# Indifference pricing in illiquid markets

Teemu Pennanen Department of Mathematics, King's College London

# Illiquidity

Market model ALM Indifference pricing Reserving Duality

An example

- Wealth cannot be transferred quite freely in time (there is no numeraire) or between assets (transaction costs etc.).
- In the absence of a numeraire, much of trading consists of exchanging sequences of cash-flows: swaps, insurance contracts, coupon payments, dividends, ...
- Illiquidity effects make hedging costs nonlinear functions of the cash-flows.
- We describe a mathematical model for valuation of sequences of cash-flows in illiquid markets.
- Traditional risk neutral pricing formulas are recovered in perfectly liquid and complete markets.
- Ingredients: stochastic analysis and convex analysis.

# Illiquidity

Market model ALM Indifference pricing Reserving

- Duality
- An example

- Hodges and Neuberger, *Optimal replication of contingent claims under transaction costs*, Rev. Fut. Markets, 1989.
- Dalang, Morton and Willinger, *Equivalent martingale measures and no-arbitrage in stochastic securities market models*, Stoch. and Stoch. Rep., 1990.
- Pennanen, *Arbitrage and deflators in illiquid markets*, Fin. Stoch., 2011.
- Pennanen, *Superhedging in illiquid markets*, Math. Finance, 2011.
- Pennanen, *Convex duality in stochastic programming and mathematical finance*, Math. Oper. Res., 2011.
- Pennanen and Perkkiö, *Stochastic programs without duality gaps*, Mathematical Programming, 2012.

# Outline

Market model ALM Indifference pricing

Reserving

Duality

An example

- 1. Market model
- 2. Asset-liability management
- 3. Indifference pricing
- 4. Reserving
- 5. Duality
- 6. An example: Valuation of pension liabilities

#### Market model

ALM

- Indifference pricing
- Reserving
- Duality
- An example

• Let  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, P)$  be a filtered probability space.

# • Consider a market where d assets are traded at $t = 0, \dots, T$ .

- Trading costs are given by an  $(\mathcal{F}_t)_{t=0}^T$ -adapted sequence  $S = (S_t)_{t=0}^T$  of random lower semicontinuous convex functions on  $\mathbb{R}^d$  such that  $S_t(0) = 0$  almost surely for every  $t = 0, \ldots, T$ .
- The sequence is adapted if  $S_t$  is  $\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F}_t$ -measurable.

#### Market model

ALM Indifference pricing Reserving

Duality

An example

**Example 1 (Liquid markets)** If  $s = (s_t)_{t=0}^T$  is an  $(\mathcal{F}_t)_{t=0}^T$ -adapted  $\mathbb{R}^d$ -valued price process, then the functions

 $S_t(x,\omega) = s_t(\omega) \cdot x$ 

have the above properties.

**Example 2 (Jouini and Kallal, 1995)** If  $\overline{s} = (\overline{s}_t)_{t=0}^T$  and  $\underline{s} = (\underline{s}_t)_{t=0}^T$  are  $(\mathcal{F}_t)_{t=0}^T$ -adapted real-valued processes with  $\underline{s} \leq \overline{s}$ , then the functions

$$S_t(x,\omega) = \begin{cases} \overline{s}_t(\omega)x & \text{if } x \ge 0, \\ \underline{s}_t(\omega)x & \text{if } x \le 0 \end{cases}$$

have the above properties.

Market model

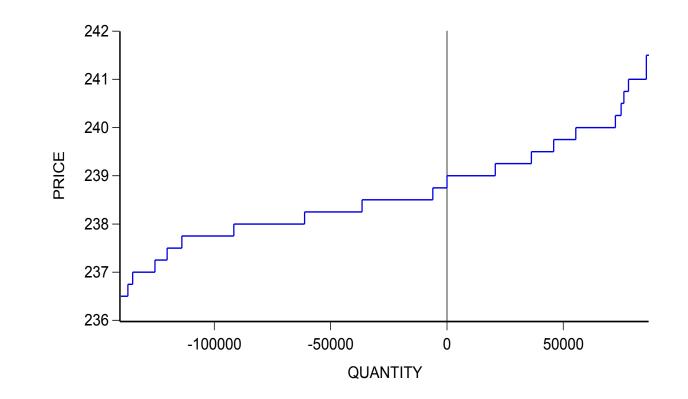
ALM Indifference pricing Reserving Duality An example **Example 3 (Çetin and Rogers, 2007)** If  $s = (s_t)_{t=0}^T$  is an  $(\mathcal{F}_t)_{t=0}^T$ -adapted process and  $\varphi$  is a lower semicontinuous convex function on  $\mathbb{R}$  with  $\varphi(0) = 0$ , then the functions

 $S_t(x,\omega) = x^0 + s_t(\omega)\varphi(x^1)$ 

have the above properties.

