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Abstract

Based on the resent work by E. Hrushovski, using the counting measure, we
construct an independence notion to nice classes of finite structure and study when
the independence notion is the same notion that we get from the non-forking in
the ultraproduct of a representative collection of models from the class.

In the paper [Va], Jouko Väänänen argues that pseudo-finite models (i.e.
ultraproducts of finite models) are a good framework for studying first-order logic
on finite models and he demonstrates this several ways, e.g. he describes how to
use pseudo-finite models to prove various non-definability results for finite models.
In the spirit of [Va], in this paper we look at one way of defining an independence
notion to a class of finite structure.

A lot of work has been done in which stability theory for finite structures is
developed, used or which study questions that can be looked naturally also from
this point of view. E.g. the work [Hi] by C. Hill on effective algorithms inverting
L2 -invariants, many papers by V. Koponen, see e.g. [Ko], my own contributions,
see e.g. [Hy], the study of asymptotic classes of finite structure (and smoothly
approximated structures), see e.g. [El], and the recent work [Hr] by E. Hrushovski
from which we will use several ideas.
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So let K be a collection of finite models and for simplicity let ∆ be the set of
quantifier free formulas. If the class has the joint embedding property, we can find
a subset {Ai| i < ω} of K so that for all i < ω , Ai is a substructure of Ai+1 and
every member of K embeds to some Ai , i < ω , and one can think the sequence
(Ai)i<ω as a monster model for the class, especially when one can choose the
sequence (Ai)i<ω well, see [Hy]. Now one can ask, how to find an independence
notion to (Ai)i<ω , something like φ(x, a) is free over b for ∆-formulas φ(x, y) .

If U is a non-principle ultrafilter on ω , then the non-forking in

M = Πi<ωAi/U

gives one such notion when we think each Ai as a substructure of M in the natural
way. But what does this notion tell about the structures Ai , i < ω?

Using ideas from [Hr], from the counting measure on the models Ai , i <
ω , one gets another such notion. In this paper we study the properties of this
independence notion and in particular the question when the two notions are the
same.

Everything we do is very close to what is done in the theory of asymptotic
classes. The main difference in the starting points is that we do not require the
existence of the dimensions, instead we work directly with the counting measures
inside all (∆-)definable subsets of An

i , not just those of the form An
i , see Example

2.3 below. Also we ask a bit different questions, in particular we are a lot less
ambitious.

There is also a close connection to the theory of NIP theories and to Keisler
measure. In particular, Proposition 4.7 in [HP] is close to what we prove here.

1 Counting measure and forking

We let L be a countable vocabulary and we fix a strictly increasing sequence
(Ai)i<ω of finite L -structures (i.e. L -structures with finite universe) such that for
all i < ω , Ai is a submodel of Ai+1 . ∆ is a collection of first-order L -formulas
such that it contains all atomic formulas and is closed under boolean combinations
and replacing variables by other variables (and adding dummy variables). The
main examples of ∆ we have in mind are the set of all quantifier free formulas and
the set of all first-order formulas. In some cases we could let ∆ be also something
other than a collection of first-order formulas, see the end of this section.

By a, b etc. we mean finite sequences of elements from some model and by
x, y etc. we mean finite sequences of variables. a ∈ Ai means that a ∈ (Ai)

n for
suitable n . By t∆(a/A;B) we mean the complete ∆-type of a over A in a model
B i.e. {φ(x, b)| φ ∈ ∆, b ∈ A, B |= φ(a, b)} . By t(a/A;B) we mean the complete
first-order type. We let A = ∪i<ωAi . By formulas, definability, elementary etc.
mean mean the usual first-order concepts (not with respect to ∆). So e.g. we
say that X ⊆ An

i is definable if for some first-order formula φ(x, y) and b ∈ Ai ,
X = φ(Ai, b) = {a ∈ Ai| Ai |= φ(a, b)} . The number n is called the arity of X
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and in this case we also say that X is definable over b . We add ∆ to the notion
(e.g. ∆-definable) when we use only formulas from ∆ (i.e. ∆-formulas).

We fix a non-principal ultrafilter U on ω .

We write A |=U φ(a) if {i < ω| a ∈ Ai, Ai |= φ(a)} ∈ U and by φU (A, a)
we mean the set {b ∈ A| A |=U φ(b, a)} and φU (Ai, a) = φU (A, a) ∩ Ai . Also
we say that (Ai)i<ω is a ∆-sequence if for all i < ω , ∆-formula φ and a ∈ Ai ,
Ai |= φ(a) iff Ai+1 |= φ(a) (i.e. Ai is a ∆-elementary submodel of Ai+1 ). Then if
(Ai)i<ω is a ∆-sequence, φ(x, y) a ∆-formula and a, b ∈ Ai , φ

U (Ai, b) = φ(Ai, b)
and Ai |= φ(a, b) iff A |=U φ(a, b) .

Abusing the notation, we say that X = (Xi)i<ω is (∆-) definable if there are
a (∆-) formula φ(x, y) and ai ∈ Ai such that for all i < ω , Xi = φ(Ai, ai) . If
for all i < ω , we can choose ai = a ∈ A (Xi is e.g. ∅ if a 6∈ Ai ) we say that X
is definable over a and the arity is length(x) . We write also A for the sequence
(Ai)i<ω of sets and An for (An

i )i<ω . It will be clear from the context, weather
we mean (∪i<ωAi)

n or (An
i )i<ω .

