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Abstract. In this paper, a class of tests is developed for comparing the cause-specific hazard rates of m

competing risks simultaneously in K (� 2) groups. The data available for a unit are the failure time of the unit

along with the identifier of the risk claiming the failure. In practice, the failure time data are generally right

censored. The tests are based on the difference between the weighted averages of the cause-specific hazard rates

corresponding to each risk. No assumption regarding the dependence of the competing risks is made. It is shown

that the proposed test statistic has asymptotically chi-squared distribution. The proposed test is shown to be

optimal for a specific type of local alternatives. The choice of weight function is also discussed. A simulation

study is carried out using multivariate Gumbel distribution to compare the optimal weight function with a

proposed weight function which is to be used in practice. Also, the proposed test is applied to real data on the

termination of an intrauterine device.

Keywords: cause-specific hazard, competing risks, counting processes, cumulative incidence function, martingale

limit theorem

1. Introduction

Consider the situation where m competing risks are acting simultaneously in the same

environment. For each unit subject to m competing risks, the data available are the

failure time of the unit, U and the identifier of the risk claiming the failure, � which can

assume any one of the possible values {1, 2, . . . , m}. In practice, U is censored and data

on T ¼ min(U, C ) are available, where C is a censoring variable and the censoring

mechanism is assumed to be noninformative. Also, instead of �, � ¼ � I [T ¼ U ] is

observed. We assume that the data available are (T, �), right censored competing risks

data. Suppose there are K independent groups of units, and each unit is exposed to m

competing risks. Let Tki be the failure time and �ki 2 {0, 1, 2, . . . , m} be the cause of

failure, i ¼ 1, 2, . . . , nk and k ¼ 1, 2, . . . , K. For each k, the pairs (Tki, �ki), i ¼ 1,

2, . . . , nk, are assumed to be independent and identically distributed. It is important to

note that no assumption regarding the dependence among the m risks is made.
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Define the cumulative incidence function for the risk j in the group k by

FkjðtÞ ¼ P½Uki � t; �ki ¼ j�; ð1Þ

which are assumed to be continuous with subdensities fkj (t). Also define the cause-specific

hazard rate by

hkjðtÞ ¼
fkjðtÞ
SkðtÞ

;

where Sk(t)¼ P[Ukj > t] is an overall survival function of the group k. Note that Sk(t)¼ 1	
Fk(t) ¼ 1 	

P
j=1
m Fkj(t).

It is important to note that the cause-specific hazard rates for risk j, j ¼ 1, 2, . . . , m
corresponding to (U, �) are the same as those corresponding to (T, �).
The main purpose of this paper is to develop a test procedure for the hypothesis

Ho : h1jðtÞ ¼ h2jðtÞ ¼ . . . ¼ hKjðtÞ ¼ hjðtÞ; 8j ¼ 1; 2; . . . ;m;

where hj(.), j¼1, 2, . . . , m are unspecified common cause-specific hazard rates.

Analysis of competing risks data concentrates on estimating and comparing cause-

specific hazards, as can be seen from previous works (see Kalbfleisch and Prentice, 1980).

Hence it is of direct interest to propose a test procedure which makes use of cause-specific

hazards.

The problem of testing equality of cause-specific hazard rates corresponding to m

dependent risks has been discussed in the literature (see Lam, 1998; Aly et al., 1994 and

references therein). Gray (1988) gives a class of K	 sample tests for comparing the

cumulative incidence functions of a particular type of failure out of several competing risks

among different groups and is based on the subdistribution hazards ( fkj (t)/(1 	 Fkj (t))).

Lindkvist and Belyaev (1998) propose a class of tests based on a two-dimesional vector

statistic for testing equality of cumulative cause-specific hazard rates corresponding to two

risks between two samples. Their approach can be easily applied to m risks.

In section 2, a class of K-sample tests, a generalization of Lindkvist and Belyaev (1998)

test, is developed using martingale theory. The asymptotic distribution of the test statistic,

which is univariate unlike in Lindkvist and Belyaev (1998), is shown to be a chi-squared

distribution. The choice of the weight function in the light of maximizing asymptotic

efficiency against a sequence of local alternatives is discussed in section 3. The technical

details are given in the appendix.