#### Market model

ALM Indifference pricing Reserving Duality An example **Example 4 (Limit order markets)** The cost of a market order is obtained by integrating the order book.



#### Market model

- ALM Indifference pricing Reserving Duality
- An example

• Portfolio constraints are given by an  $(\mathcal{F}_t)_{t=0}^T$ -adapted sequence  $D = (D_t)_{t=0}^T$  of random closed convex sets in  $\mathbb{R}^d$ such that  $0 \in D_t$  almost surely for every  $t = 0, \ldots, T$ .

• The sequence is adapted if

 $\{\omega \in \Omega \mid D_t(\omega) \cap U \neq \emptyset\} \in \mathcal{F}_t$ 

for every open  $U \subset \mathbb{R}^d$ .

#### Market model

ALM

- Indifference pricing
- Reserving
- Duality
- An example

- Models where  $D_t(\omega)$  is independent of  $(t, \omega)$  have been studied e.g. in [Cvitanić and Karatzas, 1992] and [Jouini and Kallal, 1995].
- In [Napp, 2003],

 $D_t(\omega) = \{ x \in \mathbb{R}^d \mid M_t(\omega) x \in K \},\$ 

where  $K \subset \mathbb{R}^L$  is a closed convex cone and  $M_t$  is an  $\mathcal{F}_t$ -measurable matrix.

• General constraints have been studied in [Evstigneev, Schürger and Taksar, 2004] and [Rokhlin, 2005].

Market model

#### ALM

Indifference pricing Reserving Duality An example Let  $c \in \mathcal{M} := \{(c_t)_{t=0}^T | c_t \in L^0(\Omega, \mathcal{F}_t, P)\}$  and consider the problem minimize  $E \sum_{t=0}^T v_t(S_t(\Delta x_t) + c_t) \text{ over } x \in \mathcal{N}_D$ 

•  $v_t(\cdot, \omega)$  are convex and nondecreasing with  $v_t(0, \omega) = 0$ ,

•  $\mathcal{N}_D$  is the space of  $(\mathcal{F}_t)_{t=0}^T$ -adapted  $\mathbb{R}^d$ -valued portfolio processes with  $x_{-1} := 0$ ,  $x_t \in D_t$  and  $x_T = 0$ .

**Example 5** When  $v_t = \delta_{\mathbb{R}_-}$  for t < T, the problem can be written as

minimize  $Ev_T(S_T(\Delta x_T) + c_T)$  over  $x \in \mathcal{N}_D$ subject to  $S_t(\Delta x_t) + c_t \leq 0, \quad t = 0, \dots, T-1.$ 

Market model

#### ALM

Indifference pricing Reserving

Duality

An example

#### Example 6 When

 $S_t(x,\omega) = x^0 + \tilde{S}_t(\tilde{x},\omega)$  and  $D_t(\omega) = \mathbb{R} \times \tilde{D}_t(\omega)$ ,

the problem can be written as

minimize 
$$Ev_T\left(\sum_{t=0}^T \tilde{S}_t(\Delta \tilde{x}_t) + \sum_{t=0}^T c_t\right)$$
 over  $x \in \mathcal{N}_D$ .

When  $\tilde{S}_t(\tilde{x}, \omega) = \tilde{s}_t(\omega) \cdot \tilde{x}$ ,

$$\sum_{t=0}^{T} \tilde{S}_t(\Delta \tilde{x}_t) = \sum_{t=0}^{T} \tilde{s}_t \cdot \Delta \tilde{x}_t = -\sum_{t=0}^{T-1} \tilde{x}_t \cdot \Delta \tilde{s}_{t+1}.$$

Market model

#### ALM

Indifference pricing

Reserving

Duality

An example

We will denote the optimal value by  $\varphi(c)$ .

• When  $v_t = \delta_{\mathbb{R}_-}$  for  $t = 0, \ldots, T$ , we have  $\varphi = \delta_{\mathcal{C}}$  where

$$\mathcal{C} = \{ c \in \mathcal{M} \mid \exists x \in \mathcal{N}_D : S_t(\Delta x_t) + c_t \leq 0 \quad \forall t \}.$$

is the set of claims that can be superhedged for free.

