AXIOMATIC SET THEORY

Spring 2018

Tapani Hyttinen

In this introduction to set theory we will concentrate, in addition to the basic
theory of ordinals and cardinals, to the theory of constructible hierarchy L and to
the theory of forcing. Both of these are techniques for showing consistency results i.e.
that some claim is consistent with the theory ZFC' of sets. In both cases we are more
interested in how to apply the techniques than all the details in the development of
the theories and thus we occasionally skip some proofs. Most of the skipped proofs
can be found from K. Kunen’s excellent book [Ku] which uses the approach to our
topics mostly used also in these notes.



1.

Contents

Preliminaries

1.1. Axioms

1.2. Recursive definitions

1.3. Ordinals

1.4. Cardinals

1.5. Recursive definitions revisited

2.

PN oUW

9.

10
11
12
13
14

Object theory

Constructible hierarchy
Diamonds

Squares

Generic extension

Forcing

Negation of continuum hypothesis
Why forcing works

. Continuum hypothesis

. Tterated forcing - the starting point
. Finite support iteration

. Dominating number

. Further exercises

References

Oy Ot W W

13
16
19
23
25
27
30
33
34
34
36
38
39
40



1. Preliminaries

Set theory ZFC' is a formal theory in the first-order language in the vocabulary
{€}, where € is a binary relation symbol (i.e. a predicate). However, for an obvious
reason, we will not give formal proofs, instead our approach is semantic i.e. we
assume that we have a model V of ZF(C' and then work inside it using natural
language and assume that the reader knows that these proofs can be translated to
the proofs in the first-order logic. In fact, we will use natural language as much as
possible (there are cases in which first-order formulas give the most convenient way
of expressing claims). However, there are moments in which we can not avoid the use
of the formal language and then we simply return to it. Also when we study forcing,
we really need V' and this is a potential problem, since even ZFC (and thus current
mathematics) can not prove the existence of V' (by Godel’s second incompleteness
theorem). Similarly, for partially ordered sets P, we will assume the existence of so
called P-generic filter G over V. And in general ZFC can not prove the existence of
G either. We will address these problems when convenient, not necessarily as soon
as they arise.

Elements of V' are called sets and subsets of V', which are first-order definable
with parameters, are called classes. If ¢(vp,...,v,) is a first-order {€}-formula and
ai,..,ap are sets, then the expression ¢(vg,as,...,a,) is called a property and for a
set x, we write ¢(z,aq,...,a,) (in the beginning of these notes, later we need to be
more specific) if, using the notation from Matemaattinen Logiikka course,

V Es@/0)(ai/1),....(an/n) ¢

and say that z has the property &(vg,aq,...,a,). Often we do not mention the
parameters and just say that x has the property ¢ and write just ¢(z). So the
classes are families of sets that have some fixed property ¢.

1.1 Axioms

We start by giving the axioms of ZFC.
I Extensionality: If sets a and b have the same elements, then a = b.

Notice, that also the inverse of the implication in Extensionality holds. And that
from now on to determine a set, it is enough to describe its elements, e.g. {3,8,i},
{n € IN| n is even},..., and of course (). Also we extend the idea in Extensionality to
classes i.e. two classes are considered the same if they have the same elements and a
class and a set are considered the same if they have the same elements.

1.1.1 Exercise. Show that every set is a class.

IT Foundation: Every non-empty set a has an €-minimal element i.e. there is
x € a such that for all y € a, y & x.



ITT Pairing: For any sets a and b, {a,b} is a set.

Notice, that from Pairing it follows that for every set a, {a} is a set.

1.1.2 Exercise. Show that there is no set a such that a € a or sets a and b
such that a €b € a.

IV Separation (aka Comprehension): If a is a set and ¢ is a property, then {z €
al ¢(z)} is a set.

V Union: For every set a, the union Ua of the elements of a is a set (z € Ua if
x € b for some b € a).

We will write a Ub for U{a,b}.

1.1.3 Exercise.

(i) Show that if a,b,c,d and e are sets, then {a,b,c,d, e} is a set.
(ii) We write (a,b) for the set {a,{a,b}}. Show that

(a) (a,b) is indeed a set,

(b) if (a,b) = (¢,d), then a = ¢ and b=d.

VI Power Set: For every set a, the power set P(a) of a isaset (z € P(a) if x Ca
i.e. for every set y, if y € x, then y € a).

So far we have had no axiom that states that there exists even a single set. The
next axiom says that there is an infinite set. However, it seems to assume that the
empty set already exists. So should we not have an axiom that says this? There is
no need for this: Even without any assumptions, in first-order logic one can always
prove that there exists x such that z = z. So in the case of set theory, one can
always prove the existence of at least one set.

1.1.4 Exercise.
(i) Show that the empty set () exists.
(ii) For sets a and b, show that a x b= {(z,y)| « € a, y € b} is a set.

VII Infinity: There exists an inductive set i.e. a set a such that ) € ¢ and if x € a,
then also x U {x} € a (exercise: show that = U {z} is a set).

When we talk about functions f from a set a to a set b, we always mean that
f={(z, f(x))| = € a} is a set. We talk also about class functions:

1.1.5 Definition. Let C be a class. We say that a function F : C — V is a
class function if the graph of F' is a class i.e. there is a property ¢ such that for all
sets x, x has the property ¢ iff x = (a, F(a)) for some set a € C'.
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Notice the following: For all classes C' and formulas ¢(vy, ..., v,) there is a for-
mula ¢ (vy, ..., v,) such that for all ay, ...,a,, ¢(vo,a1,...,a,) defines a class function
from C to V iff ¥(aq,...,an).

VIII Replacement: If a is aset and F' : a — V is a class function, then {F(z)| x €
a} is a set.

1.1.6 Exercise.

(i) Show that if a is a set and F': a — V' is a class function, then F' is a set.

(ii) Show that if a and b are sets and f :a — b is a function, then it is a class
function.

IX Choice: If a is a set and every x € a is non-empty, then there is a function
f 1 a — Ua such that for all z € a, f(x) € x.

The theory that consists of all these axioms is called ZFC. If the Choice is left
out, the resulting theory is called just ZF. Unless we state otherwise, we work in
ZFC.

1.2 Recursive definitions

1.2.1 Definition.

(i) If C is a class, then a class < is called a partial ordering of C' if the elements
of < are of the form (x,y), x,y € C, and the following holds: if (z,y) €<, then
(y,z) €< and if (z,y), (y,2) €<, then (x,z) €<. Instead of writing (x,y) €<, we
will simply write z < y.

(ii) A partial ordering < is a linear ordering, if in addition, for all z,y € C,
r<yorx=yory<coc.

(iii) A partial ordering is well-founded if for all x € C, {y € C| y < z} is a set
and if a is a non-empty set such that every element of it belongs to C', then a has
a <-minimal element. If in addition the partial ordering is a linear ordering, it is
called a well-ordering.

If < is a partial ordering of C', then by < we mean the relation a < b if a <b
or a=>=.

1.2.2 Theorem. Suppose C' is a class and < is a well-founded partial ordering
of C'. Let ¢ be a property and assume that for all x € C, if every element of
{y € C| y < x} has the property ¢, then also z has it. Then every element of C
has the property ¢.

Proof. Suppose not. Let = € C' be such. We show first that we can choose z
so that it is <-minimal element of C' among those that do not have the property ¢:
If z is not such then the class a of all element of C' which are smaller than x and



do not have the property ¢ is non-empty and a set. Since < is well founded, a has
a <-minimal element. Clearly this is as wanted.

But if z is a minimal among those that do not have the property ¢, then every
element of {y € C| y < 2} has the property, and so also z has it, a contradiction. o

1.2.3 Theorem. Suppose C is a class, < is a well-founded partial ordering
of Cand G : V — V is a class function. Then there is a unique class function

F:C — V such that for all x € C, F(z) = G(F | Cy), where C, = {y € C| y < z}.

Proof. We say that A C C is downward closed if © < y € A implies x € A.
We start with an exercise:

1.2.3.1 Exercise. Suppose that a set A C C' is downward closed and f,g :
A — V (recall Exercise 1.1.6) are such that for all z € A, f(z) = G(f | C,) and
g(z) = G(g | C,) (notice that C, C A). Show that f = g. Conclude that if F
exists, it is unique.

Now let ¢ the following property of sets a: a is of the form (x,y) where z € C
and y is such that there is a function f, : C, — V such that y = G(f,) and for all
ze€Cy, f(2) =G(fs | C2). We will show that for every x € C, there is a set y such
that (z,y) has the property ¢. Then since by Exercise 1.2.3.1, such y is unique, ¢
defines a class function C' — V.

To see that y exists, it is enough to show that f, exists. We prove this by
induction i.e. by using Theorem 1.2.2. So suppose that the claim holds for every
z € C,. We notice

(*) if z,w € C and f, and f,, exist, then f, [ (C, NCy) and f,, | (C, N Cy)
satisfy the requirements of Exercise 1.2.3.1 for A = (C, N C,,) and thus f, [ (C, N
Cw) = fw f (Cz ma)-

So by (*), if C, does not have maximal elements (z € C, is maximal if there
are no y € C, such that z < y) f. = U,., f. is as wanted. (Notice that we use
replacement axiom here.) On the other hand, if C, has maximal elements, we simply
let fo = (U,c, f2)U{(2,G(f2))| z € Cp is maximal}. Again by (*), f, is as wanted.

So we are left to prove that for all x, F(x) = G(F | C.). So suppose that this
holds for all z € C, and let f, be as in the definition of ¢. Then by Exercise 1.2.3.1,
F|C,=f, and thus F(z) =G(fy) =G(F | Cy). o

1.3 Ordinals

1.3.1 Definition.

(i) We say that a set a is transitive if x € y € a implies x € a (i.e. Ua C a and
notice that if a and b are transitive, then so is aNb).

(ii) We say that a set « is an ordinal if it is transitive and linearly ordered by
€. For ordinals o and (3, one usually writes a < [ instead of o € f and a < [ for
a<pfora=2g.

(iii) The class of all ordinals is denoted by On.
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1.3.2 Exercise.

(i) Show that ordinals are well-ordered by €.

(ii) Show that 0 = () is an ordinal.

(iii) Show that if « is an ordinal, then also a + 1 = aU{a} is an ordinal.

(iv) Show that if a is a set of ordinals and for all o, € a, either « C (8 or
B C a, then Ua is an ordinal.

(v) Show that if o is an ordinal and 8 € «, then [ is an ordinal.

(vi) Show that if  and ( are ordinals, then so is a N 3.

1.3.3 Lemma. Let o and 3 be ordinals.
(i) If « C B, then either a« = 8 or o € 3.
(ii) Either o C B or B C a.

Proof. (i): Suppose a # 3. Then 8 — « is not empty and thus it has the least
element . If § € v, then § € § and so by the choice of v, § € a. On the other
hand, if § € a, then v £ §, because otherwise v € a and this is against our choice
of 7. Thus since € linearly orders 3, § € . It follows that & = and so « € 5.

(ii): Now by Exercise 1.3.2 (vi), v = a NS is an ordinal. Then y=a«a or y =0
because otherwise by (i), v € anN g = 7. In the first case « C § and in the other
case f C «. o

1.3.4 Exercise.

(i) Show that On is well-ordered by €.

(ii) Show that « + 1 is the least ordinal strictly greater than the ordinal «.

(iii) For a set a of ordinals show that Ua is the supremum of a (in particular,
Ua is an ordinal).

1.3.5 Definition.

(i) We say that an ordinal « is a successor ordinal if o« = 3+ 1 for some ordinal
B and otherwise « is called a limit ordinal. However, 0 is usually not considered a
limit ordinal.

(ii) By w we denote the least limit ordinal # 0 (if such ordinal exists).

1.3.6 Lemma. For every ordinal [ there is a limit ordinal o« > (3.

Proof. We show first that w exists. By Infinity, there is an inductive set b. Let
a=bNOn and a = Ua. By Exercise 1.3.4 (iii), « is an ordinal. Also it is easy to
see that a is inductive and thus « can not be a successor ordinal. So in particular
w exists.

Now for given ordinal (3, choose a function f:w — On so that f(0) = 8 and
for successor ordinals v+ 1 € w, f(y+1) = f(y) + 1 (exercise: show that f exists
and rng(f) C On, keep in mind that every ordinal in w excluding 0, is a successor
ordinal). Let a = Urng(f). Clearly « is as wanted. o

1.3.7 Exercise. Show that there is no class function f:w — V such that for
alnew, fln+1) € f(n).



1.3.8 Theorem. For every set a there is an ordinal o and a one-to-one and
onto function f:a — a.

Proof. Let b be the set of all non-empty subsets of a and g be the choice
function for b. We define a class function G : V' — V so that for all ordinals § and
functions h : 8 — a with rng(h) # a, G(h) = g(a — rng(h)) and for all other sets
xz, G(x) =a. Let F': On — V be such that for all ordinals v, F(y) = G(F | v) (by
Theorem 1.2.3) and suppose that for some ordinal v, F(7) = a. Then by letting «
be the least such ordinal, @ and f = F | a are clearly as wanted.

