
Companion to the course mathematical logic

Tapani Hyttinen

Abstract

In the lectures I will make some small changes to the definitions and proofs from
J. Väänänen’s lecture notes ’A short course on mathematical logic’. In these notes I
will explain what the changes are and why they are made.

1. On recursive definitions

In this course almost everything is defined using recursion and proved using
induction. Thus I think it is important that the student understands how and why
they work. This is the purpose of this section.

Let A be a non-empty set and f an n -ary function from A to A , n ∈ IN
(i.e. f : An → A). We say that C ⊆ A is f -closed if for all c1, ..., cn ∈ C ,
f(c1, ..., cn) ∈ C . If F is a set functions from A to A of finite arity, we say that
C ⊆ A is F -closed if it is f -closed for all f ∈ F . For non-empty B ⊆ A , we write
clA(B,F) for the ⊆-least subset of A that contains B and is F -closed (if such set
exists).

1.1 Lemma. clA(B,F) exists.

Proof. Let S be the family of all F -closed D ⊆ A that contain B . Notice that
A ∈ S . Let C be the intersection of all elements of S . Then C = clA(B,F): Clearly
B ⊆ C and if ci, ..., cn ∈ C and f ∈ F , then for all D ∈ S , f(c1, ..., cn) ∈ D (since
c1, ..., cn ∈ D and D is f -closed) and thus f(c1, ..., cn) ∈ C i.e. C is F -closed.
Since every F -closed set that contains B belongs to S , C is the ⊆ -least such.

1.2 Example. Let G be a group, f : G2 → G be the group operation and
g : G→ G be such that g(a) = a−1 . Then for all non-empty B ⊆ G , clG(B, {f, g})
is the subgroup generated by B .

1

1.3 Lemma. Let P be any property (expressible e.g. in set theory). Then
every element of clA(B,F) has P if the following holds:

(i) every element of B has P ,
(ii) if each of c1, ..., cn ∈ clA(B,F) has P and f ∈ F is of arity n , then

f(c1, ..., cn) has P .

Proof. Let D be the set of all c ∈ clA(B,F) that has P . By (i), D contains
B and by (ii), D is F -closed. Since clA(B,F) is the ⊆ -least such, clA(B,F) ⊆ D
i.e. every element of clA(B,F) has P .

1.4 Example. Let B = {0} and f : IN → IN be such that f(n) = n + 1 .
Then IN = clIN(B, {f}) and thus every natural number has a property P if 0 has
it and if n ∈ IN has P , then also n+ 1 has it.

1.5 Exercise. Show that for all c ∈ clA(B,F) either c ∈ B or there are
c1, ..., cn ∈ clA(B,F) and f ∈ F such that c = f(c1, ..., cn) .

1.6 Example. Let W be the set of all finite sequences of symbols from the set
V = {(,),+, X, 1} i.e. the set of all words in vocabulary V . For u, v ∈W , we write
uv for the concatenation of u and v . Let B = {X, 1} and f : W 2 → W be such
that f(u, v) = (u + v) . We write LP = clW (B, {f}) (so e.g. ((X + 1) + 1) ∈ LP ,
LP = linear polynomials). We write also V (u) for the number of left brackets in u
and O(u) for the number of right brackets.

Structure trees: We will look these in lectures on blackboard.

1.7 Exercise.
(i) O(u) = V (u) for all u ∈ LP .
(ii) If u and w are non-empty words and uw ∈ LP , then V (u) > O(u) .

We say that the triple (A,B, F) is good if for all c ∈ clA(B,F) the following
holds: Either c ∈ B or there are unique f ∈ F and c1, ..., cn ∈ clA(B,F) such that
c = f(c1, ..., cn).

1.8 Exercise. Let W , B and f be as in Example 1.6. Show that (W,B, {f})
is good. Hint: Use Exercise 1.7.

For all n ∈ IN we define clnA(B,F) as follows: cl0A(B,F) = B and

cln+1
A (B,F) = clnA(B,F) ∪ {f(c1, ..., cn)| c1, ..., cn ∈ clnA(B,F), f ∈ F}.

1.9 Lemma.
∪∞

n=0 cl
n
A(B,F) = clA(B,F) .

Proof. Easy induction on n shows that for all n ∈ IN, clnA(B,F) ⊆ clA(B,F)
and thus

∪∞
n=0 cl

n
A(B,F) ⊆ clA(B,F). On the other hand, clearly,

∪∞
n=0 cl

n
A(B,F)

is F -closed and contains B and thus clA(B,F) ⊆
∪∞

n=0 cl
n
A(B,F).

1.10 Lemma. Suppose (A,B, F) is good, R is a set, g : B → R and for
all f ∈ F , gf : Rn → R , where n is the arity of f . Then there is a unique h :
clA(B,F) → R such that h � B = g and for all c ∈ clA(B,F)−B , if c = f(c1, ..., cn) ,
then h(c) = gf (h(c1), ..., h(cn)) .

2

Proof. For all n ∈ IN, we define function hn : clnA(B,F) → R as follows:
h0 = g and hn+1 : cln+1

A (B,F) → R is such that hn+1 � clnA(B,F) = hn and for
c = f(c1, ..., cn) ∈ cln+1

A (B,F) − clnA(B,F), hn+1(c) = gf (hn(c1), ..., hn(cn)). Since
(A,B, F) is good, each hn is well-defined and clearly h =

∪∞
n=0 hn is the required

function. The uniqueness of h follows by an easy induction.

1.11 Example. There is a unique function h : LP → IN such that h(X) =
h(1) = 0 and h((u+ v)) = max{h(u), h(v)}+ 1 .

Definition of h on structure trees: We will look this in lectures on blackboard.

1.12 Exercise. Let S be the set of all (unary) functions IN → IN , f0 ∈ S
be such that f0(n) = n for all n ∈ IN and f1 ∈ S such that f1(n) = 1 for all
n ∈ IN . Let B = {f0, f1} and F = {f+} , where f+ : S2 → S is such that
f+(g0, g1) = g2 if for all n ∈ IN , g2(n) = g0(n) + g1(n) . We write g0 + g1 for
f+(g0, g1) . Let LF = clS(B,F) . Show that there is no function h : LF → IN such
that h(f0) = h(f1) = 0 and h(g0 + g1) = max{h(g0), h(g1)}+ 1 .

