
Introduction The model, MLE and LSE Main results, LSE Sketch of the proof: consistency Sketch of the proof: CLT Main results: another estimator Sketch of the proof: another estimator Main results: another estimator Some questions for further study

Parameter estimation in a fractional
Ornstein-Uhlenbeck model

Ehsan Azmoodeh

talk is based on two closely related joint works with
Igor Morlanes and Lauri Viitasaari

Stochastic Sauna Seminar, Wednesday 19.12.2012



Introduction The model, MLE and LSE Main results, LSE Sketch of the proof: consistency Sketch of the proof: CLT Main results: another estimator Sketch of the proof: another estimator Main results: another estimator Some questions for further study

Fractional Ornstein-Uhlenbeck processes

It is well known that classical Ornstein-Uhlenbeck process
(solution of the Langevin equation with Brownian noise)
and resulting process of Lamperti transformation of
Brownian motion are the same (in the sense of finite
dimensional distributions).

What about fractional Brownian motion?
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Fractional Ornstein-Uhlenbeck processes, first kind

Surprisingly, the answer is NOT ! and solution of the Langevin
equation with fractional Brownian motion noise and resulting
process of Lamperti transformation of fractional Brownian
motion leads to two different stochastic processes.

More precisely, let B denote a fractional Brownian motion with
Hurst parameter H ∈ (0,1). Consider Langevin equation with
fractional Brownian motion as noise, i.e.

dU(H,ξ0)
t = −θU(H,ξ0)

t dt + dBt , U(H,ξ0)
0 = ξ0. (1)

Let B̂ denote a two sided fractional Brownian motion. The
solution of the following SDE ( ξ0 :=

∫ 0
−∞ eθs dB̂s) can be

expressed as

U(H)
t = e−θt

∫ t

−∞
eθs dB̂s. (2)
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Fractional Ornstein-Uhlenbeck processes, first kind

Definition ( Kaarakka & Salminen (2011))

The process U(H) is called stationary fractional
Ornstein-Uhlenbeck process of the first kind.

Theorem (Cheridito & Kawaguchi & Maejima (2003))
The covariance function of the stationary Gaussian process
U(H) decays like a power function, so it is ergodic and is long
range dependent when H ∈ (1

2 ,1), and short range dependent
when H ∈ (0, 1

2).
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Fractional Ornstein-Uhlenbeck processes, second kind

Now, consider stationary Gaussian process X (α) by means of
Lamperti transformation of fractional Brownian motion B:

X (α)
t := e−αtBat , t ∈ R, α > 0, at =

H
α

e
αt
H .

Observation I ( Kaarakka & Salminen (2011) ): Set
Y (α)

t :=
∫ t

0 e−αs dBas , then the process X (α) is the solution of
the Langevin equation

dX (α)
t = −αX (α)

t dt + dY (α)
t , X (α)

0 = Ba0

d
= BH/α.

Observation II ( Kaarakka & Salminen(2011) ):

{Y (α)
t/α}t≥0

law
= {α−HY (1)

t }t≥0.
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Fractional Ornstein-Uhlenbeck processes, second kind

Inspired by the scaling property of process Y (1), consider the
following Langevin equation with Y (1) as the driving noise:

dXt = −θXtdt + dY (1)
t , dY (1)

t = e−tdBat , θ > 0.

The solution of the SDE ( with initial value
X0 =

∫ 0
−∞ e(θ−1)s dBas ) is given by

Ut = e−θt
∫ t

−∞
e(θ−1)s dBas , and at = He

t
H .

Definition
The process U is called stationary fractional
Ornstein-Uhlenbeck process of the second kind.
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Fractional Ornstein-Uhlenbeck processes, second kind

Proposition ( Cheridito & Kawaguchi & Maejima (2003) and
Kaarakka & Salminen (2011))
The covariance function of the stationary process U decays
exponentially and has short range dependence. More precisely,
when H ∈ (1

2 ,1), then

E(UtU0) =

(
exp

(
−min{θ, 1− H

H
}t
))

, as t →∞.
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Case fractional Ornstein-Uhlenbeck process of the first kind

Consider following Langevin equation with noise process Z :

dXt = −θXt dt + dZt , t ∈ [0,T ].