So it is enough to show that for some v, F(y) = a. Suppose not. Then
(by Separation) F~1 is a class function from a subset of a onto On. Thus by
Replacement On is a set. Thus 8 = UOn is an ordinal. So 8 € 8+ 1 € On and
thus § € 3, a contradiction. o

1.3.9 Exercise. (Zermelo’s well-ordering theorem) Every set can be well-
ordered.

In fact, under e.g. ZF, Zermelo’s well-ordering theorem is equivalent with Choice:
To get Choice, simply choose a well-ordering < for Ua and then for every x € a, let
f(x) be the <-least element of x.

The sets V,, in the next exercise form so called cumulative hierarchy.

1.3.10 Exercise. We define V,, for all ordinals « as follows: Vo =0, Vo1 =
P(V,), and for limit ordinals o, Vo = Uy<qV, . Show that

(i) a— V, is a class functions,

(ii) for v < a, V, C V,,

(iii) for all sets a there is an ordinal « such that a € V.

1.3.11 Exercise. For all x let T'C(x) be the class of those y for which there
are 0 <n <w and x;, i <n, such that ©o =y, x, =« and for all 1 < n, x; € ;11
(i.e. TC(x) is the least transitive set a such that x C a).

(i) Show that for all x, TC(z) is a set.

(ii) Show that the relation x € T'C(y) is a well-founded partial ordering of V.

1.3.12 Exercise.  Prove Exercise 1.3.10 (iii) by induction on the relation
xeTC(y).

1.3.13 Exercise. Show that a set is an ordinal iff it is a transitive set of
transitive sets. Hint: Show first that if a is a transitive set of transitive sets, then
every b € a is a transitive set of transitive sets.

1.4 Cardinals

1.4.1 Definition. We say that sets a and b have the same cardinality, if there
is a one-to-one and onto function f :a — b.
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1.4.2 Exercise.

(i) Show that the equicardinality relation from Definition 1.4.1 is an equivalence
relation.

(ii) Show that if there is an onto function f :a — b, then there is a one-to-one
function g : b — a and vice versa assuming that b # ().

1.4.3 Theorem. (Cantor-Bernstein) For all sets a and b, if there are one-to-
one functions f:a — b and g : b — a, then a and b have the same cardinality.

Proof. For all n € w, we define sets A,, and B, as follows: Ay =a, By =,
An-i—l = g(f<An)) and Bpi11 = f(g(Bn)) Finally, let A = ﬂn<w A, and B =
MNy<w Bn- Clearly, for n < w, A,y1 € A, and B,;1 C B,. Also (e.g. draw a
picture) f | (A,—g(B,)) is one-to-one function from A, —g(B,,) onto f(A,)—Bn+1,
g7t I (9(B,) — A,y1) is one-to-one function from ¢(B,) — A1 onto B, — f(A,)
and f [ A is one-to-one function from A onto B. By putting these together, the
required one-to-one and onto function is found. o

1.4.4 Definition.

(i) We say that an ordinal « is a cardinal if there are no < a and a one-to-one
function from « to 3.

(ii) We say that a set a is finite, if for all one-to-one functions f : a — a,

rng(f) =a.

1.4.5 Lemma. w and every n € w are cardinals. In fact, every n € w is
finite.

Proof. We start by proving the claim for the elements of w. Clearly it is enough
to show that they are finite. We prove this by induction (i.e. using Theorem 1.2.2,
keeping in mind that all elements of w, excluding 0, are successor ordinals and, in
fact, the claim we prove is that every ordinal « is either finite or > w).

For n = 0, this is clear. So suppose that this holds for n and let f:n+1 — n+1
be one-to-one. For a contradiction suppose that rng(f) # n + 1. By applying a
transposition, we may assume that n ¢ rng(f). But then f [ n is a one-to-one
function from n to a proper subset of n, a contradiction.

If w is not a cardinal, then there are n € w and a one-to-one function f:w — n.
But then f | n+ 1 contradicts what we just proved. o

1.4.6 Exercise.

(i) Show that an ordinal « is finite iff o € w.

(ii) Show that all infinite cardinals are limit ordinals.

(iii) Show that if a is a set of cardinals, then Ua is a cardinal.

1.4.7 Lemma. For every set a, there is a unique cardinal k for which there
is a one-to-one function from k onto a.

Proof. Clearly there cannot be more than one such cardinal. So we prove just
the existence: Let k be the least ordinal such that there is a one-to-one function f
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from k onto a (such k exists by Theorem 1.3.8). It is enough to show that x is
a cardinal. If not, then there is a < x and a one-to-one function g : Kk — a. By
Cantor-Bernstein, we can choose ¢ so that it is also onto. But then « and fog™!
witness that x was not minimal. o

1.4.8 Definition. Let a be a set. The unique cardinal k for which there is a
one-to-one function from k onto a, is called the cardinality of a and is denoted by
la|. If the cardinality of a set is < w, we say that the set is countable.

1.4.9 Exercise.

(i) Show that a set a is finite iff |a| € w.

(ii) Show that |a| < |b| iff there is a one-to-one function f:a —b.
(iii) Show that if a and b are finite, then so is a Ub.

The elements of w are called natural numbers and thus w is called also the
set of natural numbers i.e. IN. We also write 0 = () as already mentioned and
1=04+41=0U{0}, 2 =1+1, 3 =2+1 etc. Recall that for all n € w,
n=1{0,1,...,n—1}.

1.4.10 Theorem. For all non-empty sets a and b, if one of them is infinite,
then |a x b| = maz{|al, |b|}.

Proof. Clearly, it is enough to prove that for all infinite cardinals &, |k X k| = K.
For this it is enough to find a one-to-one function from x X k to . We order the
elements of On x On so that (o, 8) < (v, 9) if one of the following holds:

(i) maz{a, B} < max{y,d},

(i) o <y < maz{a, f} = maz{y,d},

(i) @ = max{a, B} = max{y,0} =~ and [ < 6.

1.4.10.1 Exercise. Show that < is a well-ordering of On x On.

Using Theorem 1.2.3, define I' : On x On — On so that for all x € On x On,
['(x) is the least ordinal (strictly) greater than every element in rng(I' [ (Onx On),)
(for this notation, see Theorem 1.2.3).

1.4.10.2 Exercise. Show that I’ is strictly increasing and that if T'(«, 5) =
and v < 7y, then there is (/, ") < (a, B) such that T'(a/,3") =+".

By Exercise 1.4.10.2, it is enough to show that for infinite cardinals &, rng(T" |
(k X k)) C k. We do this by induction. The case when k = w is left as an exercise.
So suppose k > w. For a contradiction suppose that there are o, < k such that
(o, B) > k. Let A = maz{|a|,|B]} < k. Then by Exercise 1.4.10.2, T | k: k —
(On x On)(q,p) is one-to-one and by the induction assumption (from which it follows
that if |a|,[b] < X, then |a xb| < A), [(On x On)q,p)| < |maz{a, B} x max{a, B}| =
IA X A| = A, a contradiction. o

As a hint for the item (i) in next exercise we want to mention that the claim in
the item can not be proved without Choice. If Choice is not assumed, it is possible
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that the set of reals is a countable union of countable sets and we will see later that
the set of reals is not countable and this can be proved without Choice.

Also, instead of talking about functions f : I — X for some sets I and X, it
is sometimes notationally convenient to talk about indexed sequences (x;);cr. So by
an indexed sequence (x;);c; we simply mean a function f: I — V such that for all
iel, f(i) =z;. Thus for x : a — V, we sometimes also write x; in place of z(7).

1.4.11 Exercise.

(i) Suppose k is an infinite cardinal and a is a set of cardinality < k such that
also every element of it is of cardinality < k. Show that | U a| < k. In particular,
for all sets a and b, if one of them is infinite, then |a U b| = max{|al, |b|}.

(ii) For all infinite cardinals k, show that there are sets X; C k, i € K, such
that for all i, the cardinality of X; is k and for all i # j, X; N X; = 0.

(iii) Show that the set of rational numbers is countable.

For sets a and b, by a® we mean the set of all functions from b to a (e.g. IN").
If b = j3 is an ordinal we also write a<# for Ua<pga® and a<P for Ua<ga®- On the
level of notation, we also identify f :2 — X with (f(0), f(1)) and thus think that
X x X is the same as X2, see the discussion on indexed sequences above.

1.4.12 Lemma. For all cardinals k, |P(k)| = |2"| and if « is infinite, then
[2°] = |(2%)"] = [209] = |"].

Proof. For |P(k)| = |2"|, just map every a C w to its characteristic function.
|2%| = |2%%*| is clear by Lemma 1.4.10. To find a one-to-one function F' from 2%**
onto (2%)%, simply for n € 2%*% let & = F(n) be such that for all n,m < &,
(&(n))(m) = n(n,m). Since 2% C k", |2%] < |k"|. Finally since x < |27|, it is easy
to see that |k"| < [(27)"|. o

One often denotes |27| by just 2% and similarly for x* and x<*. It is clear from
the context which possibility we mean.

1.4.13 Theorem. For all sets a, |P(a)| > |a|.

Proof. Clearly it is enough to prove the claim in the cases when a is some
cardinal k, i.e. that 2% > k. For finite cardinals the claim is clear and so suppose
k is infinite. For a contradiction, suppose 2% < k. Clearly, 2% > x and thus, under
the counter assumption, there is a one-to-one function f from x onto 2%. Denote
f(a) by &a.

Let g : kK — 2 be such that for all o < k, g(a) =1 —&,(a). Then g € 2" and
so for some v < K, g=¢&,. Now g(y) =1—&4(v) =1—g(7), a contradiction. o

1.4.14 Definition. Let v be a limit ordinal.

(i) The cofinality cf() of ~y is the least ordinal « such that there is a function
f:a — ~ such that Urng(f) = .

(ii) ~y is called regular if cf(vy) = .
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1.4.15 Exercise.

(i) Show that for all limit ordinals v, cf() is a regular cardinal. Conclude that
regular ordinals are cardinals.

(ii) Show that w is a regular cardinal.

1.4.16 Definition. If x is a cardinal, then the least cardinal \ greater that
k is denoted by k™. If k is AT for some cardinal \, it is called a successor cardinal
and otherwise it is a limit cardinal.

1.4.17 Exercise.

(i) Show that for all ordinals «, there is a cardinal kK > «.

(ii) Show that every infinite successor cardinal is regular.

(iii) Let X, Y, I and «; and f;, i € I, be as in Definition 1.5.1 (ii). Sup-
pose further that x is a regular cardinal such that for all © € I, «; < k. Then
C(Y, fi)ier = Cu(Y, fi)ier-

We finish this section by defining a class function a — w, (sometimes w,, is
also denoted by N, ).

1.4.18 Definition. @ We define w, for all ordinals « as follows: wyg = w,
Wa+1 = w, and for limit ordinals o, we = Uy<aW- .

1.4.19 Exercise. Show that for all infinite cardinals k, there is o € On such
that kK = wy .

1.5 Recursive definitions revisited

1.5.1 Definition. Suppose X is a set.

(i) Suppose « is an ordinal, f : X* — X is a function and C C X. We say
that C' is closed under f if for all x € C*, f(z) € C.

(ii) Suppose Y C X and for all i € I, «; is an ordinal and f; : X% — X 1is
a function. Then by C(Y, f;)icr we mean the C-least subset C' of X such that it
contains Y and is closed under every f;, i € I (if such C exists).

1.5.2 Lemma. Let X, Y, I and «; and f;, i € I, be as in Definition 1.5.1
(ii). Then C(Y, fi)icr exists.

Proof. Just let C(Y, f;)ier be the intersection of all sets C' C X which contain
Y and are closed under every f; (notice that X is such a set). o

1.5.3 Lemma. Let X, Y, I and «; and f;, i € I, be as in Definition 1.5.1
(ii). Suppose that ¢ is a property, every element of Y has it and for all k € I and
x € C(Y, fi);&; the following holds: If every xj, j < ay, has the property, then also
fx(x) has the property. Then every element of C(Y, f;);cr has the property ¢.

