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Abstract

We study the properties of real functions f for which the compo-
sitions f ◦ d is a metric for every metric space (X, d). The explicit
form is found for the invertible elements of the semigroup F of all such
functions. The increasing functions f ∈ F are characterized by the
subadditivity condition and a maximal inverse subsemigroup in the
set of all these functions is explicitly described. The upper envelope of
the set of functions f ∈ F with f(1) = 1 is found and it leads to the
exact constants in Harnack’s inequality for functions f ∈ F .
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1 Introduction

Write R⊕ for the set of all nonnegative real numbers. For each metric space
(X, d) denote by F(X) = F(X, d) the set of all functions f : R⊕ → R⊕ for
which the map

X ×X
d−→ R⊕ f−→ R⊕ (1.1)

is a metric on X and, moreover, define the set F of functions f by the rule

(f ∈ F) ⇔ (f ∈ F(X) for every metric space X). (1.2)

The set F is a special case among the sets of functions Φ : R⊕×· · ·×R⊕ →
R⊕ which generate the metrics dΦ on products of metric spaces (Xi, di), i =
1, . . . , n by the rule

dΦ((x1, . . . , xn), (y1, . . . , yn)) = Φ(d1(x1, y1), . . . , dn(xn, yn)).

These functions were studied in an interesting paper of A. Bernig, T. Fo-
ertsch and V. Schroeder [2]. In that paper the authors write: “The function
Φ has to satisfy certain natural conditions ... in order that dΦ is metric.
These conditions still allow strange metrics on the product (even the trivial
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product when n = 1). In particular, Φ does not have to be continuous”. In
the present paper we consider general f ∈ F which, of course, can be dis-
continuous. Note that [2] deals with the products X1×· · ·×Xn for arbitrary
n ∈ N but, in fact, only when Φ is induced by a norm.

There is a simple characterization of functions belonging to F , see Lem-
ma 1 in [2] for a similar “multidimensional” result.

1.1 Theorem. A function f : R⊕ → R⊕ belongs to F if and only if the
following conditions hold:

(i) f(0) = 0 and f(t) > 0 for all t > 0;

(ii) the inequality

2(f(a) ∨ f(b) ∨ f(c)) ≤ f(a) + f(b) + f(c) (1.3)

holds for a, b, c ∈ R⊕ whenever

2(a ∨ b ∨ c) ≤ a + b + c. (1.4)

For the proof it is sufficient to observe that (1.4) holds if and only if we
have the following three inequalities

a ≤ b + c, b ≤ a + c and c ≤ a + b.

1.2 Remark. Every function f : R⊕ → R⊕ belongs to F(X) if X = ∅. In
this case superposition (1.1) is empty and it is the unique distance function
on ∅. A function f : R⊕ → R⊕ belongs to F(X) for each one-point metric
space X if and only if f(0) = 0 and, moreover, f ∈ F(X) for all two-point
metric spaces X if and only if condition (i) of Theorem 1.1 holds.

The set F coincides with the set of all functions f : R⊕ → R⊕ transfering
metrics to metrics on three-point metric spaces, i.e.,

F = ∩{F(X) : X are metric spaces with cardX = 3}. (1.5)

The last statement implies

1.3 Corollary. Let R2 be the set of all complex numbers with the usual
metric dR2(z1, z2) = |z1 − z2|. Then the equality

F = F(R2) (1.6)

holds.

It is a consequence of the commutativity of the next diagram for each
f ∈ F(R2).

X ×X

R2 × R2 R⊕ R⊕
?

emX⊗emX

HHHHHHHHj

dX

-
dR2

-
f
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Here dX and emX ⊗ emX are the distance functions and, respectively, the
direct product of the isometric embeddings emX of the three-point metric
spaces X.

We may replace R2 in (1.6) by an arbitrary metric space Y which has
the property that every three-point metric space X can be isometrically
embeded in Y .

The next proposition follows from the definition of the set F .

1.4 Proposition. Let f, g ∈ F . The following statements hold.

(i) The envelope f ∨ g,

(f ∨ g)(t) := f(t) ∨ g(t), t ∈ R⊕,

belongs to F .

(ii) The superposition g ◦ f ,

(g ◦ f)(t) = g(f(t)), t ∈ R⊕,

belongs to F .

(iii) If α, β ∈ R⊕ and α ∨ β > 0, then we have αf + βg ∈ F .