We let µi be the counting measure on Ai i.e. for A,B ⊆ Ai , µi(A/B) =
|A∩B|/|B| (say µi(A/B) = 1 if B = ∅) and for all definable sequences X and Y ,
we write µi(X/Y ) = |Xi∩Yi|/|Yi| . By µ(X/Y ) we mean limi→∞µi(X/Y ) if this
limit exists. We define µ∗(X/Y ) to be the infimum of those rationals q such that
{i < ω| µi(X/Y ) ≤ q} ∈ U . Notice that for all Y the map X 7→ µ∗(X/Y ) is some
kind of measure on the set of all definable sequences. Notice also that µ(X/Y ) = 0
implies µ∗(X/Y ) = 0 or more generally µ(X/Y ) = r implies µ∗(X/Y ) = r . So,
at least in many cases, µ∗(X/Y ) can be calculated without knowing U , see the
examples in Section 2.

1.1 Definition.

(i) We say that (µi)i<ω is U -continuous if for every ∆ -formula φ(x, y) , a ∈ A
and ǫ > 0 , there is a first-order formula ψ(y) such that A |=U ψ(a) and for all
b ∈ A , if A |=U ψ(b) , then

{i < ω| |1− (|φ(Ai, a)|/|φ(Ai, b)|)| ≤ ǫ} ∈ U,

where 0/0 = 1 and n/0 = 2 for n > 0 .

(ii) We say that (µi)i<ω is uniformly U -continuous if for every ∆ -formula
φ(x, y) and ǫ > 0 , there are n < ω and first-order formulas ψj(y) , j ≤ n , such
that A |=U ∀y

∨
j≤n ψj(y) and for all j ≤ n

{i < ω| for all a, b ∈ ψj(Ai), |1− (|φ(Ai, a)|/|φ(Ai, b)|)| ≤ ǫ} ∈ U,

where again 0/0 = 1 and n/0 = 2 for n > 0 .

(iii) We say that (µi)i<ω is U,∆ -continuous if (i) holds with the additional
requirement that the formula ψ can always be chosen from ∆ . Uniformly U,∆ -
continuous is defined similarly.
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1.2 Lemma.

(i) Uniform U -continuity implies U -continuity.
(ii) Suppose (µi)i<ω is U -continuous, ǫ > 0 and that X = (φ(Ai, a))i<ω and

Y = (ψ(Ai, a))i<ω have the same arity and φ and ψ are ∆ -formulas. Then there
is a first-order formula θ(y) such that A |=U θ(a) and for all b , if A |=U θ(b) ,
then, letting X ′ = (φ(Ai, b))i<ω and Y ′ = (ψ(Ai, b))i<ω ,

|µ∗(X/Y )− µ∗(X ′/Y ′)| ≤ ǫ.

(iii) Suppose (µi)i<ω is uniformly U -continuous, ǫ > 0 and φ and ψ are ∆ -
formulas. Then there are first-order formulas θi(y) , i ≤ n , such that A |=U
∀y

∨
i≤n θi(y) and for all j ≤ n and ai, bi ∈ Ai , i < ω , if {i < ω| Ai |=

θj(ai) ∧ θj(bi)} ∈ U , then letting X = (φ(Ai, ai))i<ω , Y = (ψ(Ai, ai))i<ω ,
X ′ = (φ(Ai, bi))i<ω and Y ′ = (ψ(Ai, bi))i<ω ,

{i < ω| |µi(Xi/Yi)− µi(X
′
i/Y

′
i )| ≤ ǫ} ∈ U.

Proof. We prove (iii), (ii) is similar and (i) is clear. Let ǫ > 0 and δ =
min{ǫ, 1/2}/4. By the assumption, it is enough to show that if |1−|Xi|/|X

′
i|| ≤ δ

and |1 − |Yi|/|Y
′
i || ≤ δ , then ||Xi|/|Yi| − |X ′

i|/|Y
′
i || ≤ ǫ (assuming that Xi ⊆ Yi

and X ′
i ⊆ Y ′

i i.e. |Xi|/|Yi| ≤ 1 and |X ′
i|/|Y

′
i | ≤ 1). Now

(|Xi|/|X
′
i|)/(|Yi|/|Y

′
i |) ≤ (1 + δ)/(1− δ)

and
(|Yi|/|Y

′
i |)/(|Xi|/|X

′
i|) ≤ (1 + δ)/(1− δ)

and so

||Xi|/|Yi| − |X ′
i|/|Y

′
i || ≤ |1− (1 + δ)/(1− δ)| ≤ 2δ/(1− δ) ≤ 4δ ≤ ǫ.

Before futher studies of this measure from the point of view of independence,
we notice that there is a connection between the continuity properties defined
above and the elimination of quantifiers.

If (Ai)i<ω is a ∆-sequence, then we say that A is ∆-atomic if for all a ∈ A
there is φ(x) ∈ t∆(a/∅;A) such that for all b ∈ A , A |= φ(b) implies t∆(b/∅;A) =
t∆(a/∅;A) . We say that A is strongly ∆-atomic if for all a ∈ Πi<ωAi/U there
is φ(x) ∈ t∆(a/∅; Πi<ωAi/U) such that for all b ∈ Πi<ωAi/U , Πi<ωAi/U |= φ(b)
implies t∆(b/∅; Πi<ωAi/U) = t∆(a/∅; Πi<ωAi/U) .