Proof. Let C be the set of all elements of C(Y, f;)ic; that have the property
¢. Then C contains Y and is closed under every f;. Thus C(Y, f;)ies CC. D
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1.5.4 Definition. Let X, Y, I and «; and f;, ©« € I, be as in Definition
1.5.1 (ii). For all ordinals o, we define C, (Y, fi)ic1 as follows:

(i) Co(Y, fi)ier =Y,

(ii) Cot1(Y, fi)ier = CalY, fi)ier U{fi(x)| i € I, © € (ColY, fi)ier)™'},

(iii) if « is limit, then Co (Y, fi)icr = U6<a Cs(Y, fi)ier-

1.5.5 Exercise. Show that a — C,(Y, fi)ier is a class function from On
to P(X) and that for all ordinals o < 3, Y C C,(Y, fi)ier € Cs(Y, fi)ier C
C(Ya fi)ie[ .

1.5.6 Lemma. Let X, Y, I and «; and f;, i € I, be as in Definition 1.5.1
(ii) and k be a regular cardinal. Suppose further that for all i € I, a; < k. Then

C(Y, fi)ier = Cx(Y, fi)ier -

Proof. By Exercise 1.5.5, it is enough to show that Cy (Y, fi):cr is closed under
every fr, k € I. For this let x € (Ck(Y, fi)ier)™*. Since k is regular, there is v < &
such that z € (C,(Y, fi)ier)* (Exercise, think of function ¢ : o, — & such that
for all 8 < ay, g(B) is the least ordinal ¢ for which zs € Cs(Y, fi)ier ). But then

fi(x) € Cy 11 (Y, fi)ier € Cu(Y, fi)ier. O

2. Object theory

When one studies e.g. the theory of groups, one can use all the tools of ZFC' in
doing this i.e. one can use ZF(C' as a meta theory. However due to its foundational
role, when one studies ZF'C', it is the meta theory that is under study. So one has
no tools to prove e.g. the existence of V' unlike in the case of the theory of groups,
using set theory one can construct all kinds of groups. However we still want, for
technical reasons, to have both the meta theory, ZFC as introduced in Section 1, and
the object theory as introduced in this section.

We start by introducing the first-order logic for the object theory. The formulas
of this logic are like the Godel numbers in the course ’Matemaattinen logiikka’ but
since we are working with set theory, we can choose the codes to be more formula-like
than natural numbers, they will be functions from natural number to w (in particular
they are sets i.e. elements of V'): First we choose codes for symbols of the first-order
logic as follows: Code for ( is 0, for ) it is 1, for — it is 2, for A it is 3, for 3 it is
4, for = it is 5, for € it is 6 and for v; it is 74 4. Then we define the set of (object)
formulas as follows: ¢ is a formula if

(i) dom(¢) =3 and ¢(0),$(2) > 6 and ¢(1) € {5,6}
or

(ii) there is formula v such that ¢ = =t (i.e. dom(p) = dom(y) +1, ¢(0) =2
and for all i < dom(v), ¢(i + 1) =(7)),
or

(iii) there are formulas 1) and 6 such that ¢ = (» A 6)
or

(iv) there is a formula ¢ and i < w such that ¢ = Jz;1.
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By Lemma 1.5.2, this definition gives a set, in fact, a subset of V,,. We will denote
this set as L, .
The following remark is also a hint for Exercise 3.2.

2.1 Remark. There are two technically convenient ways of defining L,
(exercise: Show that the two ways define the same set).

The first one is the following: & € L, if there is F : dom(§) + 1 — P(w<¥)
such that £ € F(dom(§)) and

(a) P(0) = F(1) = F(2) = 0,

(b) ¢ € F(3) if (i) above holds,

(c) pe F(n+1), 3<n<dom(§), if € F(n) or dom(¢) =n+ 1 and one of
(ii)-(iv) above holds with the additional requirement that 1,6 € F(n).

The second one is: & € Ly, if there is F : dom(§) + 1 — P(w<¥) such that
€ € F(dom(€)), for all n < dom(§), F(n) is finite and

(a”) F(0) = F(1) = F(2) =1,

(b’) if ¢ € F(3), then (i) above holds,

(c)if p € F(n+1), 3<n <dom(§), then ¢ € F(n) or dom(¢) =n+ 1 and
one of (ii)-(iv) above holds with the additional requirement that 1,6 € F(n).

The first of these is convenient e.g. when one defines the truth of the formulas
of Ly, .

Notice also that for every formula ¢ on the meta level, there is a natural
corresponding (i.e. 'Gddel number’) ¢* € L., . E.g. if ¢ = Jzoxy = xo, then
dom(¢*) =5, ¢*(0) =4, ¢*(1) =7, ¢*(2) =7, ¢*(3) =5 and ¢*(4) = 7. We will
refer to ¢* as the Gédel number of ¢ although ¢* is not a number. Notice also that
the other direction may fail i.e. that there may be formulas ¢ € L, such that ¢ is
not a code of any formula from the meta level (under the assumption that is needed
to make sense to this claim i.e. that V actually exists).

Now we can continue as in the course 'Matemaattinen logiikka’: We can write
the definition of ZFC as a formula on the meta level and it defines a subset of L,
which is our object ZFC', which we will denote ZFC*. Notice that if ¢ is an
axiom of ZFC', then it’s Godel number ¢* belongs to the object theory. We can
also write the definition of being provable from ZF(C' as a formula on the meta
level and this gives the notion of being provable on the object level. Notice that if
ZFC = ¢ on the meta level, the same is true on the object level i.e. ZFC F ¢
implies ZFC F"ZFC* F ¢*”. (However, again assuming V exists, V may contain
proofs that do not correspond any proofs on the meta level. E.g. V may think
that ZFC* is contradictory, while the existence of V' guarantees that ZFC is not
contradictory.)

Suppose M is a non-empty class. We can think M as a model in the vocabulary
{€} by interpreting € as the membership relation of V restricted to M. We will
denote this model as (M, €) and call it an €-model. If M is a proper class, then by
Tarski’s theorem, the truth in (M, €) is not definable but if M is a set, it is: Just
write the usual Tarski’s truth definition as a formula ©(z,y,z) on the meta level
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(using e.g. Lemma 1.5.6). For an €-model M, ¢(z) € Lyw, * = (2o, ..., Tn), and
a = (ag,...,an) € M™ we write (M, €) = ¢(a) for the formula O(M, ¢, a).

On the meta level, there is another way of talking about the truth in an €-model
and this time M may be a proper class: Let 6(zg,b) define M. For each formula
#(x) on the meta level we define another formula ¢ (x) = ¢™ (z,b) as follows:

(i) If ¢ is atomic, then ¢ = ¢,

(i) if ¢ = ), then $M = ~(),

(i) if & = (o A 1), then $M = (YT A M),

(iv) if ¢ = Jzs1p, then ™ = Iw;(0(z4,b) A M),

If X is a class defined by ¢, then by X™ we mean the class defined by ¢
(e.g. OnM).

Notice that ¢ <> ¢V .

2.2 Exercise. Suppose that M is a non-empty set. Show that for all formulas
é(x), x = (xg,...,7,), and a € M™, $M(a) ++ M |= ¢*(a), where ¢* € L, is the
Godel number of ¢.

Foundational remark: Exercise 2.2 will not be needed in the form we stated it.
It is enough that we can prove the statement for each formula ¢ separately i.e. we do
not need any induction priciples when we work with the finite sequences of symbols
called first-order formulas.

2.3 Exercise. Let M be a non-empty set and F a collection of formulas
closed under subformulas. Suppose that for all ¥ (x) = Jz;¢(x;,x) € F and a € M,
if ¥ (a) holds in V' then there is b € M such that ¢(b,a) holds in V. Show that for
all p(x) € F and a € M™, ¢(a) <> M |= ¢*(a), where ¢* is the Gédel number of ¢.

2.4 Exercise. Suppose F' is a finite subset of ZFC. Show that there is
a € On such that V,, |= ¢* for all ¢ € F'.

2.5 Exercise. ZFC proves compactness theorem for L., in particular, if
for all finite F C ZFC*, F has a model, then ZFC* has a model. Also by Godel’s
incompleteness theorem, ZFC does not prove the existence of a model of ZFC*.
Why these do not contradict Exercise 2.47

2.6 Exercise. Suppose M €V is transitive (i.e. * € M implies © C M ) and
non-empty.

(i) On™M = M N On.

(i) If V,, C M, then VM =V, for all n < w.

(iii) If w € M, then wM = w.

From now on, formulas on the meta level are called just formulas and if the
formula ¢ is on the object level we point this out by writing ¢ € L, (or sometimes
talk about Godel numbers).
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3. Constructible hierarchy

In this section we construct constructible hierarchy, originally due to K. Godel,
and prove the basic properties of it. In the text books L is usually constructed using
Godel functions but we will use more intuitive notion of being definable by a formula
from L, (thisis common in the literature in general). It is easy to see that the two
approached give the same L.

3.1 Definition.

(i) For all €-models M €V, we let Def(M) be the set of all X C M for which
there are ¢(x,y) € Ly, and a € M™ such that X ={be M| M = ¢(b,a)}.

(ii)) We let Lo = 0, Ly = {0}, Lo+1 = Def(Ly) (for o > 1) and for limit ~,
Ly = Uner La.

(iii) We let L = UpconLa.

3.2 Exercise.

(i) Show that Fr, : On — V, Fr(«a) = L, is a class function.

(ii) Show that L is a class.

(iii) Show that for all o € On, L, is a transitive set (i.e. = € L, implies
x C Ly ). Conclude that L is transitive.

(iv) Show that for a« < 8, L, € Lg.

(v) Show that L, N On = a = Onle and for all o <w, Ly = V.

(vi) Show that L., € Lyy1 and Ly, = (Ly,)te for all a > w.

(vii) Show that if « > w is a limit ordinal, M € L, is an €-model, ¢(x) € Ly,
and a € M™, then M = ¢(a) iff (M = ¢(a))l iff (M = ¢(a))re.

(viii) Show that there is a formula ¢(z,y) such that the following holds:

(a) If « > w is a limit ordinal, 8 < « and Fp, | B € Ly, then for all a € L,
L, E ¢*(a,p) iff a=Fy | B (here ¢* is the Gidel number of ¢ ).

(b) If 8 is an ordinal and Fy, | B € L, then forall a € L, ¢*(a,B) iffa = Fy, | 3.

(ix) Suppose o > w is a limit ordinal. Show that for all 5 < a, Fr [ 5 € L.

(x) Show that for all finite sets F of formulas and o € On, there is a limit
ordinal B3 > « such that for all ¢(z) € F and a € L%, ¢¥(a) holds iff Lg = ¢*(a)
(i.e. ¢*# holds). Hint: See Exercises 2.3 and 2.4.

The foundational remark from the previous section applies also to the following
theorem.

3.3 Theorem. For all axioms ¢ of ZF, ¢* holds.

Proof. We prove this for the separation axiom, the rest are straight forward
(exercise). Let 1(z,y) be a formula, X € L and a € L™. We need to show that the
set Y = {b e X| ¢¥(b,a)} belongs to L. By Exercise 3.2 (x), there is 8 such that
Xelgand Y ={be X| Lg = ¢*(b,a)} and thus Y € Lg;1 C L. o

To show that ¢ holds when ¢ is the choice, additional work is needed.
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3.4 Definition.

(i) Let <* be the lexicografical ordering of L, i.e. for f:n — w and g:m —
w, f<*gifn<m orn=m and there is x < n such that f(x) # g(x) and for the
least such z, f(z) < g(z).

(ii) For X € L, let rk(X) be the least ordinal o such that X € L, (notice that
rk(X) is a successor ordinal) and fm(X) be the <*-least formula ¢(x,y) € Ly,
such that for some a € Lyy(zy—1, X = {b € Lyy(o)—1| Lrk)-1 = ¢(b,a)}.

(iii) We define a binary relation <p on L as follows: for X,Y € L, X < Y if
one of the following holds:

(a) rk(X) < rk(Y),

(b) rk(X) =rk(Y) and fm(X) <* fm(Y),

(c) rk(X) =rk(Y) and fm(X) = (Y) = ¢(x,y) and there is a € L}y 4
(y = (y1,.-,Yn)) such that X = {b € er(x)_1| Lyg@)—1 F ¢(b,a)} and for all
a € er(w) 1 AEY ={b € Lyg@)-1| Lrk@)—1 = ¢(b,a’)}, then a is smaller than

a’ in the lexicografical ordering of L<I:E )1 that one gets from <j restricted to

er(x)—l .

3.5 Exercise.

(i) Show that <y, is a class.

(ii) Show that for all o, <y, restricted to L, is a well-ordering of L,,. Conclude
that <p is a well-ordering of L.

(iii) Show that there is a formula 6(x,y) such that for all limit ordinals o > w
and a,b € Lo, a <p b iff 6%(a,b) holds iff L, = 6*(a,b). Hint: As Exercises 3.2
(vii)-(ix).

