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JOSÉ IGOR MORLANES∗ and ESKO VALKEILA†

Department of Mathematics and Systems Analysis,
Aalto University, P. O. Box 11100, FI-00076 Aalto, Finland

∗Igor.Morlanes@tkk.fi
†Esko.Valkeila@tkk.fi

Received 30 September 2010
Revised 14 December 2010

Enlargement of filtrations is a classical topic in the general theory of stochastic processes.
This theory has been applied to stochastic finance in order to analyze models with insider
information. In this paper we study initial enlargement in a Markov chain market model,
introduced by Norberg. In the enlarged filtration, several things can happen: some of
the jumps times can be accessible or predictable, but in the original filtration all the
jumps times are totally inaccessible. But even if the jumps times change to accessible or
predictable, the insider does not necessarily have arbitrage possibilities.
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1. Introduction

Enlargement of filtrations is a classical topic in the general theory of stochastic
processes [7]. This theory has been applied to stochastic finance in order to analyze
models with insider information (see, for example, [1–4]). In this paper we study
initial enlargement in a Markov chain market model, introduced by Norberg [9]. In
this model the state of economy is modeled by a finite state Markov chain, and the
state of economy determines the dynamics for the risky assets.

The ordinary agent has the information described by the filtration generated
by an observable process, but the insider has the additional information given by a
certain random variable.
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We assume that the ordinary agent has no arbitrage possibilities. Then, in the
initial enlargement the following things can happen;

• In the original filtration the jump times are totally inaccessible, but in the
enlarged filtration there can be accessible and predictable jump times.

• Independently of the possible changes in the properties of jump times, the insider
may have arbitrage possibilities, or may not have arbitrage possibilities.

The motivation for this study comes from the jump model example introduced
by Kohatsu-Higa [8]. Our results show some additional features in the enlargement
theory for processes with jumps.

2. Markov Chain Market Model

2.1. States of the economy

We describe the model introduced by R. Norberg. We work with probability space
(Ω,F , P).

The state of the economy is given by a process Y . Next we list the properties
of the process Y : Y = (Yt)t≥0 is a time-homogeneous Markov process with finite
state space Y = {1, . . . , n} and the paths of Y are right continuous with left-hand
limits.

We denote the transition probabilities by P ek
t = P(Yt+s = k |Ys = e), s ≥ 0,

Pt = {P ek
t } is the transition matrix and Λ = {λek} is the intensity matrix.

The states of the Markov chain determine the dynamics of the risky assets.

2.2. Dynamics of risky assets

The market model has m+1 assets S = (S0, S1, . . . , Sm). We describe their dynam-
ics with the help of the state process Y .

The counting process

Nek
t = #{τ : 0 < τ ≤ t, Yτ− = e, Yτ = k}

counts direct transitions of Y from state e to state k during the time interval (0, t].
The bank account S0

t has dynamics

S0
t = exp

(∫ t

0

rudu

)
= exp

(∑
e

∫ t

0

re1{Yu−=e}du

)
,

where rt = rYt , i.e. the short rate depends on the state of the economy.
The rest of the assets have the following dynamics

Si
t = Si

0 exp

(∑
e

{∫ t

0

µie1{Yu−=e}du +
∑

k

βiekNek
t

})
,
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where µie ∈ R, βiek ∈ R. Then the logarithmic discounted prices Li = log(Si/S0)
have dynamics

dLi
t =

∑
e

(µie − re)1{Yt−=e}dt +
∑

e

∑
k

βiekdNek
t .

Later we shall work with three different filtrations: with the filtration generated
by the Markov chain process Y , which we denote by F, or by FY , and with two
initially enlarged filtrations, which we denote by G and GH . We will specify the
filtrations G and GH later. Note that the filtration F is also generated by the
counting processes Nek, e, k ∈ Y with e �= k.

2.3. No-arbitrage criterion in the Norberg model

From the definition of the model we have that

M ek
t = Nek

t −
∫ t

0

λek1(Ys = e)ds,

are mutually orthogonal (F, P)-martingales: indeed we have for e, k, l, p ∈ Y when
k �= p or e �= l that [M ek, M lp]T =

∑
s≤T ∆M ek

s ∆M lp
s = 0 a.s., and this implies

mutual orthogonality in the sense of [5].

Definition 2.1. The intensity matrices Λ = (λef ) and Λ̃ = (λ̃ef ) are equivalent,
when ∀ e, f ∈ Y, λef > 0 ⇔ λ̃ef > 0.

In order to make the discounted stock price process a martingale, we should
have that the new intensity λ̃ek satisfies for all e ∈ Y:

µie − re = −
∑

k∈Ye

γiekλ̃ek, i = 1, . . . , m,

where Ye = {k : λek > 0} is the set of states directly reachable from state e, and
γek = eβek − 1. Rewrite this in matrix form as

(NA) re1− µe = Γeλ̃e,

where e = 1, . . . , n, 1 and µe = (µie)i=1,...,m are 1 × m row vectors,
Γe = (γief )f∈Ye

i=1,...,m, λ̃e = (λ̃ef )f∈Ye . We can now summarize the situation:

Proposition 2.1. ([9]) Assume that we can find Λ̃, equivalent to Λ, such that (NA)
holds, then defining Q by dQt = ZtdPt with the density

Zt = exp

(∑
e∈Y

∑
k∈Ye

(log(λ̃ek) − log(λek))Nek
t

)

× exp

(∑
e∈Y

∑
k∈Ye

∫ t

0

(λek − λ̃ek)1(Ys− = e)ds

)
we obtain a martingale measure for the Norberg market model.
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Without loss of generality, we can assume that the state dependent interest rate
re = 0.

We give two basic examples, which we use to illustrate various aspects of the
Norberg model in connection to initial enlargement.

Example 2.1. In [8], Kohatsu-Higa introduced the following model for the stock
price:

LT = log(ST ) = L0 + β+N+
T + β−N−;

here β+ > 0, β− < 0, N+ and N− are Poisson process with respective intensities
λ+ and λ−, counting respectively the upward and downward jumps, respectively.

This can be put in the Norberg model as follows. The state space is Y = {1, 2, 3},
and there is one stock S.

The parameters are β+ > 0 β− < 0, and the drift µ = µi, for i = 1, 2, 3. Take

dSt

St
= γ+(dN12

t + dN23
t + dN31

t ) + γ−(dN13
t + dN21

t + dN32
t ) + µdt,

where γ± = (exp(β±) − 1) and

dN ij
t − 1(Yt− = i)λijdt

are martingale increments for i �= j under the measure P with λij > 0.
Now take λ12 = λ23 = λ31 = λ+ and λ21 = λ32 = λ13 = λ−. Then the

aggregated processes N+
t = (N12

t +N21
t +N31

t ) and N−
t = (N13

t +N21
t +N32

t ) have
deterministic compensators

3∑
i=1

∫ t

0

λ±1(Ys− = i)ds = λ±t,

and since [N+, N−] = 0 a.s., by Watanabe’s characterization N+, N− are indepen-
dent Poisson processes (see [6]).