1.13 Exercise. Suppose g : IN → IN . Show that g ∈ LF iff there are
m, k ∈ IN such that m+ k ̸= 0 and for for all n ∈ IN , g(n) = mn+ k .

1.14 Exercise. By Lemma 1.10, there is Ev : LP → LF (Ev = evaluation)
such that Ev(X) = f0 , Ev(1) = f1 and Ev((u+ w)) = Ev(u) + Ev(w) . Show that
Ev is a surjection.

1.15 Exercise. Let n ∈ IN . We define Evn : LP → IN as follows: Evn(X) =
n , Evn(1) = 1 and Evn((u + w)) = Evn(u) + Evn(w) . Show that for all w ∈ LP ,
Evn(w) = Ev(w)(n) .

So this operation clA(B,F) gives meaning to our recursive definitions. When
we use it we usually do not specify A , it is clear from the context and usually the
choice of A does not matter much, and B and F are given more implicitely. E.g.
the definition of LP will get the form:

(i) X and 1 are LP ,
(ii) if w and u are LP , then also (w + u) is.

And then inductive proofs (i.e. proofs based on Lemma 1.3) go along this form of
definition. E.g. in the case of LP there are two steps: (1) w = X or w = 1 and
(2) w = (u1 + u2) and in this latter case we assume (without mentioning it) that
u1, u2 ∈ clW ({X, 1}, {f}) and that they satisfy the claim, this is called the induction
assumption.

When a recursive definition is based on a good triple, we say that the definition
is good.

2. Propositional logic

Here we follow the lecture notes. There is a typo in Definition 2.11: v(S) = 1 if
v(A) = 1 for all A ∈ S . Also in the proof of Theorem 2.26 in Case 1, Theorem 2.24
should be Theorem 2.21.

3

The definition of propositional formulas is good. The definition of S ⊢ A is not
good. In particular, it follows that the deductions (proofs) are not unique, there does
not even exist any canonical deductions, see Problem 2.3.8 from the lecture notes.

3. Structures

Again we follow the lecture notes except that we make a small change to the
notation: If A = (A,SatA) is an L -structure, we write RA for SatA(R) for relation
symbols R ∈ L and similarly for function and constant symbols. Thus, e.g., if
L = {R0, R1, f, c} , we write A = (A,RA

0 , R
A
1 , f

A, cA) for (A,SatA). Sometimes
the symbol from the vocabulary and its interpretation are denoted by the same
symbol. E.g. if L = {+,×, 0, 1} and A is the ring of integers, we write simply
A = (Z,+,×, 0, 1) and this means that the interpretation of + is the usual addition
of integers etc. So e.g. 0A = 0. However it is important to keep in mind that in this
0A = 0, the first 0 is the symbol from the vocabulary and the second is the integer
zero. Mixing these two causes trubles.

We do this to follow the usual notations from the literature. This will turn out
to be beneficial accasionally.

We will also talk about congruence relations: Let A = (A,SatA) be an L -
structure. We say that E ⊆ A2 is a congruence relation if

(i) E is an equivalence relation,

(ii) if R ∈ L is an n + 1-ary relation symbol and ai, bi ∈ A , i ≤ n , are such
that for all i ≤ n , (ai, bi) ∈ E , then (a0, ..., an) ∈ RA iff (b0, ..., bn) ∈ RA ,

(ii) if f ∈ L is an n + 1-ary function symbol and ai, bi ∈ A , i ≤ n , are such
that for all i ≤ n , (ai, bi) ∈ E , then (fA(a0, ..., an), f

A(b0, ..., bn)) ∈ E .

The point in these congruence relations is that they allow us to define a new structure
B = A/E : We write a/E for the E -equivalence class of a and then

(i) the universe B of B is {a/E| a ∈ A} ,
(ii) for n+1-ary realation symbols R ∈ L , RB = {(a0/E, ..., an/E)| (a0, ..., an) ∈

RA} ,
(iii) for n + 1-ary function symbols and a0, ..., an ∈ A , fB(a0/E, ..., an/E) =

fA(a0, ..., an)/E .

The reader may want to compare this construction to the construction of G/H ,
where G is a group and H is a normal subgroup of G (normality guarantees that
the equivalence relation ab−1 ∈ H is a congruence relation), see also Exercise 3.6.

3.1 Exercise. Show that A/E is well-defined.

3.2 Exercise. For groups (G,+) and (H,+′) , we write (G,+)× (H,+′) for
the group (F,+′′) , where F = G×H = {(a, b)| a ∈ G, b ∈ H} and (a, b)+′′ (c, d) =
(a + c, b +′ d) . Below Z = (Z,+) is the additive group of integers. In Exercise 3.3,
Z is also the set of integers.

(i) Show that Z/6Z is isomorphic with (Z/3Z)× (Z/2Z) .

(ii) Show that Z/9Z is not isomorphic with (Z/3Z)× (Z/3Z) .

4

By (Aut(M), ◦) we mean the set of all automorphisms f : M → M with the
composition ◦ of functions as the group operation.

3.3 Exercise. Let S : Z → Z be such that S(z) = z + 1 for all z ∈ Z . Show
that (Z,+) is isomorphic with (Aut((Z, S)), ◦) .

3.4 Exercise. Suppose A is a non-empty set and f and g are bijections
A → A . Show that f is an automorphism of (A, g) iff g is an automorphism of
(A, f) .

3.5 Exercise. Write R∗
+ = {x ∈ R| x > 0} , where R is the set of reals. Show

that π : R∗
+ → R∗

+ , π(x) = x2 , is an automorphism of (R∗
+,×, <, 1) .

3.6 Exercise. Let R[X] = (R[X],+,×) be the polynomial ring (in one
indeterminate) over the reals (+ and × are the addition and multiplication of poly-
nomials). Let I ⊆ R[X] be an ideal i.e. the zero polynomial 0 ∈ I , if P,Q ∈ I ,
then P + Q and the additive inverse −P are in I (i.e. (I,+) is a subgroup of
(R[X],+)) and for all P ∈ I and Q ∈ R[X] , QP ∈ I . Show that the relation
{(P,Q)| P,Q ∈ R[X], P −Q ∈ I} is a congruence relation.

