there is a necessary condition which is also sufficient in
the case the graph is finite. There are also properties that if added to the necessary
condition guarantee that the graph is strongly rigid, e.g. the graph is triangle free
and contains a 4-circle as a substructure. These show that there are a lot of natural
AEC’s of strongly rigid graphs.

1.11 Theorem. Suppose K0 is an AEC and every element of K0 is a strongly
rigid graph. Then excluding smoothness, K satisfies the requirements of an AEC. If
in addition every Γ ∈ K0 is triangle free and contains a 4-cycle as a submodel, then
also smoothness is satisfied.

Proof. As an example we sketch the prove of coherence. So suppose A,B ≼ C
and A ⊆ B . We need to show that A ≼ B . Let S be a basis of C that witnesses
A ≼ C and T a basis that witnesses B ≼ C . Let S′ = A ∩ S and T ′ = T ∩ B .
Then there is g ∈ C such that S = gTg−1 i.e. for every s ∈ S there is ts ∈ T
such that s = gtsg

−1 . Let w = w0w1...wn be a normal form of g in the basis T .
Since gtsg

−1 ∈ B it can be written using letters from T ′ . It follows that ts ∈ T ′

(otherwise we need to get rid of it and this would be impossible since ts appears in
w0...wntswn...w0 odd many times). Also if w′ is a word got from w by removing all
wi ̸∈ T ′ , w′tsw

′−1 = gtsg
−1 (using the moves (M1) and (M2) one must be able to

get rid of them). But then w′T ′w′−1 is a basis of B that contains S′ .
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1.12 Exercise. Suppose K0 = (K0,⊆) is an AEC and every element of K0

is a strongly rigid graph.

(i) Show that K has Löwenheim-Skolem property with LS(K) = LS(K0) .

(ii) Show that K satisfies the first two items from Definition 1.2 (II)(iii).

Hint: Keep in mind the remark immediately after the definition of E∗ .

2. Representation theorem and Ehrenfeucht-Mostowski models

From now on, if there is no risk of confusion, we write F (a0, ..., an) for the
element FA(a0, ..., an) and similarly for other terms.

Let K = (K,≼) be an AEC and κ = LS(K). For all n < ω and i < κ , let fni
be a new n+1-ary function symbol and τs = τ ∪ {fni | i < κ, n < ω} . Let T be the
theory that says the following:

(a) for all x , f00 (x) = x ,

(b) for all m ≤ n < ω and i < κ , if {y0, ..., ym} = {x0, ..., xn} , then
fni (x0, ..., xn) = fmi (y0, ..., ym).

Notice that (b) above implies that

(c) for all n < ω and i < κ , if π is a permutation of the set {0, ..., n} , then
fni (x0, ..., xn) = fni (xπ(0), ..., xπ(n)).

Notice also that T can be written in the first-order logic.

Now suppose A |= T , n < ω and a0, ..., an ∈ A . We write qcl(a0, ..., an) =
qclA(a0, ..., an) (or qcl({a0, ..., an}), recall (b) above) for the the set

{fni (a0, ..., an)| i < κ}.

If qclA(a0, ..., an) happens to be a submodel of A � τ (i.e. contains the interpre-
tations of constant symbols c ∈ τ and is closed under the interpretations of func-
tion symbols f ∈ τ ), we think it also as a structure in the vocabulary τ (with
the induced structure). We write ts((a0, ..., an)/∅;A) for the set of all formulas
ϕ(t0(v0, ..., vn), ..., tm(v0, ..., vn)), m < ω , such that

A |= ϕ(t0(a0, ..., an), ..., tm(a0, ..., an)),

ϕ is an atomic or negated atomic formula in vocabulary τ and for all j ≤ m ,
tj(v0, ..., vn) = fki (x0, ..., xk) for some k ≤ n , i < κ and x0, ..., xk ∈ {v0, ..., vn} .
We let SK be the set of all ts((a0, ..., an)/∅;A), for any τs -model A |= T and
a0, ..., an ∈ A .

2.1 Exercise. Suppose A and B are models of T , n < ω , ai ∈ A and bi ∈ B ,
i ≤ n , and qcl(a1, ..., an) is a submodel of A � τ . Show that if ts((a0, ..., an)/∅;A) =
ts((b0, ..., bn)/∅;B) , then qcl(b1, ..., bn) is a submodel of B � τ and there is an iso-
morphism π : qcl(a0, ..., an) → qcl(b0, ..., bn) such that π(ai) = bi for all i ≤ n .
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2.2 Definition. We let GSK be the set of all ts((a0, ..., an)/∅;A) ∈ SK such
that

(i) A |= T (and a0, ..., an ∈ A),
(ii) qcl(a0, ..., an) is a submodel of A � τ and belongs to K ,
(iii) if m ≤ n and b0, .., bm ∈ {a0, ..., an} , then qcl(b0, ..., bm) ∈ K and

qcl(b0, ..., bm) ≼ qcl(a0, ..., an).

Notice that from Definition 2.2 (iii) it follows that qcl(b0, ..., bm) ⊆ qcl(a0, ..., an).

2.3 Exercise. Suppose A and B are models of T , n < ω , ai ∈ A and bi ∈ B ,
i ≤ n , and the sequence (a0, ..., an) satisfies Definition 2.2 (ii) and (iii) in A .

(i) Show that ai ∈ qcl(a0, ..., an) for all i ≤ n .
(ii) Show that if ts((a0, ..., an)/∅;A) = ts((b0, ..., bn)/∅;B) , then for all m ≤ n

and b′0, ..., b
′
m ∈ {b0, ..., bn} , qcl(b′0, ..., b′m) is a strong submodel of qcl(b0, ..., bn) .

2.4 Theorem. (Representation theorem) Let A be a τ -model. Then the
following are equivalent:

(i) A ∈ K .
(ii) There is an τs -model B |= T such that B � τ = A and for all n < ω

and a0, ..., an ∈ B , ts((a0, ..., an)/∅;B) belongs to GSK (i.e. B omits every type in
SK-GSK, see the lecture notes of the course Model theory)

Proof. ”⇒”: We get B by adding to A interpretations for the function symbols
fni . We do this by recursion on n < ω . So suppose that we have done this for
all m < n . Let a0, ..., an ∈ A . If these are not distinct, then T tells what the
values fni (a0, ..., an) are. Also for the same reason, we may assume that we have
not determined the values for any permutation of the sequence (a0, ..., an). Then
we choose C ≼ A of power κ such that for all m < n , b0, ..., bm ∈ {a0, ..., an} and
i < κ , fmi (b0, ..., bm) ∈ C . If n = 0, then we just require that a0 ∈ C . Then we
choose the values fni (a0, ..., an) so that

C = {fni (a0, ..., an)| i < κ}.

If n = 0, in addition, we choose these so that f00 (a0) = a0 . It is easy to see that
with these interpretations, B is as wanted.

”⇐”: Let S be the set of all qcl(a0, ..., an), n < ω and a0, ..., an ∈ B . We
would like to define a partial order ≤ to S so that qcl(a0, ..., an) ≤ qcl(b0, ..., bm) if
{a0, ..., an} ⊆ {b0, ..., bm} . Unfortunately this relation is not well-defined. Thus we
define (we write A , B etc. for the elements of S although we think them also as τ -
models): We let R ⊆ S2 be the relation (A,B) ∈ R , if there are a0, ..., an, b0, ..., bm ∈
B such that A = qcl(a0, ..., an), B = qcl(b0, ..., bm) and {a0, ..., an} ⊆ {b0, ..., bm} .
Now R may not be transitive. Thus we define A ≤ B if there are k < ω and
A0, ..., Ak ∈ S such that A = A0 , B = Ak and for all i < k , (Ai, Ai+1) ∈ R , i.e. ≤
is the transitive closure of R .
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2.4.1 Exercise. Show that (S,≤) is a directed system of elements of K and
for all A,B ∈ S , if A ≤ B , then A ≼ B .

Now B � τ = A belongs to K by Exercises 2.4.1 and 1.3 (iii).