Notice that if L is finite and relational and ∆ is the set of all quantifier free
formulas, then for all n < ω , the number of t∆(a/∅;A) , a ∈ An is finite and also
it is easy to see that the number of these types is finite iff A is strongly ∆-atomic
(cf. Ryll-Nardzewski). However, we will not use the direction from right to left
of this fact in the proof of the next lemma, since in some cases in which these
measures may work (e.g. continuous logic), the direction is not true.
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1.3 Lemma. Assume that (Ai)i<ω is a ∆ -sequence and that ∆ is closed
under subformulas.

(i) Every Ai is a ∆ -elementary submodel of A and A is a ∆ -elementary
submodel of Πi<ωAi/U .

(ii) Assume that (µi)i<ω is U,∆ -continuous and A is ∆ -atomic. Then A is
∆ -homogeneous i.e. if a and b have the same ∆ -type then there is an automor-
phism f of A such that f(a) = b .

(iii) If (µi)i<ω is uniformly U,∆ -continuous and A is strongly ∆ -atomic, then
A is an elementary submodel of Πi<ωAi/U and Πi<ωAi/U has ∆ -elimination of
quantifiers, i.e, in Πi<ωAi/U , every first-order formula is equivalent with a ∆ -
formula.

Proof. (i) is immediate by the assumption on ∆ and (ii) can be proved as
the first claim in (iii). So we prove (iii): For the first claim of (iii), it is clearly
enough to show that the second player wins the Ehrenfeuch-Fraıssé-game of length
ω played between (A, e) and (Πi<ωAi/U, e) , where e ∈ A (so we prove more than
what we claimed). This is easy: She plays so that the sequences of the elements
played so far have the same ∆-type over e . We show how she makes her second
move in the case e = ∅ and on the first move a ∈ A and b ∈ Πi<ωAi/U are chosen
and on the second round the first player has chosen c from A , the other cases
are similar or easier. Let φ(x, y) be the ∆-formula that isolates t∆(ca/∅;A) . Let
ψj(y) be as in the definition of uniform U,∆-continuity for φ(x, a) and ǫ = 1/2
chosen so that A |= ψj(a) . Then Πi<ωAi/U |= ψj(b) and let X ∈ U be such
that for all i ∈ X , Ai |= ψj(bi) (b = (bi)i<ω/U ). By the choice of ψj , there is
Y ∈ U such that Y ⊆ X and for all i ∈ Y , |1 − |φ(Ai, a)|/|φ(Ai, bi)|| ≤ 1/2.
Clearly we may assume that Y is chosen so that a, c ∈ Ai for all i ∈ Y . But
then for i ∈ Y , φ(Ai, bi) can not be empty and thus the second player can choose
d = (di)i<ω/U ∈ Πi<ωAi/U such that for all i ∈ Y , Ai |= φ(di, bi) .

For the second claim of (iii), let φ(x) be an arbitrary first-order formula. By
(ii) there are ∆-formulas ψkj , k ∈ I and j ∈ Jk , such that

A |= ∀x(φ(x) ↔
∨

k∈I

∧

j∈Jk

ψkj).

By the proof above,

Πi<ωAi/U |= ∀x(φ(x) ↔
∨

k∈I

∧

j∈Jk

ψkj).

Since Πi<ωAi/U is ω1 -saturated,

Th(Πi<ωAi/U) |= ∀x(φ(x) ↔
∨

k∈I

∧

j∈Jk

ψkj).

From this the claim follows by compactness.
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We extend the vocabulary L to a vocabulary L∗ by adding new predicates
Iφ,ψ for all ∆-formulas φ = φ(x, y) and ψ = ψ(x, y) . We interpret these in A and
in each Ai so that (a, b) ∈ Iφ,ψ if µ∗((φ(Ai, a))i<ω/(ψ(Ai, b))i<ω) = 0. We write
A∗
i for what we get from Ai after adding the interpretations for the predicates

Iφ,ψ and A∗ is defined similarly. We let M∗ be Πi<ωA
∗
i /U and the embedding

a 7→ (ai)i<ω/U , a ∈ A , is considered as the identity map, where ai = a for all
i < ω .

We let M be the reduct of M∗ to the vocabulary L and we recall that by
Lemma 1.3 (iii), if (Ai)i<ω is a ∆-sequence, A is strongly ∆-atomic and (µi)i<ω
is uniformly U,∆-continuous, then A is an elementary submodel of M .

1.4 Remark. For all a, b ∈ A , A∗ |= Iφ,ψ(a, b) iff M∗ |= Iφ,ψ(a, b) .

Proof. Immediate by the definitions.
For the rest of this paper, we make the assumption below. This is done

because we are interested in the properties of the models Ai that are first-order
in the original similarity type (at least first-order in the sense of continuous logic).
However, many of the results below hold if instead of M we work in M∗ and
modify definitions and assumptions suitably, see [Hr].