3.6 Theorem. Let ¢ be the axiom of choice. Then ¢* holds.

Proof. Suppose f: X — L belong to L and for all z € X, f(x) # 0. We need
to find g : X — L from L such that for all z € X, g(z) € f(x). By Exercise 3.4
(ii), for all x € X, we can let g(x) be the <j-least element of f(z). By Exercise
3.5 (iii), we can find « such that g € Loy1. ©

By V = L we mean the axiom Vz3y(y € On Az € (FL [ (y+1))(y)).

3.7 Corollary.

(i) (V = L)L holds.

(ii) If @ > w is a limit ordinal, then L, = (V = L)*.

Proof. Immediate by Exercises 3.2 (viii) and (ix). o

For theories T" and T” on the meta level, we write Con(T") implies Con(T") if

the following holds: If there is a proof of contradiction from T”, then there is a proof
of contradiction also from 7'.

3.8 Theorem. Con(ZFC) implies Con(ZFC+V =1L).

Proof. Suppose that there is a proof of contradiction from ZFC 4+ V = L.
Then there is a finite subset 7" of ZFC + V = L from which the contradiction can
be proved. Let T* = {¢*| ¢ € T'}. By Exercise 3.2 (x) and Corollary 3.7 (ii), there is
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a limit ordinal « such that L, = T*. Since ZFC proves soundness (’eheyslause’ in
the course Matemaattinen logiikka), ZFC' proves that there is an €-model M € V
for ¢* where ¢ is the contradiction, e.g. Va(x = x) A -Vz(z = z) (as mentioned
above, if T+ ¢, then ZFC +7"T* F ¢*”). Clearly, ZFC proves also that there is
no €-model M €V for ¢*. Thus ZFC proves a contradiction. o

From now on in this section, excluding Exercises 3.14 and 3.15, we assume
ZFC+V =L. By GCH we mean the following axiom: For all infinite cardinals &,
2" = k*. We finish this section by showing that ZFC +V = L+ GCH (and thus
Con(ZFC) implies Con(ZFC + GCH)).

By ZF — P we mean ZF without the power set axiom.

3.9 Theorem.

(i) For all regular cardinals k > w and ¢ € ZF — P+ V =L, L, | ¢*.

(ii) There is finite T C ZF — P +V = L such that if M € V is a transitive
€-model and for all ¢ € T, M = ¢*, then for some limit ordinal o > w, M = L,
in fact, one can choose o = M N On.

Proof. (i) Just go carefully through the proofs of ¢* holds for all ¢ € ZFC +
V=L.

(ii) Just go through carefully the proof that for all limit ordinals o > w, L, |
(V = L)* (i.e. show that FM(a) = Fp(a) for all « € On™) and choose T so that
V=LeT. o

3.10 Exercise. Show that for all infinite ordinals o, |Ls| = |o].

3.11 Definition. Let M € V. We define Mostowski collapse Cp; : M U
{M} =V by letting Cpr(x) ={Cp(y)| y € xNM}.

We say that an €-model M is extensional if it satisfies the axiom of extension-
ality i.e. for all z,y € M, if {z€ M| z€z} ={z€ M| z € y}, then z =y.

3.12 Exercise. Show that Cy; € V', Cp(M) is a transitive set and if M
is extensional, then Cy; | M is an isomorphism between the €-models (M, €) and
(Cu (M), €).

3.13 Theorem. ZFC+V =L proves GCH .

Proof. Let x be an infinite cardinal. By exercise 3.10, it is enough to prove
that if X C k, then X € L,_+.

Since X € L, there is a regular cardinal A > k such that X € Ly. By the
downwars Lowenhein-Skolem theorem, we can find M € V such that k +1U{X} C
M, |M| =k and (M, €) is an elementary submodel of (Ly,€) (i.e. for all ¢(z) €
Ly, and c € M™, M |=(c) iff Ly = ¢(c)). Then by Theorem 3.9 (i) Cpr(M) is
a transitive model of 7%, where T is as in Theorem 3.9 (ii) and thus by Theorem
3.9 (ii), there is a limit ordinal « such that Cp(M) = L,. Since k +1 C M,
Cy(X)=X. Thus X € L,. Since |[M| =k, a<k™. o

We say that a cardinal x is weakly inaccessible if it is a regular limit cardinal
> w. A weakly inaccessible x is inaccessible if for all A < &, 2* < k.
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3.14 Exercise.

(i) Show that ZFC* € L1 .

(ii) Suppose V- = L. Show that if k is weakly inaccessible, then it is inaccessible
and V., = L.

3.15 Exercise. Suppose that ZFC t/ "ZFC* is consistent” (cf. Gddel’s
second incompleteness theorem).

(i) Show that ZFC does not prove the existence of an inaccessible cardinal.
Hint: Show that V,, = ZFC™* for inaccessible k.

(ii) Show that ZFC' does not prove the existence of a weakly inaccessible car-
dinal. Hint: Apply (i) to ZFCT = {¢*| ¢ € ZFC} and use Exercise 3.14 or prove
directly that L, = ZFC* for weakly inaccessible k.

4. Diamonds

In this section we study diamonds that give a systematic method of making good
guesses and they exists in L. Throughout this section we assume that V = L.

We start by defining cub and stationary set. We will take a closer look at these
in Section 8.

The following definitions are usually made only for (regular) cardinals, but we
will need the definition of cub also for limit ordinals (if e.g. ¢f(«) = w, the definition
of a stationary set does not make much sense).

4.1 Definition. Let a > w be a limit ordinal.

(i) C C « is called cub (in «) if it is unbounded in « (i.e. for all v < « there
is € C such that 8 >~ ) and for all v < «, if U(CN~y) =+, then v € C.

(ii) S C « is stationary if for all cub C C o, SNC # 0.

4.2 Definition.

(i) We define a class function Fy : On — V. For all a, F,(«) is a pair (X, Cy)
where X,,Cy, C a and C,, is cub if « is a limit ordinal. And then the exact values
can be define recursively as follows: We let Fo(a) = (X4, Cq) be the <y, -least pair
such that for all € C,, Xg # Xo NP if a is a limit ordinal and such a pair exists
and otherwise we let Fy(a) = (0,0).

(ii) We let C, C On be the class of all limit ordinals « such that for all § < «,
F,|B€lL,.

4.3 Exercise.

(i) Show that F, is a class function.

(ii) Show that for all regular cardinals xk > w, C, Nk is cub in k. Hint: By
induction on o < K, show that F,, | o € Lg for some 3 < k and for limit cases apply
(iii) below.

(iii) Show that there is a formula ¢(x,y) such that for all limit ordinals o > w
the following holds: for all 8 < a and a € Ly, if F, | 8 € Ly, then L, = ¢*(a,f)
iffa=F, [ f.
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For all regular cardinals x > w, we write ¢, for the sequence (X,| a < k),
where X, is such that Fy(a) = (X4, C,) for some C, .

4.4 Theorem. Suppose k > w is a regular cardinal and ¢, = (X4 )a<x. For
all X C k, the set {a < k| X N = X,} Is stationary.

Proof. Suppose not. Then there is a pair (X, C) such that X,C C k, C is cub
and for all « € C';, X N # X, . Choose these so that, in addition, (X,C) is the
<r,-least such pair. Notice that in (X,C) € L.+ and in L.+ the defining property
of the pair (X, (') can be expressed by a formula ®(X,C, k) as follows: ” (X, C) is
<1 -least pair such that C' is a cub in k and for all § € C and all a, if ¢(a,8+ 1)
holds and a(f8) = (X',C"), then X’ # X N B”, where ¢ is as in Exercise 4.3 (iii).
Notice also that being < -least is expressible in L.+ by a formula by Exercise 3.5
(ii).

Now choose an €-model M < L+ such that MNk =a € k, a > w, |M|=|qf,
X,C,CoNk, k € M (exercise: show that M exists) and let « be such that Cy, (M) =
L.,. Then # is a limit ordinal > w, Cp [ (MNk) =id, Cy(k) = o, Cy(Y) =Y Na
forall Y € {X,C,C;Nk} and Cp(Y) isacubin « forall Y € {C,CsNk} (exercise).
In particular, U(CNa) = U(CoNa) = and thus a € CNC, (and so Fy, [ B € Ly
for all 8 < «). Finally, L, = ®*(X Na,CNa,a) and thus by Exercises 4.3 (iii) and
3.5 (iii), (X Na,CNa) is the <y -least pair such that C' N« is cub in « and for all
pelCna, XNB#Xp. So Fo(a) = (XNa,CNa) ie. Xo=XNa. Since a € C,
we have a contradiction. o

We will give two examples of the use of diamonds. The first contains a part
of the combinatorial core behind a theorem from generalized descriptive set theory
and the other is a simplified version of a result due to S. Shelah from the theory of
abstract elementary classes.

Let k > w be a regular cardinal. We make 2% a topological space by letting
open sets be all the unions of basic open sets N, = {¢€ € 27| n C £}, n € 2<%. We
also think the elements of 2" as codes for models in the vocabulary {R}, R a binary
relation symbol, the following way: Fix a bijection 7 : > — k. For n € 2%, M, is the
model whose universe is x and R is interpreted so that (a,b) € R if n(n(a,b)) = 1.

We let E, s be the equivalence relation on 2* for which nkE,¢ if the set {«a €
k| n(a) # &(a)} is not stationary (exercise: show that E, is an equivalence relation,
see Exercise 4.10).

We have also another equivalence relation E C (2%)? of which we assume the
following: for all a < , there is an equivalence relation E, C (2%)? such that for
all n,& € 2% the following holds:

(*) if nE¢, then the set {a < k| (n | @)Ey(§ | «)} contains a cub and if
(n,€) € E, then the set {a < k| (n [ o, & | a) € E,} contains a cub.

4.5 Theorem. Suppose E and FE,, are as above. Then there is a continuous
function F': 2% — 2% such that for all n,§ € 2%, nE¢ iff F(n)E,sF(§).

Proof. Let (X,| @ < k) be ¢, and for all @ < k, denote the characteristic
function of X, by fo (ie. fo:a—2, fo(y) =11if v € X, ). Now we can define
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F: F(n)(a) =11if (n | a)Eqfa (and otherwise F(n)(a) = 0). Exercise: Show that
F' is continuous. We are left to prove that nE¢ iff F(n)E,:F(§).

=: Suppose nFE¢. Exercise: There is cub €' C k such that for all o € C,
(n [ @)Ey(€ T «). Then for all « € C, F(n)(a) = F(§)(«) and thus F(n)E,sF(£).

<: Suppose that 1 and £ are not E-equivalent and we prove that F(n) and
F(¢) are not E,s-equivalent. Now there is cub C' C k such that for all a € C,
! o, a) & E,. Let S be the stationary set {a« < k| n [ « = fo}. Then
S* = SNC is stationary (exercise) and for all &« € S*, F(n)(a) =1 and F(§)(a) = 0.
Thus F(n) and F(&) are not E,s-equivalent. o

For the second example, let us fix a class K of structures in a countable vocab-
ulary L. We assume that K has the following four properties:

(1) If Ae K and B~ A (i.e. A and B are isomorphic), then B € K.

(2) If A;, i < a, are models from K and forall i < j<a, A; CA; (ie. A is
a submodel of A, ), then U;«,A; € K.

(3) K is w-categorical i.e. if A, B € K are countably infinite, then A4 =~ 5.

(4) The countable models of K do not have the amalgamation property (AP)
i.e. there are countably infinite A,B,C € K such that A C B,C but there is no
countable D € K and an embedding f :C — D such that BC D and f | A=1id.

We start by an exercise that tells that with diamonds one can guess much more
than just sets.

4.6 Exercise.

(i) Show that there is ((Xa, 9o, fa)| @ < wi) such that for all X C wq, g € 2
and f € wi* theset {a <wi| Xoa =XNa, go =9 [ @, fo = f | a} is stationary.
Hint: Triples (X, g, f) can be coded as subsets of wy .

(ii) Show that there are ((ga, fo)| @ < w1) and stationary sets S; C wi, i < wq,
such that for all i < j < wy, S;NS; =0, and for all i < wy and g € 2*' and
f € Wit the set {a € Si| go = g | o, fo = f | a} is stationary. Hint: Let
((Xa»9a, fa)] @ <wi) be asin (i). Then g, and f, are as wanted when one lets S;
be the set of all sufficiently large a (depends on i and the coding in (i)) such that
Xo = {i}.

We will also need the following observation about K:

4.7 Exercise.

(i) Show that in (4) above, one can choose A, B and C so that in addition,
B — A and C — A are infinite. Hint: Use (2) and (3).

(ii) Let A, B and C be as in (4) above. Show that there are no countable D € K
and an embedding f : B — D such that CC D and f | A=1id.

Notice that the contraposition of the following theorem looks probably more
interesting: If K satisfies (1)-(3) from above and has upto isomorphism < 2* many
models of size wy, then the countably infinite models of K have AP.