2.5 Exercise. Let B |= T be such that for all n < ω and ai ∈ B , i ≤
n , ts((a0, ..., an)/∅;B) belongs to GSK. Suppose that A is a submodel of B (in
vocabulary τs ).

(i) Show that A |= T and for all n < ω and a0, ..., an ∈ A , ts((a0, ..., an)/∅;A)
belongs to GSK . Conclude that A � τ ∈ K .

(ii) Show that A � τ ≼ B � τ .

2.6 Definition. Let τ0 be a vocabulary and A and B be τ0 -models.
(i) If a0, ..., an ∈ A , then by tat((a0, ..., an)/∅;A) we mean the set of all atomic

or negated atomic formulas ϕ(v0, ..., vn) such that A |= ϕ(a0, ..., an) . We call these
diagrams or more precisely τ0 -diagrams in variables v0, ..., vn (or complete atomic
types over ∅).

(ii) If Φ is a τ0 -diagrams in variables v0, ..., vn and b0, .., bn ∈ B , we say that
(b0, ..., bn) realizes Φ if B |= ϕ(b0, ..., bn) for all ϕ ∈ Φ i.e. tat((b0, ..., bn)/∅;B) = Φ .

(iii) For A ⊆ A , by SHA(A) we mean the least substructure of A that contains
A . We write just SH(A) for SHA(A) if A is clear from the context.

Notice that the universe of SH(A) is the least subset of A that contains A ,
contains all interpretations of constant symbols c ∈ τ0 and is closed under interpre-
tations of all function symbols f ∈ τ0 .

We write Pω(A) for the set of all finite subsets of A .

2.7 Exercise.
(i) Show that SH(A) = ∪B∈Pω(A)SH(B) .
(ii) Suppose ai ∈ A and bi ∈ B for all i ∈ I , where I = (I,<) is a linear

ordering and that for all n < ω and i0 < ... < in ∈ I , tat((ai0 , ..., ain)/∅;A) =
tat((bi0 , ..., bin)/∅;B) . Show that there is an isomorphism π : SH({ai| i ∈ I}) →
SH({bi| i ∈ I}) such that for all i < α , π(ai) = bi .

Recall that κ = LS(K). In the following theorem we will work with elements
bij of the models Bi for simplicity. If needed, one can replace them by finite tuples of
fixed length and no changes are needed anywhere. Notice that there are AEC’s for
which there are no models Bi as assumed to exist in the following theorem (Exercise
1.5 (i)).

2.8 Theorem. Let λ = (2κ)+ . Suppose that Bα , α < λ , are models of T
that omit every type in SK-GSK and for all α < λ , we have bαj ∈ Bα , j < iα , such
that for all j < k < iα , b

α
j ̸= bαk . Then for all n < ω there are τs -diagrams Φn in

variables v0, ..., vn such that the following holds:
(i) For all n < ω , there is α < λ and j0 < ... < jn < iα such that (bαj0 , ..., b

α
jn
)

realizes Φn .
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(ii) For all m < n < ω , Φm ⊆ Φn i.e. if (for some a0, ..., an ∈ A , A a τs -model,)
(a0, ..., an) realizes Φn , then (a0, ..., am) realizes Φm .

(iii) For all linear orderings I = (I,<) , there is a τs -model B and bi ∈ B , i ∈ I ,
such that

(a) B = SH({bi| i ∈ I}) ,
(b) for all n < ω and i0, ..., in ∈ I , if i0 < ... < in , then (bi0 , ..., bin) realizes

Φn .

Proof. We skip the proof in this course. The proof is identical to the proof of
Theorem 12.7 (see also the beginning of the proof of Corollary 12.8) in the lecture
notes of the course Model theory.

For the rest of this section we assume that for all α < (2κ)+ there is Aα ∈ K
such that |A| ≥ iα . Then the required models Bα in Theorem 2.8 exist. Let Φn ,
n < ω , I , B and bi , i ∈ I , be as in Theorem 2.8. Then we write Φ = (Φn)n<ω ,
B = EMτs(I,Φ) and call the set {bi| i ∈ I} the skeleton of B .

Remark: Notice that there may be π ∈ Aut(B) such that even {π(bi)| i ∈ I} ≠
{bi| i ∈ I} and thus B may have more than one skeleton. However, when we talk
about EM -models we always assume that we know what the skeleton is.

We write EM(I,Φ) for B � τ .

2.9 Exercise. Suppose B = EMτs(I,Φ) and {bi| i ∈ I}) is the skeleton of it.
(i) Show that B |= T and it omits every type in SK-GSK. Conclude B � τ ∈ K

and that K has arbitrarily large models.
(ii) Suppose J ⊆ I . Show that SH({bi| i ∈ J}) � τ ≼ B � τ .
(iii) Suppose J = (J,<) is a linear ordering, A = EMτs(J,Φ) with skeleton

{aj | j ∈ J} and π0 : (I,<) → (J,<) is an isomorphism. Show that there is an
isomorphism π : B → A such that for all i ∈ I , π(ai) = bπ0(i) .

3. Amalgamation and Galois types

In this section we will look what is the right notion of a type in AEC’s.

3.1 Definition.
(i) We define a binary relation ET ∗ to the class of all pairs (a,A) , where A is a

K -model and a = (ai)i<α ∈ Aα (i.e. a is a tuple of elements of A of length ordinal
α and α may be infinite), the following way: ((ai)i<α,A)ET ∗((bi)i<β ,B) if α = β
and there are a K -model C and strong embeddings f : A → C and g : B → C such
that for all i < α , f(ai) = g(bi) .

(ii) We let ET be the transitive closure of ET ∗ (i.e. (a,A)ET (b,B) if there are
n < ω and (ai,Ai) , i ≤ n , such that (a0,A0) = (a,A) , (an,An) = (b,B) and for all
i < n , (ai,Ai)ET

∗(ai+1,Ai+1)). We write tg(a/∅;A) for the ET -equivalence class
of (a,A) and call it Galois type (of a over ∅ in A).

3.2 Exercise.
(i) Suppose A ≼ B and a ∈ Aα . Show that tg(a/∅;A) = tg(a/∅;B) .
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(ii) Let n ≥ 2 be a natural number and Kn be the class of all graphs A = (A, E)
with the following property:

(*) For all a ∈ A , the set {b ∈ A| (a, b) ∈ E} has cardinality at most n .
Then (K,⊆) is an AEC as one can easily see (Exercise 1.4 (ii)). Show that in this
AEC, ET ∗ is not transitive. Hint: Notice that if A,B ∈ Kn and A contains just
one element, then every function f : A → B is a strong embedding.

While these Galois types are natural objects they do not behave very well in
general. However, by adding some assumptions on the class K , they start to behave
as one hopes.

3.3 Definition.
(i) We say that an AEC K = (K,≼) has the amalgamation property (AP) if

for all K -models A , B and C and strong embeddings f0 : A → B and g0 : A → C ,
there are a K -model D and strong embeddings f1 : B → D and g1 : C → D such
that for all a ∈ A , f1(f0(a)) = g1(g0(a)) .

(ii) We say that an AEC K = (K,≼) has the joint embedding property (JEP) if
for all K -models A and B there are a K -model C and strong embeddings f : A → C
and g : B → C .

3.4 Exercise.
(i) Show that the following are equivalent:
(a) K has AP.
(b) For all K -models A , B and C , if A ≼ B and A ≼ C , then there are a

K -model D such that C ≼ D and a strong embedding f : B → D such that f � A is
identity.

(ii) Show that if K has AP, then ET ∗ is a transitive relation (and thus ET =
ET ∗ ).

3.5 Exercise. Let us return to Coxeter groups. Suppose K0 is a(n abstract
elementary) class of strongly rigid graphs such that it has AP and let K = (K,≼)
be the related class of Coxeter groups as in Section 1. Show that K has AP.

3.6 Theorem. Suppose K has AP and JEP and λ is an infinite cardinal.
There is a K -model M such that

(i) (λ -universality) For all K -models A of power ≤ λ , there is a strong embed-
ding f : A →M .

