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Abstract

In this paper we apply the theory of large deviations to a random ex-
change economy. Two types of the observations, namely partial observation
and full observation, and their consequences on our a posteriori knowledge
about the equilibrium are discussed. A random exchange economy with
economic sectors is used as an example.
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1 Introduction

In this paper we study a random exchange economy in which the preferences and
endowments of the agents are ”random” or ”subject to exogenous shocks”, namely
the economy is stage contingent on the economic environment ω. As the general
human behavior is, an agent’s preferences and endowments may be state contin-
gent. As argued in the seminal works of [Hil71] and [BM73], random characters
of the agents might be a better way to interpret human behavior in economic ac-
tivities than deterministic characters. An interesting problem to pose for a large
random exchange economy is to know the a priori relation of random equilibrium
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prices with their model-based a priori expected values. In particular, since the
equilibrium prices of such an economy are random, we want to analyze the exis-
tence and convergence properties of the random equilibrium prices, i.e., whether
there exist a law of large numbers and a central limit theorem. In contrast with
other literature dealing with this topic, we advocate the relevance of the theory of
large deviations for the equilibrium results of random exchange economies. By
utilizing the theory of large deviations, Nummelin proved the existence and con-
vergence of the equilibrium prices in a general dependent case. The results in
[Num00b] and [Num00a] do not depend on some special structures of the agents
such as independent and identically distributed ([Hil71] and [BM73]), exchange-
ability and strong mixing ([BM73]), lattice ([Fol74]) or dependency neighbor-
hoods ([MR00] and [MR02]).

We notice that the existence and convergence results mentioned above heavily
rely on the knowledge of the (a priori) probability distribution of the economic
environment, P(dω). For example, in [MR00],[MR02],[Num00b] and [Num00a],
such probability law is required in calculating the expectation of the total excess
demand function. Eventually the random equilibrium prices converge to some
non-random prices in the convergence set which contains prices making such ex-
pectation of the total excess demand vanish. Our choice of the (a priori) probabil-
ity law can be subjective or empirical, but on the other hand, due to the complexity
of the economies, it is difficult to know the ”true” probability law governing the
economic environments exactly a priori. Eventually, the (a posteriori) observed
equilibrium may deviate significantly from its model-based (a priori) expected
value. In fact, it can be argued that the observed equilibrium may represent a
large deviation, namely fall outside the region of the validity of the central limit
theorem. Thus it will be a natural interest to address the problem of the inference
from the a posteriori observation of the equilibrium (possibly representing a large
deviation):

• What (a posteriori) knowledge do we know about the equilibrium condi-
tionally on an observation of the realized equilibrium?

In this paper, two types of the observations, namely partial observation and
full observation, and their consequences on our a posteriori knowledge about the
equilibrium are discussed. By a partially observed equilibrium, we could predict
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the full equilibrium even we do not know the exact ”true” probability distribution
of the economic environments. If we have a full observation of the equilibrium
price, we are able to calibrate the a priori probability law to a ”true” probability
law such that our observation could be consistent with the expected equilibrium
prices under the ”true” probability law.

2 The description of the model

We consider an exchange economy where l + 1 commodities are traded by n ran-
dom agents. We assume that we are dealing with a ”large economy”; namely in
the exact theorems we let n → ∞. In economic literature, an agent can be de-
scribed in many ways such as by its preference and endowment or by its demand
function and endowment. In this paper, a random agent is characterized by its
excess demand function ζ(ω, p). ζ(·) is a random vector defined on an underlying
probability space (Ω,F , P), i.e.,

ζ(ω, p) � (ζ1(ω, p), . . . , ζ l+1(ω, p)), ω ∈ Ω.

HereΩ denotes the set of all possible scenarios in the economy and p = (p1, . . . , pl+1)
is the given market price. The superscripts 1, . . . , l+1 denote the l+1 commodities.