To check the (NA) condition, we find λ̃± > 0 such that

γ+λ̃+ + γ−λ̃− + µ = 0,

and then we obtain an equivalent risk-neutral measure Q with intensities λ̃12 =
λ̃23 = λ̃31 = λ̃+, and λ̃21 = λ̃32 = λ̃13 = λ̃−.

The model is incomplete:

λ̃− = −(µ + γ+λ̃+)/γ− > 0

is a solution for any fixed µ and large enough λ̃+ > 0, since γ− < 0 and γ+ > 0.
Hence there are many martingale measures.
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Example 2.2. Later we will illustrate what can happen in the initial enlargement
using the following model.

• The economy can be in two different states: Y = {1, 2}.
• Write µ− = µ1, µ+ = µ2, λ+ = λ12, λ− = λ21 and similarly with γ+, γ−, N+

and N−.
• Assume that µ+ > 0, γ+ > 0, µ− < 0 and γ− < 0.
• We have only one stock and

LT = log(ST ) = L0 + β+N+
T + β−N−

T +
∫ T

0

µYudu.

It is easy to see that the (NA) condition holds for the assumed parameter values.
Note that here, in contrast to Example 2.1, the processes N+ and N− are not

independent.

2.4. An alternative description of the model

The randomness of the model comes from the finite state Markov processes Y . Alter-
natively, we can consider the matrix valued counting process N = (Nel)e,l∈Y,e�=l,
where Nel counts the direct transitions from state e to state l.

The other possibility is to consider a single counting process N , where N =∑
e,l N

el, and keep track, how the Markov process Y behaves at the jump times
of N . More precisely, this information is given by the scenarios. A scenario h =
(n; e0, e1, . . . , en) gives information about the associated Markov chain, here n ≥ 0
is the number of changes in the economy, e0 is the initial state, and ei �= ei+1,
i = 1, . . . , n − 1, are the states of the economy in the scenario h. For example,
(0; e0) is the scenario, where there are no changes in the economy. Notation: e0:n =
e0, e1, . . . , en. The random scenario HT = (NT ; Y0, Yτ1 , . . . , YNT ), where τk is the
kth-jump time of the counting process N , together with the aggregated counting
process N defined above, has the same information as the matrix-valued counting
process N. The scenarios will be useful for us both in some computations and in
the analysis of the initial enlargement.

3. Calculation of the Insider’s Compensator: Classical Theory

3.1. A martingale representation result

Let (Ω,F , P, F) be a filtered probability space with F = (Ft)t≥0 any filtration,
not necessarily the filtration generated by the counting process N. Next we study
how the compensator Λek of the counting process Nek is computed in the initially
enlarged filtration, e, k ∈ Y, e �= k. We shall simply write N and Λ, instead of Nek

and Λek.
So, assume that N = (Nt)t≥0 is a F-adapted counting process with F-

compensator Λ = (Λt)t≥0. We consider, in the next subsection, an enlargement
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of the filtration F by a random variable ϑ. To be able to compute the compensator
of the process N in this enlarged filtration, we need a few results given below.

We use the notation pX (respectively oX) to be the predictable (respectively
optional) projection of X and Xp the dual predictable projection (respectively Xo)
w.r.t. (F, P), unless otherwise stated.

The next lemma is a version of the martingale representation theorem in our
context.

Lemma 3.1. Let N be a counting process with continuous compensator Λ = Np

w.r.t. the filtration F. Denote by Ñ = (N −Λ) the compensated process. Then every
Rd valued F-local martingale (Mt)t≥0 has the representation

Mt = M0 +
∫ t

0

(M̂s − Ms−)dÑs + Ut,

where M̂ is F-predictable, and (Ut)t≥0 is a F-local martingale with 〈Ñ , U〉 = 0.

Proof. The proof is essentially a modification of the results in [6], we give it here
to clarify the nature of M̂ .

Put Rd
0 = Rd\{0}. Let µ = µM,N be the jump measure of the process (M, N).

Note that µ is an integer-valued random measure on E×R+, where E = Rd
0×{0, 1}

is equipped with the Borel σ-algebra E.
Obviously µM (·, dt) = µ(· × {0, 1}, dt) and µN (dt) = µ(Rd

0 × {1}, dt). Let ν =
νM,N be the (F, P) compensator of µ.

The uniqueness of the compensator implies that νM (·, dt) = ν(·×{0, 1}, dt) and
Λ(dt) = νN (dt) = ν(Rd

0 × {1}, dt). We introduce the Rd-valued process

At :=
∫ t

0

∫
Rd

0

xν(dx × {1}, ds),

which is predictable with finite variation. The corresponding Rd-valued predictable
random measure A(dt) satisfies A 	 Λ on B(R+), with Radon–Nikodym derivative
ρ := dA

dΛ . Define

M̃t =
∫ t

0

ρsdÑs,

where Ñ = N − Λ.
The martingale M has a decomposition

Mt = M0 + M c
t +

∫ t

0

∫
Rd

0

x(µM − νM )(dx, ds).

Put U = M − M̃ . Then U has a decomposition

Ut = M0 + M c
t +

∫ t

0

∫
Rd

0

x(µM − νM )(dx, ds) − M̃t.

We will show that 〈U, Ñ〉 = 0.
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Obviously [M c, Ñ ] = 0 and so 〈M c, Ñ〉 = 0. Next, we have∫ t

0

∫
Rd

0

x(µM − νM )(dx, ds)

=
∫ t

0

∫
Rd

0

x(µ − ν)(dx × {0, 1}, ds)

=
∫ t

0

∫
Rd

0

x(µ − ν)(dx × {0}, ds) +
∫ t

0

∫
Rd

0

x(µ − ν)(dx × {1}, ds)

=: Md,0
t + Md,1

t .

By construction, [Md,0, Ñ ] = 0, and hence 〈Md,0, Ñ〉 = 0. Finally,

〈Md,1, Ñ〉t =
∫ t

0

∫
Rd

0

xν(dx × {1}, ds) =
∫ t

0

ρsds,

and this gives 〈Md,1 − M̃, Ñ〉 = 0. Finally, put M̂ = M− + ρ, and we have the
claim.

Remark 3.1. Note that we have the interpretations

dΛt = P(∆Nt = 1|Ft−), dAt = EP(∆Mt∆Nt|Ft−).