4.8 Theorem. There are A; € K, i < 2“1, of power wy such that for all
P<j<2, A 2 AL
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Proof. Let ((ga, fo)]l @ <w1) and S; C wy, i < wy, be as in Exercise 4.6 (ii)
and let Y = {n € 2<1| dom(n) > w}. For all n € Y, we define models A,, as follows
(we will construct these so that if dom(n) is a limit ordinal, then the universe of A,
is dom(n)):

(i) If dom(n) = w, then A, is any model from K whose universe is w.

(ii) If dom(n) = a+1 and « is a successor ordinal, then A, = A, 4.

(iii) If dom(n) is a limit ordinal, then A, = U, ca<dom(y)Ania (exercise: show
that the universe of A, is dom(n), see (iv) below).

(iv) If dom(n) = a+ 1 and « is a limit ordinal, then we actually do something:
Let & € 21!, 4 < 2, be such that g, C & and & (a) =i. Since Ay, is isomorphic
with A from (4) above, we can find A, and Ae, from K so that they can not be
amalgamated over A, and their universe is a +w (by Exercise 4.7). Now if n = ¢;
for some i < 2, A, is defined. Otherwise, there are two possibilities:

(a) fo is an isomorphism from A, to A;j: Choose A, so that there is an
isomorphism f : A¢, — A, such that f, C f, where ¢ = n(«) and the universe of
Ay is a+w.

(b) fa is not an isomorphism from A, to A;o: Welet A, be any model from
K such that the universe of A, is o+ w and A, C A, .

Let (Z;)i<ow1 list the subsets of wy. For all i < 2«1, let n; € 2! be such that
for all @ < wy, Mi(a) =1 if @ € §; for some j € Z;. Finally, for i < 21, let
Ai = Up<a<w An;ta - We show that these are as wanted.

Clearly, for all i < 21 A; € K and |A;| = wy. So it is enough to show that
if 4,7 < 2%t and i # j, A; 2 A;. For a contradiction, suppose that f : A; = A;
and by symmetry, w.o.l.g. we may assume that there is £ € Z; — Z;. Now there is
a cub C C wy such that for all a € ', « is a limit ordinal and f | « is a bijection
from « to o (and thus f [  is an isomorphism from A,, o to A, o). So there is
v € CNSy such that g, =mn; [y and f, = f 7.

Let &, = (n; [ @) U{(a,n)} for n <2 and & = (n; [ @) U{(a,1)}. Notice that
& Cn; and & Cn; (since o € Sy, and k € Z; — Z;). Then by (iv)(a) above, there is
an isomorphism ¢ : A¢, — Ag¢, such that f [ Ay, = fo € g. Since A¢, is countable,
there is a« + 1 < v < wy such that f~1(Ae.) C A, ;5. But then Ae, C A, € K,
Ay, 1+ is countable and (f~! [ Ag,) o g is an embedding of Ag, to A, .. Also since
fl1 A =faCg, [(f71 1 Ae)og] | Ay, =id. This contradicts the choice of Ag,
and Ag, ie. (4) above. o

4.9 Exercise. In ZF(C', show that if k > w is a regular cardinal and there are
Xo € «, a < k, such that for all X C k, the set {a < k| X, = XNa} is unbounded,
then k<" = k (which is equivalent with |{A C k| |A| < k}| = k, exercise).

4.10 Exercise. Suppose k > w is regular.

(i) Show that if C,D C k are cub, then also C N D is cub.

(ii) Show that if C' C k is cub and S C k is stationary, then C'NS is stationary.
(iii) Show that E, s is an equivalence relation.
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5. Squares

In this section we will look at a combinatorial principle called square (aka box).
R. Jensen showed that [, holds in L for all regular cardinals x. We will skip this
proof but we will look at how to use the principle.

5.1 Exercise/Definition. Suppose X is a set and < is a well-ordering of X .
Show that there are unique o € On and a unique bijection f : X — « such that for
all a,be€ X, a<b iff f(a) < f(b). We write ot(X, <) for this a. If X C On, then
we write ot(X) for ot(X, €).

5.2 Definition. Suppose k is a regular cardinal. We write U, for the following
principle: There are cub sets C,, C « for all limit ordinals o < k™ such that ot(C,) <
 and for all limit ordinals f < o < k™, if U(Co, N B) = B, then Cs = Cy N .

5.3 Fact. (Jensen) V = L implies that O, holds for all infinite regular
cardinals k.

5.4 Exercise.

(i) Suppose k is a regular cardinal (notice that then k is a regular cardinal in
L) and (k*)F = k*. Show that O, holds.

(ii) Show that [, holds.

5.5 Definition. Suppose u < k are regular cardinals.

(i) S5 = {a < ] ef(a) = }.

(i) C € Sy is p-cub if it is unbounded and for all a < K of cofinality y the
following holds: If U(C N«a) = «, then a € C.

(iii) Suppose X C k. A p-cub-game CGJ,(X) is the following game: There are
two players I and II and the length of the game is . At each move i < u, first
I chooses an ordinal a; < k and then II chooses [3; < Kk so that [3; > Uj<ja. I1
wins if Ui<uﬁi cX.

(iv) A winning strategy of Il in G},(X) is a sequence W = (f;)i<, such that
for all i < u, fi: kY — K and if I1 plays according to W (i.e. always chooses
Bi = fi((e)j<i) ), then I wins the game.

5.6 Exercise. Suppose pu < k are regular cardinals.

(i) Show that if p < r, then S} is stationary and that X C S} is p-cup iff
there is a cub C C k such that C’ﬂSﬁ =X.

(ii) Suppose that X C xk*. Show that (a) implies (b) and that if k<" = k, then
(b) implies (a), where

(a) X contains a p-cub.

(b) 1I has a winning strategy in C'G/"fr (X).
Hint: For (a)=>(b): Let II play an increasing sequence of elements of the p-cub. For
(b)=>(a): Look at the set of ordinals closed under the winning strategy.

Assuming the existence of a mahlo cardinal, it is possible to force a model in
which there are a regular cardinal x and X C T such that IT has a winning strategy
in CG*" (X) but X does not contain a r-cub set.
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5.7 Theorem. Suppose that k is a reqular cardinal, O, holds and X C k™.
Then the following are equivalent:
(i) X contains a k-cub.

(ii) 1I has a winning strategy in C’Gz+ (X).

Proof. (i)=-(ii): This follows from Exercise 5.6.

(ii) = (i): Suppose (i) fails. Then S = S%" — X is stationary by Exercise 5.6. Let
W = (fi)i<x be a winning strategy of IT and C = (C;)ics, J = {a < k| a limit}
witness that [J,. holds. We can choose €-models M;, i < kT, so that

(a) (k+1)U{sT, W, CYU {1 i< Kk} C My,

(b) for all @ < x*, M; is an elementary submodel of Vi ++ = V{,+y+ (i.e. for all
¢(x) € Lyw and a € (M), M; = ¢(a) iff Vo4r E ¢(a)),

(c) for all 4 < k™, |M;| =k and M; N kT = a; € On,

(d) for all ¢ < j < kT, M; C M; (and thus M; is an elementary submodel of
M;) and o; < o,

(e) for @ < k* limit, M; = Uj<;M; (and thus o; = Uj<a;).

Now D = {«a;| i < k*} is cub (by (e) above) and thus there is i < k™ such
that «; € S. Denote M = M; and a = «; and notice that ¢f(a) = k and a > k.
Thus ot(Cy,) = k and so we can enumerate C, = {7;| i < k} so that if i < j, then
Vi <Vj-

Now we play the game C’Gﬁ+ (X) the following way: II follows her winning
strategy W and I chooses at round ¢, the ordinal ;. Since II wins this game and
Uick¥i = o« € X, there must be i < x such that f;((v;);<i) > a.

We make the following observation: If h :Y — V.++ and h,Y € M, then for
all z € YNM, h(x) € M. This is because M is an elemenry submodel of V, ++ and
h(z) € Vo4t forall x €Y.

Now since W,i € M, f; = W (i) € M and thus (v;);<; € M (because otherwise
fi((v)j<i) € M and so fi((vj)j<i) < @ = kT N M). But then, again because M is
an elementary submodel of V,++, the set E = {~;| j <14} does not belong to M.

On the other hand, there is a limit ordinal 8 € C,, such that U(C,NB) = B and
B>, and thus C, NS =Cs and E=CgN(y;+1). Since C € M and € M,
Cp € M and since also 7; +1 € M, E € M, a contradiction. o

5.8 Exercise. Suppose p < k are regular cardinals.

(i) Suppose for i < p, S; C k and U;<,.S; is stationary. Show using (special case
of ) Exercise 8.7 below, that there is i < « such that S; is stationary. (Regularity of
i is not needed here.) Hint: Suppose not and choose cub sets C; C k — S; and look
Ni<aCi -

(ii) Suppose sets C,, a < k1 limit, witness that 0O, holds. For all v < k,
let S, =A{B € Sﬁ+\ ot(Cg) = ~v}. Show that there is v < k such that S = S, is
stationary and for all limit o < k™ of cofinality > w, S N« is not stationary in «.
(If cf(a) = w, stationarity in a does not make much sense.) Hint: The limit points
of C, almost witness that S N « is not stationary.

24



6. Generic extension

In forcing the strategy to show that some first-order sentence ¢ is not provable
from ZFC is to first find a suitable partial-order P = (P, <) (i.e. a set P together
with a partial-ordering < of it) and a P-generic filter G over V' and then construct
a generic extension V|G| and finally show that V[G] is a model of ZFC together
with —¢. However, this construction can not be done inside V. It follows that we
will work on the object side. The first approximation for this would be to pick an
€-model of ZFC* (see below). We call this model V. So from now on by V we
mean this and not the model of ZF'C' in which we pretend to be working as in Section
2. We know that ZFC' does not prove the existence of V' and we will return to this
problem in Section 9.

To be able to talk about V' in the meta theory, we think it as a constant and in
fact, and this is important, in meta theory we need not to assume that V' is a model
of ZFC™*, it is enough to assume that V |= ¢* belongs to the meta theory for all
axioms ¢ of ZFC'. Recall that ¢* is the Godel number of ¢.

Notice that now our meta theory also knows that V' is an €-model and because
of this, the meta theory thinks that V' is well-founded in the following sense (below
when we talk about well-founded partial orderings of classes of V' we mean in the
sense of Definition 1.3.1 applied in V'): there are no a; € V', i < w, such that for
all i < w, a;41 € a; in V. We also assume that the meta theory thinks that V is
transitive, in particular, every element x of V is the set of all elements y € V' that
V' thinks are elements of x. This simplifies our definitions.

6.1 Exercise. Show that the transitivity assumption can be made without
loss of generality.

Finally, we are going to assume that V' is countable. Recall that in Section 9,
we will look at the questions: why all our additional assumptions are harmless and
why finding V[G] such that V[G] = —¢ shows that ZFC does not prove ¢.

Notice that since we have added V as a constant, it is definable the set of
elements of V is definable without parameters and so for all formulas ¢, ¢V does
not contain parameters. If ¢" contains just one element, we use ¢" also to denote
that element e.g. w" is the element of V that satisfies the definition of w.

Since we have assumed that V' is transitive, for many sentences ¢ (with param-
eters from V), ¢V < ¢ is true (i.e. provable from in our meta theory) and when
this is the case, we say that ¢ is absolute for V.

6.2 Exercise. Let a,b € V. Show that

(i) (a€b)V < (a€b).

(ii) ("a is a partial order”)V <+ ("a is a partial order”).
(iii) (a € On)V < (a € On).

(iv) W =w.

(V) va = VUJ

(vi) Vz("x is a formula” <> (x € V A ("z is a formula”)V).
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For this and the next section, we fix a partial order P = (P, <) € V with a
largest element 1 (these are often called po-sets). For a,b € P, we write al|b if there
is ¢ € P such that ¢ < a,b. If there is no such ¢, we write a_lb.

6.3 Definition.

(i) We say that D € V is dense in P if D C P and for all a € P, thereis b € D
such that b < a.

(ii)) We say that G C P is a filter if the following holds:

(a) 1 €@,

(b)if a € G and b > a, then b € G,

(c) if a,b € G, then there is ¢ € G such that ¢ < a,b.

(iii) We say that G is P-generic over V' if it is a filter and for all D € V', if D
is dense in P, then GN D # 0.

6.4 Exercise.

(i) For all D € V', ("D is dense in P”)V <+ ("D is dense in P”).

(ii) Show that if G is P-generic over V and p € P is such that for all q € G,
pllg, then p € G.

(iii) Suppose that for all a € P, there are b,c € P such that b,c < a and blc.
Show that if G is P-generic over V , then G ¢ V.

(iv) Show that for all p € P, there exists a P-generic G over V such that
peG.