• Conversely,

$$\varphi(c) = \inf\{E\sum_{t=0}^{T} v_t(c_t - d_t) \mid d \in \mathcal{C}\}.$$

• If  $S_t$  are positively homogeneous and  $D_t$  are conical, then  $\mathcal{C}$  is a cone.

Market model

#### ALM

Indifference pricing Reserving Duality

An example

**Lemma 7** The value function  $\varphi$  is convex and  $\varphi(\overline{c} + c) \leq \varphi(\overline{c}) \quad \forall \overline{c} \in \mathcal{M}, \ c \in \mathcal{C}^{\infty}.$ where  $\mathcal{C}^{\infty} = \{c \in \mathcal{M} \mid \overline{c} + \alpha c \in \mathcal{C} \quad \forall \overline{c} \in \mathcal{C}, \ \forall \alpha > 0\}.$ • If  $\mathcal{C}$  is a cone, then  $\mathcal{C}^{\infty} = \mathcal{C}.$ 

• We will say that a claim  $c \in \mathcal{M}$  is redundant if

 $c \in \mathcal{C}^{\infty} \cap (-\mathcal{C}^{\infty}),$ 

i.e. if  $\bar{c} + \alpha c \in \mathcal{C}$  for every  $\bar{c} \in \mathcal{C}$  and every  $\alpha \in \mathbb{R}$ .

Market model

#### ALM

Indifference pricing Reserving Duality An example **Example 8 (Linear models)** When  $S_t(x) = s_t \cdot x$  and  $D_t = \mathbb{R}^d$ , a claim  $c \in \mathcal{M}$  is redundant if there is an  $x \in \mathcal{N}_D$  such that  $s_t \cdot \Delta x_t + c_t = 0$ . The converse holds under the no-arbitrage condition  $\mathcal{C} \cap \mathcal{M}_+ = \{0\}$ .

**Example 9 (The classical model)** Assume that  $D_t = \mathbb{R}^d$ and  $S_t(x) = x_0 + \tilde{s}_t \cdot \tilde{x}$ . A claim  $c \in \mathcal{M}$  is redundant if  $\sum_{t=0}^{T} c_t$  is "attainable at price 0" in the sense that

$$\sum_{t=0}^{T} c_t = \sum_{t=0}^{T-1} \tilde{x}_t \cdot \Delta \tilde{s}_{t+1}$$

for some  $x \in \mathcal{N}_D$ . The converse holds under the no-arbitrage condition.

Market model ALM

Indifference pricing

- Reserving
- Duality
- An example

- A typical situation: an agent receives a sequence  $p \in \mathcal{M}$  of premiums in exchange for a sequence  $c \in \mathcal{M}$  of claims.
- Examples: swaps, insurance contracts, bonds ...
- Traditionally in mathematical finance,

 $p = (1, 0, \dots, 0)$  and  $c = (0, \dots, 0, c_T).$ 

• Claims and premiums live in the same space

$$\mathcal{M} = \{ (c_t)_{t=0}^T \mid c_t \in L^0(\Omega, \mathcal{F}_t, P; \mathbb{R}) \}.$$

Market model ALM

Indifference pricing

Reserving

Duality

An example

• For an agent with liabilities  $\bar{c} \in \mathcal{M}$ ,

$$\pi(\bar{c};c) := \inf\{\alpha \in \mathbb{R} \mid \varphi(\bar{c} + c - \alpha p) \le \varphi(\bar{c})\}\$$

gives the least swap rate that would allow him to enter a swap contract without worsening his risk-return profile.

• Similarly,

 $\pi^{b}(\bar{c};c) := \sup\{\alpha \in \mathbb{R} \mid \varphi(\bar{c} - c + \alpha p) \le \varphi(\bar{c})\} = -\pi(\bar{c};-c)$ 

gives the greatest swap rate he would require for taking the opposite side of the trade.

• This is similar to [Hodges and Neuberger, 1989], where p = (1, 0, ..., 0),  $c = (0, ..., 0, c_T)$  and  $\overline{c} = 0$ .