In section 4, the proposed test is applied to simulated data from multivariate Gumbel

distribution to compare the optimal weight function with the proposed weight function

which is to be used in practice. Also, the empirical distribution under the null hypothesis is

plotted and the empirical power is computed against the local alternatives.

The motivation for this work came from the analysis of contraceptive failure data in

intrauterine device (IUD) studies carried out in several countries. The possible causes of
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termination of the use of IUD were categorised into five risk classes: (1) pregnancy, (2)

expulsion, (3) amenorrhea, (4) bleeding and pain, and (5) hormonal disturbances. In the

present context, it is essential and interesting to study simultaneously the behaviour of all

five of the above-mentioned competing termination reasons simultaneously for different

countries. None of the available tests can be directly applied to this situation.

2. Test Statistic and Asymptotic Distribution

Suppose (Tki, �ki), i ¼ 1, 2, . . . , nk, k ¼ 1, 2, . . . , K denote right censored competing risks

data for the K groups. Let n ¼
P

k=1
K nk. Define the counting process

NkjðtÞ ¼
Xnk
i¼1

I ½Tki � t; �ki ¼ j�; j ¼ 0; 1; 2; . . . ;m; k ¼ 1; 2; . . . ;K:

and

YkðtÞ ¼
Xnk
i¼1

I ½Tki� t�:

Note that Nkj(t) counts the number of failures due to competing risk j by time t and Yk(t) is

the number of units at risk just prior to time t for the k th group. Set Mkj(t) ¼ Nkj(t) 	R
0
t Yk(s) d�kj(s), j ¼ 0, 1, 2, . . . , m, k ¼ 1, 2, . . . , K. Then for t 2 [0, �], Mkj(t), j ¼ 0, 1, 2,

. . . , m, k ¼ 1, 2, . . . , K are orthogonal square integrable martingales with respect to the

filtration {FN ;Y
t } which is generated by Nkj and Yk.

Define the overall counting process

N :jðtÞ ¼
XK
k¼1

NkjðtÞ

Y :ðtÞ ¼
XK
k¼1

YkðtÞ;

and the martingale

M : jðtÞ ¼
XK
k¼1

Mk jðtÞ ¼ N : jðtÞ 	
XK
k¼1

Z t

0

YkðsÞd�k jðsÞ;

for each j ¼ 0, 1, . . . , m.
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Note that

hMkj;Mk 0j0 i ¼ �kk 0�jj0

Z t

0

YkðsÞd�k jðsÞ; and hM :j;Mkj0 i ¼ �jj0 hMkj;Mkj0 i:

A K-sample test can be based on the scores for i ¼ 1, 2, . . . , m, k ¼ 1, 2, . . . , K

Zki ¼
Z �k

0

Xm
j¼1

Kn
kijðtÞ

n
d�̂̂kjðtÞ 	 d�̂̂jðtÞ

o
; ð2Þ

where Kkij
n (t) are suitably chosen locally bounded {FN ;Y

t }-predictable processes. �̂̂kj (t), an

estimator of the cumulative cause-specific hazard rate for competing risk j in the group k,

is given by

d�̂̂k jðtÞ ¼
dNkjðtÞ
YkðtÞ

¼ dMkjðtÞ
YkðtÞ

þ d�k jðtÞ;

and �̂̂j (t) is an estimate of the common value of �kj(t) under the null hypothesis, given by

d�̂̂jðtÞ ¼
dN :jðtÞ
Y :ðtÞ ¼ dM�jðtÞ

Y�ðtÞ
þ

PK
k¼1

YkðtÞd�k jðtÞ

Y ðtÞ :

When Kkij
n (t) ¼ �ij K

n
ki(t) then (2) simplifies to

Zki ¼
Z �k

0

Kn
kiðtÞ

n
d�̂̂kiðtÞ 	 d�̂̂iðtÞ

o
; ð3Þ

which is shown to be a generalisation of the test proposed by Lindkvist and Belyaev