(ii) (λ -model homogeneity) If A,B ≼ M are of power < λ and f : A → B
is an isomorphism, then there is an automorphism g of M such that f ⊆ g (i.e.
g � A = f ).

Proof. We skip the proof in this course. The proof is identical to the proof of
Theorem 5.11 in the lecture notes of the course Model theory (overlook the claim of
the model being existentially closed).

3.7 Exercise. Suppose that M and λ are as in Theorem 3.6 and λ > LS(K) .
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(i) Suppose that A ≼ M and B is a K -model of power < λ such that A ≼ B .
Show that there is a strong embedding f : B →M such that f � A is the identity.

(ii) Suppose that α < λ , A = {ai| i < α} is a subset of M , M ≼ A and
b = (b0, ..., bn) is a tuple of elements of A . Show that there is a tuple c = (c0, ..., cn)
of elements of M such that tg(ca/∅;M) = tg(ba/∅;A) , where ca is the concatenation
of c and a = (ai)i<α and ba similarly.

From now on in these lectures we assume that K has AP and JEP and also to
avoid potential anomalies we assume also that K has arbitrarily large models. Then
when λ is large enough, the model M from Theorem 3.5 is called a monster model.
And from now on we will be using the monster model technique: Unless otherwise
stated, whenever we talk about a K -model, we assume that it is a strong submodel
of M of size < λ . By Theorem 3.5 (i), this is w.o.l.g. if the size of the model is
< λ (we can always move to an isomorphic copy) and since we can choose λ freely
we can always assume that the size is < λ . Strictly speaking here is a possibility of
making errors in arguments, so one needs to be a bit careful when one applies this
technique. But in these lectures we do not look the kind of arguments in which this
possibility exists. It will turn out that this technique simplifies not only notations
and definitions but also arguments. So from now on, by M we mean a monster
model. Notice that with this convention, if A ⊆ B , then A ≼ B by Coherence, see
Definition 1.2.

Let us start by looking an example of how this technique works.

3.8 Lemma. Suppose A and B are K -models, a = (ai)i<α ∈ Aα and b =
(bi)i<α ∈ Bα . Then tg(a/∅;A) = tg(b/∅;B) iff there is h ∈ Aut(M) (automorphism
of M ) such that h(a) = b (i.e. for all i < α , h(ai) = bi ).

Proof. ⇒ : By Exercise 3.4 (ii), there are a K -model C and strong embeddings
f0 : A → C and g0 : B → C such that f0(a) = g0(b). By theorem 3.6 (ii), f0 and g0
can be extended to f and g that belong to Aut(M). Then h = g−1 ◦f is as wanted.

⇐ : M , h and idM (identity function on M ) show that (a,M)ET ∗(b,M). This
suffices, since by Exercise 3.4 (i), tg(a/∅;A) = tg(a/∅;M) and similarly for b and B .

We want to make one more assumption before we start developing stability
theory for our classes.

3.9 Definition. We say that K is homogeneous if (in addition to AP, JEP
and arbitrary large models) it satisfies: For all K -models A and B , ordinals α and
a = (ai)i<α ∈ Aα and b = (bi)i<α ∈ Bα , if for all finite X ⊆ α , tg((ai)i∈X/∅;A) =
tg((bi)i∈X/∅;B) , then tg(a/∅;A) = tg(b/∅;B) .

There are many other properties that improve the behaviour of Galois types.
One such is finite character:

3.10 Lemma. If K is homogeneous the it has finite character i.e. the following
holds: Suppose A is a submodel of a K -model B such that it belongs to K (we do
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not assume that A ≼ M ) and for all finite tuples a ∈ An , tg(a/∅;A) = tg(a/∅;B) .
Then A ≼ B .

Proof. As above, w.o.l.g. B ≼ M . By Coherence it is enough to show that
A ≼ M . By λ -universality of M , there is a strong embedding f of A to M . Now
for all finite tuples a ∈ An ,

tg(a/∅;M) = tg(a/∅;B) = tg(a/∅;A) = tg(f(a)/∅; f(A)) = tg(f(a)/∅;M).

Thus by Lemma 3.8 and homogeneity of K , there is g ∈ Aut(M) such that f ⊆ g .
But then by Definition 1.2 (II) (i) (i.e. Definition 1.2 (I) (i) applied to g−1 ), A ≼M .

3.11 Exercise. Let T be a complete first-order theory, K = mod(T ) and
≼ be the elementary submodel relation. Show that (K,≼) is a homogeneous class.
Hint: Remember Exercise 1.4 (i) and show that two tuples have the same Galois type
iff they have the same first-order type.

The classes of Coxeter groups are typically not homogeneous (even when they
are AEC’s) but often they have finite character. The following is an example of
a homogeneous class that is not elementary: Let K∗ be the class of all fields to-
gether with two automorphisms that commute with each other (i.e. the second is an
automorphism of the field with the first automorphism). Then K∗ with submodel
relation is an AEC. Now let A0 ∈ K∗ be an existentially closed model (see the lec-
ture notes of the course Model theory) and let A ∈ K∗ be the algebraic closure (in
the sense of field theory) of ∅ in A0 . Then we let K be class of all existentially
closed models of K∗ which contain a copy of A as a substructure. Then (K,⊆) is a
homogeneous AEC. At least for some choices of A , it is not elementary, which is a
bit surprising since with just one automorphism, these classes are elementary (these
are known as difference fields and they play an important role in Hrushovski’s work
that we mentioned in the introduction). For details, see [HK2].

From now on, unless stated otherwise, by elements we mean elements of M , by
a set we mean a subset of M of power < λ , by tuples we mean tuples of elements
of M and, again unless stated otherwise, the tuples are assumed to be finite. Also
from now on, a ∈ A means that a is a finite tuple of elements of A (and A is a
subset of M of power < λ). We will write AB for the union of A and B and
ab for the concatenation aab of tuples a and b . Aa , a = (ai)i<α , means the set
A ∪ {ai| i < α} . Finally, for tuples ai = (aij)j<αi , i < α , {ai| i < α} means the

set {aij | i < α, j < αi} . Also for all, possibly infinite, tuples a we write tg(a/∅) for
tg(a/∅;M), which is the same as tg(a/∅;A) for any A that contains a . For A ⊆M ,
we write Aut(M/A) for the set of all automorphisms f of M such that f � A is
identity. We write tg(a/A) = tg(b/A) if there is f ∈ Aut(M/A) such that f(a) = b
and we think tg(a/A) as the orbit of a under the (natural) action of Aut(M/A) on
M e.g. when we talk about sets of Galois types over A .
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3.12 Exercise. Let A = {ai| i < α} . Show that tg(a/A) = tg(b/A)
iff tg(aa(ai)i<α/∅) = tg(ba(ai)i<α/∅) . Conclude that if K is homogeneous, then
tg(a/A) = tg(b/A) iff for all finite B ⊆ A , tg(a/B) = tg(b/B) .

3.13 Lemma. Assume K is homogeneous. Suppose I is any set and for all
finite subsets X ⊆ I , there are elements aXi , i ∈ X , such that if Y ⊆ X , then
tg((aXi )i∈Y /∅) = tg((aYi )i∈Y /∅) . Then there are elements ai , i ∈ I such that for all
finite X ⊆ I , tg((ai)i∈X/∅) = tg((aXi )i∈X/∅) .

Proof. We prove the claim by induction on |I| . The cases when I is finite are
clear. So suppose |I| = ξ is infinite. By re-indexing we may assume that I = ξ . By
the induction assumption, for all α < ξ , there are bαi , i ≤ α , such that for all finite
X ⊆ α + 1, tg((bαi )i∈X/∅) = tg((aXi )i∈X/∅). We find the elements aα , α < ξ , by
recursion on α < ξ : We let a0 = b00 and for α > 0 we do the following. We notice
that by Lemma 3.8, homogeneity and the assumption that we have already found ai ,
i < α , as wanted, there is f ∈ Aut(M) such that for all i < α , f(bαi ) = ai . Then
we let aα = f(bαα). Clearly these are as wanted.