Hence ρt has the interpretation

ρt =
EP(∆Mt1(∆Nt = 1)|Ft−)

P(∆Nt = 1|Ft−)
=: EP(∆Mt|Ft−, ∆Nt = 1),

which is well-defined, since ρ is a Radon–Nikodym derivative. Similarly, M̂ has the
interpretation

M̂t = EP(Mt |Ft−, ∆Nt = 1).

We recall the definitions of the stopped σ-algebras [6] associated to a stopping
time τ :

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft; ∀ t ≥ 0},

Fτ− := σ(A ∩ {t < τ} : t ≥ 0, A ∈ Ft).

It follows that Fτ− ⊆ Fτ , and by taking A = Ω in the definition, τ itself is Fτ−-
measurable. In simple words, Fτ− contains the information about τ and everything
that happened before it, while Fτ also contains the information which comes with τ .

Since the simple left-continuous adapted processes

Kt(ω) = 1A(ω)1(u < t), u ≥ 0, A ∈ Fu
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generate the predictable σ-algebra, it follows that

Fτ− = σ(Kτ1(τ < ∞) : K is F-predictable).

Lemma 3.2. Let τ be a stopping time in a right-continuous filtration F = (Ft)
completed by the P-null sets. Denote nt = 1(τ ≤ t) and ñ = (n − 
) with 
 = np.
Then for all F-martingales u

〈ñ, u〉 = 0 ⇒ [ñ, u] = [n, u] = 0,

if and only if Fτ = Fτ−.

Proof. Let ut be a F-martingale with 〈u, ñ〉 = 0.
The random variable ∆[n, u]τ = ∆uτ is Fτ -measurable. By the assumption

Fτ = Fτ−, there is a predictable process kt such that 1(τ < ∞)∆uτ = 1(τ < ∞)kτ ,
which means

[u, n]t =
∫ t

0

ksdns = (k · n)t .

In the notation of Lemma 3.1, kt = (ût − ut−). Note that

[u, ñ] = [u, n] − [u, 
] = (k · n) − [u, 
] = (k · 
) + (k · ñ) − [u, 
]

is a local martingale since by assumption 〈u, ñ〉 = 0. Since

[u, 
]t =
∫ t

0

∆
sdus (3.1)

is also a local martingale, the predictable process (k · 
) is a local martingale with
finite variation, therefore

(k · 
) = 0 and hence also (k · n) = [u, n] = [u, ñ] = 0.

Next we show that if

[u, n] = 0 for all F-martingales u with 〈u, ñ〉 = 0,

then necessarily Fτ− = Fτ . If this is not the case, there is A ∈ (Fτ\Fτ−) with
P(A) > 0, and we find a bounded and Fτ -measurable random variable

X(ω) := 1A(ω) − P(A|Fτ−)(ω) �≡ 0,

with EP(X |Fτ−)(ω) = 0. We show first that ut(ω) := X(ω)nt(ω) is a F-martingale:

• ut is F-adapted since X is Fτ -measurable.
• For s ≤ t and A ∈ Fs, (nt −ns)1A = nt(1−ns)1A is Fτ−-measurable, since (1−

ns)1A is Fτ−-measurable by definition and τ is Fτ−-measurable. The martingale
property follows:

EP((ut − us)1A) = EP(X(nt − ns)1A) = EP(EP(X | Fτ−)(nt − ns)1A) = 0.
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Note also that

0 �≡ ut = [u, n]t = [u, ñ]t + [u, 
]t,

where [u, 
] is a local martingale by (3.1). We see that [u, ñ] is a local martingale
which implies 〈u, ñ〉 = 0.

Assumption 1. The jump times τk of N satisfy Fτk
= Fτk−, with continuous

F-compensator.

Corollary 3.1. Under Assumption 1, let η(ω) be a F-measurable Rd-valued ran-
dom variable. If f is a bounded measurable function, then the optional projection
of(η) of f(η) is a F-martingale. Hence of(η) has a representation

(i) of(η)t = EP(f(η)) +
∫ t

0

(ôf(η)s − of(η)s−)dÑs + Ut(f),

U(f) is a F-martingale with [Ñ , U(f)] = [N, U(f)] = 0,

(ii) pf(η)s = of(η)s−.

3.2. Compensator after initial enlargement

To compute the compensator of N in the initially enlarged filtration G, where
Gt = ∩u>t(Ft ∨ σ(ϑ)), we used the approach initiated in [4], and developed further
in [1]:

Consider the measurable product space (Ω×Rm,F⊗B(Rm)) denoted by (Ω̄, F̄).
Define the map

Φ : (Ω,F) → (Ω̄, F̄),

ω �→ (ω, ϑ(ω)).

We denote by P̄ the image of the measure P under Φ, i.e. P̄ = PΦ. Endow the
space Ω̄ with the P̄-completed filtration F̄ = (F̄t)t≥0 where

F̄t =
⋂
u>t

(Fu ⊗ B(Rm)) ∨ N̄ , N̄ = {Ā ⊆ Ω̄ : P̄(Ā) = 0}.

We will consider the initially enlarged filtration G = (Gt)t∈[0,T ] with Gt =⋂
u>t(Fu ∨ σ(ϑ)), where ϑ ∈ L0(Ω,F , P, F) is an m-dimensional random variable.

Consider also the filtered spaces

(Ω̄ × R+, F̄ ⊗ B(R+), P̄)

and

(Ω × R+, G ⊗ B(R+), P).



July 29, 2011 9:51 WSPC/S0219-4937 168-SD S021949371100336X

398 D. Gasbarra, J. I. Morlanes & E. Valkeila

Recall the following facts from [1]; let X̄ be a stochastic process defined on
(Ω̄ × R+, F̄ ⊗ B(R+)):

• If X̄ is F̄-predictable (respectively, F̄-optional), then X = X̄ ◦Φ is G-predictable
(respectively, G-optional).

• If τ̄ is a F̄-stopping time, then τ = τ̄ ◦ Φ is a G-stopping time.
• If M̄ is (F̄, P̄)-local martingale, then M = M̄ ◦ Φ is a (G, P)-local martingale.

For example, let X̄ be a simple F̄-predictable process:

X̄(ω, �, u) = 1A(ω)1B(�)1(s,t](u),

where s < t ≤ T , A ∈ Fs and B ∈ B(Rm). Then we can write X = X̄ ◦ Φ as

X = X̄ ◦ Φ = 1A1B(ϑ)1(s,t], (3.2)

which is a G-predictable process.
Extend N to Ω̄ × R+ by N̄ , where N̄(ω, �, u) = N(ω, u).
Let π̄ be the measure generated by N̄ on (F̄ ⊗ B(R+)):

π̄(Ȳ ) := EP̄

(∫ ∞

0

ȲudN̄u

)
= EP(1C1B(ϑ)(Nt − Ns)),

where

Ȳ (ω, �, u) = 1C(ω)1B(�)1(s,t](u).

