Biometrika Trust

On Prequential Model Assessment in Life History Analysis
Author(s): Elja Arjas and Dario Gasbarra

Source: Biometrika, Vol. 84, No. 3 (Sep., 1997), pp. 505-522
Published by: Biometrika Trust

Stable URL: http://www.jstor.org/stable/2337575

Accessed: 11/05/2010 06:50

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JISTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=bio.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of

content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

http://www.jstor.org


http://www.jstor.org/stable/2337575?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=bio

Biometrika (1997), 84, 3, pp. 505-522
Printed in Great Britain
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SUMMARY

We extend the prequential approach introduced by A. P. Dawid to continuous time
marked point processes. A prequential forecasting system is expressed by means of the
stochastic intensities of the point process. The exact independence and 1-exponentiality
of the derived compensators are used to assess the predictive performance of the model
and the inferential procedure.

Some key words: Bayesian inference; Goodness of fit; Marked point process; Markov chain Monte Carlo;
Prequential analysis.

1. INTRODUCTION
1-1. General

Goodness of fit or, more generally, model assessment is an important but also somewhat
problematic aspect of the statistical analysis of life history data. With the development of
increasingly sophisticated statistical models whose foundation is in the theory of counting
processes and their associated conditional intensities, typically combined with non-
parametric or semiparametric inferential procedures, classical goodness-of-fit tests have
lost much of their appeal and practical value.

Instead, an entire new generation of methods has been developed for this task, which
rest directly on the modern definition of the conditional intensity: a counting process
minus the integrated intensity forms a martingale. Therefore, in a ‘correctly specified’
intensity model, the corresponding incremental differences should behave like white noise.
For such techniques, see e.g. Wei (1984), Arjas (1988), Barlow & Prentice (1988), Therneau,
Grambsch & Fleming (1990) and, for a review, Andersen et al. (1993, Ch. 4).

A problem with this approach, however, is that the exact martingale property holds,
even if the statistical model is ‘true’, only if also the ‘true’ value of the parameter is used.
However, when the maximum likelihood or partial maximum likelihood estimator is used
as a plug-in in place of the true value, the corresponding intensity estimates are no longer
predictable with respect to the observed filtration and the required martingale property
is lost. This complicates the asymptotic theory leading to statistical tests considerably.
For a full account of this, see Andersen et al. (1993).

Our inferential approach to survival analysis is Bayesian, and therefore plug-in values
would in general be replaced by integrals with respect to the posterior. If the posterior is
the one obtained from the entire dataset, the method has a similar defect as when plug-in
values are used, however. In a sense, data are again used twice, once for the estimation
and again in assessing the model. There is a way around this difficulty, however: one can
use, at time ¢, the predictive intensity based on the pre-t data only. This, in fact, is nothing
but the ‘ordinary’ martingale related notion of conditional intensity with respect to
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observed histories. Therefore the observed differences between the counting processes and
the corresponding integrated intensities, i.e. compensators, are exact martingales, by defi-
nition, with respect to the canonical probability which arises from the prior and the
intensity model by integrating out the parameters. This idea is a direct extension into
continuous time of the prequential analysis of a probabilistic model, put forward in a
series of papers by A. P. Dawid and co-workers, e.g. Dawid (1984, 1992) and Seillier-
Moiseiwitsch & Dawid (1993). In the case of a simple point process our results actually
follow from those derived by Dawid if the interarrival times are viewed as data.

However, in general survival and life history models there is a considerable practical prob-
lem. Apart from some isolated special cases, where the updating of a posterior can be done
analytically by applying conjugate distributions, the calculation of the data-based marginal
intensities is very elaborate and has to be done numerically. This is even more problematic
unless there is a way in which the numerical calculations could be done only once, and then
considering the entire observation interval at the same time. Two approaches, both applying
Markov chain Monte Carlo integration, are proposed to solve this problem.

This paper has much in common with Gelfand, Dey & Chang (1992), which also
contains a large number of relevant references. In particular, both papers follow an explora-
tory approach to model assessment, using predictive distributions and, if necessary, Monte
Carlo integration. However, there are also important differences: (i) our criteria for model
assessment cannot be expressed in terms of expected values of ‘checking functions’; and
(ii) our approach is prequential, instead of building on cross-validation ideas. See, however,
the comments on prequential model diagnostics by Raftery and Seillier-Moiseiwitsch in
the discussion of Gelfand et al. (1992).

The contents of the paper are as follows. In the remainder of this section we first consider
briefly the general notions and ideas behind prequential forecasting, and then apply them
in the specific context of Bayesian inference from marked point process data. In § 2 we
introduce some simple graphical methods and statistical tests for assessing the predictive
performance of the postulated Bayesian model. In § 3 we consider in detail two examples,
as illustrations of the methods proposed here. Then § 4 deals with computational aspects,
and the paper concludes with some general remarks in § 5.