3.14 Exercise. Assume that K is homogeneous and A (⊆ M ) is a set.
Suppose that for all finite C ⊆ A there is a (possibly infinite) tuple aC such that
the following holds: If C ⊆ D ⊆ A are finite then tg(aD/C) = tg(aC/C) . Show that
there is a tuple a such that for all finite C ⊆ A , tg(a/C) = tg(aC/C) .

4. Independence and ω -stability

In this section we assume that K = (K,≼) is a homogeneous AEC. In addition
we assume that K is ω -stable:

4.1 Definition. Let κ be an infinite cardinal. We say that a (homogeneous)
class K is κ -stable if LS(K) ≤ κ and for all A of size ≤ κ , the set {tg(a/A)| a ∈M}
is of size ≤ κ .

Usually stability theory is developed under the assumption that the class is stable
(or even less is assumed). However we make this stronger ω -stability assumption
because it simplifies the part of the theory of independence that is needed in these
lectures (we can use splitting instead of strong splitting or dividing or Lascar splitting
and Lascar types are not needed). For the general theory, see [HS] (in this paper
the approach is not that of AEC’s but the proofs and results translate easily to our
context).

4.2 Definition.

(i) Let κ be an infinite cardinal. We say that a model A is κ -saturated if for
all A ⊆ A of power < κ and (finite) tuples a , there is b ∈ A such that tg(b/A) =
tg(a/A) . We say that A is saturated if it is |A| -saturated.

(ii) Suppose A ⊆ B and a ∈M . We say that tg(a/B) splits over A if there are
b, c ∈ B such that tg(b/A) = tg(c/A) but tg(ab/∅) ̸= tg(ac/∅) .
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(iii) We write a ↓sC B (a is independent from B over C ) if there is finite A ⊆ C
such that tg(a/CB) does not split over A . We write C ↓sA B if for all (finite tuples)
a ∈ C , a ↓sA B .

As pointed out above there are other ways of defining independence and they do
not give the same notion of independence. However, in our ω -stable case, they all
give the same notion over ω -saturated models.

Notice that by Exercise 3.12, in Definition 4.2 (ii), we could replace tg(ab/∅) ̸=
tg(ac/∅) by tg(ab/A) ̸= tg(ac/A) (or by tg(b/Aa) ̸= tg(c/Aa) or tg(b/a) ̸= tg(c/a))
and get an equivalent definition. We will use this freely below. In more general cases
one needs to be more careful here.

4.3 Exercise.
(i) Show that for all infinite cardinals κ and A of power κ there is an ω -

saturated model A of power κ such that A ⊆ A and that for all A of power ω1

there is ω1 -saturated A of power ω1 such that A ⊆ A .
(ii) Suppose A and B are κ -saturated models of power κ . Show that A ∼= B .
(iii) Suppose A is a κ -saturated model of power κ and a, b ∈ A are tuples of

length < κ such that tg(a/∅) = tg(b/∅) . Show that there is f ∈ Aut(A) such that
f(a) = b .

(iv) Suppose that for all A ⊆ A of power < κ and elements a , there is b ∈ A
such that tg(b/A) = tg(a/A) . Show that A is κ -saturated.

(v) Let K be the class of all vector spaces over the rational numbers. Then
(K,⊆) is a homogeneous AEC. Suppose that a = (a0, ..., an) is linearly independent
(for linear independence, see any book on linear algebra or wikipedia). We say that
a is linearly independent from A if for all linearly independent b = (b0, ..., bm) ∈ A ,
ab is linearly independent. Show that if A has infinite dimension, then a ↓∅ A iff a
is linearly independent from A .

4.4 Theorem.
(i) For all a and A , a ↓sA ∅ . Furthermore, if a ∈ A , then a ↓sA B for all B .
(ii) (Existence) For all a , A and ω -saturated A there is b such that tg(b/A) =

tg(a/A) and b ↓sA A .
(iii) (Stationarity) If A is ω -saturated, a ↓sA A , b ↓sA A and tg(a/A) = tg(b/A) ,

then tg(a/AA) = tg(b/AA) .
(iv) (Local character) If a ̸ ↓sA A and A is ω -saturated, then there is b ∈ A

such that a ̸ ↓sA b .
(v) If A is ω -saturated, a ̸∈ A and a ↓sA A , then a ̸∈ AA .
(vi) If A is ω -saturated and ai , i < ω , are such that for all i < j < ω ,

tg(ai/A) = tg(aj/A) and for all i < ω , ai ↓sA {aj | j < i} , then for all i0 < ... < in <
ω and j0 < ... < jn < ω , tg((ai0 , ..., ain)/A) = tg((aj0 , ..., ajn)/A) .

(vii) (Symmetry) If A ↓sA B and A is ω -saturated, then B ↓sA A .

Proof. (i): We leave the furthermore part as an exercise and prove only the first
claim: Now suppose not. We define finite tuples aη and bη and fη, gη ∈ Aut(M) for
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all η ∈ 2<ω by recursion on dom(η) so that (Bη means the set {bη�m| m ≤ dom(η)}
and for η ∈ 2n ηa(i) means the function h ∈ 2n+1 such that h(x) = η(x) if x < n
and h(n) = i):

(a) tg(aηa(i)/Bη) = tg(aη/Bη), fηa(i) ∈ Aut(M/Bη), gηa(i) = fηa(i) ◦ gη ,
f∅ = g∅ = idM , aη = gη(a) and g−1

η (Bη) ⊆ A ,

(b) bηa(0) = bηa(1) and tg(aηa(0)/bηa(0)) ̸= tg(aηa(1)/bηa(0)).

We let a∅ = a , b∅ = ∅ and f∅ = g∅ = idM . Suppose that we have defined
the tuples for all η � n , n ≤ dom(η). Since tg(a/A) splits over g−1

η (Bη), there are
b, c ∈ gη(A) such that f(c) = b for some f ∈ Aut(M/Bη) and t

g(aηb/∅) ̸= tg(aηc/∅).
We let bηa(0) = bηa(1) = b , aηa(0) = aη , aηa(1) = f(aη), fηa(0) = idM , fηa(1) = f ,
gηa(0) = gη and gηa(1) = f ◦gη . Then for all η ∈ 2ω , by Exercise 3.14, we can find aη
such that for all n < ω , tg(an/Bβ�n) = tg(aη�n/Bη�n). But then for all η, η′ ∈ 2ω ,
tg(aη/B) ̸= tg(aη′/B), where B = {bν | ν ∈ 2<ω} . This contradicts ω -stability.

(ii): W.o.l.g. A ⊆ A . By (i), choose finite C ⊆ A such that tg(a/A) does not
split over C . For all (finite tuples) c ∈ A , choose dc ∈ A such that tg(dc/C) =
tg(c/C) and denote pc = tg(adc/∅) (if c ∈ A , then let dc = c). Now dc need not be
unique but notice that by the choice of C , pc does not depend on the choice of dc .
Then as in the proof of (i) above, there is b such that for all c ∈ A , tg(bc/∅) = pc .
Clearly b is as wanted.

(iii): Choose finite C ⊆ A such that neither tg(a/AA) nor tg(b/AA) split over
C (e.g. choose C ′ for tg(a/AA) and C ′′ for tg(b/AA) and let C = C ′ ∪ C ′′ ) and
let c ∈ AA . It is enough to show that tg(ac/∅) = tg(bc/∅). Let d ∈ A be such that
tg(d/C) = tg(c/C). Then

tg(ac/∅) = tg(ad/∅) = tg(bd/∅) = tg(bc/∅).

(iv): By (ii) there is c such that tg(c/A) = tg(a/A) and c ↓sA A . Then
tg(a/AA) ̸= tg(c/AA). So there is b′ ∈ AA such that tg(ab′/∅) ̸= tg(cb′/∅). But
then by letting b be the sequence of elements of b′ that do not belong to A , a ̸ ↓sA b
by (iii).

(v): Exercise.

(vi): Exercise.