1.5 Assumption. From now on, we assume that (µi)i<ω is U -continuous.

1.6 Lemma.

(i) For all a, b, c, d ∈ A , if t(ab/∅;M) = t(cd/∅;M) , then (a, b) ∈ Iφ,ψ iff
(c, d) ∈ Iφ,ψ . If in addition (µi)i<ω is uniformly U -continuous, this holds for all
a, b, c, d ∈ M .

(ii) If φ(x, y) and φ′(x, y) are equivalent in M , i.e. {i < ω| Ai |= ∀x∀y(φ↔
φ′)} ∈ U , and similarly for ψ(x, y) and ψ′(x, y) , then the interpretations of Iφ,ψ

and Iφ
′,ψ′

are the same (e.g. in A∗ ).

Proof. (i): Immediate by Lemma 1.2.
(ii): Immediate by the definitions.

Suppose Y is ∆-definable sequence over b . We write a ∈ Iφ,Yb if (a, b) ∈ Iφ,ψ ,
where ψ is any formula such that (ψ(Ai, b))i<ω = Y .

Let X and Y be definable subsets of M , say X = φ(M, a) and Y = ψ(M, b) ,
where a = (ai)i<ω/U and b = (bi)i<ω/U . We write µ∗(X/Y ) for the infimum of
the rationals q such that

{i < ω| µi(φ(Ai, ai)/ψ(Ai, bi)) ≤ q} ∈ U.

We also write Xi for φ(Ai, ai) (and so µ∗(X/Y ) = µ∗((Xi)i<ω/(Yi)i<ω)).
Notice that Xi may depend on the choice of φ and a but not too much, only in
a small set. In fact:

1.7 Lemma.

(i) The definition of µ∗ does not depend on the choice of φ(x, a) and ψ(x, b)
nor on the choice of the representatives (ai)i<ω and (bi)i<ω .
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(ii) For all X and Y ∆ -definable over a ∈ A by φ0(x, a) and φ1(x, a) ,
repectively, and ǫ > 0 , there is a first-order formula ψ(y) such that A |=U ψ(a)
and for all b ∈ A if A |=U ψ(b) and X ′ = φ0(M, b) and Y ′ = φ1(M, b) , then
|µ∗(X/Y )− µ∗(X ′/Y ′)| ≤ ǫ .

(iii) If (µi)i<ω is uniformly U -continuous, then for all X and Y ∆ -definable
over a ∈ M by φ0(x, a) and φ1(x, a) , repectively, and ǫ > 0 , there is a first-
order formula ψ(y) such that M |= ψ(a) and for all b ∈ M if M |= ψ(b) and
X ′ = φ0(M, b) and Y ′ = φ1(M, b) , then |µ∗(X/Y )− µ∗(X ′/Y ′)| ≤ ǫ .

Proof. (i): If M |= ∀x(φ(x, a) ↔ φ′(x, a′)) , then

W = {i < ω| Ai |= ∀x(φ(x, ai) ↔ φ′(x, a′i))} ∈ U.

Thus for all i ∈ X and c ∈ Ai , c ∈ φ(Ai, ai) iff c ∈ φ(Ai, a
′
i) i.e. for all i ∈ W ,

|φ(Ai, ai)| = |φ(Ai, a
′
i)| . And so the claim is immediate by the definitions.

(ii) and (iii) are immediate by Lemma 1.2 and the definitions.
Notice that for all ∆-definable subsets Y of Mn , X 7→ µ∗(X/Y ) is kind of a

measure on the ∆-definable subsets of Mn (the domain of µ∗ is not a σ -algebra)
and letting IY be the set of all ∆-definable subsets X of M of measure 0 (i.e.
µ∗(X/Y ) = 0), then IY is an ideal. Notice also that if Y is definable over b ∈ A ,

then for all a ∈ A , φ(M, a) ∈ IY iff a ∈ Iφ,Y
′

b where Y ′ = (Yi)i<ω .
When we speak about order indiscernible sequences, we mean that they are

order indiscernible in M (or in some elementary extension of M) and in the sence
of the first-order logic.

1.8 Definition.

(i) We say that IY is an S1-ideal if for all ∆ -formulas φ(x, y) , for all b such
that Y is ∆ -definable over b and order-indiscernible (ai)i<ω over b , if for some
n < ω ,

⋂
i≤n φ(M, ai) ∈ IY , then φ(M, a0) ∈ IY .

(ii) We say that IY is an S1-ideal over (b,A) if Y is ∆ -definable over b ∈ A
and the following holds: for all ∆ -formulas φ(x, y) and order-indiscernible (ai)i<ω
over b , if for all i < ω , ai ∈ A and

⋂
i<2 φ(M, ai) ∈ IY , then φ(M, a0) ∈ IY .

Notice that assuming uniform U -continuity, the requirement in Definition 1.8
(i) above does not depend on the choice of b : By Erdös-Rado, for any c and order-
indiscernible (ai)i<ω over b , there is order-indiscernible (bi)i<ω over bc such that
t((bi)i≤n/b;M) = t((ai)i≤n/b;M) for any n < ω .

The following Lemma and its corollary are based on ideas from [Hr].

1.9 Lemma.

(i) For all Y ⊆ M ∆ -definable over b ∈ A , IY is an S1-ideal over (b,A) .
(ii) If (µi)i<ω is uniformly U -continuous, then for all ∆ -definable Y , IY is

an S1-ideal.