1-2. Prequential analysis

Here we recall briefly some ideas on discrete-time data sequences exposed in
A. P. Dawid’s papers. Let Q= {w=(X,),en:X;€ E}, the space of sequences in some
measurable space E. Suppose that at any time n a prequential forecaster has observed the
values xq,...,x,_; of X;,..., X,_; and must issue a probability forecast P, on the yet
unobserved X,. A prequential forecasting system is defined by a rule which for any n
associates a choice of P, under any possible set of outcomes x4, ..., x,_1 of Xy,..., X, _;.
One obvious way to build a prequential forecasting system is to consider a joint probability
distribution P on the space of sequences Q and derive the conditional distributions P,.
On the other hand, any given prequential forecasting system is consistent with one and
only one probability measure P on Q. For example, a statistical forecasting system can
be built by giving a statistical model and an inferential procedure. Once we have a realis-
ation {x,} of the random sequence {X,} we would like to assess the adequacy of P as a
probabilistic explanation of the observations. Such assessment should depend on P only
through the sequence of forecasts {P,} that were in fact made by using the prequential
forecasting system. This fundamental requirement was called by A. P. Dawid the
Prequential Principle.
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In the following we extend this approach to continuous-time marked point processes.
Of course, a marked point process can be viewed as a discrete sequence of time epochs
and marks imbedded in continuous time. Nevertheless, in the proper continuous-time
setting it is natural to build the prequential forecasting system by using conditional
intensities.

1-3. Marked point processes
We formulate the inferential problem in terms of a marked point process. Suppose that
the data are of the form {(T,, X,)}, where 0= T, < T; < ... < Ty are the observed times
of occurrence and X, is a description of the event which occurred at T,. For simplicity,
the marks X, are assumed to take values in a countable set E. We denote by H, the pre-
t history

H,={(T,, X,): T, <t}, (1-1)

consisting of the events in the data which occurred before and including time ¢, and by
H,_ the corresponding history when the inequality in (1-1) is strict. The internal filtration
of the process is denoted by (#) with #, = d{H,}.

It is well known that there is a one-to-one correspondence between probabilities on the
canonical path space Q of the marked point process, consisting of the sequences w =
{(t,, x,):n>0} such that x,e E, 0=t,<t;< ..., and t, < oo implies t, <t,;,, on the
one hand, and on the distribution of the initial mark X, and the (#)-compensators of the
counting processes

N(x)= Y lir,<ix,=n(t) (t=0,x€E) (1-2)
T, <t
on the other. For simplicity, we consider here only absolutely continuous compensators,
in which case we can express everything in terms of conditional intensities.

In order to tie this framework explicitly with statistical inference, we introduce into the
notation an unknown parameter 6. It can be viewed as an initial unobserved mark X, of
the marked point process at time T, = 0. The parameter space ® may be finite dimensional
real or abstract, but its role will always be the same: for any given value 0 € ® we assume
that there is a corresponding P? defined on the path space Q. In practice, as noted above,
P? is specified most conveniently in terms of an initial distribution for X, and the corre-
sponding conditional intensities, A?(x) say, x € E, t > 0. In classical statistical inference, the
family M = {P°:0 € ®} is called a statistical model of the marked point process.

1-4. A Bayesian forecasting system
In Bayesian inference both the parameters 0 and the process sample path H,, are viewed
as random elements. The joint distribution of (6, H,,) is then determined by probabilities
of the form

pr(@e A,H, e B)=Pgyy_)(A X B)= J P°(B)n(db), (1-3)
A
where 7(0) is the prior distribution for 6.

It is characteristic of Bayesian inference that one is thinking of the dynamical prediction
problem in time, where the prediction at time ¢ always concerns the unobserved future
sample path, say H ), and the predictions are updated continuously on the basis of the
observed H,. At time ¢ =0, the predictive distribution is simply the marginal of H,,
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obtained from (1-3) by letting 4 = ®. We denote this probability by P and the correspond-
ing expectation by E. The updating of P corresponds to viewing H,, as a pair (H,, H.,))
and conditioning the joint distribution (1-3) on H,, again integrating out the parameter
6. This continuous updating of predictions, which in practice is done by applying Bayes’
formula on the corresponding posterior distributions for 0, is at the heart of our method
for model assessment.

In more technical terms, this corresponds to focusing interest, not on 6 and the (P, #)-
intensities A¢(x), but on the predictive (P, Ji”) -intensities }.,(x) It is well known that these
two types of intensity are linked by averaging with respect to the posterior n(df|H,_),
that is,

A(x) = E{2(x)|H,_}. (1-4)

However, the real advantage of the predictive intensities is that we can use the existing
theory of point processes and martingales, without needing to condition on something
unknown. In other words, with this change from M = {P% 0 € ®} to P we have eliminated
all technical problems arising from an ‘unknown parameter €, and are actually mimicking
the learning process of a Bayesian statistician working with the postulated model (1-3).
Prequential model assessment means that one is considering these predictions sequentially
and comparing them with the actual observed development of the marked point process.

There are several ways of doing this. An obvious one is to use the defining property of
the conditional intensities, according to which the differences N,(x) — jo s(x) ds are (P, #))-
martingales. A more intuitive way of writing this is based on the well-known interpretation

t(x) dt=P{dN,(x)=1|H,_};
the differentials

dN,(x) — P{dN,(x)=1|H,_}
are then expressing a direct continuous time analogue of the prequential method of Dawid
(1984). However, there are also more refined results, which lead to exact reference distri-
butions and statistical tests.