(vii): By (iii) and the definition of A ↓sA B , it is enough to prove the claim
under the assumption that A and B are finite i.e. that if a ↓sA b then b ↓sA a .
Suppose not. We may assume that A is countable i.e. if there is a counter example
to our claim, there is one in which A is countable (exercise). By (i), a ̸∈ A and
b ̸∈ A . Choose ai and bi , i < ω , so that for all i < ω , tg(aibi/A) = t(ab/A)
and aibi ↓sA {ajbj | j < i} . Notice that i < j iff bj ↓sA ai and thus for all i, j ,
if i ≠ j , then tg(aibiajbj/A) ̸= tg(ajbjaibi/A). Let R be the set of reals and Q
the set of rational numbers. Now by (vi) and Exercise 3.14, we can find ci and di ,
i ∈ R , such that for all i, j ∈ R , if i < j , then tg(cidicjdj/A) = tg(a0b0a1b1/A). Let
B = {ci, di| i ∈ Q} . Now for all i, j ∈ R , if i ̸= j , then tg(aibi/AB) ̸= tg(ajbj/AB).
This contradicts ω -stability.
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4.5 Exercise.
(i) (Monotonicity) Suppose A ⊆ B ⊆ C ⊆ D . Show that if a ↓sA D , then

a ↓sB C .
(ii) Show that ab ↓sA B iff b ↓sA B and a ↓sAb B .
(iii) (Transitivity) Suppose A ⊆ B ⊆ C and A and B are ω -saturated. Show

that a ↓sA C iff a ↓sA B and a ↓B C . Hint: the shortest proof can be found using (i)
above and Theorem 4.4 (ii) and (iii).

(iv) Show that K is κ -stable for all infinite κ . Hint: Notice that it is enough
to count the number of types over ω -saturated models and then use Theorem 4.4 (i)
and (iii).

4.6 Definition. Let A be ω -saturated.
(i) We say that a sequence (ai)i∈I of possibly infinite tuples is independent over

A if for all i ∈ I , ai ↓sA {aj | j ∈ I − {i}} .
(ii) We say that (ai)i∈I is a Morley sequence in tg(a/A) if (ai)i∈I is independent

over A and for all i ∈ I , tg(ai/A) = tg(a/A) .

Notice that if (ai)i<α is a Morley sequence in tg(a/A) and π : α → α is a
permutation, then (aπ(i))i<α is a Morley sequence in tg(a/A).

4.7 Exercise. Suppose A is ω -saturated and a is a tuple.
(i) Show that (ai)i<α is independent over A if for all i < α , ai ↓sA {aj | j < i} .
(ii) Show that tg((ai)i<α/A) = tg((bi)i<α/A) if both (ai)i<α and (bi)i<α are

Morley sequences in tg(a/A) .
(iii) Suppose C is countable and ω -saturated and C ⊆ A . Show that there is

a maximal Morley sequence (ai)i<α in tg(a/C) from A i.e. (ai)i<α is a Morley
sequence in tg(a/C) , for all i < α , ai ∈ A and if a′ ∈ A − {ai| i < α} is such
that tg(a′/C) = t(a/C) , then a′ ̸ ↓sC {ai| i < α} . Show that if in addition A is
ω1 -saturated, then α is uncountable.

5. Prime models

In this section we look prime models. Throughout this section we assume that
K is a homogeneous ω -stable AEC. Again for the general homogeneous case, see
[HS].

5.1 Definition. We say that tg(a/A) is ω -isolated if there is finite B ⊆ A
such that for all b , if tg(b/B) = tg(a/B) , then tg(b/A) = tg(a/A) . In this case we
also say that B witnesses that tg(a/A) is ω -isolated.

5.2 Lemma. Suppose C ⊆ A , C is finite and a is a finite tuple. Then there
are b and finite C ⊆ B ⊆ A such that tg(b/C) = tg(a/C) and B witnesses that
tg(b/A) is ω -isolated.

Proof. Suppose not. For all η ∈ 2<ω , we define tuples bη and finite sets Bη ⊆ A
by recursion on dom(η) as follows:

19



We let b∅ = a and B∅ = C . Now suppose bη and Bη are defined. Then there
is c such that tg(c/Bη) = tg(bη/Bη) but tg(c/A) ̸= tg(bη/A). Let bηa(0) = bη ,
bηa(1) = c and Bηa(0) = Bηa(1) be any finite D such that Bη ⊆ D ⊆ A and
tg(c/D) ̸= tg(bη/D). Let B = ∪η∈2<ωBη and again, by Exercise 3.14, we can find
bη for all η ∈ 2ω such that for all n < ω , tg(bη/Bη�n) = tg(bη�n/Bη�n). But then
for all η, η′ ∈ 2ω , if η ̸= η′ , then tg(bη/B) ̸= tg(bη′/B). Since B is countable, this
contradicts ω -stability.

5.3 Definition. Let I = (I,<) be a well ordering.
(i) We say that (ai, Bi)i∈I is an ω -construction over A if writing Ai = A ∪

{aj | j < i} , for all i ∈ I , Bi witnesses that t(ai/Ai) is isolated.
(ii) Let (ai, Bi)i∈I be an ω -construction over A . We say that X ⊆ I is closed

if for all i ∈ X , Bi ⊆ A ∪ {aj | j < i, j ∈ X} .

Notice that a union of closed sets is a closed set.

5.4 Exercise. Let ((ai, Bi))i∈I be an ω -construction over A .
(i) Show that for all finite Y ⊆ I there is finite closed X ⊆ I such that Y ⊆ X .
(ii) Suppose X ⊆ I is closed. Show that ((ai, Bi))i∈X is an ω -construction over

A .
(iii) Let i ∈ I and X = {j ∈ I| j < i} . Show that ((ai, Bi))i∈X is an ω -

construction over A and that ((ai, Bi))i∈I−X is an ω -construction over A∪{aj | j ∈
X} .

(iv) Suppose B ⊆ A witnesses that tg(ab/A) is ω -isolated. Show that Bb
witnesses that tg(a/Ab) is ω -isolated.

5.5 Lemma. Suppose ((a0, B0), ..., (an, Bn)) is an ω -construction over A and
Bn ⊆ A . Then ((an, Bn), (a0, B0), ..., (an−1, Bn−1)) is an ω -construction over A .

Proof. Suppose not. Choose this counter example so that n is minimal. As in
the definition, we write Ai = A ∪ {a0, ..., ai−1} . Now

((a0, B0), ..., (an−2, Bn−2), (an, Bn))

is an ω -construction over A and so by the choice of n , also

((an, Bn), (a0, B0), ..., (an−2, Bn−2))

is an ω -construction over A . But then there is a′n−1 such that tg(a′n−1/Bn−1) =
tg(an−1/Bn−1) but tg(a′n−1/A

∗) ̸= tg(an−1/A
∗), where A∗ = A ∪ {a0, ..., an−2, an} .

Since tg(a′n−1/An−1) = tg(an−1/An−1), there is a function f ∈ Aut(M/An−1)
such that f(a′n−1) = an−1 . Let a′n = f(an). Then tg(a′n/Bn) = tg(an/Bn) but
tg(a′n/An) ̸= tg(an/An), a contradiction.

5.6 Exercise. Let ((ai, Bi))i∈I be an ω -construction over A .
(i) Suppose <′ is another well-ordering of I and we write I ′ = (I,<′) . Show

that if for all i ∈ I , Bi ⊆ A ∪ {aj | j <′ i} , then ((ai, Bi))i∈I′ is an ω -construction
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over A . Hint: Suppose not. By Exercise 5.4 (i) we can assume that I in the counter
assumption is finite and thus we can choose the counter assumption so that |I| is
minimal. Now apply Lemma 5.5 and Exercise 5.4 (iii).

(ii) Suppose X ⊆ I is closed. Show that ((ai, Bi))i∈I−X is an ω -construction
over A ∪ {aj | j ∈ X} .

(iii) Show that one can find an ordering <′ of I so that, letting I ′ = (I,<′) ,
((ai, Bi))i∈I′ is an ω -construction over A and the order type of (I,<′) is |I| i.e. that
there is an order preserving onto function f from the cardinal κ = |I| with the usual
ordering to (I,<′) . Hint: Enumerate I = {ci| i < κ} and then let f(α) be ci if i is
the least ordinal ̸= f(β) for any β < α and such that Bci ⊆ A ∪ {af(β)| β < α} .