Market model ALM

Indifference pricing

Reserving

Duality

An example

• Indifference prices can be bounded by

$$\pi_{\sup}(c) = \inf\{\alpha \mid c - \alpha p \in \mathcal{C}^{\infty}\},\$$
$$\pi_{\inf}(c) = \sup\{\alpha \mid \alpha p - c \in \mathcal{C}^{\infty}\}.$$

We say that a claim c ∈ M is replicable if c − αp is redundant (i.e. belongs to ∈ C<sup>∞</sup> ∩ (−C<sup>∞</sup>)) for some α ∈ ℝ.

**Example 10** In liquid markets with a numeraire and p = (1, 0, ..., 0), the functions  $\pi_{sup}$  and  $\pi_{inf}$  coincide with the usual arbitrage bounds (super- and subhedging costs) and a claim  $c \in \mathcal{M}$  is replicable if  $\sum_{t=0}^{T} c_t$  is "attainable". The converse holds under the no-arbitrage condition.

Market model ALM

Indifference pricing

Reserving

Duality

An example

**Theorem 11** The function  $\pi(\bar{c}; \cdot)$  is convex and  $\pi(\bar{c}; c + c') \leq \pi(\bar{c}; c) \quad \forall c \in \mathcal{M}, \ \forall c' \in \mathcal{C}^{\infty}.$ If  $\pi(\bar{c}; 0) \geq 0$ , then  $\pi_{\inf}(c) \leq \pi_b(\bar{c}; c) \leq \pi(\bar{c}; c) \leq \pi_{\sup}(c)$ 

with equalities throughout if c is replicable.

- Agents with identical views P, preferences v and financial position  $\bar{c}$  do not trade with each other.
- Prices of replicable claims are independent of P, v and  $\bar{c}$ .

Market model ALM Indifference pricing Reserving

Duality

An example

- Pricing: What is the least premium we can sell a financial product for without worsening our risk-return profile?
- Reserving/economic capital: What is the least amount of capital needed to cover given liabilities at an acceptable level of risk?
- The latter is an important notion in accounting, financial reporting and supervision of financial institutions.
- Unlike indifference swap rates, the economic capital does not depend on a company's assets.
- It turns out that, in complete markets, economic capital and indifference prices coincide.

Market model ALM Indifference pricing Reserving

Duality

An example

 $\bullet$  We define the economic capital for liabilities  $c \in \mathcal{M}$  by

$$\pi_0(c) = \inf\{\alpha \,|\, \varphi(c - \alpha p^0) \le 0\}$$

where  $p^0 = (1, 0, \dots, 0)$ .

- The function  $\pi_0$  may be interpreted much like a risk measure in [Artzner, Delbaen, Eber and Heath, 1999].
- However, we do not assume the existence of a numeraire so  $\pi_0$  operates on sequences of cash flows and it does not have the "cash invariance" property often required of risk measures.

Market model ALM Indifference pricing Reserving

Duality

An example

**Theorem 12** The economic capital  $\pi_0$  is convex and nondecreasing with respect to  $C^{\infty}$ . We have  $\pi_0 \leq \pi_{\sup}$  and if  $\pi_0(0) \geq 0$ , then

 $\pi_{\inf}(c) \le \pi_0(c) \le \pi_{\sup}(c)$ 

with equalities throughout for replicable c.

- In general, reserves depend on the views *P* and the risk preferences *v*.
- In complete markets, however, reserves are independent of *P* (up to null sets) and *v* and they coincide with indifference prices.

Market model ALM Indifference pricing Reserving

Duality

An example

• When the claims  $c = (c_t)_{t=1}^T$  are deterministic and all wealth is invested in riskless bonds, we get

$$\pi_0(c) = \sum_{t=1}^T P_t c_t,$$

where  $P_t$  is the price of zero-coupon bond with maturity t.

- If  $c_t$  are the expectations of the future claims, this becomes the "best estimate" in Article 77.2 of Solvency II.
- However, riskless yield curves are meant for valuation of deterministic cash-flows, not uncertain ones.
- For example, the "best estimate" of a European call-option is much higher than its market (or Black-Scholes) value.
- The "best estimate" is inherently procyclical.

Market model ALM

- Indifference pricing
- Reserving

#### Duality

An example

- Bond prices can be expressed in terms of zero curves.
- In models with a cash account, the price of a random claim can be expressed in terms of martingale measures.
- Under proportional transaction costs, prices can be expressed in terms of the same dual variables that characterize the no-arbitrage condition.