Since N̄ is optional with respect to the history F̄, the measure π̄ is also optional:
for any bounded non-negative F ⊗B(Rm) ⊗ B(R+) measurable process Ȳ we have

π̄(Ȳ ) = π̄(F̄,oȲ )

(see [5] for more details).
Denote by π the measure generated by N on F ⊗ B (R+). Then for optional Ȳ ,

put Y = Ȳ ◦ Φ, and we have π(Y ) = π(oY ) (see [1]). Apply this to X of the form
(3.2) with A ∈ Fs, and we get

π̄(X̄) = π(X) = π(oX) = EP(1A{o(1B(ϑ))tNt − o(1B(ϑ))sNs}).

We can now continue using Corollary 3.1, the continuity of Λ, Lemma 3.2 under
Assumption 1, and integration by parts to obtain

EP(1A{o(1B(ϑ))tNt − o(1B(ϑ))sNs})

= EP

(
1A

∫ t

s

o(1B(ϑ))u−dNu

)
+ EP

(
1A

∫ t

s

Nu−do(1B(ϑ))u

)
+ EP(1A{[N, o(1B(ϑ))]t − [N, o(1B(ϑ))]s})

= EP

(
1A

∫ t

s

̂o1B(ϑ)udNu

)
= EP

(
1A

∫ t

s

̂(o1B(ϑ))udΛu

)
.



July 29, 2011 9:51 WSPC/S0219-4937 168-SD S021949371100336X

Initial Enlargement in a Markov Chain Market Model 399

On the other hand, consider the counting process 1B(ϑ)N , which is adapted to Gϑ,
and we know that it has a dual predictable projection with respect to F:

EP

(
1A

∫ t

s

d(1B(ϑ)N)u

)
= EP

(
1A

∫ t

s

d(1B(ϑ)N)p
u

)
.

This means by the uniqueness of the dual predictable projection that

(1B(ϑ)N)p
t =

∫ t

0

̂(o1B(ϑ))udΛu.

We use the notation θ̄ for the measure

θ̄(X̄) = θ̄(C × B × (s, t]) = EP

(
1C

∫ t

s

̂(o1B(ϑ))udΛu

)
extended to the σ-algebra F ⊗ B(Rm) ⊗ B(R+).

Note that π̄ coincides with θ̄ on the predictable σ-algebra P(F̄).
Next, define a measure θ̃(dω, d�, dt) by

θ̃(X̄) = θ̃(C × B × (s, t]) := EP

(
1C

∫ t

s

p(1B(ϑ))udΛu

)
(3.3)

extended to the σ-algebra F ⊗ B(Rm) ⊗ B(R+).
Next we compare the measures θ̄ and θ̃ in the smaller σ-algebra P(F̄), and use

Radon–Nikodym theorem to obtain a F̄-predictable density process.

Theorem 3.1. Assume that θ̄ 	 θ̃ on the predictable σ-algebra P(F̄) generated by
the sets A × B × (s, t] with A ∈ Fs, and denote the Radon–Nikodym derivative by

Ū(ω, �, t) =
dθ̄

dθ̃
(ω, �, t)|P(F̄),

which is F̄-predictable. Put Z(ϑ, t) = (Ū◦Φ)t and then Z(ω, ϑ(ω), ·) is G-predictable.
Then we have that

EP(1A1B(ϑ)(Nt − Ns)) = EP

(
1A1B(ϑ)

∫ t

s

Z(ϑ, u)dΛu

)
and hence

Nt −
∫ t

0

Z(ϑ, u)dΛu

is a martingale in the G-filtration.

Proof. The process Ū is F̄-predictable by the Radon–Nikodym theorem, and using
results of [1] we have that Z is G-predictable.



July 29, 2011 9:51 WSPC/S0219-4937 168-SD S021949371100336X

400 D. Gasbarra, J. I. Morlanes & E. Valkeila

Now, let A ∈ Fs, B ∈ B(Rm), and with 0 ≤ s ≤ t,

EP(1A1B (ϑ) (Nt − Ns)) = π̄(A × B × (s, t])

since π̄|P(F̄) = θ̄|P(F̄) =
∫

Ω×Rm×[0,∞)

1A(ω)1B(�)1(s,t](u)θ̄(dω, d�, du)

assumption θ̄ 	 θ̃ =
∫

Ω×Rm×[0,∞)

1A(ω)1B(�)1(s,t](u)Ū(ω, �, u)θ̃(dω, d�, du)

by (3.3) = EP

(
1A

∫ t

s

p(1B(ϑ)Z(ϑ, ·))udΛu

)

= EP

(
1A

∫ t

s

1B(ϑ)Z(ϑ, u)dΛu

)
,

where the last equality follows from the property of predictable projection [5,
Theorem V.5.16, 2)]. This proves the main claim.

Remark 3.2. Using Corollary 3.1, we get

EP(f(ϑ)|Gt) = of(ϑ)t = of(ϑ)t− + (ôf(ϑ)t − of(ϑ)t−)∆Nt;

and this in turn gives

EP(f(ϑ) |Gt)∆Nt = (ôf(ϑ))t∆Nt.

Therefore we have the interpretation

ôf(ϑ)t = EP(f(ϑ) |Ft−, ∆Nt = 1) =
EP(f(ϑ)∆Nt |Ft−)

EP(∆Nt |Ft−)
.

Remark 3.3. We give an interpretation of the condition θ̄ 	 θ̃.
First, consider the formal disintegration of measure

θ̄(dω, d�, dt) = P(dω)ν̄(d�, dt; ω).

Here we can interpret

ν̄(d�, dt) = P(ϑ ∈ d�, N(dt) = 1 |Ft−)

= P(ϑ ∈ d� |Ft−)P(N(dt) = 1 |Ft−, ϑ ∈ d�)

=: P(ϑ ∈ d� |Ft−)Λ�(dt).

On the other hand, we also have the disintegration

θ̃(dω, d�, dt) = ν̃(d�, dt; ω)P(dω),

and from (3.3) we have

ν̃(d�, dt) = P(ϑ ∈ d� |Ft−)Λ(dt).
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Now, if θ̄ 	 θ̃ then

Ū(ω, �, t) =
dθ̄

dθ̃
(ω, �, t)

∣∣∣∣
P(F̄)

=
dν̄

dν̃
(�, t) =

dP(ϑ ∈ ·|Ft−, ∆Nt = 1)
dP(ϑ ∈ ·|Ft−)

(�, ω)

=
dΛ�

t

dΛt
(t, ω).

Moreover, we have the connection

Λ�
t =

∫ t

0

Z(�, s)dΛs.