Proof. (i) Suppose not. Let (ai)i<ω and φ(x, y) witness that the claim is
not true. Let ǫ = µ∗(φ(M, a0)/Y ) > 0, m ≥ 4/ǫ be a natural number and
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δ = ǫ/m3 . By U -continuity (i.e. Lemma 1.7 (ii)) and the definition of µ∗ , we
can find i < ω such that for all j < m , µi(φ(Ai, aj)/Yi) > 3ǫ/4 and for all
j < k < m , µi((φ(Ai, aj) ∩ φ(Ai, ak))/Yi) < δ . But then we have a contradiction
since µi(

⋃
k<m φ(Ai, ak)/Yi) > 1:

Let X =
⋃
i<m({i} × |φ(Ai, aj) ∩ Yi|) and let f : X → Mlength(x) be such

that for all i < m , f ↾ ({i} × |φ(Ai, aj) ∩ Yi|) is onto φ(Ai, aj) ∩ Yi and one
to one. Let Z be the set of those c ∈ X such that for some d ∈ X − {c} ,
f(d) = f(c) . By the choice of i and ǫ , |X | ≥ 3|Yi| and by the choice of Z ,
|X − Z| ≤ |

⋃
k<m(φ(Ai, ak) ∩ Yi)| , since f ↾ (X − Z) is one to one. Thus it

suffices to show that |Z| ≤ |Yi| . But

|Z| ≤ Σk<j<mm|φ(Ai, ak) ∩ φ(Ai, aj) ∩ Yi|

and thus |Z| ≤ m2(m(δ|Yi|)) = ǫ|Yi| ≤ |Yi| .
(ii) As (i). Notice that the witness for the counter assumption that IY is not

an S1-ideal can always be chosen so that n = 2.
Notice that in the proof above we showed a bit more than what we claim: If Y

is ∆-definable over b ∈ A , φ(x, a) , a ∈ A , is a ∆-formula and µ∗(φ(M, a)/Y ) =
ǫ > 0, then for any natural number m > 4/ǫ , there are no ai ∈ A , i < m ,
such that a0 = a , µ∗(φ(M, a0) ∧ φ(M, a1))/Y ) = 0 and for all k < j < m ,
t(akaj/b;M) = t(a0a1/b;M) .

Recall that φ(x, a) divides over (countable) B if there is a sequence (ai)i<ω
and n < ω such that a0 = a , (ai)i<ω is order-indiscernible over B and

M |= ¬∃x
∧

i≤n

φ(x, ai).

We say that φ(x, a) forks over B if there are formulas φi(x, ai) , i < n , such that
each φi divides over B and

M |= ∀x(φ→ ∨i<nφi).

We write a ↓C B , if no φ(x, b) ∈ t(a/CB;M) forks over C .
We say that φ(x, a) , a ∈ A , splits strongly over b ∈ A inside A if there is a

sequence (ai)i<ω ⊆ A order-indiscernible over b such that a0 = a and φ(x, a0) ∧
φ(x, a1) is not realized in M .

1.10 Corollary.

(i) If a ∈ A , ∆ -formula φ(x, a) splits strongly over b ∈ A inside A and
Y ⊆ Mlength(x) is a non-empty set ∆ -definable over b , then φ(M, a) ∈ IY .

(ii) Suppose (µi)i<ω is uniformly U -continuous. If ∆ -formula φ(x, a) , a ∈
M , divides over b ∈ A and Y ⊆ Mlength(x) is a non-empty set ∆ -definable over
b , then φ(M, a) ∈ IY .

(iii) Suppose (µi)i<ω is uniformly U -continuous. If ∆ -formulas ψi(x, ai) ,
ai ∈ M and i ≤ n , divide over b ∈ A and Y ⊆ Mlength(x) is a non-empty set
∆ -definable over b , then ∨i≤nψi(M, ai) ∈ IY .
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Proof. The proof of (i) is similar to the proof of (ii). For (ii), let ai , i < ω ,
and n < ω witness that φ(x, a) divides over b . By ω1 -saturation of M , we may
assume that a0 = a . Then X = ∩i≤nφ(M, ai) = ∅ and thus X ∈ IY . By Lemma
1.9, φ(M, a) = φ(M, a0) ∈ IY .

(iii): So suppose each ψi(x, ai) divides over b . Then by (ii),

µ∗(∨i≤nψi(M, ai)/Y ) ≤ Σi≤nµ
∗(ψi(M, ai)/Y ) = 0.

1.11 Definition.

(i) We say that ∆ -formula φ(x, a) µ∗ -forks over b if for all non-empty sets Y
of arity length(x) ∆ -definable over b in M , φ(M, a) ∈ IY (i.e. µ∗(φ(M, a)/Y ) =
0).

(ii) Let p be a ∆ -type (i.e. for some x , p is a collection of ∆ -formulas
φ(x, a) , a ∈ M). We say that p µ∗ -forks over b if there are n ∈ ω and formulas
φi(x, ai) ∈ p , i ≤ n , such that ∧i≤nφi(x, ai) µ

∗ -forks over a .
(iii) For countable C ⊆ M and finite B ⊆ M , We write a ↓∗B C if the type

t∆(a/BC;M) does not µ∗ -fork over B .
(iv) For countable A,C ⊆ M and finite B ⊆ M , we write A ↓∗B C if for all

(finite sequences) a ∈ A , t∆(a/BC;M) does not µ∗ -fork over B .