We make the following two standard assumptions:

1. Homogeneity of degree zero:

ζ j(ap) = aζ j(p), j = 1, . . . , l + 1 for every constant a > 0;

2. Walras’ law:
l+1∑
j=1

p jζ j(p) = 0.

Due to the homogeneity of degree zero, the prices can be normed to belong to the
price simplex

S l � {p ∈ Rl+1
++ : ∥p∥1 = 1}.

Then it suffices to put the prices under consideration in the set ∆ ⊂ {p ∈ Rl
++ :

∥p∥1 < 1}.
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Assumption 1 Throughout this paper we choose ∆ to be compact and convex,
and to have non-empty interior.

Walras’ law implies that it suffices to consider the excess demand for the first
l commodities. Then, without loss of generality, we can just consider an excess
demand functions ζ : Ω × ∆→ Rl from now on.

The total excess demand is the sum of all individual excess demands in the
economy, defined as

Zn(ω, p) � (Z1
n(ω, p), . . . , Zl

n(ω, p))

= (
n∑

i=1

ζ1
i (ω, p), . . . ,

n∑
i=1

ζ l
i (ω, p)).

The random equilibrium prices (r.e.p.) are defined as those price vectors p∗n =
{p∗n(ω), ω ∈ Ω} at which the (random) total excess demand vanishes:

Zn(ω, p∗n(ω)) = 0.

Formally, the random equilibrium prices comprise a random set:

π∗n = {π∗n(ω);ω ∈ Ω}

where

π∗n(ω) = {p∗n ∈ ∆ : Zn(ω, p∗n) = 0}

denotes the set of equilibrium prices at the realized economic environment. Thus
p∗n(ω) denotes an arbitrary element of π∗n(ω). Let EZn(p) �

∫
Zn(ω, p)P(dω) de-

note the (non-random) expected total excess demand function.
From now on, we will omit the parameter ω where there is no misunderstand-

ing. We define a price depending total characteristic of the economy, Xn(p). The
equilibrium behavior of Xn(p) is described by the graph π∗n(X) of the random map
n−1Xn(·) with the random equilibrium set π∗n as its support, i.e.,

π∗n(X) � {(p∗n, n
−1Xn(p∗n)); Zn(p∗n) = 0}.

Assumption 2 We assume the limit µ(p) � limn→∞ n−1EXn(p) exists.
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3 Main results

Let Λn(α; p) denote the Laplace transform of the total excess demand Zn(p) under
an a priori chosen probability law P(dω) governing the economic environments:

Λn(α; p) � Eeα·Zn(p) =

∫
eα·Zn(ω,p)P(dω), α ∈ Rl

and let
ΛX;n(α, β; p) � Eeα·Zn(p)+β·Xn(p), α ∈ Rl, β ∈ Rd

denote the Laplace transform of the pair (Zn(p), Xn(p)). Λn(p) is defined as the
minimum of Λn(α; p):

Λn(p) � min
α∈Rl
Λn(α; p).

Let cn(α; p) and c(X; n) be the logarithm of the Laplace transforms, i.e.,

cn(α; p) � logΛn(α; p) = log Eeα·Zn(p)

and
cX;n(α, β; p) � logΛX;n(α, β; p) = log Eeα·Zn(p)+β·Xn(p).

The logarithm of the Laplace transform of a random variable is known to be a
convex function (see e.g. [Bil95], p.148).

Assumption 3 We assume that the limits c(α; p) = limn→∞ n−1cn(α; p) and cX(α, β; p) =
limn→∞ n−1cX;n(α, β; p) exist and they converge uniformly over α and β.

The economic entropy functions I : ∆ → R+ and the economic entropy function
with respect to the X, IX : ∆ × Rd → R+ are defined as

I(p) � − inf
α∈Rl

c(α; p) = ĉ(0; p)

and
IX(p,w) � sup

(α,β)∈Rl+d
(β · w − cX(α, β; p)) = ĉX(0, β; p)

respectively, where
ĉ(v, ; p) � sup

α∈Rl
(α · v − c(α; p))

and
ĉX(v,w; p) � sup

(α,β)∈Rl+d
(α · v + β · w − cX(α, β; p)).
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Assumption 4 We assume that there exists a parameter α = α(p) ∈ Rl such that
∂c/∂α(α(p); p) = 0.