When Z = B is fractional Brownian motion with Hurst
parameter H ∈ (1

2 ,1), i.e. X is fractional
Ornstein-Uhlenbeck process of the first kind, Kleptsyna &
Le Breton (2002) obtained MLE for estimating parameter θ
and prove strong consistency.
When Z = B is fractional Brownian motion with Hurst
parameter H ∈ (1

2 ,1), i.e. X is fractional
Ornstein-Uhlenbeck process of the first kind, Hu & Nualart
(2010) suggest the following LSE

θ̂T = −
∫ T

0 Xt δXt∫ T
0 X 2

t dt
, δ stands for Skorokhod integral

and prove strong consistency and a CLT towards a
Gaussian distribution.
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Case fractional Ornstein-Uhlenbeck process of the second kind

When Z = Y (1), i.e. X is fractional Ornstein-Uhlenbeck process
of the second kind. If X0 = 0, H ∈ (1

2 ,1) and θ > 1, then

Theorem (Az & Morlanes (2012))

The least squares estimator θ̂T is weakly consistent, i.e.

θ̂T = −
∫ T

0 Xt δXt∫ T
0 X 2

t dt
→ θ

in probability, as T tends to infinity.

Theorem (Az & Morlanes (2012))

For the least squares estimator θ̂T , we have

√
T
(
θ̂T − θ

)
law→ N (0, σ2(θ,H)),

as T tends to infinity, where σ2(θ,H) = θ2C(θ,H) > 0.
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Since there is not (at the moment) a Malliavin calculus for the
driving noise Y (1), we do replace the noise Y (1) with an
equivalent (in distribution) noise and do computation in a
equivalent model.

Motivated by the equality (Baudoin & Nualart 2003): for
f > 0 and enough smooth

{
∫ t

0
f (s)dBs}t∈[0,T ]

law
= {B∫ t

0 f (s)
1
H ds
}t∈[0,T ],

we obtain
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dXt = −θXt dt + dY (1)
t , X0 = 0.

Lemma

Let B̃t = Bt+H − BH be the shifted fractional Brownian motion.
Then there exists a regular Volterra-type kernel L̃, so that for
the solution of the following stochastic differential equation

dX̃t = −θX̃t dt + dG̃t , X̃0 = 0,

we have, {Xt}t∈[0,T ]
law
= {X̃t}t∈[0,T ] where the Gaussian process

G̃t =

∫ t

0

(
KH(t , s) + L̃(t , s)

)
dW̃s

law
= Y (1)

t .
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Using multiple Wiener integral techniques, and the fact that law
of random variables in the second Wiener chaos is determined
by their moments, we obtain

Lemma

For the least squares estimator θ̂T , we have

θ̂T = θ −
∫ T

0 Xt δY
(1)
t∫ T

0 X 2
t dt

law
= θ −

∫ T
0 X̃t δG̃t∫ T
0 X̃ 2

t dt
.

(3)
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Using relation between Skorokhod integral and Paths-wise
integral, we obtain

Lemma

The least squares estimator θ̂T can be written as

θ̂T
law
= −

1
2 X̃ 2

T∫ T
0 X̃ 2

t dt
+

∫ T
0

∫ T
s D(W̃ )

s X̃t

(
KH(dt , s) + L̃(dt , s)

)
ds∫ T

0 X̃ 2
t dt

,

where D(W̃ ) denotes the Malliavin derivative operator with
respect to Brownian motion W̃ .
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Using ergodic theorem for stationary processes, we obtain

Lemma

For the processes X and X̃ , we have

1
T

∫ T

0
X 2

t dt → (2H − 1)H2H

θ
B ((θ − 1)H + 1,2H − 1) ,

almost surely and in L2, as T tends to infinity, where here
B(x , y) denotes the complete Beta function.
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Using a result on the supremum of stationary Gaussian

processes by Pickands (1969), we obtain limT→∞
X̃ 2

T
T = 0.

With doing some computation, one can obtain∫ T

0

∫ T

s
D(W̃ )

s X̃t

(
KH(dt , s) + L̃(dt , s)

)
ds

→ (2H − 1)H2HB ((θ − 1)H + 1,2H − 1) .

End of the proof.