5.7 Definition.
(i) We say that a model A is ω -primary over A ⊆ A if A is ω -saturated and

there is an ω -construction ((ai, Bi))i∈I over A such that A = A ∪ {ai| i ∈ I} .
(ii) We say that f : A → B is strong if for all a ∈ A , tg(a/∅) = tg(f(a)/∅) i.e.

there is g ∈ Aut(M) such that f ⊆ g .
(iii) We say that a model A is ω -prime over A ⊆ A if for all ω -saturated B

and strong f : A→ B there is a strong embedding g : A → B such that f ⊆ g .

For the next exercise we make the following definition: We say that a set A is
ω -saturated if for all finite B ⊆ A and b there is a ∈ A such that tg(a/B) = tg(b/B)
(i.e. exactly as in the definition of ω -saturated model, only we do not require A to
be a strong submodel of M , not even a model).

5.8 Exercise.
(i) Suppose A is an ω -saturated set.
(a) Show that A is a submodel of M (i.e. it generates a submodel whose universe

is A).
(b) Show that if A is countable, then it is a K -model and A ≼M . Hint: Find

a strong onto map f : A→ A for some model A , see Exercise 4.3 (ii) and the proof
of Lemma 3.10.

(c) Show that A is a K -model and A ≼ M . Hint: (b) and Exercises 1.3 (iii)
and 4.3 (i) (κ = ω ).

(ii) Suppose ((ai, Bi))i<α is ω -construction over A and B is ω -saturated and
f : A→ B is strong. Then there is strong g : A ∪ {ai| i < α} → B such that f ⊆ g .
Conclude that for all A there is an ω -primary model over A and that ω -primary
models over A are ω -prime models over A . Hint: For the first part of the conclusion,
use Exercise 4.3 (i) to show that the construction can not go on forever (of course (i)
above is also needed and there are other ways of seeing this first part of the conclusion
but the one suggested in this hint is the most instructive).

(iii) Suppose A is ω -primary over A . Show that for all a ∈ A , t(a/A) is
ω -isolated (i.e. ω -primary models over A are ω -atomic over A).

5.9 Theorem. Suppose f : A→ B is strong and onto, A is ω -primary model
over A and B is ω -primary model over B . Then there is an isomorphism g : A → B
such that f ⊆ g .
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Proof. Let ((ai, Bi))i<δ and ((bj , Cj))j<ν be the constructions. For all α ∈ On ,
it is enough to find strong onto functions fα : Aα → Bα so that

(i) there are closed Xα ⊆ δ and Yα ⊆ ν such that Aα = A ∪ {ai| i ∈ Xα}
Bα = B ∪ {bi| i ∈ Yα} ,

(ii) if α < β , then Xα ⊆ Xβ , Yα ⊆ Yβ and fα ⊆ fβ ,
(iii) if dom(fα) ̸= A or rng(fα) ̸= B , then fα+1 ̸= fα .

We let f0 = f and X0 = Y0 = ∅ . If α is limit we let fα = ∪β<αfβ , Xα = ∪β<αXβ

and Yα = ∪β<αYβ . Finally for successor cases we notice that by Exercise 5.6 (ii),
it is enough to show how f1 , X1 and Y1 are found. But this is an easy back and
forth argument using ω -saturation of the models and Exercises 5.4 (i) and 5.8 (iii)
(exercise).

5.10 Exercise. Suppose A is ω -saturated.
(i) Suppose B is ω -primary model over AA and a ↓A A . Show that a ↓A B .

Hint: Start by showing that it is enough to prove the claim under the assumption
that A is finite and then show that for all b ∈ B there is finite B ⊆ A such that
BA witnesses that tg(b/AAa) is ω -isolated. For this use Exercise 5.8 (iii) and non-
splitting.

(ii) Suppose (ai)i<α is a Morley sequence in tg(a/A) , a ̸∈ A , and B is ω -
primary over A ∪ {ai| i < α} . Show that (ai)i<α is a maximal Morley sequence in
tg(a/A) from B . Hint: Use (i).

6. Categoricity transfer

We say that K is κ-categorical if all K -model of power κ are isomorphic. In
this section we assume that K is homogeneous, LS(K) = ω and that K is ω1 -
categorical and we will show that K is κ -categorical for all uncountable κ . For a
more general categoricity transfer theorem, see [Hy].

6.1 Lemma. K is ω -stable.

Proof. By Theorem 2.8 there is a K -model A of the form EM(ω1,Φ) for some
Φ. Then |A| = ω1 .

6.1.1 Claim. For all countable A ⊆ A , the set {tg(a/A)| a ∈ A} is countable.

Proof. Exercise. Hint: Let {ci| i < ω1} be the skeleton. Now suppose the claim
is not true and find countable sets X ⊆ Y ⊆ ω1 such that the set

{t(a, /SH({ci| i ∈ X}))| a ∈ SH({ci| i ∈ Y })}

is uncountable (which is impossible). Claim 6.1.1.
If K is not ω -stable by Löwenheim-Skolem property, we can find a K -model B

and countable B ⊆ B such that |B| = |{t(b/B)| b ∈ B}| = ω1 . But then B can not
be isomorphic with A , a contradiction.

6.2 Corollary. Every uncountable model is ω1 -saturated.
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Proof. By Exercise 4.3 (i) we can find ω1 -saturated A of power ω1 . By ω1 -
categoricity, every model of size ω1 is ω1 -saturated. Using Löwenheim-Skolem prop-
erty, it is easy to see that if some uncountable model is not ω1 -saturated, then there
is also a model of size ω1 that is not ω1 -saturated.

6.3 Definition.
(i) We say that tg(a/A) is bounded if there is a set B (⊆M of power < λ , see

Section 3) such that if tg(b/A) = tg(a/A) , then b ∈ B .
(ii) tg(a/A) is minimal if it is not bounded but for all B , a ̸ ↓A B implies that

tg(a/AB) is bounded.

6.4 Exercise.
(i) Suppose A is countable. Show that tg(a/A) is bounded iff {b| tg(b/A) =

tg(a/A)} is countable. Hint: Use Theorem 4.4 (ii) and (v) and Exercise 4.3 (i).
(ii) Prove the claim in (i) above without the assumption that A is countable.

Hint: First find countable B ⊆ A such that tg(a/A) does not split over some finite
C ⊆ B and that for all finite C ⊆ B and b ∈ A , there is c ∈ B such that tg(c/C) =
tg(b/C) . Then show that tg(a/A) is bounded iff tg(a/B) is bounded. For the non-
trivial direction of this, pick a sequence (ai)i<α of distinct tuples with tg(ai/B) =
tg(a/B) and show that there is a sequence (bi)i<α of distinct tuples with tg(bi/A) =
tg(a/A) , use the proof of Theorem 4.4 (ii) and (iii).

(iii) Give an example of a homogeneous ω -stable AEC such that for some a ,
tg(a/∅) is bounded and {b| tg(b/∅) = tg(a/∅)} is infinite (cooked up example is
enough).

6.5 Lemma. For all ω -saturated A there is an element a such that tg(a/A)
is minimal.

Proof. It is enough to prove the claim for countable A . Since all ω -saturated
countable models are isomorphic, it is enough to find some countable A and a as in
the claim. Now suppose that there are no such A and a .

Then by recursion on i < ω (using Theorem 4.4 (iv)) it is easy to construct
countable ω -saturated Ai and elements ai so that

(i) if i < j < ω , then Ai ⊆ Aj and tg(aj/Ai) = tg(ai/Ai),
(ii) tg(ai/Ai) is not bounded,
(iii) ai+1 ̸ ↓Ai

Ai+1 .
Let A = ∪i<ωAi and by Exercise 3.14, we can find a such that for all i < ω ,
tg(a/Ai) = tg(ai/Ai). By Exercise 4.5 (i), a ̸ ↓Ai

A for all i < ω . This contradicts
Theorem 4.4 (i).

