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• Wealth cannot be transferred quite freely in time (there is
no numeraire) or between assets (transaction costs etc.).

• In the absence of a numeraire, much of trading consists of
exchanging sequences of cash-flows: swaps, insurance
contracts, coupon payments, dividends, . . .

• Illiquidity effects make hedging costs nonlinear functions of
the cash-flows.

• We describe a mathematical model for valuation of
sequences of cash-flows in illiquid markets.

• Traditional risk neutral pricing formulas are recovered in
perfectly liquid and complete markets.

• Ingredients: stochastic analysis and convex analysis.
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1. Market model

2. Asset-liability management

3. Indifference pricing

4. Reserving

5. Duality

6. An example: Valuation of pension liabilities
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• Let (Ω,F , (Ft)
T
t=0, P ) be a filtered probability space.

• Consider a market where d assets are traded at
t = 0, . . . , T .

• Trading costs are given by an (Ft)
T
t=0-adapted sequence

S = (St)
T
t=0 of random lower semicontinuous convex

functions on R
d such that St(0) = 0 almost surely for every

t = 0, . . . , T .

• The sequence is adapted if St is B(R
d)⊗Ft-measurable.
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Example 1 (Liquid markets) If s = (st)
T
t=0 is an

(Ft)
T
t=0-adapted R

d-valued price process, then the functions

St(x, ω) = st(ω) · x

have the above properties.

Example 2 (Jouini and Kallal, 1995) If s = (st)
T
t=0 and

s = (st)
T
t=0 are (Ft)

T
t=0-adapted real-valued processes with

s ≤ s, then the functions

St(x, ω) =

{

st(ω)x if x ≥ 0,

st(ω)x if x ≤ 0

have the above properties.
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Example 3 (Çetin and Rogers, 2007) If s = (st)
T
t=0 is an

(Ft)
T
t=0-adapted process and ϕ is a lower semicontinuous

convex function on R with ϕ(0) = 0, then the functions

St(x, ω) = x0 + st(ω)ϕ(x
1)

have the above properties.
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Example 4 (Limit order markets) The cost of a market
order is obtained by integrating the order book.
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• Portfolio constraints are given by an (Ft)
T
t=0-adapted

sequence D = (Dt)
T
t=0 of random closed convex sets in R

d

such that 0 ∈ Dt almost surely for every t = 0, . . . , T .

• The sequence is adapted if

{ω ∈ Ω |Dt(ω) ∩ U 6= ∅} ∈ Ft

for every open U ⊂ R
d.
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• Models where Dt(ω) is independent of (t, ω) have been
studied e.g. in [Cvitanić and Karatzas, 1992] and [Jouini
and Kallal, 1995].

• In [Napp, 2003],

Dt(ω) = {x ∈ R
d |Mt(ω)x ∈ K},

where K ⊂ R
L is a closed convex cone and Mt is an

Ft-measurable matrix.

• General constraints have been studied in [Evstigneev,
Schürger and Taksar, 2004] and [Rokhlin, 2005].
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Let c ∈ M := {(ct)
T
t=0 | ct ∈ L0(Ω,Ft, P )} and consider the

problem

minimize E

T
∑

t=0

vt(St(∆xt) + ct) over x ∈ ND

• vt(·, ω) are convex and nondecreasing with vt(0, ω) = 0,

• ND is the space of (Ft)
T
t=0-adapted R

d-valued portfolio
processes with x−1 := 0, xt ∈ Dt and xT = 0.

Example 5 When vt = δR−
for t < T , the problem can be

written as

minimize EvT (ST (∆xT ) + cT ) over x ∈ ND

subject to St(∆xt) + ct ≤ 0, t = 0, . . . , T − 1.
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Example 6 When

St(x, ω) = x0 + S̃t(x̃, ω) and Dt(ω) = R× D̃t(ω),

the problem can be written as

minimize EvT

(

T
∑

t=0

S̃t(∆x̃t) +
T
∑

t=0

ct

)

over x ∈ ND.

When S̃t(x̃, ω) = s̃t(ω) · x̃,

T
∑

t=0

S̃t(∆x̃t) =
T
∑

t=0

s̃t ·∆x̃t = −
T−1
∑

t=0

x̃t ·∆s̃t+1.
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We will denote the optimal value by ϕ(c).

• When vt = δR−
for t = 0, . . . , T , we have ϕ = δC where

C = {c ∈ M|∃x ∈ ND : St(∆xt) + ct ≤ 0 ∀t}.

is the set of claims that can be superhedged for free.

• Conversely,

ϕ(c) = inf{E
T
∑

t=0

vt(ct − dt) | d ∈ C}.

• If St are positively homogeneous and Dt are conical, then C
is a cone.