4. Predicate logic

Here we will make more changes: We make small changes to the notations, we
give alternative truth definition, we change a bit the definition of deduction and we
will give proper definitions for concepts like FV F . We also need to make small
changes to the theorems and we point out some changes to the proofs.

Already in propositional logic, when we wrote formulas, we did not follow the
definition. Here we do the same for terms and formulas of predicate logic. So we
do not change the definitions, we just change the way write terms and formulas.
In the case of terms, we write f(t1, ..., tn) instead of ft1...tn . This is the usual
way of writing functions and it induces readability. In some cases in mathematics,
there are other common ways of writing these terms and in these cases we follow
those. E.g. if L = {+,×, 0, 1} and we think these as addition etc., we write e.g.
(v1(1 + 1) + v2)v3 instead of ×(+(×(v1,+(1, 1)), v2), v3) and by this we mean the
term × + ×v1 + 11v2v3 . We need to know that the definition of a term is good in
the sense of Section 1. The proof of this is a bit tricky and thus we omit it. If the
one has problems with this, one can add the brackets to the definition of a term as
we did above with our notations and then one can prove the goodness exactly as in
Exercise 1.8. If one does this, then one must keep in mind these bracket when one
works with codes for terms later in these lectures.

Similarly, we will write t1 = t2 for L -equations instead of ≈ t1t2 . So following
what is above, we write e.g. (v1(1 + 1) + v2)v3 = 1 + v2v3 + v1 for the formula
≈ ×+×v1 + 11v2v3 ++1× v2v3v1 . However, as above it is important to recognize
when = is a symbol and when it means identity: E.g. in t1 = t2 it is usually a
symbol, i.e. in itself, it means nothing and so this t1 = t2 is just a string of symbols
(this could also mean that the two strings t1 and t2 of symbols are the same but

5

usually it does not, however, see Definition 4.1(i) below) and in tA1 < s >= tA2 < s >
it means identity i.e. that the two interpretations are the same. So the first is just a
string of symbols and the second is a mathematical claim. One can tell the difference
from the context.

We write also R(t1, ..., tn) in place of Rt1...tn . The goodness of the definition
of a formula can be proved exactly as in Exercise 1.8 (now we have the brackets).
And from these ≈ t1t2 and Rt1...tn one can figure out what the terms are. Again a
bit tricky but, again, by adding the brackets to the definition of a term, the problem
disappears (exercise).

Now we redefine Tarski’s truth definition in the form it is usually presented.

4.1 Definition. A |=s ϕ is defined as follows (by recursion on the definition
of a formula):

(i) ϕ = t1 = t2 (notice that the first = is identity and the second = is a symbol):
A |=s ϕ if tA1 < s >= tA2 < s > ,

(ii) ϕ = R(t1, ..., tn) : A |=s ϕ if (tA1 < s >, ..., tAn < s >) ∈ RA ,
(iii) ϕ = ¬ψ : A |=s ϕ if A ̸|=s ψ ,
(iv) ϕ = ψ → θ : A |=s ϕ if A ̸|=s ψ or A |=s θ ,
(v) ϕ = ∀vnψ : A |= ϕ if for all a ∈ A , A |=s(a/n) ψ .

Let us look how this definition fits to Lemma 1.10 which will guarantee that the
definition is well-made: Definition 4.1 can be seen to define a valuation V in the
style of propositional logic (1 true and 0 false). The definition depends on M but
it is fixed, so we just remind us of M by putting it to a subscript of V , i.e. we call
the valuation VM . The definition goes by recursion on ϕ , so the domain of VM is
the set of all L -formulas. The truth value depends also on the assigment s and thus
the range of VM is the set of all functions from the set of all assignments for M to
the set {0, 1} i.e. if we write S(M) for the set of all assignments for M , the range is
the set of all functions X : S(M) → {0, 1} . So now e.g. (i) can be read saying that

(a) (VM (t = u))(s) = 1 iff tM < s >= uM < s > ,
(iii) can be read saying that

(b) (VM (ϕ))(s) = 1− (VM (ψ))(s)
and (v) can be read saying that

(c) (VM (ϕ))(s) = 1 iff (VM (ψ))(s(a/n)) = 1 for all a ∈M .
These requirement determine the functions g and gf in Lemma 1.10 (the cases (ii)
and (iv) are missing from above, exercise): We let A be the set of all finite sequences
of symbols that appear in L-formulas, B is the set of all atomic L-formulas and
F consists of functions f¬ , f→ and fn , n ∈ IN, where f¬(w) = ¬w , f→(w, u) =
(w → u) and fn(w) = ∀vnw . Then clA(B,F) is the set of all L -formulas. Now e.g.
g(t = u) is the function from assignments to {0, 1} , s.t. for all assingments s ,

(a’) g(t = u)(s) = 1 iff tM < s >= uM < s >
and if X is a function from assignments to {0, 1} , then gf¬(X) is the function from
assignments to {0, 1} s.t.

(b’) (gf¬(X))(s) = 1−X(s) for all assignments s .

6

Then our VM is the function h from Lemma 1.10. By our choice of g and Lemma
1.10, VM (t = u)(s) = g(t = u)(s) = 1 iff tM < s >= uM<s> i.e. (a) holds. Also
(VM (¬ψ))(s) = (gf¬(VM (ψ)))(s) = 1− (VM (ψ))(s) i.e. (b) holds.

And now M |=s ϕ if (VM (ϕ))(s) = 1 and Lemma 1.10 quarantees that Tarski’s
truth definition is well-made. After convincing us of this, we can forget VM and
apply Tarski’s truth definition simply by using the truth conditions it states.

4.2 Exercise. Show that A |=s ϕ according to Definition 4.1 above iff s ∈
SatA(ϕ) where SatA(ϕ) is as in Definition 4.8 from the lecture notes. Hint: By
induction on the definition of a formula, i.e. use Lemma 1.3 from above.

In Example 4.13, there is an error: The formula for s(0) is prime is incorrect.
E.g. ¬∃v1∃v2(v1 × v2 = v0 ∧ ¬v1 = v0 ∧ ¬v1 = 1) ∧ ¬v0 = 1 works.