Statements (i) and (ii) of the previous proposition show, in particular,
that F is a semigroup with respect to the superposition ◦ of functions f ∈ F
and that the union

F̂ := F ∪ {0}, (1.7)

where 0 is the identically zero function on R⊕, is a convex cone in the linear
space of all real-valued functions on R⊕. We shall prove some properties of
the semigroup (F , ◦) and of the cone F̂ in the next section of the paper.

2 Examples and properties
of functions in F

2.1 Example. Let a and b be positive real numbers. The following functions
belong to F for every a, b > 0:

gb(x) = bx, x ∈ R⊕, fa(x) =

{
0 if x = 0
a if x > 0

, (2.1)

ϕ(x) =





0 if x = 0
1 if x is positive and irrational
1 + 1

m(x) if x is positive and rational
(2.2)

where m(x) is the smallest positive integer m such that x = n
m and n ∈ N.
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The function ϕ is a particular case of the following construction.

2.2 Example. Let a > 0. If the function f : R⊕ → R⊕ satisfies the double
inequality

a ≤ f(x) ≤ 2a

for all x > 0 and if f(0) = 0, then f ∈ F .

Some other examples of functions f ∈ F will be given in Section 4 of the
paper.

2.3 Remark. The function ϕ, see (2.2), is a variant of Thomae’s function,
also known as the Riemann function [1, Example 5.1.6(h)]. The set of the
discontinuities of ϕ is the set of all nonnegative rational numbers. All pos-
sible sets of discontinuities of functions f ∈ F will be completely described
in the end of Section 3.

Consider now the pointwise limits of functions from F .

2.4 Theorem. Let {fn}n∈N be a pointwise convergent sequence of functions
fn ∈ F and let

f(t) := lim
n→∞ fn(t) (2.3)

for each t ∈ R⊕. Then either f belongs to F or f(t) = 0 for all t ∈ R⊕.

2.5 Corollary. The convex cone F̂ , see (1.7), is the closure of the set F
with respect to the pointwise convergence topology in the linear space of all
real-valued functions on R⊕.

The following lemma is a particular case of the corresponding multidi-
mensional result, see Remark ii), [2, p. 502].

2.6 Lemma. Let f : R⊕ → R⊕ be a function satisfying condition (ii) of
Theorem 1.1. Then the inequality

f(t) ≤ 2f(x) (2.4)

holds whenever 0 ≤ t ≤ 2x.

Proof of Theorem 2.4. Since fn ∈ F for all n ∈ N, we have the inequality

2(fn(a) ∨ fn(b) ∨ fn(c)) ≤ fn(a) + fn(b) + fn(c)

whenever 2(a∨ b∨ c) ≤ a+ b+ c and a, b, c ∈ R⊕. Letting n →∞ we obtain
that condition (ii) of Theorem 1.1 holds for the limit function f . Moreover
it is clear that f(0) = 0 and that f(x) ≥ 0 for all x ∈ R⊕. Consequently if
f 6∈ F , then there is x0 > 0 such that f(x0) = 0. Applying Lemma 2.6 we
see that f(x) = 0 for all x ∈ [0, 2x0]. The second application of this lemma
gives the same equality on [0, 4x0], the third one gives it on [0, 8x0] and so
on. Thus f(x) = 0 for all x ∈ R⊕.
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The following corollary is another form of Theorem 1.1.

2.7 Corollary. Let f : R⊕ → R⊕ be a function such that: f(0) = 0 and
there is x0 ∈ R⊕ with f(x0) 6= 0 and condition (ii) of Theorem 1.1 holds for
this f . Then f belongs to F .

Proof. It follows from Theorem 1.1 that f ∈ F if and only if f(x) > 0
for all x > 0. If f(x1) = 0 for some x1 > 0, then using (2.4) we can
prove the equality f(x) = 0 for all x ∈ R⊕. The last equality contradicts
f(x0) 6= 0.

Topological properties of (X, f ◦d) are simple consequence of Lemma 2.6.
Recall that two metrics d and ρ on a set X are called equivalent if d and ρ
induce exactly the same open sets, i.e., the same topology on X. The next
lemma is valid.