### In illiquid markets,

- we need richer dual objects that encompass both the time value of money and randomness.
- traditional risk neutral pricing formulas are recovered in liquid markets with a numeraire.
- arbitrage has little to do with pricing and the corresponding dual variables.

Market model

ALM

- Indifference pricing
- Reserving

Duality

An example

• Let 
$$\mathcal{M}^p = \{ c \in \mathcal{M} \mid c_t \in L^p(\Omega, \mathcal{F}_t, P; \mathbb{R}) \}.$$

• The bilinear form

$$\langle c, y \rangle := E \sum_{t=0}^{T} c_t y_t$$

puts  $\mathcal{M}^1$  and  $\mathcal{M}^\infty$  in separating duality.

• Given a convex function f on  $\mathcal{M}^1,$  its conjugate is defined

$$f^*(y) = \sup_{c \in \mathcal{M}^1} \{ \langle c, y \rangle - f(c) \}.$$

 $\bullet~\mbox{If}~f$  is proper and lower semicontinuous, then

$$f(y) = \sup_{y \in \mathcal{M}^{\infty}} \{ \langle c, y \rangle - f^*(y) \}.$$

Market model ALM Indifference pricing Reserving

Duality

An example

**Theorem 13** If  $v_t$  are bounded from below by an integrable function and if

 $\{x \in \mathcal{N}_{D^{\infty}} \mid S_t^{\infty}(\Delta x_t) \le 0\}$ 

is a linear space, then  $\varphi$  is proper and lower semicontinuous and the infimum is attained for every  $c \in \mathcal{M}^1$ .

**Example 14** In the classical perfectly liquid market model, the linearity condition is the no-arbitrage condition. We then recover the fundamental lemma from [Schachermayer, 1992].

**Example 15** The linearity condition holds if there exists a componentwise strictly positive market price process and if infinite short selling is prohibited.

Market model ALM Indifference pricing

Reserving

Duality

An example

**Lemma 16** The conjugate of the value function  $\varphi$  can be expressed as

$$\varphi^*(y) = E \sum_{t=0}^T v_t^*(y_t) + \sigma_{\mathcal{C}}(y),$$

where  $\sigma_{\mathcal{C}}(y) = \sup_{c \in \mathcal{C}} \langle c, y \rangle$ .

With little work, the above results yield illiquid extensions

- duality frameworks for utility maximization and optimal consumption
- martingale representations of arbitrage bounds and indifference prices,
- fundamental theorem of asset pricing.

Market model ALM Indifference pricing Reserving Duality An example

#### The following example is from

Hilli, Kivu and Pennanen, Cash-flow based valuation of pension liabilities, European Actuarial Journal, 2011.

- The aim is to calculate reserves for the pension insurance portfolio of the Finnish private sector occupational pension system.
- The yearly claims  $c_t$  consist of aggregate old age, disability and unemployment pension benefits earned by the end of 2008.
- The claims depend on mortality and the price- and wage-inflation, etc.

Market model ALM Indifference pricing Reserving Duality An example

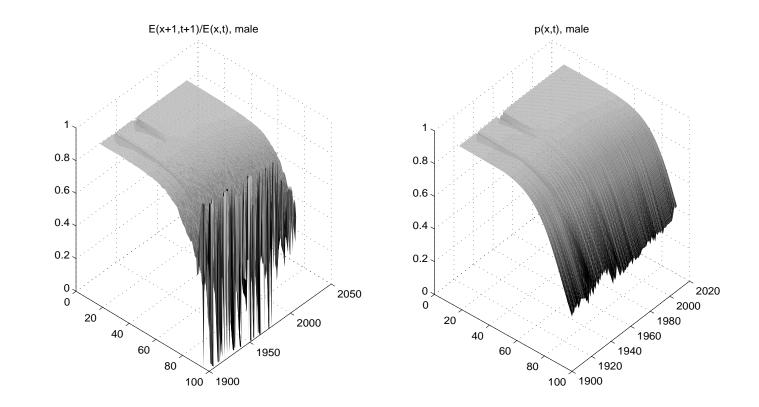
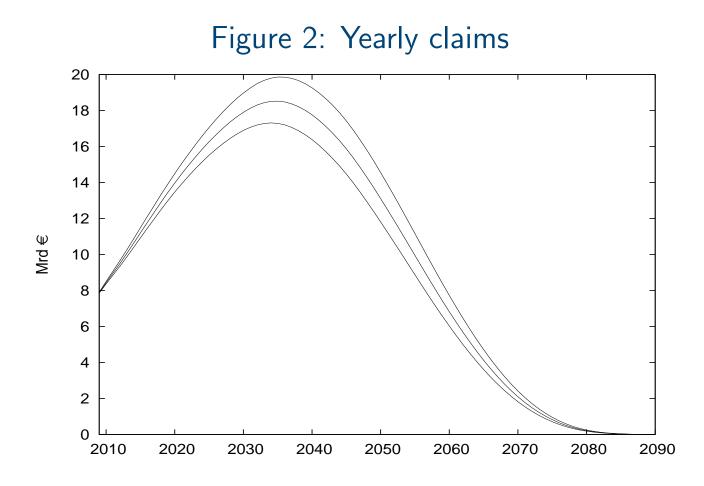