It follows
I(p) = −c(α(p); p).

We make some assumptions on the mean total excess demand function, n−1Zn

and the mean of the price-depending economic variable, n−1Xn. We notice that the
first part of Assumption 7 on n−1Zn can be derived from Assumption 6.

Assumption 5 For each p ∈ ∆ the first derivative of the mean total excess de-
mand, n−1Z′n exists and is uniformly non-singular almost surely; that means, there
is a constant A−1(p) < ∞ such that

|(n−1Z′n(p))−1| = |nZ′n(p)−1| ≤ A−1(p) for all n ∈ N, a.s..

Assumption 6 The second derivative of the mean total excess demand, n−1Z′′n is
bounded on some closed neighborhood Ū of the given price p; namely, there is a
constant A2(p) < ∞, ε2(p) > 0 and we define Ū � Ū(p, ε2(p)) such that

|n−1Z′′n (q)| ≤ A2(p) a.s. for all q ∈ Ū.

Assumption 7 The first derivatives of the mean of total excess demand, n−1Z′n
and the mean of the macroeconomic variable, n−1Xn are bounded on some closed
neighborhood Ū of the given price p; namely, there is a constant A1(p) < ∞, ε1(p) >
0 and we define Ū � Ū(p, ε1(p)) such that

|n−1Z′n(q)| ≤ A1 and |n−1X′n(q)| ≤ A1 a.s. for all q ∈ Ū.

For the purpose of inference, we distinguish two types of a posteriori observa-
tions of the equilibrium: the partial observation and the full observation.

3.1 Partial observation

The idea of the expectation of the total excess demand EZn(p) is essential in get-
ting the equilibrium prices of a random exchange economy. In a large random
exchange economy, the equilibrium prices should be in the equilibrium set con-
taining prices p such that limn→∞ EZn(p) = 0. Unfortunately, due to the com-
plexity of the economy, it is difficult to know the exact ”true” probability law
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governing the economic environments a priori. Consequently this makes it dif-
ficult to construct the exact equilibrium prices from the model. With the help
of a partial observation in which the equilibrium price or some price-depending
economic variable are observed only partially, results in this section provide us
one way to calculate not only the full equilibrium price but also the equilibrium
behavior of the price-depending economic variable.

A mathematical definition of partial observation is that the prevailing equilib-
rium graph (p∗n, n

−1Xn(p∗n)) is in some convex observation set C ⊂ Rl+d which is
consistent with the partial observation, i.e.,

π∗n(X) ∩C , ∅.

The next theorem shows that our best inferences on the equilibrium price and the
equilibrium value of the price-depending mean total characteristic of the economy,
n−1Xn, conditionally on a partial observation of the equilibrium graph π∗n(X) in the
observation set C, are the entropy minimizing prices pC and the entropy minimiz-
ing values XC. In other words, the equilibrium graph π∗n(X) converges to the graph
πC(X) which minimizes the entropy IX among the observation set C. Furthermore,
one may argue that for ”almost all” convex sets C ∈ Rl+d the entropy minimizing
set π∗C(X) is one point set (see [Num00a], Remark 3.1). In such cases, we have a
more precise result saying that the equilibrium price p∗n converges to the unique
entropy minimizing price pC and the mean of the equilibrium macroeconomic
variable n−1Xn(p∗n) converges to the unique entropy minimizing result XC.

Theorem 1 Suppose that Assumptions 1 - 7 are satisfied and C is a convex set
having non-empty interior such that IX(C) < δ1 with some constant δ1 > 0. Then
for all ε > 0 we have

lim
n→∞

P(π∗n(X) ⊂ U(πC(X), ε)|π∗n(X) ∩C , ∅) = 1.