2.8 Lemma. Let (X, d) be a metric space and let f ∈ F(X). The metrics
d and f ◦ d induce the same topology on X if and only if for every sequence
{xn}n∈N, xn ∈ X and every point a ∈ X, we have either

lim
n→∞ d(xn, a) = 0 and lim

n→∞ f(d(xn, a)) = 0 (2.5)

or
lim

n→∞ sup d(xn, a) > 0 and lim
n→∞ sup f(d(xn, a)) > 0. (2.6)

2.9 Theorem. Let f ∈ F . The metrics d and f ◦ d are equivalent for every
metric space (X, d) if and only if

lim
t→0

f(t) = 0. (2.7)

Proof. Suppose that d and f ◦d are equivalent for every metric space (X, d).
Let {tn}n∈N be an arbitrary sequence of nonnegative real numbers such that
limn→∞ tn = 0. Using Lemma 2.8 with X = R⊕, d(x, y) = |x−y| and a = 0
we obtain from (2.5) that limn→∞ f(tn) = 0. Hence f is continuous at the
point zero, so we have (2.7).

Assume now that (2.7) holds but there exists a metric space (X, d) such
that the metrics d and f ◦ d are not equivalent. By Lemma 2.8 we can find
a sequence {xn}n∈N and a point a in the space (X, d) such that either

lim
n→∞ d(xn, a) = 0 but lim sup

n→∞
f(d(xn, a)) > 0 (2.8)

or
lim

n→∞ sup d(xn, a) > 0 but lim
n→∞ f(d(xn, a)) = 0. (2.9)

Relations (2.8) contradict (2.7) so we have (2.9) which means that there
are t0 > 0 and a subsequence {xnk

}k∈N of the sequence {xn}n∈N such that
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d(xnk
, a) ≥ t0 for all k ∈ N and limk→∞ f(d(xnk

, a)) = 0. Inequality (2.4)
implies

f(t0) ≤ 2f(d(xnk
, a))

for each k ∈ N. Letting k → ∞, we obtain the inequality f(t0) ≤ 0 with
t0 > 0, contrary to the condition f ∈ F .

Recall that a metric space (X, d) is discrete if each subset of X is open.

2.10 Example. The functions ϕ and fa, see (2.1) and (2.2) are examples
of functions such that the space (X, ϕ ◦ d) and (X, fa ◦ d) are discrete for
every metric space (X, d). Certainly limit relation (2.7) does not hold with
these functions.

The following theorem shows that we describe a typical situation in
Example 2.10.

2.11 Theorem. Let f ∈ F . The following statements are equivalent.

(i) The function f is discontinuous at zero.

(ii) There is a > 0 such that f(x) ≥ a for all x > 0.

(iii) The space (X, f ◦ d) is discrete for every metric space (X, d).

Proof. The implication (ii)⇒(iii) is trivial and (iii)⇒(i) follows from The-
orem 2.9. To prove (i)⇒(ii) suppose that there is a sequence of strictly
positive numbers xn, n = 1, 2, . . . , such that

lim
n→∞ f(xn) = 0.

Let ε > 0 and let n be a natural number such that f(xn) ≤ ε. Lemma 2.6
implies

|f(t)− f(0)| = f(t) ≤ 2f(xn) ≤ 2ε

for all t ∈ [0, xn]. Hence f is continuous at 0. The implications (i)⇒(ii)
follows.

2.12 Corollary. The following statements hold.

(i) If (X, d) is a discrete metric space, then d and f ◦ d are equivalent for
each f ∈ F .

(ii) If (X, d) is a nondiscrete metric space, f ∈ F , and if d and f ◦ d are
equivalent, then for every metric space (Y, ρ) the metrics ρ and f ◦ ρ
are equivalent.
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It was noted in Proposition 1.4 that f ∨ g ∈ F for each two f, g ∈
F . Using Lemma 2.6 we can generalize this fact for the upper envelops of
nonvoid sets G ⊆ F with no restrictions to card(G).

Let G be a nonvoid subset of F . The upper envelop of G is the smallest
function g : R⊕ → [0,∞] such that f(t) ≤ g(t) for all t ∈ R⊕. We shall write
fG or

∨
f∈G

f for the upper envelope of G.

2.13 Proposition. Let G be a nonvoid subset of F . The upper envelope fG
belongs to F if and only if there is t0 > 0 such that fG(t0) < ∞.

Proof. Let a, b, c ∈ R⊕ be numbers for which (1.4) holds. Then, for every
g ∈ G, we have the inequality

2(g(a) ∨ g(b) ∨ g(c)) ≤ fG(a) + fG(b) + fG(c),

so that
2(fG(a) ∨ fG(b) ∨ fG(c)) ≤ fG(a) + fG(b) + fG(c).