(1998). When m ¼ 2 and K ¼ 2, the score Z11 can be simplified as

Z11 ¼
Z �k

o

Kn
11ðtÞ

�
dN11ðtÞ
Y1ðtÞ

	 dN11ðtÞ þ dN21ðtÞ
Y1ðtÞ þ Y2ðtÞ

�

¼
Z �k

0

Kn
11ðtÞ

Y2ðtÞ
Y1ðtÞ þ Y2ðtÞ

�
dN11ðtÞ
Y1ðtÞ

	 dN21ðtÞ
Y2ðtÞ

�
:

A similar expression can be given for Z12. The expression (3) on page 145 in the paper by

Lindkvist and Belyaev (1998) is similar to the above expression with Vjn(t) ¼ Kn
1j (t)

Y2ðtÞ
Y1ðtÞþY2ðtÞwhich has the form of the optimal weight function given on page 147 with K1j

n (t)¼
cj
	1Y1(t).
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The martingale central limit theorem can be applied in this context to derive the

asymptotic distribution of Z (Andersen et al., 1993).

THEOREM 2.1 Assume n	1Yk
n(s) ! yk (s) uniformly in probability, where yk(s) are

deterministic functions. Denote y.(s)¼
PK
k¼1

yk (s). Then, under the assumption that n
	1Kkij

n (t)

! Kkij
o (t) uniformly in probability, with each Kkij

o (.) bounded on [0, �] and under the null

hypothesis, as n ! 1, n	1/2Z converges in distribution to Nm�K (0,
P

), where

�ði;kÞ;ði0;k 0Þ ¼
Z minð�k ;�k0 Þ

0

	
�kk 0

ykðt	Þ 	
1

y:ðt	Þ


Xm
j¼1

Ko
kijðtÞKo

k 0i0jðtÞd�jðtÞ: ð4Þ

Proof: Expressing Zn
ki in terms of martingales, we have

Zn
ki ¼

Z �k

0

Xm
j¼1

Kn
kijðtÞ

dNkjðtÞ
Yn
k ðtÞ

	 dN :jðtÞ
Y :nðtÞ

� �

¼
Z �k

0

Xm
j¼1

Kn
kijðtÞ

dMkjðtÞ
Yn
k ðtÞ

	 dM :jðtÞ
Y :nðtÞ

� �

þ
Z �k

0

Xm
j¼1

Kn
kijðtÞ d�kjðtÞ 	

PK
k¼1

Yn
k ðtÞd�kjðtÞ

Y :nðtÞ

2
6664

3
7775;

where the second term is zero under the null hypothesis.

The result follows by standard arguments, since

hZn
k i; Z

n
k 0i0 i ¼

Z minð�k ;�k0 Þ

0

 
�kk 0

Yn
k ðt	Þ 	

1

Y :nðt	Þ

!Xm
j¼1

Kn
kijðtÞKn

k 0i0jðtÞd�jðtÞ: 5

The consistent estimator of �(i,k)(i0k 0) is given by

n	1

Z minð�k ;�k0 Þ

0

 
�kk 0

Yn
k ðt	ÞY :nðt	Þ 	

1

Y :nðt	Þ2

!Xm
j¼1

Kn
kijðtÞKn

k 0i0jðtÞdN :jðtÞ;

where � ¼ min(�k, � l).
Note that, when Kkij

n (t) ¼ �ijKki
n (t), the asymptotic covariance matrix becomes

block-diagonal, � ¼ diagonal(D1, D2, . . . , Dm) where Di (k, k0) ¼ �(i,k),(i,k 0), i ¼
1, . . . , m, k, k0 ¼ 1, . . . , K.
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Under the alternative, as n!1, n	1/2 Z converges in distribution to Nm�K(�	 , �), where

�ki ¼
Z �k

0

Xm
j¼1

Ko
kijðtÞ d�kjðtÞ 	

PK
k¼1

ykðtÞd�kjðtÞ

y:ðtÞ

2
6664

3
7775:

3. A Class of Tests

To generate a class of tests of Ho, we take the weight process of the form

Kn
kijðtÞ ¼ LnijðtÞYn

k ðtÞ; i; j ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ;K: ð5Þ

For the weight process of this type
P

k=1
K Zki ¼ 0 for each i. Hence, in this case, the rank of

� is (K 	 1) rank(A), where A is the m � m matrix

Aði; jÞ ¼
Z �

0

LoijðtÞhjðtÞdt;

where n	1 Kn
kij (t) tends to Loij (t)yk(t) as n ! 1. In the follow-up we assume that A has full

rank m. Hence, under the null hypothesis, the test statistic n	1 Z 0�	Z, where �	 is a

generalised inverse of�, has asymptotically chi-squared distribution withm(K	 1) degrees

of freedom. Under the alternative, the test statistic has asymptotically noncentral chi-squared

distribution withm(K	 1) degrees of freedom with the noncentrality parameter �	
0�	�	. We

show that the locally asymptotic efficient nonparametric test belongs to this class.

Consider a sequence of local asymptotic alternatives

hnkjðtÞ ¼ hjðtÞ þ a	1
n hjðtÞ

Xm
i¼j

�ijðtÞ�ki þ oða	1
n Þ;

for k ¼ 1, 2, . . . , K and j ¼ 1, 2, . . . , m, and an ¼ n1/2 throughout. The motivation for this

alternative comes from the Gumbel’s distribution which is illustrated in the next section.

We follow the technique given on pages 615-624 of Andersen et al. (1993) to show that

the nonparametric test is asymptotically equivalent to an efficient parametric test. The

proof is given in the appendix.

When the matrices (�ij (t))t � 0 can be diagonalized by the same linear transformation

simultaneously for all t, the sequence of local alternatives can be expressed as

hnkjðtÞ ¼ hjðtÞ þ a	1
n �kj�jðtÞhjðtÞ þ oða	1

n Þ; j ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ;K;

where �kj are constants and �j (t) are fixed functions, j ¼ 1, 2, . . . , m, k ¼ 1, 2, . . . , K.
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Note that �j (t) � 1 gives the local alternative

hkjðtÞ ¼ hjðtÞð1þ a	1
n �kj þ oða	1

n ÞÞ;

which corresponds to the proportionality of cause-specific hazards. The null hypothesis of

equality corresponds to �kj ¼ 0 for all k and j. A test based on the process Lnj (t)¼ I [Y(t) > 0]

corresponds to the log-rank test, in the absence of competing risks and is optimal when

there is no censoring. An attractive process in our case is the type of process suggested by

Harrington and Fleming (1982). We will consider the weight process

Lnj ðtÞ ¼ ½1	 F̂̂jðtÞ�	; ð6Þ

where 	 is a fixed constant between 0 and 1 and F̂̂ j (t) is an estimate of the common incidence

function for risk j, P[U � t, � ¼ j] and is given by

F̂̂ jðtÞ ¼
Z t

0

Ŝ̂ðu	Þ dNjðuÞ
Y ðuÞ ; ð7Þ

where Ŝ̂ (t	) is the left-hand limit of the Kaplan-Meier (1958) estimate of the survival

function of U. When there is only one risk and censoring, Fj (t) ¼ F(t) and the above

weight process is equivalent to the Harrington and Fleming (1982) type of tests for

censored survival data. We refer to Chapter V and VIII of Andersen et al. (1993) for

details regarding the tests for censored survival data. The corresponding �j(t) process is

(1	Fj (t))
	. Of course, in the present situation one can use the weight process [Ŝ̂ (t)]	

which does not vary with j, which will give an optimal test for the class of alternatives

with �j (t) ¼ S(t)	 for all j. Depending on the choice of �j (.) process, one can get the

optimal test by suitably defining Lnj (.).

In practice, the structure of the alternative is not known. In such situations it is easier and

sufficient to use one of the weight functions given above. The illustration given in the

following section brings out that the weight function in (6) performs satisfactorily when

compared with the optimal weight function.