Proof The mathematical result which leads to this theorem first appeared in
[Num00a] Corollary 4.4, but its proof contains some errors. We provide a cor-
rect proof in this paper.

We first prove an upper bound estimate of the random graph π∗n(X):

lim sup
n→∞

n−1 log P(π∗n(X) ∩ {IX ≥ δ} , ∅) ≤ −δ
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for all 0 ≤ δ ≤ δ1 where δ1 > 0 is the constant mentioned in the Theorem such
that the level sets L̄X(δ) � {IX ≤ δ} are compact.

Let b < ∞ be an arbitrary fixed constant so that

K(b) � {(p,w) | ∥w − µ(p)∥∞ ≤ b}

becomes a compact set. It is proved in [Num00a] Theorem 5 that the level set
{IX ≤ δ} is also compact, so we have some b < ∞ such that

{IX ≤ δ} ⊂ K(b).

Let F � {IX ≥ δ} ∩ K(b), then F is compact and

P{π∗n(X) ∩ {IX ≥ δ} , ∅}
≤ P{π∗n(X) ∩ F , ∅} + P{Kc(b)}

≤ P{π∗n(X) ∩ F , ∅} + P{∥1
n

Xn(p) − µ(p)∥∞ ≥ b for some p ∈ D}.

We first consider P{π∗n(X) ∩ F , ∅}. For a fixed ε0 > 0, since F is compact, we
choose {(pi,wi)} to be a finite subset of F such that for each (p, n−1Xn(p)) ∈ F
there is some (pi,wi) such that

|p − pi| ≤ ε0,

|1
n

Xn(p) − wi| ≤ ε0.

Due to Assumption 7, we have

|1
n

Zn(p) − 1
n

Zn(pi)| ≤ A1ε0 � ε1,

|1
n

Xn(pi) − wi| ≤ |
1
n

Xn(pi) −
1
n

Xn(p)| + |1
n

Xn(p) − wi|

≤ (A1 + 1)ε0 � ε2.

Thus

P{π∗n(X) ∩ F , ∅}

= P{∃p ∈ D, such that Zn(p) = 0 and (p,
1
n

Xn(p)) ∈ F}

≤ P{|1
n

Zn(pi)| ≤ ε1 and |1
n

Xn(pi) − wi| ≤ ε2}.
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By the standard large deviation upper bound estimate, we have

lim sup
n→∞

1
n

log P{π∗n(X) ∩ F , ∅}

≤ max
i

lim sup
n→∞

1
n

log P{|1
n

Zn(pi)| ≤ ε1 and
1
n

Xn(pi) ∈ Ū(wi, ε2)}

≤ max
i

(− inf
|v|≤ε1,w∈Ū(wi,ε2)

ĉX(v,w; pi)).

(1)

Since ĉX is a C2-map, the inf can be attained on the domain {|v| ≤ ε1,w ∈
Ū(wi, ε2)}. Let us expand the inf with the Lagrange remainder at (0,wi):

ĉX(v,w; pi)

= ĉX(0,wi; pi) + ε1
∂ĉX

∂v
(θε1,w + θ(ε2 + ε0)) + (ε2 + ε0)

∂ĉX

∂w
(θε1,wi + θε2)

= IX(pi,wi) + M1ε1 + M2ε2

with M1,M2 < ∞ since ĉX is C2. Thus we have

(1) ≤ max
i

(−(IX(pi,wi) + M1ε1 + M2ε2))

= −min
i

(IX(pi,wi) + M1ε1 + M2ε2)

≤ −δ −min
i

(M1ε1 + M2ε2).

Since (pi,wi) ∈ F hence IX(pi,wi) ≥ δ. We also have ε0 arbitrary fixed and
ε1 → 0, ε2 → 0 when ε0 → 0. So we get the result:

lim sup
n→∞

1
n

log P{π∗n(X) ∩ F , ∅} ≤ −δ.