Asset-liability management

Market model

ALM

Indifference pricing

Reserving

Duality

An example

14 / 35

Lemma 7 The value function ϕ is convex and

ϕ(c̄+ c) ≤ ϕ(c̄) ∀c̄ ∈ M, c ∈ C∞.

where C∞ = {c ∈ M| c̄+ αc ∈ C ∀c̄ ∈ C, ∀α > 0}.

• If C is a cone, then C∞ = C.

• We will say that a claim c ∈ M is redundant if

c ∈ C∞ ∩ (−C∞),

i.e. if c̄+ αc ∈ C for every c̄ ∈ C and every α ∈ R.
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Example 8 (Linear models) When St(x) = st · x and
Dt = R

d, a claim c ∈ M is redundant if there is an x ∈ ND

such that st ·∆xt + ct = 0. The converse holds under the
no-arbitrage condition C ∩M+ = {0}.

Example 9 (The classical model) Assume that Dt = R
d

and St(x) = x0 + s̃t · x̃. A claim c ∈ M is redundant if
∑T

t=0 ct is “attainable at price 0” in the sense that

T
∑

t=0

ct =
T−1
∑

t=0

x̃t ·∆s̃t+1

for some x ∈ ND. The converse holds under the no-arbitrage
condition.
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• A typical situation: an agent receives a sequence p ∈ M of
premiums in exchange for a sequence c ∈ M of claims.

• Examples: swaps, insurance contracts, bonds . . .

• Traditionally in mathematical finance,

p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ).

• Claims and premiums live in the same space

M = {(ct)
T
t=0 | ct ∈ L0(Ω,Ft, P ;R)}.
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• For an agent with liabilities c̄ ∈ M,

π(c̄; c) := inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

gives the least swap rate that would allow him to enter a
swap contract without worsening his risk-return profile.

• Similarly,

πb(c̄; c) := sup{α ∈ R |ϕ(c̄−c+αp) ≤ ϕ(c̄)} = −π(c̄;−c)

gives the greatest swap rate he would require for taking the
opposite side of the trade.

• This is similar to [Hodges and Neuberger, 1989], where
p = (1, 0, . . . , 0), c = (0, . . . , 0, cT ) and c̄ = 0.
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• Indifference prices can be bounded by

πsup(c) = inf{α | c− αp ∈ C∞},

πinf(c) = sup{α |αp− c ∈ C∞}.

• We say that a claim c ∈ M is replicable if c− αp is
redundant (i.e. belongs to ∈ C∞ ∩ (−C∞)) for some α ∈ R.

Example 10 In liquid markets with a numeraire and
p = (1, 0, . . . , 0), the functions πsup and πinf coincide with the
usual arbitrage bounds (super- and subhedging costs) and a
claim c ∈ M is replicable if

∑T

t=0 ct is “attainable”. The
converse holds under the no-arbitrage condition.
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Theorem 11 The function π(c̄; ·) is convex and

π(c̄; c+ c′) ≤ π(c̄; c) ∀c ∈ M, ∀c′ ∈ C∞.

If π(c̄; 0) ≥ 0, then

πinf(c) ≤ πb(c̄; c) ≤ π(c̄; c) ≤ πsup(c)

with equalities throughout if c is replicable.

• Agents with identical views P , preferences v and financial
position c̄ do not trade with each other.

• Prices of replicable claims are independent of P , v and c̄.
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• Pricing: What is the least premium we can sell a financial
product for without worsening our risk-return profile?

• Reserving/economic capital: What is the least amount of
capital needed to cover given liabilities at an acceptable
level of risk?

• The latter is an important notion in accounting, financial
reporting and supervision of financial institutions.

• Unlike indifference swap rates, the economic capital does
not depend on a company’s assets.

• It turns out that, in complete markets, economic capital
and indifference prices coincide.
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• We define the economic capital for liabilities c ∈ M by

π0(c) = inf{α |ϕ(c− αp0) ≤ 0}

where p0 = (1, 0, . . . , 0).

• The function π0 may be interpreted much like a risk
measure in [Artzner, Delbaen, Eber and Heath, 1999].

• However, we do not assume the existence of a numeraire so
π0 operates on sequences of cash flows and it does not
have the “cash invariance” property often required of risk
measures.
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Theorem 12 The economic capital π0 is convex and
nondecreasing with respect to C∞. We have π0 ≤ πsup and if
π0(0) ≥ 0, then

πinf(c) ≤ π0(c) ≤ πsup(c)

with equalities throughout for replicable c.

• In general, reserves depend on the views P and the risk
preferences v.