4. Simulation Study - Multivariate Gumbel Distribution

We consider a m-variate Gumbel exponential distribution, with parameters 
 and � ¼ (�1,
. . . , �m), with the density

f ðx1; x2; . . . ; xmÞ ¼
Ym
i¼1

�iexp

 
	
Xm
i¼1

�ixi

!"
1þ 


Ym
i¼l

�
2 expð	�ixiÞ 	 1

�#
:
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The cause-specific hazard for the i-th risk is given by

hiðtÞ ¼ �i

1þ 
ð1	 expð	2�itÞÞ
Q
j 6¼i

ð1	 expð	�jtÞÞ

1þ 

Qm
j¼1

ð1	 expð	�jtÞÞ
:

Now suppose we have a sequence of local alternatives P(n) with parameters 
(n) ¼ 
, and
different parameters (�nk1, . . . , �

n
km) for each group, given by

�nki ¼ �i þ a	1
n bki ¼ �ið1þ a	1

n �kiÞ;

where an
	1 ! 0 and �ki ¼ bki/�i. Then

hnkiðtÞ
hiðtÞ

¼ 1þ a	1
n

(
�ki þ



Qm
j¼1

ð1	 expð	�jtÞÞ

1þ 

Qm
j¼1

ð1	 expð	�jtÞÞ

Xm
j¼1

expð	�jtÞ
1	 expð	�jtÞ

�j�kjt

 !

	

Y
j6¼i

ð1	 expð	�jtÞÞ
h
1þ 
ð1	 expð	2�itÞÞ

�
Y
j 6¼i

ð1	 expð	�jtÞÞ
i	1

expð	2�itÞ2�i�kit þ ð1	 expð	2�itÞÞ

�
X
j6¼i

h
expð	�jtÞ�j�kjtð1	 expð	�jtÞÞ	1

i)

þ oða	1
n Þ ¼ 1þ a	1

n

Xm
j¼i

�i; jðtÞ�kj þ oða	1
n Þ:

We will consider K ¼ 5 groups and m ¼ 3 risks, and the true weight function

corresponding to the optimal test and also the weight function given in (6) with 	 ¼ 0.5.

The level of significance used throughout is 0.05. The null hypothesis is rejected if the test

statistic is greater than 21.026. The parameters used in the simulation are 
 ¼ 0.5

throughout and � ¼ (0.8, 0.2, 0.6) for the null hypothesis. The censoring distribution is

taken as exponential for each group with intensities (1, 0.6, 0.7, 0.8, 0.9), respectively.

Samples of sizes (50, 60, 70, 80, 90) were generated for five groups with 1000 repetitions.

Figure 1 gives the empirical distribution of the test statistic under the null hypothesis for

the two weight functions along with the true chi-squared distribution with 12 degrees of

freedom. The empirical distributions are quite close to the true distribution for moderate

sample sizes. The empirical level of significance using the optimal weight function is

0.056 while it is 0.06 when the weight function (6) is used.
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To check the performance of the test as well as to compare the two weight functions,

noncentrality parameters and empirical powers are computed when the parameters are

(0.8, 0.2, 0.6), (0.79, 0.19, 0.59), (0.789, 0.21, 0.61), (0.75, 0.21, 0.55), and (0.81, 0.15,

0.52) for the five groups. Table 1 gives the noncentrality parameters and powers for

various sample sizes. The empirical power of the test is 0.78 when optimal weight function

is used and is 0.77 when Harrington and Fleming (1982) type of weight function is used

for the sample sizes (200, 240, 280, 320, 360). The test performs satisfactorily even when

the parameters are close to each other. It is clear that the Harrington and Fleming (1982)

type of weight function can be used in practice since it gives the power which is

reasonably close to the power of the test when the optimal weight function is used.

5. Application - IUD Study

The data are taken from a five year follow-up study of 1547 women from Finland, Sweden

and Hungary, on termination of IUD conducted by a pharmaceutical company based in

Finland. Here, termination of IUD due to (1) pregnancy, (2) expulsion, (3) amenorrhea, (4)

bleeding and pain, and (5) hormonal disturbances was of interest. Table 2 gives the

summary of the data used here.
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Figure 1. Empirical distributions of the asymptotically efficient test, the one based on the Harrington and Fleming

type weight function (6) under the null hypothesis and the chi-squared distribution with 12 degrees of freedom

(3 risks, 5 groups, multivariate Gumbel distribution).
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Figure 2 gives the estimates of the cause-specific hazard rates in the three countries for

various termination reasons. The cause-specific hazards seem to vary between the

countries. It can be seen from these plots that Finland and Sweden behave similarly with

respect to these termination reasons except pregnancy but Hungary differs from these two

Nordic countries. Sweden and Hungary reported no termination due to pregnancy and

hence the cause-specific hazard rate is zero.