Now let us consider P{∥1
n Xn(p) − µ(p)∥∞ ≥ b for some p ∈ D}. Since D is

compact, we have for every p ∈ D there is some pi such that

|1
n

Xn(p) − 1
n

Xn(pi)| ≤ A1ε0 � ε3,

|µ(p) − µ(pi)| = lim
n→∞
|E(

1
n

Xn(p) − 1
n

Xn(pi))| ≤ ε3,

where |p − pi| ≤ ε0. Then we can choose ε0 small enough such that

∥1
n

Xn(pi) − µ(pi)∥∞

= ∥(1
n

Xn(pi) −
1
n

Xn(p)) + (
1
n

Xn(p) − µ(p)) + (µ(p) − µ(pi))∥∞

≥ b − 2ε3 ≥
b
2
.
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By the standard large deviation upper bound estimate:

lim sup
n→∞

1
n

log P{∥1
n

Xn(p) − µ(p)∥∞ ≥ b for some p ∈ D}

≤ max
i

lim sup
n→∞

1
n

log P{∥1
n

Xn(pi) − µ(pi)∥∞ ≥
b
2
}

≤ max
i

(− inf
∥w−µ(pi)∥∞≥ b

2

ĉX(w; pi)).

(2)

Here ĉX(w; p) denotes the convex conjugate function of the map cX(0, β; p) �
limn→∞

1
n log Eeβ·Xn(p). By [Num00a] Lemma 4.2, we have

(2) ≤ −b
2
+

M
2
.

Here M � sup|β|≤1,p∈D |∂2cX(0, β; p)| < ∞. Since b is arbitrary large, we take
b ≥ M+2δ, then the order of P{π∗n(X)∩F , ∅}(= e−nδ according to (1)) dominates
the order of P{∥ n−1Xn(p) − µ(p) ∥∞≥ b for some p ∈ D}(= e−n( b

2−
M
2 ) according to

(2)). So we have proved the final assertion:

lim sup
n→∞

1
n

log P{π∗n(X) ∩ {IX ≥ δ} , ∅} ≤ −δ.

By [Num00a] Theorem 10, a lower bound estimate can be found:

lim inf
n→∞

n−1 log P(π∗n(X) ∩ H , ∅) ≥ −IX(H).

and as a corollary of the upper bound and lower bound estimates, it is proved in
[Num00a] Corollary 4.1 that for any convex set C

lim
n→∞

n−1 log P(π∗n(X) ∩C , ∅) = −IX(C).

By defining Cε � C̄ ∩ U(π∗C(X), ε)c, it can be shown that

P{π∗n(X) ∩Cε , ∅|π∗n(X) ∩C , ∅} ≤ en(−I(Cε)+I(C)).

By the continuity of I(·) and the fact Cε ⊂ C̄\π∗C(X), we have I(Cε) > I(C̄) = I(C).
Therefore

lim
n→∞

P(π∗n(X) ⊂ U(π∗C(X), ε)|π∗n(X) ∩C , ∅) = 1

and the assertion follows. �
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3.2 Full observation

The law of large numbers of random exchange economies ([Num00b],[MR00],[MR02])
argues that the observed equilibrium price converges to some price in the conver-
gence set consisting of prices such that the expectation of the total excess demand
vanishes. The probability law governing the economic environment, which is re-
quired in calculating the expectation of the total excess demand, can be chosen
subjectively or empirically. But in most cases it is difficult to know this probabil-
ity law exactly a priori. We are interested in the problem that how a a posteriori
fully observed equilibrium price could help us to calibrate the a priori probability
law and get a ”true” probability law consistent with our observation.

Due to the law of large numbers of random exchange economies, when the
number of agents in the economy is large, our observed equilibrium price should
be in a close neighborhood of some model-based expected equilibrium price un-
der the ”true” probability law governing the economic environment. In a precise
mathematical form, a full observation is the occurrence of the event

π∗n ∩ U(p, δ) , ∅.

Denote the a priori chosen probability law by P(dω) and the a posteriori (after
calibration) ”true” probability law by P(dω|π∗n ∩ U(p, δ) , ∅) where p is the a
posteriori fully observed equilibrium price.