Above there is a slight missuse of notation: If A = {a0, ..., an} and a =
(a0, ..., an) , then it may happen that a ↓B C but A 6 ↓B C , see Example 2.4.

1.12 Lemma. Let φ(x, y) be a ∆ -formula and p a countable ∆ -type over
M .

(i) If φ(x, a) , a ∈ M , does not µ∗ -fork over A and A ⊆ B (both finite), then
φ(x, a) does not µ∗ -fork over B .

(ii) If a, b, c, d ∈ A and t(ab/∅;M) = t(cd/∅;M) , then φ(x, a) µ∗ -forks over
b iff φ(x, c) µ∗ -forks over d . If (µi)i<ω is uniformly U -continuous, then this holds
for all a, b, c, d ∈ M .

(iii) If a, b ∈ A and φ(x, a) does not µ∗ -fork over b , then there is ψ(y, z) ∈
t(ab/∅;M) such that if c, d ∈ A and M |= ψ(c, d) , then φ(x, c) does not µ∗ -fork
over d . If (µi)i<ω is uniformly U -continuous, then this holds for M in place of
A .

(iv) If p ⊢ φ(x, b) and φ(x, b) is a ∆ -formula such that it µ∗ -forks over a ,
then p µ∗ -forks over a .

(v) If t∆(a/b;M) is algebraic, then a ↓∗b c for all c .
(vi) If t∆(a/b;M) is not algebraic but t∆(a/bc;M) is, then a 6 ↓∗b c .

Proof. (i) follows from the fact that if Y witnesses that φ(x, a) does not
µ∗ -fork over A , then it is ∆-definable over A and thus also over B and thus it
witnesses that φ(x, a) does not µ∗ -fork over B .

(v) is clear since if φ(M, b) contains n elements, then for all ∆-definable X
which contain a , µ∗(X/φ(M, b)) ≥ 1/n > 0.

9



(vi): Clearly we can find algebraic φ(x, bc) ∈ t∆(a/bc : M) such that

φ(x, bc) ⊢ t∆(a/bd;M).

But then if Y is ∆-definable over b and φ(M, bc) ∩ Y 6= ∅ , Y is not algebraic.
Thus µ∗(φ(M, bc)/Y ) = 0.

The rest are immediate by Lemma 1.7 and definitions.
We say that ↓∗ is symmetric if for all a, b, c ∈ M , a ↓∗b c implies c ↓∗b a .
The proof of Lemma 1.13 (iii) below uses ideas from [Hr].

1.13 Lemma. Let a, b, c, d ∈ M , φ(x, y) be a ∆ -formula and p a countable
∆ -type over M .

(i) If φ(M, a) 6= ∅ , then φ(x, a) does not µ∗ -fork over a .
(ii) a ↓∗b cd implies a ↓∗bc d and a ↓∗b c . In particular, if ↓∗ is symmetric,

a ↓∗b c and d is a subsequence of a , then d ↓∗b c .
(iii) If p does not µ∗ -fork over b , then for all countable A ⊆ M there is

a ∈ M such that a |= p and a ↓∗b A .

Proof. For (i), just let Y in the definition of µ∗ -forking be φ(M, a) and (ii)
is immediate by Lemma 1.12 (i). So we prove (iii): By compactness and the fact
that M is ω1 -saturated, it is enough to show that

θ = ∧i≤nφi(x, b
i) ∧ ∧i≤n¬ψi(x, c

i)

is consistent, where φi(x, b
i) ∈ p and ψi(x, c

i) are such that they µ∗ -fork over b
and ci ∈ A . Let Y witness that ∧i≤nφi(x, b

i) does not µ∗ -fork over b i.e. Y is
∆-definable over b and µ∗(∧i≤nφi(M, bi)/Y ) ≥ ǫ > 0. Now by the definition of
µ∗ -forking, one can see that X ∈ U , when X is the set of all j < ω such that
for all i ≤ n , µj(ψi(Aj, c

i
j)/Yj) < ǫ/(2n + 2) and µj(∧k≤nφk(Aj, b

i
j)/Yj) > ǫ/2.

Then we can find a = a/U ∈ M such that for all j ∈ X , aj ∈ ∩i≤nφi(Ai, b
i
j) −

∪j≤nψi(Aj, c
i
j) . Clearly a realizes θ .

1.14 Corollary. Assume that ↓∗ is symmetric. Suppose B,C ⊆ M , B
finite and C countable and A ⊆ M is countable. If A ↓∗B C , then for all countable
D ⊆ M , there is A′ such that

t∆(A
′/BC;M) = t∆(A/BC;M)

and A ↓∗B D .

Proof. Write A = (ai)i<ω and by x , xk etc. we mean finite sequences
of variables from the set {vi| i < ω} . Let φ(x, b) ∈ t∆((ai)i<ω/BC;M) and
ψk(xk, dk) , k < n and dk ∈ D , be such that each ψk(xk, dk) µ∗ -forks over B .
Again it is enough to show that θ = φ(x, b) ∧ ∧k<n¬ψ(xk, ak) is realised in M .
Let m < ω be such that if vi appears in x or in some xk , then i < m . By Lemma
1.13 (iii), there is (a′i)i<m ∈ M such that t∆((a′i)i<m/BC;M) = t∆((ai)i<m/BC)
and (a′i)i<m ↓∗B D . By Lemma 1.13 (ii), (a′i)i<m realizes θ .