Figure 1: Survival rates of Finnish males





Market model ALM Indifference pricing Reserving Duality

An example

- The traded assets consist of five equity indices and two bond indices.
- Yearly bond returns are modeled by

 $R_t = \exp(Y_t \Delta t - D\Delta Y_t),$ 

where Y is the yield to maturity and D the duration.

• Market risk factors are modeled together with the liability risk factors (mortality, price- and wage-inflation) by a stochastic difference equation of the form

 $\Delta \xi_t = A \xi_{t-1} + b + \varepsilon_t,$ 

where  $\xi$  is the vector of (transformed) risk factors.

Market model ALM Indifference pricing Reserving Duality An example

#### • We find the minimum reserve

$$\pi_0(c) = \inf\{\alpha \mid \varphi(c - \alpha p^0) \le 0\}$$

by line search and numerical optimization.

- For given  $\alpha$ , the optimum value  $\varphi(c \alpha p^0)$  of the ALM-problem is approximated by the Galerkin method.
- The Galerkin method optimizes over convex combinations of a given set of "basis strategies".
- In this study, we used buy and hold, fixed proportion and constant proportion portfolio insurance rules with varying parameters.

Market model ALM Indifference pricing Reserving

Duality

An example

|            | Confidence level |     |     |     |     |  |
|------------|------------------|-----|-----|-----|-----|--|
|            | 95%              | 90% | 85% | 80% | 66% |  |
| Best basis | 296              | 284 | 273 | 261 | 239 |  |
| Optimized  | 288              | 271 | 254 | 236 | 202 |  |

Table 1: Liability values with varying risk tolerances

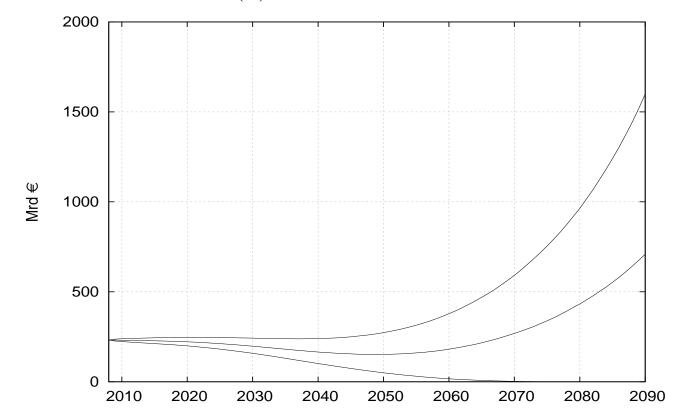
|            | Confidence level |      |      |      |      |  |
|------------|------------------|------|------|------|------|--|
|            | 95%              | 90%  | 85%  | 80%  | 66%  |  |
| Best basis | 24.3             | 25.4 | 26.4 | 27.6 | 30.1 |  |
| Optimized  | 25.0             | 26.6 | 28.3 | 30.5 | 35.6 |  |

Table 2: Corresponding funding ratios

Market model ALM Indifference pricing Reserving Duality

An example

Figure 3: The development of 34%, 50%- and 66%-quantiles of net wealth when  $\pi_0(c)$  is defined with  $\mathcal{V} = V@R_{66\%}$ .



### Summary

Market model ALM Indifference pricing Reserving

- Duality
- An example

- Reserving and pricing both come down to asset-liability management.
- Much of classical asset pricing theory can be extended to convex models of illiquid markets.
- The adequacy of reserves, prices and investment strategies is subjective.
- When there is no numeraire, the timing of payments matters.
- Dual representations involve stochastic term structures that capture uncertainty as well as time value of money.