Moreover since G 6= ∅, we have fG(0) = 0 and 0 < fG(t) ≤ ∞ for each t > 0.
Suppose that there is t0 > 0 such that fG(t0) < ∞. Using Lemma 2.6

we obtain the double inequality

g(t) ≤ 2g(t0) ≤ 2fG(t0)

for all t ∈ [0, 2t0]. Consequently

fG(t) =
∨

g∈G
g(t) ≤ 2fG(t0) < ∞

folds for all t ∈ [0, 2t0]. Repeating this procedure we see that fG is finite on

the set
∞⋃

n=1
[0, 2nt0] = R⊕. Hence if fG is finite in a point t0 ∈ (0,∞), then

fG ∈ F . The converse statement is evidently true.

2.14 Corollary. Let {fn}n∈N be a sequence of functions belonging to F and
let {αn}n∈N be a sequence of positive real numbers. If there is t0 > 0 such
that the series

∑∞
n=0 αnfn(t0) is convergent, then the series

∑∞
n=0 αnfn(t)

converges uniformly on the bounded subsets of R⊕ and the sum belongs to
F .

2.15 Remark. The corollary generalizes statement (iii) of Proposition 1.4.
The uniform convergence on a bounded set B ⊆ R⊕ means that

lim
m→∞

(
sup
t∈B

( ∞∑
n=m

αnfn(t)
))

= 0,

and this is a consequence of Lemma 2.6 applied to the sums
∑∞

n=m αnfn(t),
m = 0, 1, 2, . . . .

7



Let G1 be a family of all functions f ∈ F such that f(1) = 1. To find the
explicit form of the upper envelop fG1 we introduce the following function
µ. For every x ∈ R⊕ define µ(x) as the smallest n ∈ N = {0, 1, 2, . . . } such
that x ≤ n. It easily follows that

µ(x) =

{
x if x ∈ N
[x] + 1 if x ∈ R⊕ \ N (2.10)

where [x] is the integral part of x. The function µ is increasing and, for each
x ∈ R, satisfies

x ≤ µ(x) and µ(µ(x)) = µ(x) (2.11)

and
µ(x + y) ≤ 1 + µ(x) and µ(m + y) = µ(m + 1) (2.12)

if 0 < y ≤ 1 and m ∈ N.

2.16 Theorem. The function fG1 has the representation

fG1(x) =





0 if x = 0
2 if 0 < x < 1
µ(x) if 1 ≤ x < ∞.

(2.13)

To prove this theorem we need the following two lemmas.

2.17 Lemma. Each function f ∈ F is subadditive, that is

f(x + y) ≤ f(x) + f(y) (2.14)

holds for all x, y ∈ R⊕.

Proof. It follows from Remark i) in [2, p. 502].

2.18 Lemma. Let f : R⊕ → R⊕ be a function such that f(0) = 0 and
f(x) > 0 for all x > 0. If the inequality

f(z) ≤ f(x) + f(y) (2.15)

holds whenever
0 ≤ z ≤ x + y and x ∧ y > 0, (2.16)

then f ∈ F .

Proof. To verify f ∈ F it is sufficient to show that condition (ii) of Theo-
rem 1.1 is true. Suppose that (1.4) holds. It implies the inequalities

a ≤ b + c, b ≤ c + a and c ≤ a + b.

If a∧ b∧ c = 0, then we have a = b or b = c or c = a so (1.3) is trivially true.
The implication (2.16)⇒(2.15) yields (1.3) if a ∧ b ∧ c > 0. Hence condition
(ii) of Theorem 1.1 holds if (2.16) implies (2.15).
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Proof of Theorem 2.16. For convenience we introduce the function

ν(x) :=

{
2 if x ∈ (0, 1)
µ(x) if x ∈ R⊕ \ (0, 1).

(2.17)

We must prove the equality
ν = fG1 . (2.18)

We shall first prove that
ν(t) ≥ fG1(t) (2.19)

for each t ∈ R⊕.
Let f ∈ G1. First note that

f(0) = ν(0) = 0 and f(1) = ν(1) = 1.

Let t ∈ (0, 1) ∪ (1, 2]. Inequality (2.4) implies

f(t) ≤ 2f(1) = 2

and moreover, by (2.10) and (2.17), we have ν(t) = 2. Consequently the
inequality

f(t) ≤ ν(t) (2.20)

holds for all t ∈ [0, 2]. To extend this inequality to intervals [0, n] with
natural n > 2 we use the induction on n. Suppose that (2.20) holds for
t ∈ [0,m] where m ≥ 2. Let x ∈ (0, 1]. Using Lemma 2.17 we obtain

f(m + x) ≤ f(m + x− 1) + f(1). (2.21)

The inductive hypothesis implies

f(m + x− 1) ≤ ν(m + x− 1). (2.22)

Since m + x− 1 ∈ [1,∞) and ν|[1,∞) = µ|[1,∞) and since µ is increasing, we
have

ν(m + x− 1) ≤ ν(m) = m.