For the sake of simplicity, we start by considering a particular mark x € E and the
corresponding sequence of precise times at which x occurs, say
75=0, T54q=1Inf{T,>1}; X,=x}.

We have then the following well-known result.

PROPOSITION 1. The spacings Atkﬂ(x) A, =(x) (k=0,1,2,...) of the (P, #)-compen-
sator A (x)= jo s(x) ds form a sequence of mdependent 1- exponentlal random variables.

An equivalent alternative formulation of this result is that the time-transformed counting
process {N,(x); u >0}, defined by
Nu(x) = Ni\;l(x)(x)a (15)

is a Poisson process with fixed intensity 1. Thus we can view the statistician as monitoring
the occurrences of mark x in time and matching the integrated intensities, obtained from
the P-distribution and updated from the previous observations, against the yardstick of
spacings of the Poisson (1)-process. Yet another equivalent way is to consider the residuals

1 —exp{Ag(x) = Ag,, ()},
which, according to P, are independent and follow the [0, 1]-uniform distribution. These
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latter random variables have an obvious interpretation in terms of observed residuals of
the spacings 73, ; — 75, obtained sequentially from P and the data. In fact, in this simple
case of a univariate process we could just as well denote t5,; — 75 by #,4, and consider
the process {n,:k > 1} of a discrete time parameter. This would correspond exactly to the
original formulation of the prequential method in Dawid (1984).

However, the 1-exponentiality and independence properties hold in much more gener-
ality than that contained in Proposition 1; see, for example Aalen & Hoem (1978) and
Norros (1986). It is somewhat difficult to give a formulation that would both be concise
and cover all cases which could arise in an assessment of life history models. The following
statement, which is a direct corollary of Theorem 2.1 in Norros (1986), appears to be
sufficiently general for most purposes.

PrOPOSITION 2. Consider an arbitrary finite collection {t;; 1 <i<k} of (#)-stopping
times such that
(i) PO<t;<o0)=1forall 1<i<k,
(ii) P(r;= r,) =0 whenever i = j,
(iii) each t; is completely unpredictable in the sense that the corresponding (P, #)-compen-
sator (A‘) of t; is continuous.
Then the random variables A;i (1 <i< k) are independent and 1-exponential.

Again, as an alternative, we can say that the variables 1 —exp(— /A\ii) are independent
and (0, 1)-uniform.

The crucial element of Proposition 2 is the independence statement, which holds in
great generality even if the stopping times t; themselves are dependent and, for example,
their order of occurrence is not specified in advance, as in Proposition 1.

Note that, as was mentioned at the beginning of this section, given a nonnegative and
bounded {}-predictable process A(x, t, H,_), one can always construct a probability
measure P, to be used as a prequential forecasting system, on the canonical space of
marked point process histories €, such that, under P, {N,(x)} has (P, #)-intensity which
coincides with A(x, t, H,_) (Brémaud, 1981, IV T4, p. 168).

In particular, Propositions 1 and 2 hold for such a constructed P. Therefore we are not
necessarily restricted to Bayesian estimation and prediction. For example, suppose that
we have specified a parametric model for the marked point process through a family of
(A)-intensities A(x, t, 0, H,), for 0 € ®. We could then use a point estimate, such as the
maximum likelihood estimate, H(t H, ) for 0 € ® at time ¢, and finally form another
probability on s#by means of the plug-in intensity function

At,x, H,_)=Mt,x,0(t, H,_), H,_}.

A slightly different frequentist idea would be to use the confidence intervals around the
maximum likelihood estimate to account for the uncertainty regarding the true value of
6. If the confidence intervals at time ¢ were based on the normal distribution with mean
0(t, H,_) and variance ¢*(¢, H,_), we could then build a prequential forecasting system on
the intensity

] ) ! {00, H,))?
/l(t’x’H'_)_\/{2n&2(t,H,_)} fml(t,x,Ht_,O)eXP[— 2671, H, ) :ld@.

Actually, a statistician may use whatever ingredient he or she likes to define A, such as
Bayes’ formula, maximum likelihood, nonparametric methods, astrology and so on. In
any case, when a predictable intensity process is given, a nice probability measure on the
space of histories is automatically defined.
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2. MODEL ASSESSMENT

So far, we have derived from a possibly highly structured marked point process a simple
standard Poisson process. The assessment of the predictive performance of such a model
is reduced to checking the fit of the corresponding derived process sample path to the
standard Poisson process assumption. There is a huge literature about tests of the Poisson
process hypothesis. Here we give some simple tools that we found to be sensible.

A good first stage is to do a graphical check, looking at the total-time-on-test plot, see
e.g. Andersen et al. (1993, p. 450). The plot process, n— S, = Y;<, /A\ii, under the Bayesian
forecasting system, has independent 1-exponential increments.