The main interest was in testing the equality of the five cause-specific hazards for the

three countries. The weight functions used were the same as in (6) with 	 ¼ 0, 0.5, 1. The

test statistics for each risk are (3.27, 4.08, 106.28, 12.51, 23.21), (3.27, 4.11, 106.23,

12.69, 23.2) and (3.27, 4.13, 106.17, 12.86, 23.18) respectively.

The values of the test statistic are 149.38, 149.52, and 149.63 respectively. These values

are higher than the cut-off point, 18.3, of the chi-squared distribution with 10 degrees of

freedom at 0.05 level of significance. Hence, the hypothesis of equality of cause-specific

hazards is rejected.

The cut-off point of chi-squared distribution with 2 degrees of freedom is 5.99. It can

be seen that the first two reasons do not differ significatively among the countries, while

the termination due to amenorrhea differs highly significantly between Hungary and the

Nordic countries, Finland and Sweden. It was pointed out in Karia et al. (1998) that the

termination due to amenorrhea depends on counselling and also on how often it is

regarded as being disturbing by the user or her doctor. The opposite is true about the

termination due to hormonal disturbances.

Table 2. Summary of IUD data.

Termination due to Finland Sweden Hungary

pregnancy 2 0 0

expulsion 31 28 9

amenorrhea 11 7 50

bleeding and pain 60 96 64

hormonal disturbances 46 80 12

censoring 398 430 223

total 548 641 358

Table 1. Noncentrality parameters and empirical powers of the test proposed in section 2

using optimal and Harrington and Fleming (HF) type weight functions for multivariate

Gumbel distribution, level of significance ¼ 0.05.

noncentrality power

sample sizes (optimal) (HF) (optimal) (HF)

(50, 60, 70, 80, 90) 4.44 4.28 0.21 0.20

(100, 120, 140, 160, 180) 8.94 8.79 0.452 0.450

(200, 240, 280, 320, 360) 16.96 15.96 0.78 0.77
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6. Remarks

A test for comparing cause-specific hazard rates proposed in this paper is very general in

nature since almost all the available tests can be seen as special cases. The test seems to

perform satisfactorily for moderate sample sizes. One can use the Harrington and Fleming
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Figure 2. Estimates of cumulative cause-specific hazards for (a) pregnancy, (b) expulsion, (c) amenorrhea, (d)

bleeding and pain, and (e) hormonal disturbances, in Finland (F), Sweden (S) and Hungary (H). Also the overall

cumulative hazard (O) is given.
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type of weight function (6) in practice since its performance in a very general set-up is

close to the performance of the optimal weight function.

Appendix

The local alternative corresponds to a parametric model

hnkjðtÞ ¼ hjðt; �nkÞ

where

�nk ¼ ð�nk1; . . . ; �nkmÞ 2 R; with �nki ¼ �0i þ a	1
n �ki; and hjðtÞ ¼ hjðt; �0Þ:

Note that

�ijðtÞ ¼
@

@�i
log hjðt; �0Þ:

The score for �ki at �0 is given by

Uki ¼
Xm
j¼1

Z �

0

@

@�i
log hjðt; �0ÞdMkjðtÞ:

The vector U ¼ (U11, . . . , U1m, . . . , UK1, . . . , UKm) has asymptotically normal distribution

with block diagonal (mK ) � (mK ) covariance matrix

I ðkiÞ;ðk 0i0Þ ¼ �kk 0
Xm
j¼1

Z �

0

�ijðtÞ�i0jðtÞykðtÞhjðt; �0Þdt:

Note that if (�ij(t)) is diagonal, then I is diagonal.

Let � @ (�11, . . . , �1m, . . . , �K1, . . . , �Km)
0 2 Rm�K, and J is a m � m matrix with

ðJ Þi;i0 ¼
Xm
j¼1

Z �

0

�ijðtÞ�i0jðtÞy:ðtÞhjðt; �0Þdt;

i.e., J ¼
PK
h¼1

I h, where the m � m matrix Ih is the h-th block of I . The noncentrality

parameter for � is given by

KULATHINAL AND GASBARRA158



� ¼ �0

(
I 	 I

J 	1 . . . J 	1

. . . . . . . . .