Remark 3.4. When the absolute continuity condition fails, the Lebesgue decom-
position on P(F̄)

θ̄(dω, d�, dt) = U(ω, �, t)θ̃(dω, d�, dt) + 1(U(ω, �, t) = ∞)θ̄(dω, d�, dt)

corresponds to the Lebesgue decomposition of the G-compensator

Λϑ(dt) = Z(ϑ, t)Λ(dt) + 1(Z(ϑ, t) = ∞)Λϑ(dt).

About the singular part of Λϑ, at this level of generality we cannot say much
more than this:

Proposition 3.1. In the G-filtration the jumps of N are decomposed into two
classes, G-accessible and G-totally inaccessible [5, Chapter IV]. The next conditions
are equivalent:

• P-almost surely∫ t

0

1(Z(ϑ, s) = ∞)Λϑ(ds) =
∑
s≤t

1(Z(ϑ, s) = ∞)∆Λϑ
s , (3.4)

i.e. the singular part of the G-compensator is a pure jump process.
• The G-compensator of the G-totally inaccessible part of N is absolutely continu-

ous w.r.t. Λ and (3.4) is the G-compensator of the G-accessible jumps of N .

Remark 3.5. We will see that in our initially enlarged Markov chain market model
we are in the situation described in Proposition 3.1.

4. Scenarios and Support of the Predictive Distribution

4.1. Shrinkage

We start with a useful lemma, which helps to compute compensators. We assume
now that the filtration F is the filtration of the Markov process Y , and the random
variable in the initial enlargement is the logarithm of final value of the stock: ϑ =
log(ST ): Ft = σ{Ys : s ≤ t} and Gt = ∩u>tFu ∨ σ(ϑ). In addition to the random
variable ϑ we enlarge the filtration F with the realized scenario ζ = HT , where
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HT = (NT ; Y0, Yτ1 , . . . , YτNT
) (see Sec. 2.4 for more details). Note that the random

variable ζ can take only countably many values.

Lemma 4.1. Assume that (ϑ, ζ) ∈ FY
T , and the random variable ζ takes in a

countable set, say ζ(ω) ∈ Z without loss of generality.
Let Gζ = (Gζ

t )t∈[0,T ] with Gζ
t = ∩u>tGu ∨ σ(ζ) be a bigger filtration than G.

Then we have the filtration shrinkage formula

Λϑ
t = (Λϑ,ζ)G,p

t =
∑

z

∫ t

0

P(ζ = z |Fs−, ϑ)Λϑ,ζ=z(ds),

where the G-predictable processes {Λϑ,ζ=z
t (ω) : z ∈ Z and P(ζ = z) > 0} gives the

disintegration of the Gζ compensator.

Λϑ,ζ
t =

∑
z:P(ζ=z)>0

∫ s

0

1{ζ=z}Λϑ,ζ=z(ds).

Proof. For more general results of this type, see [10]. We prove the result in this
simple case. Let s ≤ t and A ∈ Gs. We have

EP(1A(Nt − Ns)) = EP

(∑
z

1A∩{ζ=z}(Nt − Ns)

)

= EP

(∑
z

1A∩{ζ=z}(Λ
ϑ,ζ
t − Λϑ,ζ

s )

)
,

where the sum is taken over the values z with P(ζ = z) > 0. But on the set {ζ = z}
we have the identity 1{ζ = z}Λϑ,ζ

u = 1{ζ = z}Λϑ,z
u . We obtain

EP

(∑
z

1A∩{ζ=z}(Λ
ϑ,ζ
t − Λϑ,ζ

s )

)
= EP

(∑
z

1A∩{ζ=z}(Λ
ϑ,ζ=z
t − Λϑ,ζ=z

s )

)

EP

(∑
z

∫ t

s

G,p(1A∩{ζ=z})udΛϑ,ζ=z
u

)
= EP

(∑
z

1A

∫ t

s

G,p(1{ζ=z})udΛϑ,ζ=z
u

)

= EP

(∑
z

1A

∫ t

s

P(ζ = z |Gu−)dΛϑ,ζ=z
u

)
,

since Λϑ,ζ=z is G-predictable, A ∈ Gs, and by the definition of predictable
projection.

Remark 4.1. Lemma 4.1 gives a way to compute the compensator Λϑ by using
an additional countable enlargement. We have also

Λϑ 	 Λ ⇔ Λϑ,ζ 	 Λ

⇔ Λϑ,z 	 Λ ∀ z ∈ Z and P(ζ = z) > 0.
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4.2. More on scenarios

4.2.1. Random scenarios

We have already introduced the notion of scenario in Sec. 2.4. Now we will assume
that in addition to the final value, the insider has at his disposal the information,
which states the Markov process Y visited before the time T .

Let Ξe0 be the set of all possible scenarios starting from e0 and let Ξ be the set
of all possible scenarios:

Ξe0 = {h = (n; e0:n) : n ∈ N, λeiei+1 > 0, i = 0, . . . , n − 1},

and Ξ = ∪e0∈YΞe0 . Note that the set Ξ is numerable.
Recall that τi is the ith jump time of the economy and then Ht is the random

scenario

Ht(ω) = (Nt(ω) : Y0, Yτ1 , . . . , YτNt
)

and HT is the random scenario HT = (NT : Y0, Yτ1 , . . . , YτNT
).

4.2.2. Operations with scenarios

To analyze the scenarios dynamically we need the following operations with them.
Let h = (n; e0:n) and h̃ = (m; ẽ0:m) be two scenarios. Put

h(k) = (n ∧ k; e0:n∧k), h(k) = ((n − k)+; en∧k:n),

and h∨ h̃ = (n + m; e0:n, ẽ0:m); here we assume that en = ẽ0. With these notations
h(0) = h = h(k) ∨ h(k) = h(n) ∨ h(n).

Let h = (n; e0:n) be a fixed scenario, and put

Πe0,t(h) := P(Ht = h |Y0 = e0).

Note that for every h ∈ Ξe0 we have that Πe0,T (h) > 0.
We have Πe0,T ((0; e0)) = exp(−λe0T ) and with h = (n; e0:n), when n ≥ 1, we

have the recursion:

Πe0,T (h) =
∫ T

0

λe0,e1 exp(−λe0t)Πe1,T−t(h(1))dt.

To summarize what we have achieved by now:
Πe0,T (h) > 0 if and only if h ∈ Ξe0 and we have the implications

Πe0,T (h) > 0 ⇒ Πe0,t(h) > 0 for all t > 0;

this means that if a fixed scenario h has positive probability on the interval [0, T ], it
has a positive probability on every sub-interval [0, t], too. Finally, using the identity
h = (h(k) ∨ h(k)), we have the following implications for all t ∈ (0, T ):

Πe0,T (h) > 0 ⇒ Πe0,t(h(k)) > 0, and

Πe0,T (h) > 0 ⇒ Πek,T−t(h(k)) > 0.
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4.3. Joint distribution of Lt and Ht

Recall that Lt = log(St), where S is the discounted stock vector, and Ht is the
random scenario Ht = (Nt; Y0, . . . , YNt). We denote their joint distribution by Q.