(v) Suppose G is P-generic over V., p € G and C C P is dense below p i.e.
for all ¢ < p there is v < q such that r € C'. Show that CNG # ().

6.5 Definition. The set V¥ of P-names is defined as follows:

(i) 0 is a P-name.

(i) For all « € OnY , and p; € P, i < «, if for all i < o, 7; is a P-name and
T={(m,pi)| i <a} eV, then 7 is a P-name.

6.6 Exercise.

(i) Show that V¥ is a class in V.

(ii) Show that the following ordering <* of elements of VI is well-founded:
T <* o if thereare n < w, 7, € VP, i <n, and p; € P, i < n, such that 7 = T,
Tn =0 and for all i <n, (7;,p;) € Tit1-

(iii) Show that <* is a class in V.

6.7 Definition. Let G be P-generic over V .

(i) For all T € VP 14 is defined as follows: (lg = 0 and) 7¢ = {og| Ip €
G((o,p) €7)}.

(ii) VIG] = {r¢| T € VF}.

We think V[G] as a {€}-model letting the interpretation of € be the natural
one that makes V[G] a transitive model (7¢ eVl 54 if 7¢ € o). We use the same
notations with V[G] as with V. So e.g. ¢} denotes the sentence that says that
¢ is true in V[G].
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If a € V[G], then it has a name 7 i.e. a P-name such that a = 7. This name
is often denoted by a (or a, see below), but we are not very strict with this.

6.8 I?eﬁnition. For each a € V', we define the standard name a for a as
follows: (0 =0 and) a = {(b,1)| b € a}.

6.9 Exercise. Show that for all P-generic G over V, ag = a and conclude
that V C V[G].

We finish this section by defining the forcing notion I-. In the next section we
give another definition for |- and we prove that the two definitions are equivalent as
well as the very basic properties of this notion.

We start by defining the forcing language, This is a language that works on
the object side only, it does not have a counterpart on the meta side. So in the
definition below we describe a sentence of the meta language that expresses what
it means to be a formula in the forcing language. By a forcing language we mean
the first-order logic in the vocabulary {€} U {7| 7 € V¥}, where the P-names 7
are considered as constants. When we write a formula of this forcing language, we
usually point out what are the constants. So ¢(7y, ..., 7,) means a formula in which
no other constants than 7y,...,7, appear. Notice that then for a P-generic G over
V, o((m)a, - (Tn)a) is a {€}-formula with parameters from V[G].

6.10 Definition. Let ¢(m,...,7,) be a sentence in the forcing language and
p € P. We say that p forces ¢(t1,...,7,) and write p I ¢(71,...,7,) (or, if needed,
pltp ¢(11, ..., 7)), if for all P-generic G over V', the following holds: If p € G, then
V(G] = 6((r1)g - (1))

6.11 Exercise.

(i) Suppose p I+ ¢ and q < p. Show that q I+ ¢.

(ii) Show that plF ¢ A iff plk ¢ and pl+- .

(iii) Suppose p I+ ¢ and = ¢ — 1. Show that p I+ 1.
By G we denote the P-name {(p,p)| p € P}.

6.12 Exercise. Show that G = G and conclude that G € V[G].

7. Forcing

We define an ordering <* to (VF)? so that (r,0) <* (7/,0') if 7 <* 7/ and
o <* ¢’ (see Exercise 6.6 (ii)).

7.1 Exercise. Show that <* is well-founded.

7.2 Definition. For p € P and P-names 7 and o, the relation pIF* 7 = ¢
is defined as follows: p IF* 7 = o if both (a) and (b) below hold:

(a) for all ¢ <p and (7',s) € 7, if ¢ < s, then there are r < q and (¢',t) € o
such that r <t and r IF* 7/ = o’.

(b) for all ¢ < p and (o',t) € o, if ¢ <t, then there are r < q and (7/,s) € T
such that r <t and r IF* 7/ = 0o’.
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Notice that (a) above is equivalent with the following (and similarly for (b)): For
all (7',s) et if ¢ <p,s, thentheset {r e P|3(c',t) cost.r<tandrl-7" =o'}
is dense below q.

7.3 Exercise.

(i) Show that the set {(p,7,0)| pIF* 7 =0} isa classin V.

(ii) Show that if for all ¢ < p there is r < q such that r |F* 7 = o, then
plF*1T=0.

7.4 Lemma. Suppose G is P-generic over V.
(i) If pe G and pIF* 7 =0, then 7¢ = 0¢.
(ii) If 7¢ = o, then there is p € G such that pIF* 7 =0.

Proof. (i): By symmetry it is enough to show that 7o C og. For this it is
enough to show the following: If (7/,s) € 7 and s € G, then 7/ € 0. Let p' € G
be such that p’ < p,s. By the definition of IF* and the definition of a P-generic
set over V', we can find (0/,t) € 0 and r € G such that r < p',t and r IF* 7/ = ¢’
(exercise, hint: use the remark after Definition 7.2 and Exercise 6.4 (v)). By the
induction assumption, 7/, = o, and thus 7(; € o¢.

(ii): We show there is p € G such that (a) from Definition 7.2 holds. Similarly
we see that there is p € G such that (b) from Definition 7.2 holds. This suffices
(exercise). For a contradiction suppose that there is no such p € G.

For all p € P, let q(p) and (7'(p),s(p)) witness the failure of (a) in the case
that these elements exists. If they do not exists, we say that p is good. Now
{¢ e P|3pe P(qg<q(p)}U{q € P| qisgood} is dense in P (exercise). Since we
assumed that there is no good p € G, there must be p € G (since G is a generic
filter) such that ¢(p) € G (and thus we may assume that ¢(p) = p).

But then for all (¢/,t) € o such that t € G, forno r € G, r IF* 7/(p) = o'.
Thus by the induction assumption, for all (¢’,t) € o such that ¢t € G, 7(p)g # 04
Since 7'(p)c € T, we have a contradiction. o

7.5 Definition. Suppose p € P and 7 and o are P-names. We define
plF* 7 € o as follows: pl-* 7 € o if for all ¢ < p, there are r < q and (o',t) € o
such that r <t and r IF* 7 =o'

7.6 Exercise.

(i) Show that the set {(p,7,0)| pIF* 7 € o} isa classin V.

(ii) Show that if for all ¢ < p there is r < ¢q such that r IF* 7 € o, then
plF* T e0o.

7.7 Lemma. Suppose G is P-generic over V.
(i) If pe G and pIF* 7 € 0, then 7 € 0¢.
(ii) If 7¢ € o¢, then there is p € G such that plF* 7 € 0.

Proof. As the proof of Lemma 7.4. o
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7.8 Definition. Let p € P and ¢ = ¢(71,...,Tn) be a sentence in the forcing
language. We define p IF* ¢ as follows:

(i) If ¢ is an atomic formula, we have already defined p IF* ¢.

(ii) If ¢ = =), then p IF* ¢ if there is no q < p such that q IF* 1.

(iii) If p = N0, then pIt* ¢ if pIF* 4 and pI-* 6.

(iv) If ¢ = Jvpp(vg, 11, ..., ), then pl-* ¢ if for all ¢ < p there are a P-name
7 and r < q such that v \F* (1,71, ..., 7).

7.9 Exercise.

(i) Show that the set {(p,®)| p IF* ¢} is a class in V.

(ii) Show that if p IF* ¢ and q < p, then qI-* ¢.

(iii) Show that if for all ¢ < p there is r < q such that r |+* ¢, then pI-* ¢.

7.10 Theorem. Suppose G is P-generic over V .

(i) If p € G and p IF* ¢(71,...,7,), then VG| E o((11)q, -, (Tn)c) -
(ii)) If V[G] = ¢((11)a, ---, (Tn)G) , then for some p € G, pIF* ¢(71, ..., 7).

Proof. We prove the claims simultaneously by induction on ¢. If ¢ is an atomic
formula, then we have already proved this. We prove the claims in the case ¢ = -,
the two other cases are left as an exercise.

(i): For a contradiction suppose V[G] = 9. Then by the induction assumption,
there is ¢ € G such that ¢ IF* ¢. By Exercise 7.9, we may assume that ¢ < p, a
contradiction.

(ii): For a contradiction, suppose that there is no such p € G i.e. for all p € G
there is g, € P such that ¢, < p and ¢, IF* ¢. But then as in the proof of Lemma
7.4, we can find p € G such that ¢, € G. By the induction assumption V[G] = v,
a contradiction. o

7.11 Corollary. pl- ¢ iff pIF* ¢.

Proof. From right to left the claim follows immediately from Theorem 7.10 (i).
For the other direction, by Exercise 7.9 (ii), it is enough to show that for all ¢ < p,
there is r < ¢ such that r IF* ¢. But this is clear by Theorem 7.10 (ii). o

We finish this section by showing that V[G] satisfies all the axioms of ZFC.

7.12 Theorem. Let ¢ be an axiom of ZFC. Then ¢V[¢! holds.

Proof. For extensionality, foundation and infinity, the claim is immediate by
our construction of V[G]. We prove separation, the rest are similar.

Let 7 and 71,...,7, be P-names and ¢(vg,...,v,) be a formula. Let G be
P-generic over V. We need to show that the set

a={z € c| ¢z, (1) (Tn)a) N}

is in V[G]. For this we need to find a P-name for a.
We let o be the set of all pairs (d,p) such that
(i) p € P and for some ¢ > p, (4,q) € T,
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(ii)) p Ik ¢(d, 71, .oy Tn) -

Notice that by Exercise 7.9 (i), ¢ is a P-name (i.e. is in V). We are left to show
that og = a.

oc C a: Suppose O € oc. Then there are p € G and ¢ such that (4,p) € o
and p IF & = . But then 0, = ¢ € 7¢ and ¢(6c, (11)a, - (Tn)a) V€ holds i.e.
dg € a.

a C og: Suppose 6 € a. Then 0, € 7 and so there are p € G and § such that
plFd" =6 and (6,q) € 7 for some ¢ > p. Also for some p’ € G, p’ IF ¢(8', 71, ...,7n).
Clearly we may assume that p’ = p. But then by Exercise 6.11, p IF ¢(6, 71, ..., Tn)
and thus d¢ € o and so also i € og. ©

7.13 Exercise. Show that the pairing axiom is true in V|[G].

7.14 Exercise.

(i) Show that if p IF Jug(vg, 11, ..., Tn), then there is a P-name 1 such that
p I (r,m1,...,7,). Hint: For all ¢ € P pick o, such that q I~ ¢(oq,11,...,7n) if
there is such a name. Let X = {0;| i < a} be the set of these. Then look at good q
i.e. those for which there is i < o such that q |- ¢ (o;, 11, ...,T,) and for all r < q, if
rl-(oj,71,...,7), then j > 1.

(ii) Suppose C € V is a set of P-names. Show that in V|G| there is a function
f: C — VI[G] such that for all T € C, f(1) =1q.

7.15 Lemma. Let G be P-generic over V. Then OnV!l = OnV .

Proof. Clearly OnY C OnVI¢l. So for a contradiction, suppose that there is
a € OnVIGl such that ¢ OnV . Then OnY C «. Let 7 be a P-name such that
7¢ = « and let A be the set of all P-names o such that (o,q) € 7 for some ¢q € P.
Let k € V be a cardinal for which there is a bijection f: Ax P — k (in V). Let
kT be the successor of k in V.

Then there is some p € P such that p I k+t C 7. And so for all ~v € kT there
is (04,py) € A x P such that p, IF 6, = 4. By Corollary 7.11 and Exercise 7.9 (i),
we can choose 4, and p, so that the function g : k™ — A X P, g(v) = (85,py)
is in V and clearly it is an injection. Thus f o ¢ is an injection from ~* to k, a
contradiction. o

8. Negation of continuum hypothesis

In this section we prove the consistency of the negation of the continuum hy-
pothesis.

8.1 Definition. Let P = (P, <) be a partial order.
(i) We say that A C P is an antichain if for all p,q € A, if p # q, then plq.
We say that A is a maximal antichain if no antichain is a proper extension of A.

(ii) For a cardinal k, we say that P has k-cc (chain condition) if |A| < k for
all antichains A C P.
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8.2 Exercise.

(i) Suppose A C P is an antichain (in V). Show that A is maximal iff D =
{pe P|3q€ A(p < q)} is dense in P.

(ii) Show that if A C P is a maximal antichain (in V') and G is P-generic over
V', then GN A is a singleton.

Recall that by w; we denote the least cardinal > w i.e. w'. w;-cc is usually
called ccc (countable chain condition).

8.3 Theorem. Suppose that in V the following holds: P has k-cc and
cf(A) =~ > k. Let G be P-generic over V. Then in V[G], cf(\) = .