We extend Definition 4.14 from the lecture notes a bit: We write Σ |= ϕ if for all
A and s the following holds: If A |=s ψ for all ψ ∈ Σ, then A |=s ϕ . If Σ = {ψ} ,
we write just ψ |= ϕ and if Σ = ∅ , we write |= ϕ and say that ϕ is valid.

We give recursive definitions to some concepts for which semi-heuristic definitions
are given in the lecture notes. It is much easier to prove theorems starting from proper
definitions.

We do not need notions bound and free occurrences of variables. But we need
to know which variable are free in a formula.

4.3 Definition. The set FV (ϕ) of free variable of a formula ϕ is defined as
follows:

(i) ϕ atomic: vi ∈ FV (ϕ) if vi appears in ϕ ,
(ii) ϕ = ¬ψ : FV (ϕ) = FV (ψ) ,
(iii) ϕ = ψ → θ : FV (ϕ) = FV (ψ) ∪ FV (θ) ,
(iv) ϕ = ∀viψ : FV (ϕ) = FV (ψ)− {vi} .

We give also a recursive definition for FV F .

4.4 Definition. FV F (t, vn, ϕ) is defined as follows:
(i) ϕ atomic: FV F (t, vn, ϕ) holds always,
(ii) ϕ = ¬ψ : FV F (t, vn, ϕ) holds, if FV F (t, vn, ψ) holds,
(iii) ϕ = ψ → θ : FV F (t, vn, ϕ) holds, if both FV F (t, vn, ψ) and FV F (t, vn, θ)

hold,
(iv) ϕ = ∀viψ : FV F (t, vn, ϕ) holds, if vn ̸∈ FV (ϕ) or FV F (t, vn, ψ) holds and

vi does not appear in t .

4.5 Exercise. Show that FV F (t, vn, ϕ) holds if t = vn or variables that
appear in t do not appears in ϕ (e.g. t is a constant term i.e. no variable appears
in t).

Notice that if t is a constant term, then tM < s > does not depend on the
interpretation s (exercise) and thus we sometimes write just tM for tM < s > when
t is a constant term.

We give also a recursive definition for substitution.

7

4.6 Definition. For terms t and u , u(t/vi) is defined as follows:
(i) u = vn : u(t/vi) = t if n = i and otherwise it is u ,
(ii) u = c : u(t/vi) = u ,
(iii) u = f(u0, ..., un) : u(t/vi) = f(u0(t/vi), ..., un(t/vi)) .

4.7 Definition. ϕ(t/vi) is defined as follows:
(i) ϕ = u0 = u1 : ϕ(t/vi) = u0(t/vi) = u1(t/vi) ,
(ii) ϕ = R(u0, ..., un) : ϕ(t/vi) = R(u0(t/vi), ..., un(t/vi) ,
(iii) ϕ = ¬ψ : ϕ(t/vi) = ¬(ψ(t/vi)) (the additional brackets are there to indicate

the order in which the operations are performed),
(iv) ϕ = ψ → θ : ϕ(t/vi) = ψ(t/vi) → θ(t/vi) .
(v) ϕ = ∀vnψ : If vi ̸∈ FV (ϕ) , then ϕ(t/vi) = ϕ and otherwise ϕ(t/vi) =

∀vn(ψ(t/vi)) .

We will prove Substitution lemma in the following restricted form. This will be
good enough for us and a lot easier to prove.

4.8 Theorem. Suppose t and u are terms, ϕ is a formula, A = (A,SatA) is
a structure and s : IN → A . Let a = tA < s > . Then

uA < s(a/i) >= (u(t/vi))
A < s >

and if FV F (t, vi, ϕ) holds, then

A |=s(a/i) ϕ iff A |=s ϕ(t/vi).

There is one place where we need simultanious substitution and that is in identity
axioms. So for atomic formulas ϕ , distinct natural numbers k1, ..., kn and terms
t1, ..., tn we define ϕ(t1/vk1 , ..., tn/vkn) as follows: Pick any m such that (it is strictly
greater than any kj , 1 ≤ j ≤ n and) if vi appears in ϕ or in any tj , 1 ≤ j ≤ n ,
then i < m . Then we let

ϕ(t1/vk1
, ..., tn/vkn

) = ϕ(vk1+m/vk1
)...(vkn+m/vkn

)(t1/vk1+m)...(tn/vkn+m).

This definition does not depend on the choice of m (exercise).

4.9 Exercise.
(i) Suppose t is a term, n ∈ IN and ϕ is a formula. Show that if vn ̸∈ FV (ϕ) ,

then ϕ(t/vn) = ϕ and FV F (t, vn, ϕ) holds.
(ii) Suppose ϕ is an atomic formula, t0, ..., tn are terms and i0, ..., in are distinct

natural numbers. Show that for all structures M and assingments s , if we write
ak = tMk < s > for k ≤ n , then M |=s(a0/i0)...(an/in) ϕ iff M |=s ϕ(t0/vi0 , ..., tn/vin) .

(iii) Suppose ϕ is a formula, i0, ..., in are distinct natural numbers and t0, ..., tn
are terms such that for all i ≤ n , if vk appears in ti , then vk does not appear in ϕ ,
vk ̸∈ {vi0 , ..., vin} and vk does not appear in any tj for j ≤ n , j ̸= i (e.g. t0, ..., tn
are constant terms). Show that for all structures M and assigments s , if we write
ai = tMi < s > , then M |=s ϕ(t0/vi0)...(tn/vin) iff M |=s(a0/i0)...(an/in) ϕ .

8

We make a small change to the definition of definability: In addition to

(*) M |=s ϕ iff (s(o), ..., s(n− 1)) ∈ X

we require that FV (ϕ) ⊆ {v0, ..., vn−1} . This is just for technical convenience, it
does not change what is definable: E.g. if ϕ satisfies (*) but FV (ϕ) = {v0, ..., vn} ,
then ψ = ∀vnϕ still satisfies (*) and now FV (ψ) ⊆ {v0, ..., vn−1} (exercise). In the
literature this form of definability is known as definability without parameters. When
people talk about definability, they usually mean definability with parameters. This
is a different notion but if every element of the model is definable without parameters,
the two notions are the same. This is the case with our Nexp , see below or the lecture
notes.

4.10 Exercise. Let M = (P (IN), RM) , where P (IN) is the power set of IN
and R = {(a, b) ∈ P (IN)2| a ⊆ b} .

(i) Show that f(a, b) = a ∪ b is definable in M .