Asymptotically, the Kolmogorov law of the iterated logarithm gives a sharp result on
the behaviour of the random walk process {S, —n}: with probability 1,

, S,—n +1 liminf S,—n

msup —————— = _—r
fm sup J/(2nloglogn) , m J(2nloglogn)
Note that this result is true for any random walk with independent and identically distrib-

uted increments of mean 0 and variance 1. In other words, with probability 1, for any
e>0,

(21)

n—(1+e¢)/(2nloglogn) <S,<n+(1+¢)./(2nloglogn)
will hold eventually for all n, and {S,} will satisfy the inequalities
S,=n+(1—e¢)/(2nloglogn), S,<n—(1—¢)./(2nloglogn) (2:2)

infinitely often. Of course this result does not apply as such in finite samples. Nevertheless,
if {S,} infringes the boundaries and does not return, this can be used as evidence against
the model.

As an attempt to quantify the evidence for or against the model we consider some
functionals of the whole sample path {S,}. We observe that S, with respect to P is gamma
distributed with shape parameter n and scale parameter 1. Denoting the corresponding
cumulative distribution by F,(.; n, 1) we find that the random variables G, = F,(S,; n, 1)
follow the [0, 1]-uniform distribution. Note that the increments of {G,} are not indepen-
dent, nor is {G,} a martingale. Obvious test statistics are G, =max;<, G, and G,, =
min, ¢, G,. By computing the reference distributions of G,y and G,y we can assign p-values
to the whole sample, that is P(G,y=giy) and P(G,y < g,y) Where g,y =max,<yg,
g,v = min, <y g, are the observed values of the statistics. We call these statistics prequential
p-values. As usual, p-values close to 0 would be used as evidence against the model P.

In principle, the distribution of G,, could be computed recursively. Here approximate
prequential p-values were determined by a simple Monte Carlo method, by generating
independent identically distributed samples of the process {G,}.

3. TWO EXAMPLES
3-1. General

We consider two simple illustrative examples. In the first example the data come from
a point process, where there is a strong correlation between successive spacings. We show
how our diagnostic method can be used to reveal the inadequacy of a statistical model
in which such correlation has not been accounted for. In the second example we consider
a sample of right-censored survival times from a mixture of two exponential distributions
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with different parameters, and demonstrate how an attempt to fit a single exponential
distribution to such data leads to an obvious rejection of the model.

3-2. Example 1: Point process with serially correlated spacings

Consider a simple point process 0 <T; < T,,..., denoting the spacings by #,=
T,— T,_4, with T, =0. We look at two competing Bayesian models for such data.

Model M,. Suppose that (i) the model parameter 6 is a real-valued random variable
with prior distribution F,(.; o, f), where « is the shape parameter and f is the scale
parameter, and that (ii) conditionally on 6, the spacings {5,; n>1} are independent and
0-exponentially distributed. In other words, {7} is a doubly stochastic Poisson process,
or Cox process, with conditional intensity given by 1/ = 0.

Model M,. Suppose that (i) 6 is as in model M, above, but that (ii), conditionally on
0,n1,1m2,...,1n,-41), the spacings 5, are distributed according to the exponential distri-
bution with parameter 6/5,_,. The conditional intensity is now given by Af=9/11Nt_.
According to model M, long (short) spacings are typically followed by long (short)
spacings, and therefore the points T, tend to be clustered.

Denote by P; the probabilities induced by the respective models M; (i=0, 1) on the
space ©® x Q. Due to the simplicity of the models we can find analytic expressions for the
(Py, H#;)-compensators. Under M,, by a well-known conjugacy property of the gamma
distribution, the predictive (P,, #)-intensity is given by
o+ N,_

B+t
so that the corresponding cumulative intensity from the interval (T,,_,, T,] is
Tn B+ T,
Ads=(@+n—1) log<——5—>.
f Ty B+ T4

Under M,, an analogous computation gives the cumulative (P, H,)-intensity

JTH Zslds=(oc+n—1)log{(ﬂ+ zn: i >/<ﬂ+nili>}.
Ty i=1Mi-1 i=1 Mi-1

Mixture model M, ;. A third model, which includes both M, and M as special cases
and which in principle permits consideration of model selection probabilities adapting to
the data, would have the following mixture form. Let g € [0, 1] be given and let & be a
{0, 1}-valued random variable with

Poi(¢=0)=1—¢q, Py ((=1)=¢q.
Then define the probability P,; on ® x Q x {0, 1} by specifying the conditional prob-
ability Py (.[¢) through Py 1(.[€) = EPy(.) + (1 — )Po(.).
Define the filtration %, = #; v (&). Then the (P, ;, %,)-intensity of the counting process
{N,} is A?. The (P, ;, #)-intensity is the mixture
AN =Py (E=1H, ) +Po,((=0[H,_ )1,

where, from Bayes’ formula,

R =E,0|H, )=

b

qZ(1)
4Z,(t) + (1 — @) Zo(1)’

Po (E=1|H, )=
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and
Ze(t) = ps(H,-) = f pe(H,-105) dn(0) (¢=0,1)
CE

are the normalising constants. These quantities can be computed explicitly, leading to the
expression

Po (¢=1|H,-)=R/{R+(1—q)(B+1)"* N},

N,_ -1 Ne— —a—N;_

= _ o t—1Ty,_ ¢

R=q( ; ‘)(ﬂ+ —+——‘—> -
il:ll Z nN,-

i=1 Mi-1

where

The (P,,,, #)-compensators can now be evaluated numerically.