6.6 Theorem. K is κ -categorical for all κ ≥ ω1 .

Proof. Suppose A and B are model of size κ > ω1 . It is enough to show that
they are isomorphic. Let C be a countable ω -saturated model. Since A and B are
ω1 -saturated there are strong embeddings f : C → A and g : C → B . By moving
A and B by an automorphism of M , we may assume that C ⊆ A and C ⊆ B .
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Now let a be an element such that tg(a/C) is minimal and let (ai)i<α be a maximal
Morley sequence in tg(a/C) from A and let (bi)i<β be a maximal Morley sequence
in tg(a/C) from B . The heart of this argument is to prove the following claim.

6.6.1 Claim. A is ω -primary over C ∪ {ai| i < α} (and similarly for B ).

Before proving this claim, let us see why proving it is enough. By Exercises 4.3
(i) and 5.8 (ii), |α| = |β| = κ . So by re-indexing, we may assume that α = β = κ .
Let f : C ∪ {ai| i < κ} → C ∪ {bi| i < κ} be such that f � C = idC and for all i < κ ,
f(ai) = bi . Then f is strong by Exercise 4.7 (ii). By Theorem 5.9, f extends to an
isomorphism between A and B .

Proof of Claim 6.6.1. As above, we may assume that α = κ . Now suppose that
the claim is not true and let D ⊆ A be an ω -primary model over C ∪ {ai| i < κ} .
Then A ̸= D and we can pick an element d ∈ A − D . Choose also a finite D0 ⊆ D
such that d ↓sD0

A . Let ((ci, Ci))i<κ be an ω -construction of D over C ∪ {ai| i < κ}
(we can choose the construction so that the length is κ by Exercise 5.6 (iii) although
this is not important in this proof). Then there is finite closed X ⊆ κ such that
D0 ⊆ C ∪ {ai| i < κ} ∪ {ci| i ∈ X} . By re-indexing and re-ordering we may assume
that

(*) D0 ⊆ C ∪ {ai| i < ω} ∪ {ci| i ∈ X} , X ⊆ ω and for all i ∈ X , Ci ⊆
C ∪ {ai| i < ω} ∪ {cj | j < i} .
Thus we can find an ω -primary model D1 over C ∪{ai| i < ω1} such that D0 ⊆ D1 .

6.6.2 Exercise. Show that the ω -construction of D1 is also an ω -construction
over C ∪ {ai| i < κ} .

By Exercise 6.6.2 we can continue the construction of D1 to a construction of
an ω -primary model over C ∪{ai| i < κ} . By the uniqueness of such, we can assume
that D is ω -primary over D1 ∪ {ai| i < κ} . Let E ⊆ A be ω -primary over D1d .
By the choice of D0 , d ↓D1 D and so by applying Exercise 5.10, E ↓D1 D . Also if
e ∈ E −D and tg(e/C) = tg(a/C), then since tg(a/C) is minimal and tg(e/D1) is not
bounded, e ↓C D1 . It follows that

(**) if e ∈ E is such that tg(e/C) = tg(a/C), then e ∈ D1

since otherwise e ↓C {ai| i < κ} which would contradict the maximality of (ai)i<κ .
As above, by massaging the construction of D1 and re-indexing {ai| i < ω1} we

can assume that (*) above holds for the construction of D1 and some finite closed
X ⊆ ω1 and so we can find ω -primary D0 over C ∪{ai| i < ω} so that D0 ⊆ D0 , D1

is ω -primary over D0∪{ai| i < ω1} and the ω -construction of D0 over C∪{ai| i < ω}
is also an ω -construction over C ∪ {ai| i < ω1} .

By recursion on i ≤ ω1 we define models Ei of power ω1 and elements di
(only for i < ω1 ) so that E0 = D1 , Ei+1 is ω -primary over Eidi , di ↓D0 Ei and
tg(di/D0) = tg(d/D0): We let d0 = d and E1 = E . If i is limit, Ei = ∪j<iEj . If Ei
is defined, by ω1 -categoricity and Exercise 4.3 (iii), there is f ∈ Aut(M/D0) such
that f(Ei) = D1 . We let Ei+1 = f−1(E) and di = f−1(d). Now for all i ≤ ω1 we
define ω -saturated models E∗

i as follows: E∗
0 = D0 , E∗

i+1 ⊆ Ei+1 is ω -primary over
E∗
i di and for limit i , E∗

i = ∪j<iE∗
j .
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6.6.3 Exercise. Show that if e ∈ E∗
i+1 and tg(e/C) = tg(a/C) , then e ∈ E∗

i .
Hint: Start by showing that E∗

i+1 ↓E∗
i
Ei and use (**) above.

But now by Exercise 6.6.3, if e ∈ E∗
ω1

is such that tg(e/C) = tg(a/C), then
e ∈ D0 . This contradicts ω1 -saturation of E∗

ω1
, e.g. it contradicts Exercises 4.7 (iii)

and 5.10 (ii). Claim 6.6.1.

In the proof of Claim 6.6.1 above we proved a bit more than what we claimed:

6.7 Corollary. If A is uncountable C ⊆ A is countable and ω -saturated,
tg(a/C) is minimal, (ai)i<α is a maximal Morley sequence in tg(a/C) from A and
B ⊆ A is ω -primary over C ∪ {ai| i < α} , then B = A .

6.8 Exercise.
(i) If A is uncountable C ⊆ A is countable and ω -saturated, tg(a/C) is minimal,

(ai)i<α is a maximal Morley sequence in tg(a/C) from A and B ⊆ A contains
C ∪ {ai| i < α} , then B = A .

(ii) Show that every uncountable K -model A is saturated. Hint: Start by
showing that it is enough to prove this in the case |A| is a successor cardinal.

7. Geometries with application

Throughout this section we assume that K has AP, JEP, arbitrarily large mod-
els, LS(K) = ω and K is ω1 -categorical and universal:

7.1 Definition. We say that K is universal if for all A ⊆ A , (SH(A) ∈ K
and) SH(A) ≼ A .

Notice that universality implies that ≼ is the submodel relation.

7.2 Exercise. Show that K is homogeneous.

We will show that that K is essentially a class of vector spaces (or trivial struc-
tures). For a more general result, see [HK].

The argument is based on a study of geometries:

7.3 Definition. Let X be any set and cl : P (X) → P (X) , where P (X) is
the set of all subsets of X . We say that (X, cl) is a pregeometry (a.k.a. matroid) if
the following holds for all A ⊆ B ⊆ X and elements a, b ∈ X :

(i) A ⊆ cl(A) ⊆ cl(B) = cl(cl(B)) ,
(ii) if a ∈ cl(A) , then there is finite C ⊆ A such that a ∈ cl(C) ,
(iii) (Steinitz exchange principle) if a ∈ cl(Ab)− cl(A) , then b ∈ cl(Aa) .

7.4 Exercise. Suppose (X, cl) is a pregeometry and Y ⊆ X . For all A ⊆ X ,
let clY (A) = cl(Y A) . Show that (X, clY ) is a pregeometry.

7.5 Definition. Suppose (X, cl) is a pregeometry and A = {ai| i < α} ⊆ X .
We say that A is cl -independent if for all i < α , ai ̸∈ cl({aj | j < α, j ̸= i} . We say
that A is maximal cl -independent set from B if it is cl -independent, A ⊆ B and
for all a ∈ B −A , a ∈ cl(A) .
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7.6 Theorem. Suppose (X, cl) is a pregeometry. If A and A′ are maximal
cl -independent sets from B ⊆ X , then |A| = |A′| .

Proof. We skip the proof in this course. The proof can be found from the
lecture notes of the course Model theory.

7.7 Definition. Suppose (X, cl) is a pregeometry and A,B,C ⊆ X .
(i) We write dim(A/B) = |D| if D is a maximal clB -independent set from A.

We write dim(A) for dim(A/∅) .
(ii) We write A ↓clC B if for all finite A′ ⊆ A dim(A′/CB) = dim(A′/C) .
(iii) We say (X, cl) is modular, if for all A,B ⊆ X , A ↓clcl(A)∩cl(B) B .

(iv) We say that (X, cl) is locally modular if (X, cl{a}) is modular for some
a ∈ X .