Proof. For a contradiction, suppose that in V[G] there are 6 <~y and f: 60 — X
such that U(rng(f)) = A. Let f bea P-name such that fo = f. When this happens,
we say that f is a P-name for f.

8.3.1 Exercise. Show that there is a P-name 7 and p € G such that p I
7= f and 1 forces that T is a function from 6 to \.

So we may assume that 1 forces that f is a function from 6 to \.

8.3.2 Exercise. Show that for all a < 0, there is a maximal antichain A, C P
such that for all p € A, there is [, for which p - f(&) = f,.

For all o < 0, let 6, = U{B, + 1| p € Ay}. By k-cc and the assumption that
cf(AN) > Kk, o < A. Let 6 = U{dn| a < 6}. Since 0 < cf(N), 6 < A. But clearly,
rng(f) C 0, a contradiction. o

8.4 Corollary. Ifin V, P has k-cc, k is regular and \ > k is a cardinal,
then \ is a cardinal also in V[G].

Proof. Clearly it is enough to prove this under the additional assumption that
A is regular (exercise). But then the claim follows immediately from Theorem 8.3. o©
Theorem 8.3 gives an alternative way of proving Lemma 7.15.

8.5 Corollary. Suppose in V', P is a partial order and G is P-generic over
V. Then for all a € V[G], (o € On)VIC iff a € V and (a € On)V .

Proof. By Exercise 6.2 (ii), it is enough to show that (o € On)VI¢! implies
that o € V. For this it is enough to find a cardinal A € V' such that in V[G], a < A
(as above). Let & be such that &g = . Then there are (in V') a cardinal « and a
function f such that dom(f) =k and

rng(f) = {7 € TC(&)| 3p € P((7,p) € &)}.

Now in V', choose a regular cardinal A so that A > x and A > |P|. Then By
Corollary 8.4, X is a cardinal also in V[G]. Also by Exercise 7.14, in V[G], there is
a function ¢ such that dom(g) = k and for all v < k, g(v) = f(7)g. Then clearly
a C rng(g) and thus |a] < A. But then o < \. o

Let us recall the following definition from Section 4:
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8.6 Definition. Let k > w be a regular cardinal.

(i) C C k is called cub (closed and unbounded) if it is unbounded in x (i.e. for
all a < K there is € C such that > «) and for all a < k, if U(C N«) = «, then
acC.

(ii)) S C k is stationary if for all cub C C k, SNC # ().

8.7 Exercise. Suppose that k > w is a regular cardinal and for all o < k,
C, C k is cub. Show that

AackCo ={a e k| Vy<alaeC,)}

is cub.

8.8 Lemma. (Fodor’s lemma) Suppose that k > w is a regular cardinal,
S C k is stationary and f:S — k is such that for all « € S, f(a) < o. Then there
is a stationary S’ C S and a < k such that f(y) =« for all vy € S’.

Proof. Suppose that there are no such S’ and «. Then for all a < x, there is
cub C, C k such that for all v € C, NS, f(v) # a. Let v € (Au<xCqs) NS. Then
for all a« <, f(v) # «, a contradiction. o

Recall that by |a|<" we mean the cardinality of the set {f : 8 — |a] | 8 < K}
which is the same as the cardinality of the set {f : 8 — a| 5 < k}.

8.9 Lemma. (A-lemma) Suppose A > k are regular cardinals, for all a < A,
la|<® < X\ and A be a set. For all i < X\, let A; C A be a set of size < k. Then
there is an unbounded X C X\ and Y C A such that for all i,j € X, if i # j, then
AiNA; =Y.

Proof. Without loss of generality we may assume that A = A. Let S = {y <
A c¢f(v) = k}. By Exercise 5.6 (i), S is stationary.

Define f : S — X so that f(y) = U(A,N7). Notice that forall y € S, f(y) <.
By Fodor’s lemma, there is stationary S’ C S and « < A such that f(y) = « for all
v € S’. By the pigeon hole principle and the assumption that |a + 1|<% < A, there
is Y C (av+ 1) and unbounded X’ C 5" such that for all y € X', A, Ny=Y.

By induction on i < X\, we choose ordinals v; € X’ as follows:

() 70 = min(X’ - a),

(ii) for i > 0, v = min(X' — U{(y; UUA,,) +1| j <i}).
Then YV and X = {v;]| i < A} are as wanted. o

8.10 Definition. By CH (continuum hypothesis) we mean the claim 2* = w; .

Now we are ready to prove the consistency the the negation of continuum hy-
pothesis. We present the proof the way forcing constructions are usually presented
and in the next section we study the reason why the proof shows the claim (and what
it is that we claim).

8.11 Theorem. (Cohen) Con(ZFC) implies Con(ZFC+—-CH)
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Proof. In V', let k be a cardinal > w; and P be the partial order of all functions
p: X, =2, X, C Kk xw finite, ordered by inverse inclusion i.e. p < g if ¢ C p.

8.11.1 Exercise. Show that (in V' ) P has ccc. Hint: Suppose that {p;| i <
w1} is an antichain and start by applying A-lemma to the set {X,.| i < w1}.

Let G be P-generic over V and then from V[G] we find the function F' = UG :
KX w— 2 and sets X, ={n <w| Fla,n) =1}, a < k.

8.11.2 Exercise.
(i) Show that, indeed, dom(UG) = Kk X w.
(ii) Show that for all o < B < k, Xo # X3.

By Corollaries 8.4 and 8.5, V' and V|G| have the same cardinals and thus in
VIG], 2¥ > k > w;. O

9. Why forcing works

The proof of Theorem 8.11 shows that if, on the meta level, there is a proof of
CH from ZFC, then on the meta level there is a proof of contradiction from ZFC
(and in fact there is a mechanical method of forming a proof of contradiction from
any proof of CH, making the forcing a constructive method). The reason for this is
the following:

So suppose that we are given a proof D of CH from ZFC. Let T be the finite set of
axioms of ZFC used in the proof D. Then, by looking at the proofs of Theorems 7.12
and 8.11, one can can find a finite set T* of axioms of ZFC such that ZFCU{¢"| ¢ €
T*} U {"V is countable and transitive”} proves " [¢ for every v € T U {-~CH}.
Now using vakioiden lemma from the course Matemaattinen logiikka, we get that
ZFC proves

"WV ((”V is countable and transitive” A /\ »V) — ( /\ VG,
PET™ veTu{-CH}
Using Exercises 2.3 and 2.4 one gets:

9.1 Exercise. For all finite T" C ZFC, ZFC proves that there exists a
countable and transitive €-model V such that for all $ € T", ¢V holds.

Thus ZFC proves that there exists V* such that for all ¢ € T U {-CH}, ¢V~
holds.

On the other hand, since T' proves CH, ZFC proves that ”T + CH” (as in the
proof of Godel’s second incompleteness theorem in the course Matemaattinen logi-
ikka). Since ZFC also proves soundness (korrektisuuslause in the course Matemaat-
tinen logiikka), ZFC proves CH"". Thus ZFC proves that there is V* in which
a contradiction holds. As we saw in the course Matemaattinen logiikka, ZFC also
proves that there is no V* which satisfies a contradiction and thus we have a proof
of a contradiction from ZFC.

9.2 Exercise. Does the proof of Theorem 8.11 show that ZFC+"ZFC* +
CH™” is inconsistent?
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10. Continuum hypothesis

In Section 3 we proved the consistence of C'H by showing that it is true in L.
In this section we show how to prove this by using forcing.

10.1 Definition. We say that partial order P is k-closed if for all o < Kk and
all p; € P, © < «a, the following holds: If for all i < j < o, p; < p;, then there is
p € P such that p < p,; for all i < «.

10.2 Theorem. Suppose P is k-closed, G is P-generic over V, X € V,
YeVIG],YCX andin V|G|, |Y| < k. Then Y € V.

Notice that above we do not yet know that x is a cardinal in V[G].

Proof. So in V|[G], there is A < k and f: A — X such that Y = rng(f) and
let f, Y and A be P-names for f, Y and A = P(X)V € V. Then there is p € P
which forces that YV = rng(f) and dom(f) =X and Y ¢ A and ¥ C X.

For all v < A, we construct p, € P and z,41 € X as follows:

(i) po =p,

(i) py41 is such that p,41 < py and for some x,41 € X, pyy1 forces that
f(ﬁ/) = x’YA-i-l ;

(iii) if v is a limit ordinal, then p, is any element of P such that p, < p; for
all 4 <.
Let Z = {x,41| v < A} € V.. Then py forces that rng(f) = Z € A, a contradiction,

]

10.3 Exercise. Suppose P is k-closed, A < k is a cardinal (in V') and G is
P-generic over V. Show that \ is a cardinal in V[G].

10.4 Theorem. Con(ZFC) implies Con(ZFC+CH).

Proof. Let k = 2“ and let P be the set of all functions f :a — Kk, a < wy,
ordered by the inverse inclusion. Clearly P is wi-closed. Let G be P-generic over
V and f=UG € V[G].

\%

10.4.1 Exercise. Show that f is a surjection from (w1)" onto k.

By Theorem 10.2, in V[G] there are no new subsets of w and thus P(w)"
P(w)VIG . Also by Exercise 10.3, (w1)” = (w1)VI¢ and so, in V[G], |P(w)| < wy
and thus CH holds. o

10.5 Exercise. Prove the consistency of the following claims:
(i) 2¥ = w; and 2% = ws,

(ii) 2% = 2“1 = wy,

(iii) 2¥ = wy and 2“' > ws.

11. Iterated forcing - the starting point

In forcing, finding a suitable partial order is the main difficulty (keeping in mind
that one also has to show that the partial order works). From the literature one can
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find several methods that are developed to help one to find these partial orders. The
most used method is iterated forcing. We start by going back to Exercise 10.5 and
do the constructions in a very complicated way. This helps in the next section.

In iterations the requirement that the partial order P = (P, <,1) must satisfy
that p < ¢ and ¢ < p implies that p = ¢, causes technical inconveniences. Thus
we lift this requirement i.e. we require only that < is transitive and reflexive. Then
pEq if p < ¢ and ¢ < p is an equivalence relation and P/F is a partial order in the
old sense when one defines p/E < ¢/E if p < ¢ and P and P/E work in forcing
exactly the same way (exercise). And if one wants, one can replace all partial orders
P with P/FE everywhere below.

Throughout this section P = (P, <,1) is a partial order (in V' and in our new
sense).

11.1 Definition.

(i) We say that Q = (Q,<,1) = (Q,<,1) is a P-name of a partial order if Q,
< and 1 are P-names and 1 forces that < is a partial order of Q with the largest
element 1 and (1,1) € Q. We will write Q for Q ete. It should be clear from the
context what we mean.

(ii) P x @ is the set

{(p,7)lpeP, 3¢€ P((1,9) €Q), plFT7€Q}

ordered by the following partial order: (p,7) < (q,0) if p<gq and plk 7 < o. (The
largest element is (1,1).) The set of those P-names 7 for which there is p € P such
that (1,p) € Q is denoted by Dom(Q).

(iii) i : P — P % Q is the function i(p) = (p,1).

From now on we let () be a P-name for a partial order and 7 as in Definition
11.1 (iii).

11.2 Exercise. i is a complete embedding (see [Ku]), in particular,
(i) if p,q € P and p < q, then i(p) < i(q),

(ii) if p,q € P, then plq iff i(p)Li(q),

(iii) if (p,7) € P*Q and q < p, then (p,7)||i(q).

11.3 Exercise. Suppose K is PxQ-generic over V. Show that Kp = i~ *(K)
is P-generic over V. Hint: Use Exercise 11.2.

11.4 Definition.

(i) If G is a P-generic over V and H C Q¢, then G« H is the set of those
(p,7) € P%*Q such that p € G and 7¢ € H .

(ii) If K is P Q-generic over V and G = Kp, then K is the set of those ¢
such that for some q € P, (q,7) € K. Notice that (q,7) € K implies that q € G.

11.5 Lemma. Suppose K is P x (@) -generic over V, G = Kp and H = Kq.
Then H is Qg -generic over V|G|, K = Gx H and VK] = V[G][H].
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Proof. H is Qg-generic over V|[G]|: The proof that H is a filter is left as an
exercise and so we prove only that H is generic. For this let § be a P-name for a
dense subset of Qg i.e. some p € G forces that J is a dense subset of (). But then
D={(qg,7) e PxQ| q<p, qlF7€d}U{(q,7) € PxQ| qLp} is dense in P * Q
(exercise). Thus thereis (¢,7) € KND. Since K is a filter, ¢||p and so 7¢ € d¢NH .

K = GxH : The direction C is immediate by the definitions and so we prove only
that GxH C K: So suppose (p,7) € GxH. Then p € G i.e. (p,1) € K and 7¢ € H
i.e. for some q € P, (¢q,7) € K (and p forces that 7 € Q) since Gx* H C Px Q).
Since K is a filter there is some (r,p) € K such that (r,p) < (p,1),(q, 7). But then
(r,p) < (p,7) and so (p,7) € K.