A sample path segment of the process {T,} consisting of 500 points was generated by
a computer from model M;, with 6 = 0-6. The hyperparameters were given the values o =
0-1 and B = 0-001. This prior has a very large mean o/f = 100, compared to the true value
of 06, but it is also very flat, having variance a/f*= 10°. Our general experience with
different priors is that, as long as they are reasonably uninformative, the diagnostics show
little change. Typically, the differences were meaningful only for the predictions concerning
the first few observations.

1-0 4
./ \,: True (M)
‘ Vo Wrong (M)
..... Mixture (M,,)
08 4
g
g :
S ool
b .
Q
=2 !
= |l
|
B 04 i
5 i
@ )
o 4
o i
02 4
NN\\
00 ~
0 100 200 300 400 500

n

Fig. 1. Example 1: Observed sample path of the process {G,} under models
My, M, ; and M;; n, number of failures.
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Figure 1 shows the corresponding sample paths of the process {G,} under the models
M,, M, and M, ;. We can say straightaway that M, does not fit the data; {G,} appears
to be oscillating between 0 and 1. Under M; and M, , {G,} behaves nicely, and the
sample paths are close to each other. This is predictable because, for data from model
M,, Py (£ =1|H,) converges to 1 almost surely according to P,. The prequential p-values
of the generated data under these three different models are shown in Table 1. The values
of these statistics clearly reinforce the graphical conclusions. The same message is conveyed
by the total-time-on-test plots displayed in Fig. 2, where we plotted the compensators
7\ka against k (k=1,...,500). Again one can see that, while the process {S, —n} has a
nice random walk behaviour under M, and M, ,, graphically coinciding in Fig. 2, staying
mostly in the region prescribed by the law of the iterated logarithm, under model M, it
leaves this region abruptly.

Table 1. Prequential p-values for Example 1
Ml MO MO,l

P(Gy 500> 81.500) 0594 =0 0629
P(G; 500 <&2.500) 0337 =0 0253

400 - /
//
g
= 300 4
1S)
o
£
s
S 200 -
= (T ST T T T T T T
|
( A Upper bound = n +,/(2n log log n)
S —— True model (M,)
100 - —— Wrong model (M,)
—~~ Lower bound = n—./(2n log log n)
04

0 100 200 300 400 500
n

Fig. 2. Example 1: Total-time-on-test plot for the compensators K"Tk. The
bounds n + \/(2n log logn) arising from the law of the iterated logarithm are
shown; n, number of failures.
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3-3. Example 2: One-sample versus two-sample model
Consider a right-censored sample of lifetimes

{(X},0,); X¥=20,0;,=0,1,i=1,...,n}.

Here X# is the time the ith individual was last seen, and J; is the censoring indicator, that

is ;=1 if the ith individual was dead at X}, and §;=0 if it was censored. Denote the

corresponding ‘complete’ lifetimes by X;, that is X; = X} if 6,=1, and X; > X¥ if §,=0.
We consider two following competing parametric models.

Model M,. (i) The parameter of the model 6 is a real-valued random variable with
prior distribution F,(.; o, f) with given shape and scale parameters « and B, and (ii) con-
ditionally on 6, the X; are independent and identically distributed as 0-exponential. The
model assumes also that the censoring mechanism is noninformative with respect to 6.

Model M,. The individuals are divided into two subsamples, say into ‘men’ and ‘women’.
This leads to a marked point process formulation, with two observable marks m and w,
say, and corresponding mark-specific hazard rates A{(m) and 28(w). These hazard rates are
now modelled exactly as in model M,, assuming independence with respect to the prior.
We let 0 =(0',0"), 2%(m)= 0" and A%(w)= 0", with 6" and 6" independent and distributed
according to F,(.; «, B).

Let

N, = Lix#<1,5,=13(t) = ff{recorded deaths by time ¢},

8

i=1

R,=n— ) 1lyxy(t)={individuals at risk at time t},
i=1
and define analogously N;, R, and N;, R/ for the subsamples consisting of men and
women. Denote by P, and P, the probabilities on the space ® x Q corresponding to the
models M, and M,.
Now, under P,, the intensities corresponding to the ‘individual counting processes’
N,(i) = 1(x¥<¢,5,=1; are given by

. o+ N, _
A() = Eo(0|H, ) 110 x31(t) = o jt“Rt ds Lo, x#(2)-
o'\s

The variables 1~\X;<(i) = ﬁ)f:" 7(i) ds form a, possibly right-censored, simple random sample
of 1-exponential random variables. Similarly, the counting process {N,} is compensated
by A, = Yioq A,(i). Under P, similar results will hold for both subgroups. As a result of
the assumed prior independence of ' and 6”, the two groups can be treated separately.