Put Qe0,t(d�, (0; e0)) := P(Lt ∈ d�, Ht = (0; e0)). Note first that

Qe0,t(d�, (0; e0)) = exp(−λe0t)δµe0 t(d�).

After this we can proceed recursively

Qe0,t(d�, h) = P(L ∈ d�, Ht = h)

=
∫ t

0

λe0,e1 exp(−λe0u)Qe1,t−u(d� − µe0u − βe0,e1 , h(1)) du.

From the joint distribution Qe0,T (d�, h) we obtain the marginal distribution

Qe0,T (d�) =
∑

h∈Ξe0

Qe0,T (d�, h).

4.4. Support of the conditional measure Qe0,t(·|h)

When h ∈ Ξe0 , the conditional probability Qe0,t(d�|h) = Qe0,t(d�,h)

Πe0,t(h) is well defined,
since Πe0,t(h) > 0 for 0 < t ≤ T .

Fix h = (n; e0:n) and put β0:n = βe0e1 + · · ·+βen−1en ∈ Rm. The support of the
conditional measure Qe0,T (d� |h) is obviously the convex hull of the set

{L0 + β0:n + µeiT : i = 0, . . . , n}.

We denote this convex hull by AT (h). Fix 0 < s < T , and consider the convex hull
AT−s(h(Ns)) of the random set

{Ls + βNs:n + µei(T − s) : i = Ns, . . . , n}.
Then, either Qe0,T (d� |h) is a point mass, which happens if and only if µei = µe0

for all i = 1, . . . , n, or Qe0,T (d� |h) is equivalent to Lebesgue measure on its support.
Moreover, we have for every ω in the canonical space, 0 < s < t < T , h ∈ Ξ:

Rm ⊃ AT (h) ⊇ AT−s(h(Ns)) ⊇ AT−t(h(Nt)),

and by summing over the scenarios h ∈ Ξ we get

Rm ⊃ supp QYs,T−s(· − Ls) ⊇ supp QYt,T−t(· − Lt).

Since these predictive distributions are equivalent to Lebesgue measure on their
support, the relation

supp QYs,T−s(· − Ls|h(Ns)) ⊇ supp QYt,T−t(· − Lt |h(Nt))

does not imply that

QYs,T−s(· − Ls|h(Ns)) � QYt,T−t(· − Lt |h(Nt)).

This implication is true only in the case that the supports of these predictive dis-
tributions have the same dimension.
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More formally, put

DT (h) = dimAT (h)

= max{p : ∃x0, x1, . . . , xp ∈ AT (h) with (xk − x0) linearly independent},

where DT (h) = 0, if the set AT (h) consists of one point. Note that the value of
DT (h) does not depend on T , and we simply write D(h).

Fix now h = (n : e0:n) and assume that n ≥ 1. Recall that h(k) is the remaining
scenario after k changes in the economy. Obviously we have

D(h) ≥ D(h(1)) ≥ D(h(2)) ≥ · · · ≥ D(h(n)) = 0.

Clearly, if D(h) = 0, then D(h) = D(h(1)) = · · · = D(h(n)) = 0.

Example 4.1. Returning to Example 2.1 of Kohatsu-Higa, we have for 0 < s < T

that

AT (h) = {L0 + β0:n + µ0:nT } = AT−s(h(Ns)),

hence we have D(h) = D(h(1)) = · · · = D(h(n)) = 0.

Example 4.2. Take h = (n; e0:n) with n ≥ 1. Then n = n+ +n−, where n− = �n
2 �

and

D(h) = · · · = D(h(n−1)) = 1 > D(h(n)) = 0.

4.5. Scenarios and final value

In order to analyze, how the properties of the jump times may change with the
additional information, we need more definitions.

For given T > 0, � ∈ Rm, consider those scenarios h ∈ Ξe0 , h = (n; e0:n), n ∈ N,
such that � ∈ AT (h), that is for some ∆tj > 0, j = 0, 1, . . . , n

n∑
j=0

µej ∆tj = � − L0 − β0:n, and ∆t0 + ∆t1 + · · · + ∆tn = T. (4.1)

Note that for given (T, �, h), the solution vector (∆tj : 0 ≤ j ≤ n) possibly does
not exist, and when it exists, it is not always unique.

Consider the projection C0(h) and random times T (T, �, h) and T (T, �, h):

C0(h) := {∆t0 > 0 : ∃ (∆t0, . . . , ∆tn) ∈ Rn+1
+ solving (4.1)},

T (T, �, h) := inf C0(h), T (T, �, h) := supC0(h). (4.2)

When C0(h) �= ∅, since the solutions of (4.1) form a convex set, we have

• either T (T, �, h) < T (T, �, h) and C0(h) = (T (T, �, h), T (T, �, h)),
• or T (T, �, h) = T (T, �, h) and ∆t0 is determined by (T, �) and the scenario h =

(n; e0:n).
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Proposition 4.1. We have the following characterization:

∆t0 is determined by (T, �, h) ⇔ � ∈ AT (h) and D(h(1)) + 1 = D(h).

Proof. The constrained linear problem (4.1) is rewritten as
n−1∑
i=0

(µi − µn)∆ti = (� − L0 − β0:n − µnT ), ∆ti > 0,

n−1∑
i=0

∆ti < T. (4.3)

Consider the constrained linear systems

(A) :
n−1∑
i=0

Ajiti = yj , 1 ≤ j ≤ m, t ∈ C ⊆ Rn,

(A′) :
n−1∑
i=1

Ajit
′
i = y′

j , 1 ≤ j ≤ m, t′ ∈ C′ ⊆ Rn−1,

where C and C′ are open simplexes (cf. Sec. 4.1).
(A) corresponds to (4.3) and (A′) corresponds to the situation after the first

transition e0 → e1. Denote

A′ := (Aji)1≤i≤(n−1),1≤j≤m.

The images AC and A′C′ are open in Rm, and their dimension coincides with the
ranks dim(Im(A)) = D(h) and dim(Im(A′)) = D(h(1)) respectively.

We have the linear isomorphisms

Im(A) � (Rn/Ker(A)), Im(A′) � (Rn−1/Ker(A′)),

where Ker(A) denotes the null space and we take the algebraic quotient. This
implies

dim(Im(A)) = n − dim(Ker(A)), dim(Im(A′)) = n − 1 − dim(Ker(A′)).