Let M∗∗ be some large very saturated elementary extension of M .
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1.15 Definition. Suppose (µi)i<ω is uniformly U -continuous.
(i) For a, b ∈ M , we say that t(a/b;M) is good if for all countable C ⊆ M

there is a′ such that t(a′/b;M) = t(a/b;M) , a′ ↓∗b C and a′ 6∈ C .
(ii) For a, b, c ∈ M∗∗ , we write a ↓∗b c if for all (some), a′, b′, c′ ∈ M with

t(a′b′c′/∅;M) = t(abc/∅;M∗∗) , a ↓∗b c

Notice also that if t(a/b;M) is not algebraic and t(a/b;M) 6⊢ ∨i≤nψi(x, bi)
for any ∆-formulas ψi(x, bi) which µ∗ -fork over b , then t(a/b;M) is good.

1.16 Lemma. Suppose (µi)i<ω is uniformly U -continuous and M is stable.
Then for all a, b, c ∈ M , the following holds: if t(c/b;M) is good and a ↓∗b c , then
either a 6 ↓b c or c ↓∗b a . In particular, if M has ∆ -elimination of quantifiers, ↓∗

is symmetric.

Proof. Suppose not i.e. a ↓b c and c 6 ↓∗b a . Since t(c/b;M) is good and
M is ω1 -saturated by compactness as in the proof of Lemma 1.3 (iii), we can find
ai, ci ∈ M∗∗ , i < κ = i(2ω)+ so that for all i < κ , t(aici/b;M

∗∗) = t(ac/b;M)
and ai ↓bci ∪j<iajcj (and so ai ↓b ∪j<iajcj ), ci 6∈ ∪j<ibajcj and ci ↓∗b d for
all d ∈ ∪j<iajbj . By Erdös-Rado, we may assume that (aici)i<ω is an (infinite)
indiscernible sequence over b and by ω1 -saturation of M that aici ∈ M for all
i < ω and that a0 = a and c0 = c . By the choise of ci , ci ↓

∗
b aj if i > j . If i < j ,

then stp(ci/b;M) = stp(c/b;M) and stp(aj/b;M) = stp(a/b;M) and since both
a ↓b c and aj ↓b ci , t(ac/b;M) = t(ajci/b;M) and so ci 6 ↓∗b aj . By Lemma 1.12
(ii), this is a contradiction with the stability of M .

For the in particular part we assume that M has ∆-elimination of quantifiers
and that a ↓∗b c and show that c ↓∗b a . We observe first that by Lemma 1.13 (i)
and (iii) and Lemma 1.12 (v), if t(c/b;M) is not algebraic, then it is good. But
if t(c/b;M) is algebraic, then by Lemma 1.12 (v), c ↓∗b a . So we may assume
that t(c/b;M) is good. By ∆-elimination of quantifiers, Corollary 1.10 (iii) and
Lemma 1.12 (iv), a ↓b c and so by what we showed above c ↓∗b a .

1.17 Theorem. Suppose (µi)i<ω is uniformly U -continuous, M is stable
and has ∆ -elimination of quantifiers. Then for all a, b, c ∈ M , a ↓b c iff a ↓∗b c .

Proof. By ∆-elimination of quantifiers, we have already shown the implica-
tion from right to left in Lemma 1.12 (iv) and Corollary 1.10 (iii). So we prove
the other direction. By Corollary 1.14, Lemma 1.16 and ∆-elimination of quanti-
fiers, we can find a countable elementary submodel B of M such that b ∈ B and
B ↓∗b ac . Then B ↓b ac and so a ↓b Bc , in particular a ↓B c . Also by monotonicity
and symmetry (i.e. Lemma 1.16), a ↓∗b B . So by Corollary 1.14 and ∆-elimination
of quantifiers, there is a′ such that t(a′/B;M) = t(a/B;M) and a′ ↓∗b Bc . Since
the implication from right to left holds a′ ↓B c . Thus t(a/bc;M) = t(a′/bc;M) .
Since a′ ↓∗b c , Lemma 1.12 (ii) implies that a ↓∗b c .

Before the examples we want to observe, that although we have assumed that
∆ consists of first-order formulas, there are cases in which we may loosen this
assumption: Suppose that the vocabulary L is finite and relational and let k ∈ ω
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be greater than the arity of any relation in L . By Lk we mean the set of all
Lω1ω -sentences such that at most k variables appear in them. We let ∆ be the
closure of Lk under (finite) boolean combinations (so in ∆-formulas, any finite
number of variables may appear). Finally suppose that (Ai)i<ω is such that Ai

is Lk -elementary submodel of Ai+1 . Then each Ai is ∆-elementary submodel
of M = Πi<ωAi/U and we may think the formulas of Lk as atomic formulas.
When we do this, (Ai)i<ω is a ∆-sequence and A is strongly ∆-atomic, in fact,
for each n the number of t∆(a/∅;A) , a ∈ An , is finite. Now it is easy to see that
everything we have done above goes through also in this situation.

Also one expects that what we have done above can also be done for continuous
logic (∼ fussy logic).