(ii) What are the definable elements of M ?

(iii) Find definable X ⊆ P (IN) such that both X and P (IN)−X are infinite.

If A is a formula of propositional logic and ϕ is a formula then by A(ϕ/pi) we
mean the string of symbols that we get from A by replacing each occurrence of pi
by ϕ (exercise: give a recursive definition for A(ϕ/pi)). We say that a formula ψ is
an axiom of propositional logic if there is a formula A of propositional logic that is
an axiom of propositional logic and n ∈ IN and formulas ϕi , i ≤ n , such that ψ =
A(ϕ0/p0)...(ϕn/pn) (notice that from this it follows that if pj appears in A , then j ≤
n). We say that a formula ψ is a tautology, if there is a tautology A of propositional
logic, n ∈ IN and formulas ϕi , i ≤ n , such that ψ = A(ϕ0/p0)...(ϕn/pn).

Our main change is in the definition of deduction i.e. in Definitions 4.43 and
4.45 from the lecture notes. We make this change because the definitions from the
lecture notes give a notion of proof that is very difficult to code as a natural and this
is what we need to do later. Our version is not without problems, but these problems
do not appear in the cases we are interested in, we will look these soon.

4.11 Definition. For fixed vocabulary L , we define Σ ⊢ ϕ as in Definition
4.43 from the lecture notes except that (T4) is replaced with the following:

(T4) if Σ ⊢ ψ → θ and vj is not free in ψ nor in any formula from Σ , then
Σ ⊢ ψ → ∀vjθ .

Few remarks: Notice that this definition is for each vocabulary L separately and
thus when this vocabulary plays a role we write ⊢L for ⊢ . Also it is not immediately
clear that by extending the vocabulary the set of L -formulas provable from Σ does
not increase (it does not as we will see later). Finally, notice that our 4.11 defines by
recursion the set of L-formulas provable from Σ. This is not the case with Definition
4.43 from the lecture notes, it defines the set of pairs (Σ, ϕ) such that Σ ⊢ ϕ . So
although the definitions look similar, they are fundamentally different.

4.12 Exercise.

9

(i) Show that A(ϕ0/p0)...(ϕn/pn) is a formula for all formulas A of propositional
logic, n ∈ IN and formulas ϕi , i ≤ n , if the following holds: if pj appears in A , then
j ≤ n .

(ii) Show that Σ ⊢ ψ for all tautologies ψ and sets Σ of formulas.

One can always use Exercise 4.12 (ii) when one shows that some formula ϕ is
provable from some set Σ. This is very useful.

We define (ϕ0, ..., ϕn) is a deduction from Σ exactly as in Definition 4.45 from
the lecture notes except that we replace 6 with the following:

6. there are k < i , L -formulas ψ and θ and a natural number j such that
(i) ϕk = ψ → θ ,
(ii) ϕi = ψ → ∀vjθ ,
(iii) vi is not free in ψ nor in any formula from Σ.

Notice that item 6 in Definition 4.45 do not make any sense. The correct version of
item 6 (for Definition 4.43 i.e. in the context of the lecture notes) makes the definition
a recursive definition. The recursion goes on the length of the deduction.

4.13 Exercise. Show that Σ ⊢ ϕ iff there is a deduction (ϕ0, ..., ϕn) from Σ
such that ϕn = ϕ . Conclude that if Σ ⊢ ϕ , then there is finite Σ′ ⊆ Σ such that
Σ′ ⊢ ϕ (one can prove this also by induction).

The problem with our notion ⊢ is that it is not transitive i.e. it is possible that
Σ ⊢ ψ for all ψ ∈ Σ′ and Σ′ ⊢ ϕ but Σ ̸⊢ ϕ , in fact it is possible even that Σ′ ⊆ Σ,
Σ′ ⊢ ϕ but Σ ̸⊢ ϕ . This is ugly and the reason why the more complicated proof
system is used in the lecture notes. However, as we will see, this does not happen
when Σ is a theory i.e. a set of sentences and we are interested only in provability
from theories. For theories, the two definitions of deduction are equivalent (exercise,
use completeness).

Now to the example of non-transitivity: Let L = {E} where E is a binary
relation symbol. Let Σ be the set of all ∅ -identity axioms and for each ∅-formula
ϕ , let ϕ∗ be the L-formula we get from ϕ by replacing each atomic subformula
vi = vj by E(vi, vj) (for all i, j , exercise: give a recursive definition for ϕ∗). Let
Σ∗ = {ϕ∗| ϕ ∈ Σ} . From the following exercise it follows that ∅ ⊢ ∀v1v1 = v1 but
Σ ̸⊢ ∀v1v1 = v1 .

4.14 Exercise.
(i) Show that if Σ ⊢∅ ∀v1v1 = v1 , then Σ∗ ⊢L ∀v1E(v1, v1) .
(ii) Show that Σ∗ ̸⊢L ∀v1E(v1, v1) . Hint: Use soundness, choose the structure

so that it contains at least two elements and the assignment so that it is a constant
function.

(iii) Show that ∅ ⊢∅ ∀v1v1 = v1 .

4.15 Exercise.
(i) Suppose Σ′ ⊢ ϕ and Σ is a set of sentences. Show that Σ ∪ Σ′ ⊢ ϕ .
(ii) Let Σ be a set of L-sentences, Σ′ be a set of L -formulas and ϕ be an

L -formula. Suppose Σ ⊢ ψ for every ψ ∈ Σ′ and Σ′ ⊢ ϕ . Show that Σ ⊢ ϕ . Hint:

10

Start by showing that we may assume that Σ′ is a singleton and then use (i) and
Deduction lemma.

We proved Lemma on constants in the following form (the proof is the same as
the proof of the lecture notes version):

4.16 Lemma. Suppose Σ is a set of L -formulas, c ̸∈ L is a constant symbol
and ϕ is an L ∪ {c}-formula. If Σ ⊢L∪{c} ϕ , then there is m ∈ IN such that for all
k ≥ m , Σ ⊢L ϕ(vk/c) , where ϕ(vk/c) is a formula got from ϕ by replacing c by vk
everywhere.