Either

(1) the column vector A•0 is linearly independent from the columns (A•1, . . . ,
A•n−1)

⇔ dim(Im(A)) = dim(Im(A′)) + 1 ⇔ dim(Ker(A)) = dim(Ker(A′)),

(2) or dim(Im(A)) = dim(Im(A′)),

⇔ dim(Ker(A)) = dim(Ker(A′)) + 1.

In case (1), the dimension of the null space does not change after adding the column
A•0 to the matrix A′. If (t0, t1, . . . , tn−1) is a solution of the homogeneous system
associated to (A),

(A∗) :
n−1∑
i=0

Ajiti = 0, 1 ≤ j ≤ m,
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then necessarily t0 = 0 and
∑n−1

i=1 Ajiti = 0, ∀ j. This means that all solutions of
(A) begin with the same coordinate t0.

In case (2) the homogeneous system (A∗) admits solutions with t0 �= 0 and t0
is not uniquely determined by (A).

Example 4.3. Consider Example 4.1, fix h and take � ∈ AT (h). It is easy to
see that (T, �, h) never determines ∆t0. On the other hand, in Example 4.2, take
h = (1; e1, e2), and � ∈ AT (h). Then (T, �, h) determines ∆t0 and we have

∆t0 =
� − L0 − β+ − µ+T

µ− − µ+
.

More generally, in this example, for any h with n changes in the economy, and � ∈
AT (h), the last jump time

∑n−1
k=0 ∆tk is known, if we know the value of

∑n−2
k=0 ∆tk.

5. Computation of the Insiders Compensator

Our program has two parts: (i) Obtain information about the compensator of N

with respect to the filtration G. (ii) Check the (NA) criteria in the enlarged filtra-
tion G.

The idea is to enlarge the filtration G with the information of the random
scenario HT , and then use filtration shrinkage to obtain the compensator with
respect to G.

5.1. Classification of the jump times in an extended filtration

We work with the filtration GH, where GH
t =

⋂
u>t Gu ∨ σ(HT ).

The following proposition is a summary of the results of the previous section.

Proposition 5.1. Consider the kth jump time τk. Fix a history h on the set {ω :
HT (ω) = h},

(a) either D(h(k−1)
T ) = D(h(k)

T ), so that ∀ s ∈ (τk−1, τk],

Qek,T−s(d� − (µek−1 − rek−1 )(T − s) − βek−1,ek , h(k)) 	 Qek−1,T−s(d�, h(k−1))

with

1(τk−1 < s ≤ τk)ΛLT ,h(ds)

= 1(τk−1 < s ≤ τk)q(ek,T−s,h)(LT − Ls− − βek−1ek)λek−1,ekds,

where

q(ek,T−s,h)(�) :=
dQek,T−s(· − (µek−1 − rek−1 )(T − s) − βek−1,ek , h(k))

dQek−1,T−s(·, h(k−1))
(�)

is supported by the random interval (τk(h), τk(h)], and by using (4.2) we define
the G-predictable times

τk(h) := τk−1 + T (T − τk−1, LT − Lτk−1 , h
(k−1)
T ),

τk(h) := τk−1 + T (T − τk−1, LT − Lτk−1 , h
(k−1)
T ),
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which are also (Gτ(k−1))-measurable and satisfy

τk−1 ≤ τk(h) ≤ τk ≤ τk(h) on {ω : HT (ω) = h};

(b) or D(h(k−1)
T ) = D(h(k)

T ) + 1, so that τk = τk(h) = τk(h).

When we sum over all scenarios h we obtain

(A) when D(H(k−1)
T ) = D(H(k)

T ), τk has GH-compensator absolutely continuous
w.r.t. Λ and

τk−1 ≤ τk(HT ) ≤ τk ≤ τk(HT ),

(B) otherwise τk = τk(HT ) = τk(HT ),

where τk(HT ), τk(HT ) are GH-predictable times.

Corollary 5.1. ΛLT ,H is absolutely continuous w.r.t. Λ if and only if D(HT ) = 0.

Now, we apply the countable filtration shrinkage argument to the GH-
compensator of N to obtain the G-compensator.

Proposition 5.2. The G-compensator of τk is given by∫ t

0

1(τk−1 < s ≤ τk)ΛL(ds)

=
∑

h∈Dk

∫ t

0

P(HT = h |LT , Fs−)1(τk−1 < s ≤ τk)ds(1(τk(h) ≤ s))

+
∑

h∈Ξ\Dk

∫ t

0

P(HT = h |LT , Fs−)1(τk−1 < s ≤ τk)ΛL,h(ds),

where

Dk = {h ∈ Ξ : D(h(k−1)) = D(h(k)) + 1}

is the set of scenarios for which τk is determined by LT and HT at time τk−1, and
ΛL,h(ds) 	 Λ(ds) for s ∈ (τk−1, τk] and h ∈ Ξ\Dk.

This gives the decomposition of τk into G-accessible and G-totally inaccessible
parts.

Note also that the predictable times {τk(h) : h ∈ Dk} are not necessarily dis-
tinct. Let D∗

k ⊆ Dk be a choice of distinct representatives w.r.t. the equivalence
relation

h
k∼ h′ ⇔ τk(h) = τk(h′), h, h′ ∈ Dk.
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By re-summation, the compensator G-accessible part of the stopping time τk is
rewritten as

∑
h∈D∗

k

∫ t

0

 ∑
h′∈Dk:τk(h′)=τk(h)

P(HT = h′ |LT , Fs−)

 ds(1(τk(h) ≤ s)),

where the G-predictable jump times {τk(h) : h ∈ D∗
k} are distinct.

Example 5.1. Concerning Example 2.2, there are two possibilities. The final value
LT = � does not uniquely determine the scenario HT = h. In this case the compen-
sator is totally inaccessible in the filtration G. But with special parameter values
µ± and β±, HT is uniquely determined by LT = �, and then for the insider the last
jump is predictable.

6. Insider’s Free Lunch with Vanishing Risk

From the general theory it follows that the property No free lunch with vanishing
risk (NFLVR) in the insider filtration G is equivalent to the existence of a measure
QL ∼ P under which the discounted stock process (S̃t)t≥0 is a Fϑ-martingale. This
leads to conditions concerning the accessible and totally inaccessible parts of the
jumps of (Lt)t≥0. We also see that, for arbitrage considerations, we do not need to
fully compute the compensators in the insider filtration: it is enough to compute
the random sets Dk at each jump time τk−1.

For A ⊆ Ye we consider the system of equations

Γe,Aλ̃e,A = −µe, (6.1)

and the homogeneous system

Γe,Aλ̃e,A = 0, (6.2)

where µe =
(
µie
)
i=1;...,m

,

Γe,A := (γief : i = 1, . . . , m, f ∈ A),

λ̃e,A = (λe,f : f ∈ A),

with the constraints

λ̃e,f > 0 strictly for f ∈ A.