V[K] = V[G|[H] is left as an exercise. (Hint: Show first that K € V[G][H] and
G,H € VIK].) o

11.6 Exercise. Suppose G is P-generic over V and H is Qg -generic over
V[G]. Then G x H is P % Q-generic over V.

11.7 Exercise. Suppose P has ccc, X € V and 7 is a P-name of which
1 forces that ™ C X and that T is countable. Show that there exists a countable
Y C X inV such that 11+ 71 C Y. Hint: Choose a P-name f such that 1 forces
that f is a function from & onto T and repeat the argument from the proof of
Theorem 8.3.

11.8 Lemma. If P has ccc and 1 forces that () has ccc, then P () has ccc.

Proof. For a contradiction, suppose {(p;,7;) € Px Q| i < wy} is an antichain.
Let 6 = {(pi,pi)| i <wi}.

11.8.1 Exercise. Show that if G is P-generic over V', then ég is a countable
subset of P in V[G]. Hint: Any two elements of g are compatible.

Thus by Exercise 11.7, there is countable Y C P such that 1 IF § C Y. But
since for all i < wy, p; IF p; € &, the set {p;| i < w1} is countable. Thus there is
an uncountable set X C w; such that for all ¢,j € X, p; = p; = p. Since 1 forces
that @ has ccc, there are ¢ < p and i,j € X, ¢ # j, such that ¢ |- 7;||7;. But then
(pi, 7i)||(pj, 75), a contradiction. o

12. Finite support iteration
Now we are ready to define finite support iterations:

12.1 Definition. We say that (P, Q) <« Is a finite support iteration if the
following holds:

(i) Py is the one element partial order {(}.

(ii) Q- = (Q~,<,1) is a P,-name for a partial order.

(iii) P41 Is the set of all functions p with domain « + 1 such that p [ v € P,
and T = p(v) is such that for some q € P, (1,q) € Qy and p [ yIF 7€ Q. Py
is ordered so that p < q if p | v<q |~ and p | vIF p(y) < q(v). (Notice that then
P,y is isomorphic with Py Q. .)
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(iv) For limit ~, P, is the set of all functions p with domain y such that for all
B <~v,pl B € Pz and the support

supp(p) = {B < dom(p)| p(B) # 1}

is finite. P, is ordered so that p < q ifforall 8 <~,p[B<q]B.

Notice that for all 0 < 8 < «, the maximal element of Py is the element p € Py
such that p(y) =1 for all v < 3.

From now on, (P, Q~)y<« is a finite support iteration. Notice that @, does
not play a role in the definition of P, (it is there for notational reasons).

12.2 Definition. For v < 8 < «a, by i3 we mean the function from P, to
Pg such that for all p € P, i,5(p) is the element q € Pz for which q [ v = p and
for all 6 € f—~, q(d) =1.

12.3 Exercise. Suppose v < <a, p,p' € P, and ¢q,¢' € Pg.

(i) Ifq<q, thenql~, ¢ vEP,and qlv<q I~.

(ii) If p < p', then iyp(p) < iyp(p’).

(iii) If q¢ | vLq' | =y, then qLq .

(iv) If supp(q) N supp(q') € v, then qLq" iff q [ vLq [ .

(v) pLp" iff ing(p)Liyp(p').

(vi) Suppose p =q | v and p' < p. Show that r = (¢ —p)Up' € Pz and r <gq.

12.4 Corollary. Suppose v < f < «a, G is Pg-generic over V and G’ =
z;Bl(G) Then G’ is P, -generic over V.

Proof. As in the previous section. o.

12.5 Exercise. Suppose that for all v < «, 1 forces that ()., has ccc. Show
that P, has ccc. Hint: Prove by induction on 8 < « that Pz has ccc. The
successor steps follow immediately from Lemma 11.8 and for limit cases, make a
counter assumption and use Exercise 12.3 (iv) and (in the case cf(f) = wy) A-
lemma for the supports of the elements in the antichain.

12.6 Definition. Let v < a and G be P, -generic over V. By P/ we mean
the set of all functions p with domain « — «y such that for some q € G, qUp € P,.
We partially order PJ so that p < p’ if there is some ¢ € G, ¢Up,qUp" € P, and
qgUp < qUp . (Exercise: Show that this is a partial order.)

By PY we mean a P,-name (P7,<,1) for a partial order so that for all P, -
generic G over V, (PY)g = P}, (exists by Exercise 7.14 (i)). We may always choose
P7 to be the set {(¢;p)| p € Py, dom(q) = a —~v,pUq € P,}. As usually, by P”
we denote also P etc.

12.7 Exercise. Suppose p,q € P, y <o, po=p | v<q | v =q and
denote py = p | (¢ —7) and q1 = q | (o — ). Show that if py forces that p; < ¢
(in the ordering of P7 ), then p < q.
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The following lemma is not the most useful form of splitting iterated forcing into
pieces but still gives some idea of what is going on and suffices for our purposes (in
fact we will need only the very first claim).

12.8 Lemma. Suppose v < a, G is P,-generic over V, G, = i,(G) and
G ={pe Pl 3qg € P(qUp € G)}. Then G is P} -generic over V|G,] and

V(G = VIG, ]G],

Proof. This is basically the same what was done in Section 7 and as there we
prove only that G7 is PJ,-generic over V[G,]: For this, let 7 be a P,-name such
that 7, is a dense subset of PJ,. Then there is p’ € G, such that it forces that
7 is a dense subset of P? (keep in mind that Pgw = (P")g., ). As before, we may
assume that p’ = 1. Let p € P,. For any q € P,, we denote ¢y = ¢q | v and
¢1 =¢q | (¢ —7). As in the proof of lemma 11.5 it is enough to find ¢ < p such that
qo forces that ¢y € 7. Since pg forces that 7 is dense in P7, there is § such that pg
forces that 6 < p; and § € 7 (notice that py forces that p; € P7, exercise). Let H
be P,-generic over V such that po € H. Then in V[H] there are r € P}, such that
Ty = 1. Let s € H be such that sUr € P, and s’ such that it forces that § = 7.
By Exercise 12.3 (vi), we may assume that s = s’ < pg and then, by Exercise 12.7,
qg=sUr is as wanted. o

12.9 Lemma. Let G be P,-generic over V and G(v) = {p(v)a,| p € G}.
Then G(v) is (Q)c, -generic over V[G,].

Proof. By Corollary 12.4, G,41 is Py41-generic over V' and by definitions,
P, 1 is isomorphic with P, x @, . By checking the isomorphism and using Lemma
11.5, G'(v) = {p(Ma,| p € Gy41} is (Q4)a, -generic over VI[G,]. But clearly
G(y)=G"(v). o

12.10 Exercise. Suppose that cf(a) > wy, for all v < «, 1 forces that @,
has ccc, p € P, forces that T is a function from & to @ and G is P, -generic over
V' such that p € G. Show that there is v < a such that 7¢ € V[G,]|. Hint: The
proof of Theorem 8.3.

13. Dominating number
As an application of iterated forcing, we look at dominating number.

13.1 Definition.

(i) For f,g € w¥, we write f <* g and say that g eventually dominates f, if
there is n € w such that for all n <m < w, f(m) < g(m).

(ii) We let D to be the set of all those A C w* such that for all f € w¥

there is g € A which eventually dominates f. By d (dominating number) we mean
min{|A| | A € D}.

13.2 Exercise.
(i) Show that d > w; .
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(ii) Suppose that CH holds in V and let P be the set of all p : X, — w such
that X,, C wy X w Is finite. We partially order P by inverse inclusion (as before) i.e.
p<gqif g Cp. Let G be P-generic over V. Show that d > wy in V[G]. Hint: The
proof of Theorem 13.6 below may help.

Dominating number is one example of so called cardinal invariants. Another
example of such invariants is Cov(M) i.e. the least cardinal x for which there are
meager (aka meagre aka of first category) subsets A;, i < s, of reals R such that
Ui<.. 4: = R. It is known that Cov(M) < d.

13.3 Definition. By Pyq we mean the partial order (Pg, <, (0,0)), where Py
is the set of pairs p = (fp, Fp) such that f, : n, — w for some n, < w and F), is a
finite set of functions from w to w. Pq is ordered so that p < q if f, C f,, F; C F),
and for all ng <1i <ny and h € Fy, fp(i) > h(i).

13.4 Exercise.

(i) Show that P4 has ccc.

(ii) Let G be Pq-generic over V and g = UpeG fp- Show that g is a function
from w to w.

13.5 Lemma. Let G be P4-generic over V and g = UpEG fp- Then for all
h:w—w fromV, h<*g.

Proof. Suppose not and let § be a Pq-name for g (i.e. for all Pg-generic H
over V, gg = UpeH fp). Then there are h : w — w and p € G such that p forces

the negation of h <* §. Let q € Pq be such that fq=fp and F, = F, U{h} and
let H be Pg-generic over V such that ¢ € H. Then for all ¢ > n,, h(i) < (¢u)(%).
Since ¢ < p, we have a contradiction. o

13.6 Theorem. Con(ZFC) implies Con(ZFC+d = w; < 2¥).

Proof. By Theorem 8.11, we may assume that 2¢ > w; in V. Let (Py, Q)y<w,
be a finite support iteration such that for all v < wy, @, is a P,-name for (Pq)V1G]
(i.e. for all P, -generic G over V', (Q)q, satisfies in V[G,] the definition of Py).

Let G be P, -generic over V. By Exercise 13.4 (i) and Lemma 11.8, P,,, has
cce and thus (wy)V = (w1)VI¢ and in V[G] 2¥ > w; by Corollary 8.4. Thus it is
enough to show that in V[G], A = {f,|v <wi}, where f, =U,cq(,) fp, see Lemma
12.9, has the property that for all g : w — w, there is f € A such that g <* f. But
this is clear: By Exercise 12.10, there is v < w; such that g € V[G,]. By Lemma
12.9, G(v) is (Q4)c, -generic over V[G,]| and thus by Lemma 13.5, g <* f,. o

14. Further exercises

In this section, in the form of exercises we look at how to kill stationary subsets
of wy by forcing (killing stationary subsets of k > w; is much harder). Recall that
by X <% we mean the set of all functions f:n — X, n < w.
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14.1 Definition. Let P = (P, <,1) be a partial order.

(i) T'(P) is a game of two players, I and II and it lasts w rounds. At each round
n < w first I chooses some p,, € P and then II chooses ¢, € P. II must choose so
that q, < p, and in rounds n > 0, I must choose so that p,, < q,_1. II wins if there
is ¢ € P such that for all n < w, q < g, .

(ii) Winning strategy for I in T'(P) is a function o : P<* — P such that no
matter how II plays I wins if at each round n < w, I chooses o(qg, ..., qn—1)-

(iii) We say that P is hopeless for 11, if I has a winning strategy in I'(P).

14.2 Exercise. Suppose that P is not hopeless for I and G is P-generic over
V.
(i) Suppose X € V, Y € V[G], Y C X and Y is countable. Show that Y € V.

(ii) Show that w) = OJY[G].

Fix S C w; so that wy — S is stationary (S may also be stationary). By
P(S) we mean the set of all strictly increasing f: o+ 1 — wy, a < wy, such that
rng(f) NS = 0 and for all limit v < a, f(v) = U<~ f(B) and we order P(S) by
inverse inclusion.

14.3 Exercise.

(i) Show that for all f:wy¥ — wy, the set Cf = {a < wi| f(a<¥) C a} is cub.

(ii) Show that P(S) is not hopeless for 11. Hint: For a contradiction, suppose that
o is a winning strategy for I. Then think the case when at each round n < w, II plays
so that she first chooses some 7, < w; so that 7, > Urng(p,) and then answers
by ¢, = pn U {(dom(p,),vn)}. Then apply (i) to the function f(7o,...,Ym-1) =
Urng(pm), where for all i < m, p; = o(qo,...,qi—1) and for all i < m ¢, = p; U
{(dom(p;),~i)} (if for some i < m, q; € P(5), let f(70,..esYm-1) =0).

14.4 Exercise. Let G be P(S)-generic over V and C = rng(UG). Show
that C' is a cub subset of w1 and C NS =0 (ie. S is not stationary in V[G]).

In Exercise 14.4 the assumption that w; — S is stationary is necessary:

14.5 Exercise. Suppose P is a partial order, G is P-generic over V', C' C w;
isin V and (w1)" = (w;)V1¢].

(i) Show that C' is a cub subset of wy in V iff C' is a cub subset of wy in V|[G].

(ii) Since it is possible that wy; — S is not cub, why the direction from right to
left in (i) does not contradict Exercise 14.47
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