We define the probability law under the observation p as

P(dω|p) � Λn(p)−1eα(p)·Zn(ω,p)P(dω),

and denote the expectation under the probability law by E(·|p).

Theorem 2 Suppose that Assumptions 1 - 7 are satisfied. Then for any fixed
ε > 0, all sufficiently small δ > 0:

lim
n→∞

P(n−1|X∗n − E(Xn|p)| < ε|π∗n ∩ U(p, δ) , ∅) = 1.

Proof With a full observation p the observation set becomes

C � U(p, δ) × Rd.
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The contraction principle ([Num00a] Theorem 4) says that for all p ∈ ∆,

I(p) = inf
w∈Rd

IX(p,w)

= IX(p,w(p))

where

w(p) �
∂cX

∂β
(α(p), 0; p).

We then have

w(p) =
∂cX

∂β
(α(p), 0; p)

= lim
n→∞

n−1 E(Xn(p, ω)eα(p)·Zn(p,ω))
Eeα(p)·Zn(p,ω) .

The second equality follows the uniform convergence assumption of cX. Therefore
we can see w(p) as the limit of mean expectation of Xn under the probability law

P(dω|p) �
eα(p)·Zn(p,ω)

Eeα(p)·Zn(p,ω) P(dω),

i.e.,

w(p) = lim
n→∞

n−1E(Xn|p).

Then πC(X) has the form:

πC(X) = {(pC, lim
n→∞

n−1E(Xn|pC)); pC ∈ U(p, δ)}.

Assumption 7 indicates that Zn(·) and Xn(·) are continuous on some closed neigh-
borhood of the given price p. It follows that

|E(Xn|p) − E(Xn|pC)| < εn(δ) when |p − pC | < δ

where εn(δ)→ 0 when δ→ 0. Thus

U(πC(X), ε(n, δ)) ⊂ U((p, n−1E(Xn|p)), δ)

where ε(n, δ)→ 0 when δ→ 0. By Theorem 1 we can conclude that

lim
n→∞

P(π∗n(X) ⊂ U(πC(X), ε)|π∗n(X) ∩C , ∅) = 1.

12



It follows that for all sufficiently small δ > 0

lim
n→∞

P(π∗n(X) ⊂ U((p, n−1E(Xn|p)), δ)|π∗n ∩ U(p, δ) , ∅) = 1.

Hence
lim
n→∞

P(n−1|X∗n − E(Xn|p)| < ε|π∗n ∩ U(p, δ) , ∅) = 1.

�

This theorem asserts that the probability law P(dω|p) is a good approximation
of the a posteriori probability law conditionally on the observation of the r.e.p.
at p. For a check, we see that due to the law of large numbers, the expectation
of total excess demand under the a posteriori probability law must vanish at our
observed equilibrium prices p, i.e.,

lim
n→∞

E(Zn(p)|π∗n ∩ U(p, δ) , ∅) � lim
n→∞

∫
Ω

Zn(ω, p)P(dω|π∗n ∩ U(p, δ) , ∅) = 0.

If we take P(dω|π∗n ∩ U(p, δ) , ∅) to be P(dω|p), then it is easy to verify

lim
n→∞

E(Zn(p)|p) � lim
n→∞

∫
Ω

Zn(ω, p)
eα(p)·Zn(p,ω)

Eeα(p)·Zn(p,ω) P(dω)

= lim
n→∞

1
Eeα(p)·Zn(p,ω)

∂

∂α
Eeα(p)·Zn(p,ω)

= lim
n→∞

∂cn

∂α
(α(p); p)

= 0.

The last equality follows the definition of α(p).
The probability law P(dω|p) we used in this theorem is an analogy to the

canonical probability law in thermodynamics. Therefore this result has another
interpretation from the thermodynamical point of view. On can compare it with
[Num09], Theorem 5 where a different approach based on a ”δ-neighborhood
observation” is used.