1.18 Open question. If in Theorem 1.17 uniform U -continuity is replaced
by just U -continuity, can one still prove that a ↓b c iff a ↓∗b c , for all a, b, c ∈ A .

2 Examples

In this section we give examples. The first three fit to our context and the
last two are counterexamples.

2.1 Example. Let F be a finite field and for all i < ω , let Ai be an
i + 1 -dimensional vector space over F chosen so that Ai is a subspace of Ai+1 .
We let ∆ be the set of all quantifier free formulas. Now (Ai)i<ω is a ∆ -sequence,
the number of t∆(a/∅;A) , a ∈ An , is finite for all n < ω and (µi)i<ω is uniformly
U,∆ -continuous, in fact, for ∆ -formulas φ(x, y) and ψ(x, y) and a ∈ A such that
A |= ∀x(φ(x, a) → ψ(x, a)) , letting deg be the Morley degree,

µ(φ(A, a)/ψ(A, a)) = µ∗(φ(A, a)/ψ(A, a)) = deg(φ(x, a))/deg(ψ(x, a))

if the generic element in φ(M, a) and the generic element in ψ(M, a) have the
same dimension i.e. the sets have the same Morley rank and otherwise

µ(φ(A, a)/ψ(A, a)) = µ∗(φ(A, a)/ψ(A, a)) = 0.

Also this value is clearly definable (and not only approximately) with a ∆ -formula
and since the number of possible ∆ -types is finite, this can be done uniformly. Of
course, M is stable and has ∆ -elimination of quantifiers.

2.2 Example. Let p be a prime and Ni = Πn≤ip
i
n , where (pn)n<ω is the

usual enumeration of primes. Let Ai be a field of size pNi chosen so that Ai is a
subfield of Ai+1 and ∆ be the set of quantifier free formulas. Again M is stable
and has ∆ -elimination of quantifiers. Also the fact that (µi)i<ω is uniformly U -
continuous can be seen essentially as in Example 2.1 using (the proof of) Main
Theorem in [CDM]: We write MR(φ(x, a)) for the Morley rank of φ(x, a) in M .
By [CDM], for every ∆ -formula φ(x, y) there are n < ω and for j < n , a formula
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ψj(y) and a rational number µj , such that for all a ∈ A the following holds: For
all ǫ > 0 and for all i < ω large enough

|q − |φ(Ai, a)|/|A
MR(φ(x,a))
i || < ǫ

for some
q ∈ {µj| j < n}

and for all q ∈ {µj | j < n} for all ǫ > 0 small enough and i < ω large enough,

|q − |φ(Ai, a)|/|A
MR(φ(x,a))
i || < ǫ

iff Ai |=
∨
{ψj(y)| µj = q} . Finally, for all j < n and i < ω , Ai |= ψj(a) ∧ ψj(b)

implies MR(φ(x, a)) = MR(φ(x, b)) . From this the claim follows immediately.
For more on this example and variations, see the theory of pseudo-finite fields.

2.3 Example. For all i < ω , let Ai = (Ai, Ek)k<ω be such that Ai consist
of functions f : ω → i + 1 such that for all x > i , f(x) = 0 and f Ek g if
f ↾ (k + 1) = g ↾ (k + 1) . Again, let ∆ be the set of quantifier free formulas.
Then (µi)i<ω is uniformly U,∆ -continuous, M is stable and has ∆ -elimination
of quantifiers. Notice that this class is not N -dimensional asymptotic class for
any N < ω .

2.4 Example. For all i < ω , let Ai = (Ai, E) be such that Ai consists
of pairs (k,m) ∈ ω2 such that k ≤ i and if k = 0 , then m ≤ i2 and otherwise
m ≤ i . (k,m) E (k′, m′) if k = k′ . ∆ is the set of quantifier free formulas. Now
the class is not U -continuous and in M , E(x, (0, 0)) forks over ∅ but it does not
µ∗ -fork over ∅ .

If instead of k ≤ i we require that k < 2 , we get a class which still is not
U -continuous and in which E(x, (1, 0)) does not fork over ∅ but it µ∗ -forks over
∅ .

We also want to point out what happens in the latter example with the
formula φ(x) = ¬E(y, z) in relation with Lemma 1.13. Now letting a = (0, 0)
and b = (1.1) , t∆((a, b)/{(1, 0)};M) does not µ∗ -fork over ∅ (φ(M) witnesses
this) while t∆((1.0)/{a, b};M) does µ∗ -fork over ∅ and so symmetry fails. Of
course also t∆(b/{(1, 0)};M) µ∗ -forks over ∅ and thus also the conclusion of the
in particular part of Lemma 1.13 (ii) fails.

2.5 Example. For all i < ω , define Ni so that N0 = 3 and Ni+1 = 2Ni+1 .
Let Ai = (Ai, <) , where Ai is the set of all integers between −Ni and Ni and
< is the natural ordering. By replacing Ai , i > 0 , by isomorphic copies, we may
assume that the embeddings x 7→ 2x are identical maps. Let ∆ be the set of
quantifier free formulas. Then (µi)i<ω is not U -continuous (and M is not stable)
and −1 < x ∧ x < 1 (−1, 1 ∈ A0 ) forks over ∅ but it does not µ∗ -fork over ∅ .
Notice that here M is elementarily equivalent with ω + Z×Q+ ω∗ .
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