Remark
Note that if one can replace Skorokhod integral with path-wise
Riemann-Stieltjes integral in the formula of least squares
estimator, then we can obtain the new estimator

θ̂
′
T := −

∫ T
0 XtdXt∫ T
0 X 2

t dt
= −

X 2
T

2
∫ T

0 X 2
t dt
→ 0 a.s.
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Proposition (Nualart & Ortiz-Laorre (2008))
Let {Fn}n≥1 be a sequence of random variables in the q-th
Wiener chaos, q ≥ 2, such that limn→∞ IE(F 2

n ) = σ2. Then the
following statements are equivalent:

Fn converges in distribution to N (0, σ2) as n tends to
infinity.
‖DFn‖2H converges in L2(Ω) to qσ2 as n tends to infinity.

Taking into account that

√
T
(
θ̂T − θ

)
law
= −

√
T IG̃

2

(1
2e−θ|t−s|)∫ T

0 X̃ 2
t dt

= − FT
1
T

∫ T
0 X̃ 2

t dt
,

where FT stands for the double stochastic integral

FT =
1√
T

IG̃
2

(
1
2

e−θ|t−s|
)
,

and applying the above proposition, we obtain the CLT.
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Another estimator: Case when Hurst parameter H is known

Motivation comes from the following result.

1
T

∫ T

0
X 2

t dt a.s.→ Ψ(θ) :=
(2H − 1)H2H

θ
B ((θ − 1)H + 1,2H − 1) .

Lemma (Az & Viitasaari (2012))
As a function Ψ : IR+ → IR+, Ψ(θ) is bijective, and hence
invertible.

Remark
Note that (up to our knowledge) there exists not an explicit
formula for the inverse. Hence, the inverse must be computed
numerically.
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Another estimator: Case when Hurst parameter H is known

We start with the following CLT.

Theorem (Az & Viitasaari (2012))
For the fractional Ornstein-Uhlenbeck process of the second
kind X , (X0 = 0), we have

√
T

(∫ T

0
X 2

u du −Ψ(θ)

)
law→ N (0, σ2),

where σ2 = σ2(H, θ) > 0.

The shape of the variance σ2 is rather complicated and is given
by a triplet integral.
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Another estimator: Case when Hurst parameter H is known

Assume we observe Xt at discrete points
{t1 < t2 < · · · < tk , k = 1, . . . ,N}. Put TN = N∆N and

µ̂2,N =
1

TN

N∑
k=1

X 2
tk ∆tk .

Theorem (Az & Viitasaari (2012))

Assume we have TN →∞ and N∆p
N → 0, p > 1. Then,

θ̂N := Ψ−1 (µ̂2,N
)
→ θ

almost surely as N tends to infinity, where Ψ−1 is the inverse of
function Ψ(θ). Moreover

√
TN(θ̂N − θ)

law→ N (0, σ2
θ ), σ2

θ =
σ2

[Ψ′(θ)]2
.
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First using some rough estimations, we obtain√
TN

∣∣∣∣∣µ̂2,N −
1

TN

∫ TN

0
X 2

t dt

∣∣∣∣∣→ 0, a.s.

Using Taylor’s Theorem: set µ = Ψ(θ),√
TN

(
θ̂N − θ

)
=

dΨ−1

dµ
(µ)
√

TN
(
µ̂2,N −Ψ(θ)

)
+ R1(µ̂2,N)

√
TN
(
µ̂2,N −Ψ(θ)

)
=

dΨ−1

dµ
(µ)
√

TN

(
1

TN

∫ TN

0
X 2

t dt −Ψ(θ)

)

+
dΨ−1

dµ
(µ)
√

TN

(
µ̂2,N −

1
TN

∫ TN

0
X 2

t dt

)
+ R1(µ̂2,N)

√
TN
(
µ̂2,N −Ψ(θ)

)
,

and conclude the result.



Introduction The model, MLE and LSE Main results, LSE Sketch of the proof: consistency Sketch of the proof: CLT Main results: another estimator Sketch of the proof: another estimator Main results: another estimator Some questions for further study

Another estimator: Case when Hurst parameter H is unknown

Under Progress !
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Some questions for further study

Is LSE strongly consistent in the setup of fractional
Ornstein-Uhlenbeck of the second kind?
What about MLE in the setup of fractional
Ornstein-Uhlenbeck of the second kind? Does it exist? If
yes, what about Consistency and CLT ?
What about parameter estimation beyond linear drift
coefficient? i.e. dXt = θb(Xt )dt + dY (1) for a suitable class
of non-linear functions b.
To what extend for the driving noise in the Langevin
equation, one can prove consistency of LSE?

Thank you for your attention !
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