4 An application: A random exchange economy with
sectors

In this section we apply our main results to a random exchange economy with eco-
nomic sectors. Our interests in such a sectorial economy are inspired by [LN01].
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In [LN01], a disequilibrium status of the sectorial economy is discussed, while in
this section we are interested in the properties when the sectorial economy is in
equilibrium.

The economic sectors can represent different groups of agents in an economy
or different countries or organizations in a global trade model. We choose the
collection of all sectorial excess demands to be the price depending total charac-
teristic of the economy, Xn(p). Because of the close connection between the total
excess demand and the sectorial excess demands, the entropy functions possess
some special properties. We can also prove an important result saying that when
the whole economy is in equilibrium, each economic sector is also in equilibrium
under the same equilibrium price.

We consider a random exchange economy consisting of K sectors each having
nk random agents and its sectorial excess demand function Z(k)

nk (p, ω), k = 1, . . . ,K.
Let

Zn(p) � (Z(1)
n1

(p), . . . ,Z(K)
nK

(p)) ∈ RKl

denote the collection of all sectorial excess demands where n =
∑K

k=1 nk is the total
number of agents in the economy. Thus the total excess demand of the economy
becomes Zn(p) =

∑K
k=1 Z(k)

nk . In the economic equilibrium, we have Zn(p) = 0.

Remark 1 For example, we could assume that agents in the same sector are in-
dependent and identical, and agent ik (the subscription k means the agent is in
sector k) has a Cobb-Douglas utility function so that the utility of the consump-
tion bundle x = (x1, . . . , xl) is of the form

uik(x) =
l∏

j=1

(x j)α
j
ik

where α1
ik
, . . . , αl

ik
are nonnegative share parameters satisfying

∑l
j=1 α

j
ik
= 1. De-

note agent ik’s initial endowment by eik � (e1
ik
, . . . , el

ik
). In a random model, the

share parameters αik as well as the initial endowments eik , ik = 1, . . . , nk, k =
1, . . . ,K are random variables. For more details on a random Cobb-Douglas ex-
change economy one could see [Num09], p.21.

We then define
c(α; p) � lim

n→∞
n−1 log Eeα·Zn(p)
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and
cZ(α, β; p) � lim

n→∞
n−1 log Eeα·Zn(p)+β·Zn(p)

These two limits are assumed to exist and converge uniformly over α and β. The
entropy function is then defined by

I(p) � − inf
α∈Rl

c(α; p)

and
IZ(p,w) � sup

(α,β)∈Rl+Kl
(β · w − cZ(α, β; p))

Notice Zn(p) =
∑K

k=1 Z(k)
nk and let α1 = (α, . . . , α︸   ︷︷   ︸

K

), thus

cZ(α, β; p) = lim
n→∞

n−1 log Eeα·Zn(p)+β·Zn(p)

= lim
n→∞

n−1 log Ee(α1+β)·Zn(p)

= lim
n→∞

n−1 log Eeα·Zn(p)

� c∗Z(α; p)

and the economic entropy function for a sectorial economy with respect to Zn can
be written as

IZ(p,w) = sup
(α,β)∈Rl+Kl

(β · w − cZ(α, β; p))

= sup
(α,α)∈Rl+Kl

((α − α1) · w − c∗Z(α; p))

= sup
α∈RKl

(α · w − c∗Z(α; p)) − inf
α∈Rl
α1 · w.

Proposition 1 In a random exchange economy with K sectors,

IZ(p,w) = sup
α∈RKl

(α · w − c∗Z(α; p)) − inf
α∈Rl
α1 · w.

We assume further that α = α(p) ∈ Rl is the unique solution of the equation

∂c
∂α
= 0.

It follows that
c(α; p) = c∗Z(α1; p),
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I(p) = −c∗Z(α(p)1; p)

≤ − inf
α∈RKl

c∗Z(α; p)

and

IZ(p,w) = sup
(α,β)∈Rl+Kl

(β · w − cZ(α, β; p)) ≥ sup
(α,α)∈Rl+Kl

((α − α1) · w) + I(p).