In Theorem 4.57 (Deduction Lemma) in ’and conversely’ i.e. in the direction if
Σ ⊢ ψ → ϕ , then Σ ∪ {ψ} ⊢ ϕ , we need to assume that ψ is a sentence.

In order to avoid the use of set theory, we prove the completeness theorem only
for countable vocabularies. Thus, essentially from the beginning of Subsection 4.4
on, we assume that the vocabulary is countable.

We define that an L-theory Σ is L -inconsistent if there is an L -sentence ϕ such
that Σ ⊢L ϕ and Σ ⊢L ¬ϕ . If there is no such ϕ , we say that Σ is L -consistent.

4.17 Exercise. Suppose that Σ is a set of L -formulas, ϕ is an L -formula and
c ̸∈ L is a constant symbol. Show that if Σ ⊢L∪{c} ϕ , then Σ ⊢L ϕ . Conclude that
if Σ is L ∪ {c} -inconsistent, then it is L -inconsistent. Hint: Lemma on constants.

Now we can write the Chain lemma in the following form:

4.18 Lemma. Suppose that for all n ∈ IN , Σn is an Ln -consistent Ln -
theory. In addition suppose that for all n ∈ IN , Σn ⊆ Σn+1 and Ln ⊆ Ln+1 . Let
Σ = ∪∞

n=0Σn and L = ∪∞
n=0Ln . Then Σ is L -consistent.

Proof. For a contradiction, let (ϕi)i≤m and (ψi)i≤k be deductions from Σ for
ϕ and ¬ϕ for some L-sentence ϕ . It is easy to see that there is p ∈ IN such that
every ϕi is Lp -formula and if ϕi ∈ Σ, then it is in Σp and the same for formulas ψi .
But then Σp is Lp -inconsistent, a contradiction.

Theorem 4.68: We say that an L-theory Σ is Henkin if for all L -sentences of
the form ∀vnψ there is a constant c ∈ L such that ψ(c/vn) → ∀vnψ belongs to Σ.
Then we call this sentence ψ(c/vn) → ∀vnψ a Henkin axiom (a bit misleading name).
Then in Theorem 4.68 we assume that ϕ and ψ are sentences and add a third item:

3. If in addition Σ is Henkin and ∀vnθ is an L -sentence, then Σ ⊢ ∀vnθ iff for
all constant terms t , T ⊢ θ(t/vn).

To the proof of Theorem 4.70 we make many corrections:

11

(i) In Claim 2 we assume that t1, ..., tn and t′1, ..., t
′
n are constant terms and

replace Rt1...tn ∈ Σ and Rt′1...t
′
n ∈ Σ by Σ ⊢ R(t1, ..., tn) and Σ ⊢ R(t′1, ..., t

′
n),

respectively.
(ii) In Claim 3 we again assume that t1, ..., tn and t′1, ..., t

′
n are constant terms

and replace ≈ ft1...tnft
′
1...t

′
n ∈ Σ by Σ ⊢ f(t1, ..., tn) = f(t′1, ..., t

′
n).

(iii) Claim 4 should be: For all constant L -terms t and L -formulas ϕ the
folowing holds: tM < s >= [t] for all assignments s and if vk1 , ..., vkn lists the
free variables of ϕ (without repetition) and t1, ..., tn are constant L-terms, then
M |= ϕ(t1/vk1)...(tn/vkn) iff Σ ⊢ ϕ(t1/vk1)...(tn/vkn).

(iv) The induction step in the proof of the first claim should be:

f(u1, ..., um)M < s >= fM (uM1 < s >, ..., uMm < s >) =

fM ([u1], ..., [um]) = [f(u1, ..., um)].

We recall that since, for constant terms t , tM < s > does not depend on
s , we can write simply tM for tM < s > . We also notice that the formulas
ϕ(t1/vk1)...(tn/vkn) from Claim 4 are sentences (exercise: by induction on ϕ , show
that if t is a constant term then vn is not free in ϕ(t/vn)).

(v) Item 1 i.e. the case when ϕ is u1 = u2 : We write u′1 = u1(t1/vk1)...(tn/vkn)
and similarly for u2 . Notice that u′1 and u′2 are constant terms (exercise). Then

M |= (u1 = u2)(t1/vk1
)...(tn/vkn

) ⇔ M |= u′1 = u′2 ⇔

(u′1)
M = (u′2)

M ⇔ [u′1] = [u′2] ⇔
u′1 ∼ u′2 ⇔ Σ ⊢ u′1 = u′2 ⇔ Σ ⊢ (u1 = u2)(t1/vk1)...(tn/vkn).

and similar correction to item 2.
(vi) Item 3 should be (this is the case ϕ = ¬ψ):

M |= (¬ψ)(t1/vk1)...(tn/vkn) ↔ M ̸|= ψ(t1/vk1)...(tn/vkn) ⇔

Σ ̸⊢ ψ(t1/vk1)...(tn/vkn) ⇔ Σ ⊢ (¬ψ)(t1/vk1)...(tn/vkn).

And similar correction to item 4.
(vii) Item 5 should be (this is the case ϕ = ∀viψ): We write

ψ′ = ψ(t1/vk1
)...(tn/vkn

)

and we may assume that i ̸= kj for all 1 ≤ j ≤ n . Then M |= ϕ(t1/vk1)...(tn/vkn)
iff for all a ∈ M , M |=s(a/i) ψ

′ iff for all constant terms t , M |=s([t]/i) ψ
′ iff

for all constant terms t , M |= ψ′(t/vi) iff for all constant terms t , Σ ⊢ ψ′(t/vi)
iff Σ ⊢ ∀viψ′ iff Σ ⊢ ϕ(t1/vk1)...(tn/vkn) (the first and the last equivalences hold
because ϕ(t1/vk1)...(tn/vkn) = ∀viψ′ , the third is substitution lemma, fourth is the
induction assumption and the fifth is the item 3 that we added above to Theorem
4.68).

In Theorem 4.73 we need to assume that Σ is a set of L-sentences, not just
L -formulas.