It follows from this, (2.22), (2.21) and (2.12) that

f(m + x) ≤ ν(m + x− 1) + f(1) = ν(m) + 1
= m + 1 = ν(m + 1) = ν(m + x).

Hence if (2.20) holds on [0,m] it also holds on [0,m + 1]. Thus (2.20) holds
for all t ∈ R⊕ and all f ∈ G1. It implies (2.19).

Next we prove the converse inequality

ν(t) ≤ fG1(t) (2.23)
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for all t ∈ R⊕. To this end, we establish the membership relation ν ∈ G1

which evidently implies (2.23).
Since ν(1) = 1 and ν(0) = 0 and ν(t) > 0 for t > 0 it is sufficient, by

Lemma 2.18, to show that

ν(z) ≤ ν(z) + ν(y) (2.24)

whenever
z ≤ x + y and x ∧ y > 0. (2.25)

If z ∈ [0, 2], then ν(z) ≤ 2 so (2.24) holds because ν(x) ≥ 1 for all x > 0.
If z ∈ (2,∞) and 0 < x ∧ y ≤ 1, then (2.25) implies the inequality x ∨ y ≥
z − 1 and, in addition, we have µ(z) = ν(z) and µ(z − 1) = ν(z − 1), and
µ(x ∨ y) = ν(x ∨ y). Consequently using (2.13) we obtain

ν(x) + ν(y) = ν(x ∧ y) + ν(x ∨ y) ≥ 1 + ν(x ∨ y) = 1 + µ(x ∨ y)
≥ 1 + µ(z − 1) ≥ µ(z) = ν(z).

Consider now the case where z ∈ (2,∞) and x ∧ y ≥ 1. In this case µ(z) =
ν(z), µ(x) = ν(x) and µ(y) = ν(y). Suppose that (2.25) holds. Now the
additivity of µ on the set N and (2.11) yield

ν(x) + ν(y) = µ(x) + µ(y) = µ(µ(x)) + µ(µ(y))
= µ(µ(x) + µ(y)) ≥ µ(x + y) ≥ µ(z) = ν(z). (2.26)

Consequently (2.24) holds in all cases. Hence ν ∈ G1 and (2.23) follows.
Inequalities (2.23) and (2.19) imply the desired equality (2.18).

Using Theorem 2.16 we can find the exact constant in Harnack’s inequal-
ity for functions from F .

2.19 Corollary. Let A be a nonvoid compact subset of (0,∞) and let

m := min{x : x ∈ A}, M := max{x : x ∈ A}.

Then, for every function f ∈ F , the inequality

sup{f(x) : x ∈ A} ≤ µ
(M

m

)
inf{f(x) : x ∈ A} (2.27)

holds with µ defined by (2.10). This inequality transforms into the equality
for the function f = µ ◦ g 1

m
, see (2.1).

Proof. Write

s(f) = sup{f(x) : x ∈ A} and i(f) := inf{f(x) : x ∈ A}.
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If M = m or if s(f) = i(f), then (2.27) holds because

µ
(M

m

)
≥ µ(1) = 1.

Consequently, without loss of generality we assume that s(f) > i(f) and that
M > m. In this case for all sufficiently small ε > 0 there is a = a(ε) ∈ A
such that

i(f) ≤ f(a) ≤ i(f) + ε < s(f).

Write iε = f(aε) and define

ψε(x) =





0 if x = 0
iε if 0 < f(x) ≤ iε

f(x) if f(x) > iε.

It is clear that ψε = f ∨ fiε ∈ F , see Example 2.1. The superposition
g 1

f(a)
◦ ψε ◦ ga belongs to the set G1. Thus, by Theorem 2.16 we have

sup{g 1
f(a)

◦ ψε ◦ ga(t) : t ∈ g−1
a (A)} ≤ sup{fG1(t) : t ∈ g−1

a (A)} (2.28)

where

g−1
a (A) := {t ∈ R⊕ : ga(t) ∈ A} =

1
a
A =

{1
a
x : x ∈ A

}
.