By the contraction principle ([Num00a] Theorem 4) we know for all p ∈ ∆,

I(p) = inf
w∈RKl

IZ(p,w) = IZ(p,w(p))

where

w(p) =
∂cZ

∂β
(α(p), 0; p).

Then the following inequality should hold

IZ(p,w(p)) = I(p) ≥ sup
(α,α)∈Rl+Kl

((α − α1) · w(p)) + I(p).

It is to say

sup
(α,α)∈Rl+Kl

((α − α1) · w(p)) ≤ 0.

Since α ∈ RKl and α ∈ Rl can be chosen arbitrarily, we have

w(p) = 0,

hence

−c∗Z(α(p)1; p) = I(p) = IZ(p, 0) = − inf
α∈RKl

c∗Z(α; p).

Thus we have proved

Proposition 2 In a random exchange economy with K sectors,

I(p) = IZ(p, 0)

and
∂c∗Z
∂α

(α(p)1; p) = 0.
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A partial observation in our example could be that only the prices of some l′

commodities, say q1, . . . , ql′ , are observed and prices of the rest of the commodi-
ties l′ + 1, . . . , l remain unknown or if we observe the price of a given commodity
bundle b = (b1, . . . , bl) ∈ Rl, i.e., b · p = q for some known price q. In these cases,
the observation set C is C = B × Rd where

B � {p ∈ Rl
++ : p1 ∈ U(q1, ε), . . . , pl′ ∈ U(ql′ , ε)}

and
B � {p ∈ Rl

++ : b · p ∈ U(q, ε)}

respectively, where ε > 0. The use of ε-neighborhood in constructing the obser-
vation sets is due to the fact that we can only have observations on an economy
with relatively large but still finite number of agents.

We could also have a partial observation on the price-depending variable Xn.
For example we observe the total excess demands of the first k′ sectors, Z1, . . . , Zk′ ,
but have no information about the other sectorial excess demands and the equilib-
rium prices, then the observation set C becomes

C = Rl × D � Rl × {Xn ∈ Rd : n−1Z(1) ∈ U(n−1Z1, ε), . . . , n−1Z(k′) ∈ U(n−1Zk′ , ε)}.

Of course, we can have partial observations on both the equilibrium prices and the
sectorial excess demands. In that case, the observation set C is of the form B×D.

Having a partial observation, π∗n(Z)∩C , ∅, we can give our inferences on the
full equilibrium price and the full collection of the sectorial excess demands, i.e.,
the equilibrium graph π∗n(Z) (i.e., {(p∗n, n

−1Zn(p∗n))}) will be in the close neighbor-
hood of the entropy minimizing graph (πC(Z)) (i.e., {(pC,wC)}) with high proba-
bility when n→ ∞.

Because of the connection between Zn and Zn, the entropy minimizing set
πC(Z) has a special form when we have an observation on the equilibrium price,
i.e., our observation set is of the form B × RKl. By Proposition 2,

min
(p,w)∈B×RKl

IZ(p,w) = min
p∈B

IZ(p, 0) = min
p∈B

I(p).

Thus

πC(Z) = {(p,w) = arg min
(p,w)∈B×RKl

IZ(p,w)}

= {(pB, 0)}
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where pB ∈ πB � {p : p = arg minp∈B I(p)}. According to Theorem 1, we have

Proposition 3 In a random exchange economy with K sectors, when we have
an observation on the equilibrium price, i.e., our observation set is of the form
B × RKl, then for all ε > 0

π∗n(Z) ⊂ U({(πB, 0)}, ε)

almost surely when n→ ∞.

This proposition indicates that n−1Zn(p) = (n−1Z(1), . . . , n−1Z(k))→ 0. So it has
an important interpretation which says that when the whole economy is in equi-
librium, each economic sector is also in equilibrium under the same equilibrium
price.
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