12

5. Incompleteness of number theory

Following what we have said above we write simply +, × and exp for ⊕ , ⊗
and exp . In this section, the author of the lecture notes uses exponentiation to code
sequences of symbols as natural numbers. He does this to avoid a more complicated
coding based on chinese remainder theorem. But this has consequences: now our
standard model of number theory must contain exponentiation (or we need to show
that it is definable from + and × , which it is by chinese remainder theorem). Because
of this we can not prove the results for Peano axioms, we need to add to them axioms
for exponentiation that determine it in the standard model. So our vocabulary for
number theory is Lexp = {+,×, exp, 0, 1} and we add axioms:

(P8) ∀v0exp(v0, 0) = 1
(P9) ∀v0∀v1exp(v0, v1 + 1) = exp(v0, v1)× v0 .

We write Pexp for the set of Peano axioms together with these two new axioms (P8)
and (P9).

Below, if n = 0, by f : INn → IN we mean a ’0-ary function’ i.e. a natural
number.

5.1 Lemma. If f : INn → IN and g : INn+2 → IN are functions then there is
a unique function h : INn+1 → IN such that

h(0, x1, ..., xn) = f(x1, ..., xn)

and
h(y + 1, x1, ..., xn) = g(y, h(y, x1, ..., xn), x1, ..., xn).

Proof. Let A = INn+2 , B = {(0, x1, ...xn, f(x1, ..., xn))| x1, ..., xn ∈ IN} and
F = {s} , where s : A→ A is such that

s((y, x1, ..., xn, z)) = (y + 1, x1, ..., xn, g(y, z, x1, ..., xn)).

Then for all y, x1, ..., xn ∈ IN, there is a unique z ∈ IN such that (y, x1, ..., xn, z) ∈
clA(B,F) (exercise) and so h = clA(B,F) is a function INn+1 → IN. It is easy to
see that h satisfies the requirements (exercise).

If also h′ : INn+1 → IN is such that

h′(0, x1, ..., xn) = f(x1, ..., xn)

and
h′(y + 1, x1, ..., xn) = g(y, h′(y, x1, ..., xn), x1, ..., xn),

then an easy induction on y shows that h′ = h (exercise).
In Example 5.8 we make some small (but useful) changes:
8: If f : INn+1 → IN and g : INn → IN are p.r., then also

h(x1, ..., xn) = Σ
g(x1,...,xn)
i=0 f(i, x1, ..., xn)

13

and
h(x1, ..., xn) = Π

g(x1,...,xn)
i=0 f(i, x1, ..., xn)

are p.r. functions.
9: If R ⊆ INn+2 and g : INn+1 → IN are p.r., then also

S = {(x0, ..., xn) ∈ INn+1| ∀z ≤ g(x0, ..., xn)((z, x0, ..., xn) ∈ R)}

and
S′ = {(x0, ..., xn) ∈ INn+1| ∃z ≤ g(x0, ..., xn)((z, x0, ..., xn) ∈ R)}

are p.r.
10: For y, x0, ..., xn ∈ IN, we write µz ≤ y((z, x0, ..., xn) ∈ R) for the least

z ∈ IN such that z ≤ y and (z, x0, ..., xn) ∈ R , if there is such z and otherwise
µz ≤ y((z, x0, ..., xn) ∈ R) = 0. Then if R ⊆ INn+2 and g : INn+1 → IN are p.r.,
then the function f : INn+1 → IN,

f(x0, ..., xn) = µz ≤ g(x0, ..., xn)((z, x0, ..., xn) ∈ R),

is p.r.
We make some changes to the proof of the claim from the proof of Theorem 5.15

that f(n) = pn is recursive (the proof in the lecture notes is correct but I find it
hard to follow): Let R ⊆ IN2 be such that (z, n) ∈ R iff z = Πn

i=0p
i+1
i . We show

first that R is recursive: Now (z, n) ∈ R iff the following holds (exercise):
(i) 2 divides z but 4 does not (so z ̸= 0),
(ii) for all p, q ≤ z if p < q and both are primes then the following holds:
(a) if pn+1 divides z then q does not divide z
(b) if pn+1 does not divide z and there is no prime r such that p < r < q , then

for all i ≤ n , pi+1 divides z iff qi+2 divides z .
Thus R is recursive. Let g(n) = µz((z, n) ∈ R). Then f(n) is the least prime p
such that pn+1 divides g(n) and thus f is recursive.

After Theorem 5.15, we conclude that p.r. functions are recursive.
I find proofs around Ackermann function instructing and thus we take a closer

look at them.

5.2 Lemma. Ackermann function A : IN2 → IN exists and is unique.

Proof. We prove the existence first: By recursion on y we construct functions
fy : IN → IN as follows: f0 = S and if we have fy , fy+1 is defined by primitive
recursion as follows: fy+1(0) = fy(1) and fy+1(x+1) = fy(fy+1(x)). Then A(y, x) =
fy(x) satisfies the equations from the definition of Ackermann function.

Then to the uniqueness: Suppose that A′ also satisfies the equations. Let
f ′y(x) = A′(y, x). It is enough to show that for all y ∈ IN, fy = f ′y . We prove this by
induction on y : If y = 0, the claim is clear. So suppose that fy = f ′y . By induction
on x ∈ IN, we show that fy+1(x) = f ′y+1(x): fy+1(0) = fy(1) = f ′y(1) = f ′y+1(0) and
if fy+1(x) = f ′y+1(x), then fy+1(x+ 1) = fy(fy+1(x)) = f ′y(f

′
y+1(x)) = f ′y+1(x+ 1).

14

5.3 Exercise.
(i) Show that A(1, x) = x+ 2 and A(2, x) = 2x+ 3 .
(ii) Show that y+ x < A(y, x) < A(y, x+1) ≤ A(y+1, x) (thus A is increasing

in both arguments).
(iii) Show that for all y, x ∈ IN , there is finite Xyx ⊆ IN2 such that
(a) (y, x) ∈ Xyx ,
(b) for all y′ ∈ IN , if (y′ + 1, 0) ∈ Xyx , then (y′, 1) ∈ Xyx ,
(c) for all y′, x′ ∈ IN , if (y′ + 1, x′ + 1) ∈ Xyx , then (y′ + 1, x′) ∈ Xyx and

(y′, A(y′ + 1, x′)) ∈ Xyx .