This means that respectively (−µe) and 0 are in the interior of the the convex cone
generated by the columns of the matrix Γe,A.

After the (k − 1)th jump time, let Yτk−1(ω) = e, and define

Ξk(i, j) := {h = (n; e0, . . . , en) : n ≥ k, ek−1 = i, ek = j} ⊆ Ξ,

Ŷ(e)
k (ω) := {f : ∃h ∈ (Ξk(e, f)\Dk) and h(k−1) = H(k−1)(ω)}.
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Similarly, for a G-predictable time τk(h) = τk(h), h ∈ Dk, we define

Y̌(e)
k,h(ω) := {f : ∃h′ ∈ Ξk(e, f) ∩ Dk with τk(h) = τk(h) = τk(h′) = τk(h′)

and h(k−1) = H(k−1)(ω)},

where we have the interpretation Ŷ(Yτk−1 )

k (ω) is the set of states reachable by

one G-totally inaccessible jump after time τk−1, and Y̌(Yτk−1 )

k,h is the set of states
reachable after time τk−1 by one accessible transition at the G-predictable time
τk(h), h ∈ Dk.

Note that these random sets are determined at time τk−1 in the insider filtra-
tion G.

Theorem 6.1. NFLVR is equivalent to the following condition:

(1) (Totally inaccessible jump part): P-almost surely, for all k the constrained linear

system (6.1) with A = Ŷ(Yτk−1 )

k (ω) has strictly positive solutions.
(2) (Accessible jump part): P-almost surely, for all k and all G-predictable times

τk(h), h ∈ Dk, the homogeneous constrained linear system (6.2) with A =

Y̌(Yτk−1 )

k,h (ω) has strictly positive solutions.

Proof. Any choice of positive solutions of the linear systems (6.1) and (6.2), for
all k and all h ∈ Dk corresponds in the standard way to a G-martingale measure Q.

Corollary 6.1. Define

τ ′ := min{τk−1 : k ≥ 1, the NFLVR-condition (1) fails}

τ ′′ := inf{τk(h) : k ≥ 0, h ∈ Dk, and NFLVR-condition (2) fails}

τFLVR := (τ ′ ∧ τ ′′ ∧ T ).

There are not arbitrage possibilities for a G-insider who is restricted to trade in the
interval [0, τFLVR), equivalently, there is an equivalent G-martingale measure for
the stopped process (S̃t∧τFLVR).

We describe an arbitrage strategy, for an insider which is allowed to trade after
the G-stopping times τ ′ or τ ′′, when P(τFLVR < ∞) > 0.

(1) For simplicity assume that τ ′(ω) = τk−1(ω) and the next jump time τk is
G-totally inaccessible.
Let Yτk−1(ω) = e. Since the nonhomogeneous system (6.1) has not strictly
positive solutions, by the separating hyperplane theorem there is a vector
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ξ = (ξ1, . . . , ξm) such that for∑
i

∑
f∈A

ξiγ
iefλef +

∑
i

µieξi > 0 (6.3)

for all vectors (λef : f ∈ A) > 0. This implies that∑
i

µieξi > 0, and
∑

i

ξiγ
ief > 0 ∀ f ∈ A.

In a discounted world, at any time s ∈ [τk−1, τk), the insider starts to play and
borrows V = (ξ · Sτ ′) from the bank at zero interest rate, to buy a portfolio
of stocks S with weights (ξ1, . . . , ξm). The insider sells its portfolio at any time
t ∈ (s, τk] and pays back its debt to the bank. Whether {τk = t} or {τk > t},
from condition (6.3) we see that the insider makes a positive profit.

(2) Next we discuss the insider’s strategy at the time τ ′′. Assume that τk−1(ω) <

τ ′′(ω) ≤ τk(ω) and let Yτk−1(ω) = e.
Since the homogeneous system (6.2) has not strictly positive solutions, by the
separating hyperplane theorem there is a vector ξ ∈ Rm such that∑

i

∑
f∈A

ξiγ
iefλef > 0

for all vectors (λef : f ∈ A) > 0. This implies∑
i

ξiγ
ief > 0 ∀ f ∈ A.

Since τ ′′ is Fτk−1-measurable, the insider chooses some ε > 0 small enough so
that τk−1(ω) < τ ′′(ω) − ε < τ ′′(ω) ≤ τk(ω), buys the portfolio (ξ · Ss) at time
s = (τ ′′ − ε), and sells the portfolio at time τ ′′ after the jump, making a profit∑

i

∑
f

ξiγ
ief∆Nef

τ ′′ − ε
∑

i

ξiµ
ie.

Since ε is arbitrarily small the insider has a free lunch with vanishing risk,
regardless of the sign of (ξ · µe).

Example 6.1. Consider Example 2.1. Using the notation from Remark 3.3 we
must compute

ν̄(d�, dt) = P(ϑ ∈ d�, N(dt) = 1 |Ft−)

= P(ν ∈ d� |Ft−)P(N(dt) = 1 |Ft−, ϑ ∈ d�)

and

ν̃(d�, dt) = P(ϑ ∈ d� |Ft−)Λ(dt) = P(ϑ ∈ d� |Ft−)P(N(dt) = 1 |Ft−).

Recall from Example 2.1 that in fact we have here two independent Poisson
processes N+ (respectively, N−) counting the positive (respectively, negative)
jumps. We have P(N+(dt) = 1 |Ft−) = λ+dt and P(N−(dt) = 1 |Ft−) = λ−dt.
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To compute the conditional probability P(N+(dt) = 1 |Ft−, ϑ ∈ d�) recall that
ϑ = L0 + µT + β+N+

T + β−N−
T . Assume that β+ and β− are such that with fixed

ϑ = � the equation

� = log(S0) + µT + β+n+ + β−n− (6.4)

has a unique solution (n+, n−). We have then that

P(N+(dt) = 1 |Ft−, ϑ ∈ d�) = P(N+(dt) = 1 |Ft−, N+
T = n+).

Recall that for a Poisson process N the compensator of N in the filtration F ∧
σ(NT ) is

P(N(dt) = 1 |Ft−, NT ) =
NT − Nt−

T − t
dt

(see, for example, [4]). This gives

P(N+(dt) = 1 |Ft−, ϑ ∈ d�) = P(N+(dt) = 1 |Ft−, N+
T ) =

N+
T − N+

t−
T − t

dt.

In this case there is always arbitrage, after the last jump of N+ or N−.
Note that in the special case of β+

−β− = k1
k2

for some k1, k2 ∈ N, Eq. (6.4) does not
uniquely determine the pair (n+, n−), and then there might also be no-arbitrage.
We refer to [8] for a detailed analysis of this model using the expected utility of the
insider.
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