(v) We say that (X, cl) is trivial (a.k.a. disintegrated) if for all (non-empty)
A ⊆ X , cl(A) = ∪a∈Acl({a}) (so a ranges over the elements of A).

7.8 Exercise. Suppose that (X, cl) is a pregeometry and A,B,C ⊆ X .
(i) Show that dim(AB/C) = dim(B/C) + dim(A/BC) .
(ii) Show that dim(A/B) = dim(A/cl(B)) = dim(clB(A)/B) .
(iii) Show that if (X, cl) is modular then so is (X, clY ) for any Y ⊆ X .
(iv) Show that trivial pregeometries are modular.

From now on we fix a countable ω -saturated A and an element a such that
tg(a/A) is minimal. We need to a bit careful on how we choose these: We pick first
any countable ω -saturated A∗ and an element a ̸∈ A∗ so that tg(a/A∗) is minimal.
Then we choose a Morley sequence (ai)i<ω in tg(a/A∗) so that a ↓sA∗ {ai| i < ω} .
Then we let A be ω -primary over A∗ ∪ {ai| i < ω} . Notice that tg(a/A) is still
minimal and that A and A∗ are isomorphic.

The goal is to show that every uncountable K -model B ⊇ A is essentially
a vector space. From now on, when we talk about K -models B , unless we state
otherwise, we mean that is uncountable and A ⊆ B (since every uncountable B
contains a copy of A this is without loss of generality). We write DB for the set
{b ∈ B| tg(b/A) = tg(a/A)} .

7.9 Definition. For X ⊆ DB , by clB(X) we mean the set of all b ∈ DB such
that tg(b/AX) is bounded.

7.10 Exercise. Show that for an element a ∈ DB and A ⊆ DB , a ∈ clB(A)
iff a ̸ ↓sA A .

7.11 Lemma. (DB, clB) is a pregeometry.

Proof. We prove Steinitz exchange principle, the rest is left as an exercise. So
suppose a ∈ clB(Ab) − clB(A) and for a contradiction suppose that b ̸∈ clB(Aa).
W.o.l.g. A is finite (exercise). Let c list the elements of A . Then by Exercise 7.10,
b ↓sA ca and a ↓sA c . From the first of these it follows by monotonicity that b ↓sAc a
and from the second it follows by symmetry that c ↓sA a . By Exercise 4.5 (ii), cb ↓sA a
and so by symmetry a ↓sA cb . By Exercise 7.10, a ̸∈ clB(Ab), a contradiction.
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7.12 Exercise.
(i) Suppose A0 is countable and ω -saturated, (ai)i<α is a Morley sequence in

tg(a0/A0) and α ≥ ω . Show that SH(A0 ∪ {ai| i < α}) is ω -saturated. Conclude
that for all A ⊆ DB , SH(AA) is ω -saturated and thus also ω -primary over AA .
Conclude also that if (ai)i<α is a maximal Morley sequence in tg(a/A) from B , then
B = SH(A ∪ {ai| i < α}) . Hint: Notice that for uncountable α the ω -saturation is
clear and keep in mind our choice of A and a .

(ii) Show that for all A ⊆ DB , clB(A) = SH(A ∪A) ∩DB .
(iii) Show that if (DB, clB) is locally modular, then it is modular. Hint: Use our

choice of A and a .

7.13 Definition. Let G be a permutation group of a set X (i.e. a subgroup
of Sym(X)). By GY , Y ⊆ X we mean the set of all g ∈ G such that g(x) = x
for all x ∈ Y . We write [Y ] for the set of all x ∈ X such that g(x) = x for all
g ∈ GY . We say that (G,X) is quasi-Urbanic if for all finite Y ⊆ X and elements
x, y ∈ X − [Y ] , there is g ∈ GY such that g(x) = y .

7.14 Exercise. Let G = {g � DB| g ∈ Aut(B/A)} . Show that (G,DB) is
quasi-Urbanic and that [A] = clB(A) for all A ⊆ DB .

7.15 Theorem. One of the following holds:
(i) (DB, clB) is trivial.
(ii) There are a vector space V , a subspace W ⊆ V and a bijection f : DB →

V −W such that for all A ⊆ DB , f(clB(A)) = span(W ∪ f(A))−W .

Proof. This follows immediately from [Zi] Theorem B and Exercises 7.14 and
7.12 (iii) (and the fact that clB(∅) = ∅). In this course we skip the proof of Theorem
B from [Zi].

So in particular, (DB, clB) is modular. We will use this to coordinatize all
elements of B using elements of DB . Notice also that W in Theorem 7.15 (ii) and
the field over which V is a vector space must be of size ≤ ω (exercise).

7.16 Lemma. For all a ∈ B , there is finite dimensional Xa ⊆ DB such that
Xa = clB(Xa) and the following holds:

(i) If f ∈ Aut(B/Aa) , then f(Xa) = Xa .
(ii) a ∈ SH(AXa) .

Proof. Let W be the set of finite dimensional X ⊆ DB such that clB(X) = X
and a ∈ SH(AX). Since B = SH(ADB), it is easy to see that W ̸= ∅ . Thus it is
enough to show that W is closed under intersections (since then Xa is the ⊆-least
element of W ). So suppose X,Y ∈ W . Clearly clB(X ∩ Y ) = X ∩ Y . Denote
Z = X ∩ Y . We want to show that a ∈ SH(AZ).

Let C = SH(AZ). Then C is countable and ω -saturated by Exercise 7.12 (i).
Also pick d = (d0, ..., dn) ∈ X − Z such that clB(Zd) = X e = (e0, ..., em) ∈ Y − Z
such that clB(Ze) = Y . We can choose these so that both sequences are (clB)Z -
independent. Then D = SH(AX) = SH(Cd) is ω -primary over Cd and similarly
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E = SH(AY ) is ω -primary over Ce , again by Exercise 7.12 (i). By modularity,
d ↓clZ e and so d ↓sC e (exercise). So D ∩ E = C by Exercise 5.10 (i) and thus a ∈ C .

7.17 Definition. Let a = (a0, ..., an) ∈ B and B = (b0, ..., bm) ∈ B . We say
that a is quantifier free definable from b over A if for all i ≤ n , there is a quantifier
free formula ϕi and ci ∈ A such that for all d ∈ B , B |= ϕi(d, b, ci) iff d = ai .
We say that a and b are quantifier free inter-definable over A if a is quantifier free
definable from b over A and b is quantifier free definable from a over A .

7.18 Theorem. For all elements a ∈ B there is b = (b0, ..., bn) ∈ DB such
that a and b are quantifier free inter-definable over A .

Proof. Xa be as in Lemma 7.16 and b = (b0, ..., bn) ∈ Xa be such that clB(b) =
Xa . Then a is quantifier free definable from b over A by Lemma 7.16 (ii). For the
other direction it is enough to show that Xa ⊆ SH(Aa). If not then one can easily
contradict Lemma 7.16 (i) (exercise, keep in mind that SH(Aa) is ω -saturated).

7.19 Exercise. Find K that satisfies the assumptions of this section, count-
able ω -saturated K -model A and an element a such that tg(a/A) is not minimal
(and thus the coordinatization is not trivial).

References

[Hy] T. Hyttinen, Generalizing Morley’s theorem, Mathematical Logic Quarterly, vol.
44, 1998, 176-184.

[HK] T. Hyttinen and K. Kangas, Categoricity and universal classes, Mathematical
Logic Quarterly, vol. 64, 2018, 464-477.

[HK2] T. Hyttinen and K. Kangas, An AEC framework for fields with commuting
automorphisms, manuscript.

[HP] T. Hyttinen and G. Paolini, Coxeter groups and abstract elementary classes,
Notre Dame Journal of Formal Logic, to appear.

[HS] T. Hyttinen and S. Shelah, Strong splitting in stable homogeneous models, An-
nals of Pure and Applied Logic, vol. 103, 2000, 201-228.

[Zi] B. Zilber, Hereditarily transitive groups and quasi-Urbanik structures, In: Model
Theory and Applications, AMS Translations 2, vol. 195, 1999.

28