5.4 Proposition. A is recursive.

Proof. Notice that for all x, y ∈ IN, A(y, x) ̸= 0 by Exercise 5.3 (ii). Notice
also that if (z)i ̸= 0, then z ̸= 0 and that if (z ̸= 0 and) pi does not divide z , then
(z)i = 0. Let R ⊆ IN3 be such that (z, y, x) ∈ R iff

(i) (z)π(y,x) ̸= 0,
(ii) for all x′ ≤ z , if (z)π(0,x′) ̸= 0, then (z)π(0,x′) = x′ + 1,
(iii) for all y′ ≤ z , if (z)π(y′+1,0) ̸= 0, then (z)π(y′,1) ̸= 0 and (z)π(y′+1,0) =

(z)π(y′,1) ,
(iv) for all y′, x′ ≤ z , if (z)π(y′+1,x′+1) ̸= 0, then (z)π(y′+1,x′) ̸= 0,

(z)π(y′,(z)π(y′+1,x′))
̸= 0 and (z)π(y′+1,x′+1) = (z)π(y′,(z)π(y′+1,x′))

.

Clearly R is recursive and for all y, x ∈ IN, there is z ∈ IN such that (z, y, x) ∈ R :
Just let

z = Π(y′,x′)∈Xyx
p
A(y′,x′)+1
π(y′,x′) ,

where Xyx is as in Exercise 5.3 (iii).
Then A(y, x) = (µz((z, y, x) ∈ R))π(y,x) and thus A is recursive.

5.5 Lemma. Suppose f : INn+1 → IN is p.r. Then there is m∗ ∈ IN such that
for all x0, ..., xn ∈ IN , f(x0, ..., xn) < A(m∗, w) where w = max{x0, ..., xn} .

Proof. By induction on the definition of p.r. functions:
(1) f is Z , S or Prn+1

i : Let m∗ = 1. Since A(1, z) = z + 2 the claim is clear.
(2) f = g(h1(x0, ..., xn), ..., hk(x0, ..., xn)): By induction assumption, there is m

suxh that g(y1, ..., yk) < A(m,max{y1, ..., yk}) and for all 1 ≤ i ≤ k , hi(x0, ..., xn) <
A(m,max{x0, ..., xn}). Then

f(x0, ..., xn) < A(m,A(m,max{x0, ..., xn})) ≤ A(m,A(m+ 1,max{x0, ..., xn})) ≤

A(m+ 1,max{x0, ..., xn}+ 1) ≤ A(m+ 2,max{x0, ..., xn}).

So we can let m∗ = m+ 2.
(3) f(0, x1, ..., xn) = g(x1, ..., xn) and

f(y + 1, x1, ..., xn) = h(y, f(y, x1, ..., xn), x1, ..., xn) :

15

Again by induction assumption, there is m such that for all x1, ..., xn , g(x1, ..., xn) <
A(m,max{x1, ..., xn}) and for all y, z, x1, ..., xn ,

h(y, z, x1, ..., xn) < A(m,max{y, z, x1, ..., xn}).

Let u = max{x1, ..., xn} . We show first the following claim:

5.5.1 Claim. f(y, x1, ..., xn) < A(m+ 1, y + u) .

Proof. By induction on y . The case y = 0 is clear by the choice of m . We prove
the claim for y+1, notice that A(m+1, y+u) > max{y, f(y, x1, ..., xn), x1, ..., xn} :

f(y + 1, x1, ..., xn) = h(y, f(y, x1, ..., xn), x1, ..., xn) <

A(m,max{y, f(y, x1, ..., xn), x1, ..., xn}) <

A(m,A(m+ 1, y + u)) = A(m+ 1, (y + 1) + u).

Claim 5.5.1.
Now with the claim and the observation that w = max{y, u} , we can proceed

as follows:

f(y, x1, ..., xn) < A(m+ 1, y + u) ≤ A(m+ 1, A(2, w)) ≤

A(m+ 1, A(m+ 2, w)) = A(m+ 2, w + 1) ≤ A(m+ 3, w).

So we can let m∗ = m+ 3.

5.6 Proposition. A is not p.r.

Proof. It is enough to prove that A∗(x) = A(x, x) is not p.r. For a contradiction
suppose A∗ is p.r. Then by Lemma 5.5, there is m∗ such that for all x ∈ IN,
A∗(x) < A(m∗, x). But now

A∗(m∗) < A(m∗,m∗) = A∗(m∗),

a contradiction.

5.7 Exercise. Show that {(y, x, w) ∈ IN3| w = A(y, x)} is p.r. Hint: Find p.r.
f : IN3 → IN such that f(y, x,A(y, x)) is larger than z from the proof of Proposition
5.4 for (y, x) .

In the proof of Theorem 5.19, there is nothing in the definition of R that guar-
antees that z +1 is a Gödel number, it allows all codes of terms. We can e.g. define
a p.r. function G : IN → IN so that

G(z) = µu ≤ z(len(u) = len(z) ∧ ∀i ≤ len(z)((u)i = (z)i))

16

(e.g. G(2557) = 25) and by replacing R with the relation (z, u) ∈ R′ iff (z, u) ∈
R∧G(z+1) = z+1, we get a definition for Trm that accepts only Gödel numbers.

Theorem 5.32 should say that Pexp is incomplete i.e. there is an Lexp -sentence
ϕ such that Pexp ̸⊢ ϕ and Pexp ̸⊢ ¬ϕ . Also in Theorem 5.30, we let Thm be the
set of all Gödel numbers of Lexp -sentences ϕ such that Pexp ⊢ ϕ . This is because in
Corollary 5.31, Tr should be as in Theorem 5.23 and there it is necessary that the
sentences are Lexp -sentences because the sentence from Gödel’s fixed point theorem
is an Lexp -sentence and not an L -sentence (L = {+,×, 0, 1}). And now if Thm
is defined as in the lecture notes, the proof of Theorem 5.32 fails because, although
Tr − Thm ̸= ∅ , we do not know that it contains L-sentences. And if we let Thm
be the set of all Gödel numbers of Lexp -sentences ϕ such that P ⊢ ϕ , Theorem 5.32
becomes trivial, obviously e.g. exp(1, 1) = 1 is true but it cannot be proved from P
because P says nothing about exp (this follows from soundness!).

And then, obviously, Theorem 5.33 should say that the consistency of Pexp is not
provable from Pexp i.e. Con(Pexp) is a true sentence such that Pexp ̸⊢ Con(Pexp).

17