• In complete markets, however, reserves are independent of
P (up to null sets) and v and they coincide with
indifference prices.
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• When the claims c = (ct)
T
t=1 are deterministic and all

wealth is invested in riskless bonds, we get

π0(c) =
T
∑

t=1

Ptct,

where Pt is the price of zero-coupon bond with maturity t.

• If ct are the expectations of the future claims, this becomes
the “best estimate” in Article 77.2 of Solvency II.

• However, riskless yield curves are meant for valuation of
deterministic cash-flows, not uncertain ones.

• For example, the “best estimate” of a European call-option
is much higher than its market (or Black-Scholes) value.

• The “best estimate” is inherently procyclical.
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• Bond prices can be expressed in terms of zero curves.

• In models with a cash account, the price of a random claim
can be expressed in terms of martingale measures.

• Under proportional transaction costs, prices can be
expressed in terms of the same dual variables that
characterize the no-arbitrage condition.

In illiquid markets,

• we need richer dual objects that encompass both the time
value of money and randomness.

• traditional risk neutral pricing formulas are recovered in
liquid markets with a numeraire.

• arbitrage has little to do with pricing and the corresponding
dual variables.
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• Let Mp = {c ∈ M| ct ∈ Lp(Ω,Ft, P ;R)}.

• The bilinear form

〈c, y〉 := E

T
∑

t=0

ctyt

puts M1 and M∞ in separating duality.

• Given a convex function f on M1, its conjugate is defined

f ∗(y) = sup
c∈M1

{〈c, y〉 − f(c)}.

• If f is proper and lower semicontinuous, then

f(y) = sup
y∈M∞

{〈c, y〉 − f ∗(y)}.
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Theorem 13 If vt are bounded from below by an integrable
function and if

{x ∈ ND∞ |S∞

t (∆xt) ≤ 0}

is a linear space, then ϕ is proper and lower semicontinuous
and the infimum is attained for every c ∈ M1.

Example 14 In the classical perfectly liquid market model,
the linearity condition is the no-arbitrage condition. We then
recover the fundamental lemma from [Schachermayer, 1992].

Example 15 The linearity condition holds if there exists a
componentwise strictly positive market price process and if
infinite short selling is prohibited.
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Lemma 16 The conjugate of the value function ϕ can be
expressed as

ϕ∗(y) = E

T
∑

t=0

v∗t (yt) + σC(y),

where σC(y) = supc∈C〈c, y〉.

With little work, the above results yield illiquid extensions

• duality frameworks for utility maximization and optimal
consumption

• martingale representations of arbitrage bounds and
indifference prices,

• fundamental theorem of asset pricing.
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The following example is from

Hilli, Kivu and Pennanen, Cash-flow based valuation of
pension liabilities, European Actuarial Journal, 2011.

• The aim is to calculate reserves for the pension insurance
portfolio of the Finnish private sector occupational pension
system.

• The yearly claims ct consist of aggregate old age, disability
and unemployment pension benefits earned by the end of
2008.

• The claims depend on mortality and the price- and
wage-inflation, etc.
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Figure 1: Survival rates of Finnish males
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Figure 2: Yearly claims
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• The traded assets consist of five equity indices and two
bond indices.

• Yearly bond returns are modeled by

Rt = exp(Yt∆t−D∆Yt),

where Y is the yield to maturity and D the duration.

• Market risk factors are modeled together with the liability
risk factors (mortality, price- and wage-inflation) by a
stochastic difference equation of the form

∆ξt = Aξt−1 + b+ εt,

where ξ is the vector of (transformed) risk factors.
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• We find the minimum reserve

π0(c) = inf{α |ϕ(c− αp0) ≤ 0}

by line search and numerical optimization.

• For given α, the optimum value ϕ(c− αp0) of the
ALM-problem is approximated by the Galerkin method.

• The Galerkin method optimizes over convex combinations
of a given set of “basis strategies”.

• In this study, we used buy and hold, fixed proportion and
constant proportion portfolio insurance rules with varying
parameters.
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Confidence level
95% 90% 85% 80% 66%

Best basis 296 284 273 261 239
Optimized 288 271 254 236 202

Table 1: Liability values with varying risk tolerances

Confidence level
95% 90% 85% 80% 66%

Best basis 24.3 25.4 26.4 27.6 30.1
Optimized 25.0 26.6 28.3 30.5 35.6

Table 2: Corresponding funding ratios
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Figure 3: The development of 34%, 50%- and 66%-quantiles
of net wealth when π0(c) is defined with V = V@R66%.
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• Reserving and pricing both come down to asset-liability
management.

• Much of classical asset pricing theory can be extended to
convex models of illiquid markets.

• The adequacy of reserves, prices and investment strategies
is subjective.

• When there is no numeraire, the timing of payments
matters.

• Dual representations involve stochastic term structures that
capture uncertainty as well as time value of money.
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