A sample of 500 lifetimes, 250 men and 250 women, was generated from model M.
The true values of the intensity were 6'=1-2 for men, and 6”=0-8 for women. These
lifetimes were censored from the right by an independent random censoring mechanism,
resulting in 46 censored observations for men and 75 for women. The Kaplan—Meier
curves for males and females, although not shown here, clearly reflect the poorer survival
prospects for males.

We computed the prequential forecasts for this two-sample dataset under both models,
the true M, and the misspecified M,. In both models the hyperparameters of the priors
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were given the values o = f§ = 2. We considered the stopping times
t,=inf{t:N;=h} (h=1,...,250), t/=inf{t:N;/=k} (k=1,...,250),
=inf{t:N,=1} (I=1,...,500),

with the convention that inf {f} = + co. Thus, for instance, 7}, is the time it takes until &
men have died. For the particular censored sample considered here, the largest finite values

in these sequences Were Tyo4, T17s and Tz7q.
The compensators of these stopping times admit simple analytic forms. For example,

under P, the intensity of 7, is given by

R,(x+ N,_) (ﬁ + J

0

t

-1
Rs dS) l(tl_l,ﬁ](t);

note that this intensity vanishes outside the interval (t,_, 7,]. Under P, by Proposition 2,
the random variables A, and A, corresponding to the stopping times of 7, and 7 are
independent and 1-exponential. Also the variables A, corresponding to 7, are independent
and 1-exponential under Py, although dependent on A, A,

The advantage of considering these stopping times, rather than simply the individual
survival times X¥, is that, as the individual observations are censored their cumulative
intensities will be censored too, whereas the stopping times t, are not censored as long
as there are at least k recorded failure times.

In Fig. 3 are shown the process-statistics G, = F,(S,; n, 1), where S, =>.;_; A, and the

1-0 4 e
g T e e T
08 1 —— Men (G') model (M)
o !t Women (G”) model (M)
g ﬂ1 —— Men (G') model (M)
*§ 06 a ——- Women (G") model (M)
'-‘5 . 1
o
=
<
>
B | .
;> ol
S p
g
02 -
00 -
0 50 100 150 200

n

Fig. 3. Example 2: G, and G, statistics for the men’s and women’s subsamples
under models M, and M;; n, number of deaths.



516 ELJA ARJAS AND DARIO GASBARRA
Table 2. Prequential p-values for Example 2
(a) Under model M,

Men Women
Pi(G{,204 = £1,204) = 0700 Py(G7 175 > g1,175) = 0434
P1(G3,204 < £3,204) = 0281 Py(G3 175 > £3,175) = 0484
(b) Under model M,

Men Women
Po(G1,204 > 81,204) =0-821  Py(GY 175 > 81,175) = 0:062
Po(G3,204 < 82,204) = 0003 Py(G3 175 > 87,175) = 0920
(c) For the combined sample
M, M,

P(Gy379 = g1.370) 0279 0-460
P(Gy379 < 82379) 0558 0457

10 True (M)
.......... Wrong (M)

0.8 -

06 4

Observed value of G-statistic

0-0 -

0 100 200 300

n

Fig. 4. Example 2: G, statistics for the combined sample under models M,
and M;; n, number of deaths.
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analogously defined {G, }, under both models M, and M,, keeping the same observations
previously generated under P;. The interpretation is that we are using model M, to give
separate forecasts for the next failure time within the male and the female subgroups. The
prequential p-values under model P; are given in Table 2(a). From Fig. 3 it is clear also
that the predictive performance of model M, is poor: the sample paths of the processes
{G,} and {G,} appear to be converging respectively to 0 and to 1, whereas, if the model
were correct, G, and G, would be [0, 1]-uniformly distributed for each n. The intuition
behind these tests is that in the data men’s lifetimes tend to be shorter than expected from
model M,, and women’s lifetimes longer. A statistician who has postulated model M,, and
is monitoring these statistics will soon become puzzled. This ‘surprise’ may be quantified
by the prequential p-values under model P,. The numerical values are in Table 2(b).

In Fig. 4 the sample paths of the process {G,} are shown, corresponding to the stopping
times 7;, under both models M, and M,. Here we are forecasting the next failure time in
the combined sample, i.e. regardless of sex. At the beginning the two models give almost
the same forecasts for 7, and both seem to predict successfully. The reason for this is
that, as long as the proportions of men and women among the survivors are similar, the
opposite effects of the incorrect model specification cancel out. Only later, when
the survivors’ group is dominated by women, do the two models give different forecasts
for the next failure time. The prequential p-values are displayed in Table 2(c), and show

---------- Upper bound = n +./(2n log log n)
—— Men, true (M)
—= Men, wrong (M) ,
200 4 ___ Women, true (M,) ///
——- Women, wrong (M) /{,u"’ /
===~ Lower bound = n +./(2n log log n) .. .~
- 150 ] S
8 s /f
§ L
£ -~
= s
s 100
=
50 -
0
0 50 100 150 200

n

Fig. 5. Total-time-on-test plots of the compensators of the stopping times 1;

and 7 respectively for the men’s and women’s subsamples under models M,

and M,. The bounds n + \/(2n log logn) arising from the law of the iterated
logarithm are shown; n, number of deaths.
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that, unless we divide the sample into the two subsamples, our diagnostics do not have
enough power to distinguish between the true and the misspecified models. Therefore the
choice of the stopping time sequence is crucial for this model checking procedure; a model
may give good predictions for some particular sequence of stopping times, but fail com-
pletely for another one.