We claim that
sup

{
fG1(t) : t ∈ 1

a
A

}
≤ µ

(M

m

)
. (2.29)

Indeed, it is clear if 1
aA ⊆ (0, 1], because

fG1(x) ≤ 2 for all a ∈ (0, 1]

and because the inequality M > m implies M
m > 1 so µ(M

m ) ≥ 2. If there is
t > 1 such that t ∈ 1

aA, then (2.13) implies

sup
{

fG1(t) : t ∈ 1
a
A

}
= fG1

(M

a

)
= µ

(M

a

)
≤ µ

(M

m

)
.

The left part in (2.28) can be rewritten as

sup{g 1
f(a)

◦ ψε ◦ ga(t) : t ∈ g−1
a (A)} =

1
f(a)

sup{ψε(t) : t ∈ A} =
1

f(a)
s(f).

The last equality (2.28) and (2.29) imply

1
f(a)

s(f) ≤ µ
(M

m

)
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or, in the equivalent form,

s(f) ≤ f(aε)µ
(M

ε

)
.

Letting ε → 0 we obtain (2.27).
The rest part of Corollary 2.19 can be proved by simple computation.

2.20 Remark. The function µ is subadditive, in fact it was proved in (2.26).
Hence, by Theorem 4.1, µ belongs to F . Consequently the constant µ(M

m )
is the best possible for inequality (2.27).

2.21 Remark. By Lemma 2.17 all functions f ∈ F are subadditive. This
fact implies, of course, the existence of analogs to some results of the present
paper in the general theory of subadditive functions. Cf., for example,
Proposition 2.13 with Theorem 7.2.2 in [6] or Theorem 2.4 with Theo-
rems 7.2.3 and 7.3.3 in [6].

3 The smallest ideal and the largest
subgroup of the semigroup (F , ◦)

The sets

A := {fa : a ∈ R⊕ \ {0}} and B := {gb : b ∈ R⊕ \ {0}}, (3.1)

where

gb(x) = bx, x ∈ R⊕ and fa(x) =

{
0 if x = 0
a if x > 0,

see Example 2.1, have interesting, purely algebraic characterizations in the
semigroup (F , ◦).
3.1 Definition. Let S be a semigroup. An element i ∈ S is a left zero of
S if ix = i for all x ∈ S. A nonvoid set Γ ⊆ S is a bilateral ideal of S if
(xb)y ∈ Γ for all x, y ∈ Γ and every b ∈ S.

3.2 Proposition. The set A is the smallest bilateral ideal of the semigroup
(F , ◦).
Proof. It is known and easy to prove, that the set of all left zeros of a
semigroup S if the smallest bilateral ideal of S if this set is nonvoid. See [4,
§1.1, Exercise 1.6] for the dual statement.

For all g ∈ F and each fa ∈ A, we have the equalities

g ◦ fa = fg(a) and fa ◦ g = fa. (3.2)

Equalities (3.2) imply that A is a bilateral ideal. Write Â for the smallest
bilateral ideal in F . Evidently we have inclusion Â ⊆ A. The second
equality in (3.2) means that each fa is a left zero of F . Consequently we
obtain the converse inclusion A ⊆ Â.

12



3.3 Corollary. If e is a left zero of F , then there is a ∈ R⊕ \ {0} such that
e = fa. There are no right zeros in F .

Proof. The first statement follows from Proposition 3.2. The nonuniqueness
of the left zeros implies the second one. For details see [4, §1.1].

3.4 Definition. Let S be a semigroup with the unit e, i.e., ex = xe = x for
each x ∈ S. An element i ∈ S is invertible in S if there is b ∈ S such that

ib = e = bi. (3.3)

This b will be called the inverse element for i. The following result is
well known. See, for example, [4, §1.7, Theorem 1.10].

3.5 Lemma. Let S be a semigroup with the unit e. The following statements
hold.

(i) The set U of all invertible in S elements is a subgroup in S.

(ii) If B is a subgroup in S and e ∈ B, then B ⊆ U .

(iii) If i is invertible in S, then the inverse element for i is unique. More-
over if bi = e or ib = e for the invertible i, then b is the inverse element
for i.

It is clear that g1 is the unit of the semigroup (F , ◦). Write U for the
set of all invertible in (F , ◦) elements.

3.6 Theorem. We have the equality

U = B,

where B was defined in (3.1), that is a function f ∈ F invertible in (F , ◦)
if and only if there is b > 0 such that f = gb.

This theorem and statement (ii) of Lemma 3.5 imply the next charac-
terization of B.

3.7 Corollary. The set B is the largest subgroup of (F , ◦) containing the
unit of (F , ◦).

We shall prove the following form of Theorem 3.6.