J 	1 . . . J 	1

0
BBBB@

1
CCCCAI
)
�

¼
XK
l¼1

ð�lÞ0I l�
l 	 �

0
 XK

l¼1

I l

!	1

�

where �l ¼ (�l1, . . . , �lm)
0, and � 2 Rm is defined as

� ¼
XK
l¼1

I l�
l

If the risk sets are asymptotically proportional, meaning that yl (t)/y.(t) ¼ pl constant, then

� ¼ �0ððdiagðpÞ 	 p0pÞ � J Þ�

¼
Xm
i¼1

Xm
i0¼1

Xk
l¼1

pl�li�li0

 !
	 �i�i0

" #Xm
j¼1

Z �

o

�ijðtÞ�i0jðtÞy:ðtÞhjðt; �0Þdt

where p ¼ ( p1, . . . , pK) and

�i ¼
XK
l¼1

pl�li:

This is the optimal parametric test under the parametric model {hi(t, �), i¼ 1, . . . ,m, �2Q}.

It is easy to check that under the asymptotic proportionality of risk sets, the noncentrality

parameters of the nonparametric test coincides with that of the efficient parameteric test and

hence it is efficient. But the above parametric model does not allow for all possible shapes

of the hazard rates and does not prove that the proposed nonparametric test is efficient in

general. The above discussion helps to understand the derivation of noncentrality

parameter. To show that the nonparametric test is efficient in general, we extend the above

model and introduce a K � m dimensional nuisance parameter  ¼ ( ki : i ¼ 1, 2, . . . , m,
k ¼ 1, 2, . . . , K ). The local parameterisation of nuisance parameter is  ki

n ¼  ki
0 + an

	1�ki
and we assume that

@

@ ki

log hjðt; �0;  0Þ ¼ �ijðtÞ
ykðtÞ
y:ðtÞ :
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This corresponds to the parametric model

hjðt; �nk ;  nÞ ¼ hjðt; �nkÞ þ hjðt; �0kÞ
Xm
i¼1

XK
l¼1

�ijðtÞ
ylðtÞ
y:ðtÞ ð 

n
li 	  0

liÞ;

where hj (t, �k
n) is the original model and  varies in an open neighbourhood of  0. Note that

the term comprising nuisance parameters is the same for all (k, j) and hence the null and

alternative hypotheses remain the same.

The score for  ki at  0 is given by

Ski ¼
XK
l¼1

Xm
j¼1

Z �

0

@

@ ki

log hjðt; �0;  0ÞdMljðtÞ

and the effective information matrix is (mK ) � (mK ) dimensional given by

ðI��j ÞðliÞ;ðl0i0Þ ¼
Z �

0

Xm
j¼1

�ijðtÞ�i0jðtÞ
ylðtÞ
y:ðtÞ

 
�ll0 	

yl0 ðtÞ
y:ðtÞ

!
y:ðtÞhjðt; �0;  0Þdt

and the noncentrality parameter is given by

� ¼ �0I��j � ¼
Z �

0

Xm
i

Xm
i0

XK
l¼1

�li�li0
ylðtÞ
y:ðtÞ 	 �iðtÞ�i0 ðtÞ

 !(

�
Xm
j¼1

�i jðtÞ�i0jðtÞhjðt; �0;  0Þ
)
y:ðtÞdt

where �iðtÞ@
PK
l¼1

ylðtÞ
y:ðtÞ�li.

We consider now the performance of the nonparametric chi-squared test n	1Z0�	 Z based

on the Zki’s and � given in Theorem 2.1, where in the weight function (5) we have Lij
n(t)!

�ij(t) as n ! 1, uniformly in probability.

It follows that

� ¼ I��j and � ¼ I��j �: ð8Þ

Therefore, the noncentrality parameter of the nonparametric test is

�0�	� ¼ �0I��j ðI��j Þ	I��j �

¼ �0I��j �:

Hence, the given nonparametric chi-squared test is locally asymptotically efficient.
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