Figure 5 corresponds to the same situations as Fig. 3, but now the total-time-on-test
plots are shown, ie. we plot (n, S,), the cumulative intensity process, S, =Y. A,_against
the number of observed deaths n. Under the incorrect model, M, the processes {S,} and
{S,/} arising respectively from the men’s and women’s samples exit from the upper and
lower boundaries. This corresponds to the convergence of the processes {G,} and {G,},
respectively, to 0 and 1 as shown in Fig. 3.

4. FURTHER DEVELOPMENTS: IMPLEMENTATION OF MARKOV CHAIN
MONTE CARLO INTEGRATION

In the above examples it was possible to handle the intensities analytically. In other
cases this may be impossible. The main problem is that the (P, 5#)-compensator differences
are expressed by double integrals of the form

b

A (x) — AY (x) = f {f As(x, 6, Hs-)n(dOIHs-)} ds (0<a<b), (41)
a ®

where the probability measure on ® is changing with time s. If we want to integrate over
©® by applying a Markov chain Monte Carlo method, for a recent survey see Tierney
(1994), at first sight it seems that we should run a different Markov chain for every
se[a,b].

One way out of this difficulty would be to find an importance sampling probability
measure u(d6) such that n(df|H,_) < u(df) for all s e [a, b]: in other words u(df) has to
dominate n(df|H,). For example, take the prior n(df) and apply the Radon—Nikodym
theorem to write the integral (4-1) as

b drn|H,_
f {f A 0. ) = (0)u(d0)} ds. (42)

Then, if {0;};c is @ random sample from the distribution x or, more generally, forms an
ergodic Markov chain with equilibrium distribution u, by an application of the law of
large numbers the integral (4-2) can be approximated by

Y dn

lel th—i—TEBHH 0H0_1d 4-3
J; igl s(x9 i’ s—')d'u( 1)p( s—l i) igl d,u( l)p( s—l i) S. ( )

Therefore, by a change of measure, we are able to use a single Monte Carlo run.
However, when the information carried by the data grows significantly in time, a single
probability measure cannot be a good importance-sampling distribution over the entire
interval [a, b]; typically there will be a few importance weights which are much larger
than the rest, and this makes the approximation (4-3) very unstable. What one should do
then is to split the time interval [a, b] into sufficiently small subintervals and sample, for
each one, a different Markov chain with appropriate importance-sampling distribution.
Even then, the integration over time in formula (4-3) has to be done numerically.

To gain efficiency we considered a continuous version of a new Markov chain Monte
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Carlo sampling scheme, the simulated tempering method introduced by Marinari & Parisi
(1992) and discussed also by Geyer & Thompson (1995).

In principle, the idea is very simple: Monte Carlo integration is used not only over the
parameter space ©, but also over the time interval [a, b] with respect to Lebesgue measure.
Thus, given the observed history, Hy, our target is a measure on the product space
[a, b] x © given by

p1(ds,d0)=(b—a) *n(d6|H,_) ds=p(H,_|0)(b— a)” ' Z(s)"'n(dO) ds, (44)

where the normalising factor

Z(s)=p(H,-) = j p(H,_ |0)n(d6)

e

is called the partition function. Typically, Z(s) cannot be evaluated explicitly. Instead, for
a measure u(ds) on the time interval [a, b], which we will call the pseudoprior, we define
the importance-sampling probability measure

pu(ds, d0) = p(ds)n(d0| H, )
on [a, b] x ©.

For two different pseudopriors, uy(ds) and u,(ds), such that u, < u, and f(s, 6, H;_) is a
predictable and p, -integrable function, we have

d
J f 105,60, H,_)p,,(ds, d0) = J f S5, 6, H,2) S22 (5, 0)p,, (ds, d6). ~ (4-5)
[a,b] X © [a,b] X © dpﬂl

Note that the Radon—Nikodym derivative here is simply given by

dp, duo
—=2(s, 0) = —(5).
dpul( dul( )

We now define on [a, b] the pseudoprior density u(ds) = {CZ(s)/Z(s)} ds, where 2(3) is
a guess for Z(s) and C is a normalisingA constant. Denote by ¢(s) the density CZ(s)/Z(s) of
u with respect to Lebesgue measure; Z(s) should be explicitly computable.