3.8 Theorem. Let i be an invertible element of (F , ◦). If i(1) = 1, then
i = g1, that is

i(x) = x (3.4)

for all x ∈ R⊕.
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Note that Theorem 3.8 implies Theorem 3.6 because B is a subgroup of
(F , ◦) and B ⊆ U and B 3 g1 and the value of the superposition fi−1(1) ◦ i

at the point 1 is 1 where i−1(1) = 1
i(1) .

We separate the proof of Theorem 3.8 into several lemmas.

3.9 Lemma. Let f ∈ F . The inequality

|f(x + y)− f(x)| ≤ f(y) (3.5)

holds for each x, y ∈ R⊕.

Proof. Inequality (3.5) can be rewritten as

−f(y) ≤ f(x + y)− f(x) ≤ f(y). (3.6)

The right inequality in (3.6) follows from Lemma 2.17. To prove the left
one note that (1.4) holds with a = x + y, b = x and c = x for all x, y ∈ R⊕.
Hence, using Theorem 1.1, we obtain

2f(x) ≤ 2(f(x) ∨ f(y) ∨ f(x + y)) ≤ f(x + y) + f(x) + f(y)

which implies the double inequality −f(y) ≤ f(x + y)− f(x).

3.10 Lemma. Let i be invertible in (F , ◦). Then i is a continuous bijection
of the set R⊕ = [0,∞).

Proof. The first equality in (3.3) implies that i is a surjection, the second
one shows that i is an injection. Consequently i is bijective.

The function i is continuous at the point zero. Indeed, in the opposite
case statement (ii) of Theorem 2.11 implies the existence a > 0 such that
i(x) ≥ a for all x > 0, contrary to the surjectivity of i.

Suppose now that t is an arbitrary positive number. Let δ ∈ (0, t). Using
inequality (3.5) for f = i with x = t, y = δ and with x = t − δ, y = δ we
obtain

|i(t + δ)− i(t)| ≤ i(δ) = |i(δ)− i(0)| (3.7)

and
|i(t− δ)− i(t)| ≤ |i(δ)− i(0)|. (3.8)

Since i is continuous at 0, the estimates (3.7), (3.8) yield the continuity of i
at the point t.

Let i be an invertible element of the semigroup (F , ◦). In what follows
we denote by i−1 the inverse element for i, see Definition 3.4.

3.11 Lemma. Let i be invertible in (F , ◦) and let i(1) = 1. Then the
equality

i(n) = n (3.9)

holds for all n ∈ N.
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Proof. The equality i(1) = 1 implies that i ∈ G1 = {f ∈ F : f(1) = 1}.
Consequently we have i(x) ≤ fG1(x). In particular, using (2.13) and (2.10)
we obtain

i(n) ≤ fG1(n) = µ(n) = n (3.10)

for all natural numbers n.
The equality i(1) = 1 implies also i−1(1) = 1 because 1 = i−1(i(1)).

Hence i−1 ∈ G1 so the inequality

i−1(n) ≤ n (3.11)

holds for all n ∈ N. Suppose now that there is n0 ∈ N such that i(n0) < n0.
Since i−1 is invertible in (F , ◦), the function i−1 is strictly increasing. Hence
the last inequality implies n0 = i−1(i(n0)) < i−1(n0), contrary to (3.11).

It can be proved that an increasing function f : R⊕ → R⊕ with f(0) = 0
and f(x) > 0 for x > 0 belongs to F if and only if f(x + y) ≤ f(x) + f(y).
See Theorem 4.1 in the next section.

3.12 Lemma. Let i be invertible in (F , ◦) and let a > 0. Then the cut-off
function

ia(x) =

{
i(x) for 0 ≤ x ≤ a

i(a) for x > a.

belongs to F .

Proof. Lemma 3.10 implies that ia is increasing. Hence it is sufficient to
prove that

ia(x + y) ≤ ia(x) + ia(y) (3.12)

for all x, y ∈ R⊕. Inequalities (3.12) and i(x+y) ≤ i(x)+ i(y) are equivalent
if x + y ≤ a. If x + y > a and x ∨ y ≥ a then (3.12) follows from the
definition of ia. If x + y > a but x < a and y < a, then ia(x + y) ≤
i(x + y) ≤ i(x) + i(y) = ia(x) + ia(y).

Write Fg for the set of all fixed points of a function g : R⊕ → R⊕, i.e.,
Fg = {x : g(x) = x}.
3.13 Lemma. Let i be invertible in (F , ◦) and let i(1) = 1. Then the point
0 is a limit point of the set Fi.