Since

(46)

Z(s) P(H,—|0)
ds,d0)oc = — H, )ds=—5—
pulds, d0)ox 5 S n(d0| H, ) ds ==
the Hastings-ratio in the Metropolis algorithm can be computed without knowing Z(s)
or the constant C normalising the right-hand side of (4:7). It is therefore possible to
generate, on a computer, a Markov chain {(s;, 6;)} with equilibrium distribution p ,(ds, d6).
From (4-5) and (4-6) it follows that

7(d6) ds, (47)

JJ f(s, 0, H,_)n(d0| Hy-) ds = (b — a) Jj f(s, 0, Hy_)p,(ds, d6)
[a,b] X ©® [a,b] X ©®

,0,H_
- f f , @ﬂs—m—)”ﬂ“&d‘” (48)
[a,b] X

As a consequence, almost surely

n -1
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When Z(s) is unknown, the weights ¢(s;) ! cannot be computed explicitly. Nevertheless,
since ¢(s) is the s-marginal density of p,(ds, d) with respect to Lebesgue measure, the
samples {s;} can be used to estimate the weights nonparametrically. A good choice of Z(s)
is crucial for the stability of the estimates, because the largest empirical weights will be in
an area where we have few sample points s;. This suggests an adaptive strategy for the
choice of the pseudoprior: if the variation of the empirical density estimate ¢(s) is too
large, we can choose a new pseudoprior adaptively by moving mass to the area where
¢(s) is smaller. The best choice for a new pseudoprior would be u'(ds) oc u(ds)/(ﬁ(s)

These ideas were tested on Example 2, as an alternative way of doing the numerical
computations.

Since the posterior densities 7(f| H,) are unimodal, a simple guess for Z(s) would be

Z(s)= max n(0)p(H;|0),

or

2(s) = w{Byp(T)} p(H, | D306 (T)),

where éMP(T)=argmax n(0)p(Hy|0), possibly refined by using the Laplace approxi-
mation. Of course, in this example Z(s) is known explicitly; nevertheless we proceeded
without using this knowledge.

1:0 -

—— Exact values
.......... MCMC-approximation
---- exp (-f)

Survival probability

Transformed time

Fig. 6. Example 2: Time-transformed Kaplan—-Meier survival curves of the,
possibly right-censored, individual compensators for men. Values obtained by
simulated tempering are compared with the exact ones.
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In a simulation study, we used these rough approximations to construct the importance
sampling distributions. The weights ¢(s;)~! were computed both analytically using our
knowledge of Z and empirically from the Monte Carlo samples by using a nonparametric
kernel-smoothing estimate ¢(s) of the density of u. Differences between the corresponding
estimates were quite small. We compared exact values and Monte Carlo approximations
for the men’s cumulative intensities under model M. Note that these random variables
are right censored. The corresponding time-transformed Kaplan-Meier survival curves
are shown in Fig. 6. The survival probability of the 1-exponential distribution is shown
for a comparison. On the basis of Fig. 6 we would be justified in saying that Monte Carlo
error did not mislead our model assessment.

5. DISCcUSSION

As we have emphasised throughout, the 1-exponentiality of the cumulative intensities,
which is here used as a reference in model assessment, holds with respect to the probability
P when this is updated continuously from the data. The interpretation is therefore not
in terms of ‘correct statistical model and true parameter value’. In fact, many alterna-
tive models, large or small, may be found to be empirically consistent with such
1-exponentiality. However, a discrepancy between the 1-exponentiality, which corresponds
to what a statistician expects to see when he or she is updating the predictions, staying
within the postulated model, and the empirically observed behaviour of the cumulative
intensities is an indication that such updating is not sufficient to account for the infor-
mation in the data. In other words, the model is not sufficiently deep that a deductive
learning according to Bayes’ formula would form a satisfactory basis for sequential
predictions.

This procedure appears to be a somewhat strange mixture of Bayesian and frequentist
ingredients. The model itself and the updating procedure are Bayesian, but calculation of
a statistic which would be sensitive to inadequacy of the model, and assessment of it
against a reference distribution, are definitely frequentist ideas.

This combination of opposite inferential traditions is emphasised further by the fact
that the computed statistics, the cumulative intensities up to the stopping times and the
corresponding prequential p-values, are not functions of the data alone but depend also
on the model probabilities, including the prior distribution, specified by the statistician.
In addition, data are not considered as being fixed, as in Bayesian inference, nor are we
thinking of ‘drawing repeated samples under similar conditions’ as in classical statistics.
Instead, we are considering a nested sequence of predictions, and each data point (T, X,)
is treated as either fixed or random depending on whether it is, at the time of prediction,
in the past or in the future.

The effect of the prior on the diagnostics appears in practice to be confined to the first
few observations. So far as the asymptotic properties are concerned, such as the law of
the iterated logarithm, two mutually absolutely continuous prior distributions will yield
mutually absolutely continuous prequential models, and thus have exactly the same behav-
iour (Dawid, Seillier-Moiseiwitsch & Sweeting, 1992).

Finally, we wish to emphasise that, in spite of being able to use formal testing with
exact reference distributions, our view of model assessment is that it is an inductive
procedure where there is no definitive conclusion to be drawn. Prequential model assess-
ment is done separately for each postulated model, without a need to consider alternatives.
These aspects can be contrasted with model selection, which is a decision problem and
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where the task is to choose one amongst a prespecified set of competing models. For
asymptotic consistency of model-selection procedures, and their connection with prequen-
tial ideas, see Dawid (1992).
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