Proof. Suppose that 0 is an isolated point of the set Fi. By Lemma 3.10 the
function i is continuous. Hence Fi is closed. Since Fi is closed and 1 ∈ Fi,
there is t0 ∈ (0, 1] such that

i(t0) = t0 and i(t) 6= t

for each t ∈ (0, t0) and, by continuity, either

i(t) < t (3.13)

15



for all t ∈ (0, t0), or
i(t) > t (3.14)

for all t ∈ (0, t0). Consider firstly the case (3.13). By Lemma 3.12 the cut-off
function it0 belongs to F . For every positive integer n, denote by i

(n)
t0

the
n-th iteration of the function it0 , that is

i
(1)
t0

= it0 , i
(2)
t0

= i
(1)
t0
◦ i

(1)
t0

, . . . , i
(n)
t0

= i
(1)
t0
◦ i

(n−1)
t0

and so on. Since i is strictly increasing, inequality (3.13) implies

t0 > t > i
(1)
t0

(t) > i
(2)
t0

(t) > · · · > i
(n)
t0

(t) > · · · ≥ 0 (3.15)

for all t ∈ (0, t0). Moreover we have

t0 = i
(n)
t0

(t) for each n = 1, 2, . . . and all t ≥ t0.

Consequently the sequence {i(n)
t0
}n∈N is pointwise convergent. Write

i∞t0 (t) = lim
n→∞ i

(n)
t0

(t)

for every t ∈ R⊕. It is clear that i∞t0 (t0) = t0. Hence, by Theorem 2.4,
i∞t0 ∈ F . Theorem 1.1 implies that

i∞t0 (t) 6= 0 (3.16)

for all t > 0. Let t1 ∈ (0, t0). Since i is a continuous function, from (3.15)
we obtain

i(i∞t0 (t1)) = i( lim
n→∞ i

(n)
t0

(t1)) = lim
n→∞ i

(n+1)
t0

(t1) = i∞t0 (t1).

Hence i∞t0 (t1) is a fixed point of i. Moreover (3.15) and (3.16) show that
i∞t0 (t1) ∈ (0, t0), contrary to inequality (3.13).

If inequality (3.14) holds for all t ∈ (0, t0), then we can reason similarly
using i−1 instead of i. Indeed, it is easy to see that the fixed points are the
same for the functions i and i−1, i.e., Fi = Fi−1 and that inequality (3.14)
implies

t = i−1(i(t)) > i−1(t)

because, by Lemma 3.10, i−1 is strictly increasing.
Thus neither inequality (3.13) nor inequality (3.14) holds. Consequently

0 is a limit point of Fi, as required.

We recall the definition of the lower right Dini derivative. Let a real-
valued function f be defined on a set A ⊆ R and let x0 ∈ A. Suppose that
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A contains some half-open interval [x0, a). The lower right Dini derivative
D+ of f at x0 is defined by

D+f(x0) = lim inf
x→x0

x∈(x0,a)

f(x)− f(x0)
x− x0

. (3.17)

Lemma 3.13 implies the following

3.14 Corollary. Let i be invertible and let i(1) = 1. Then the inequality

D+i(0) ≤ 1 (3.18)

holds.

We call a map f : X → Y between metric spaces (X, d) and (Y, ρ)
Lipschitz if there is a constant L ≥ 0 such that

ρ(f(x), f(y)) ≤ Ld(x, y)

for all x, y ∈ X. The infimum of all real numbers L satisfying the mentioned
above inequality is called the Lipschitz constant of f and is denoted by
Lip(f).

3.15 Lemma. Let f ∈ F . The function f is Lipschitz if and only if

D+f(0) < ∞.

If f is Lipschitz, then
Lip(f) = D+f(0). (3.19)

Proof. It is sufficient to show that

|f(x)− f(y)| ≤ D+f(0)|x− y| (3.20)

for all x, y ∈ R⊕. If D+f(0) = ∞, then (3.20) is trivial. Suppose that
D+f(0) < ∞. By Theorem 2.11 this inequality implies the continuity of f
at 0. Let ε > 0. Using (3.17) we see that there is a sequence of positive
numbers δn, n ∈ N, such that

lim
n→∞ δn = 0 and f(δn) ≤ (1 + ε)δnD+f(0). (3.21)

Let x and y be points from R⊕, x < y. Define, for every n ∈ N, the quantity
N as

N = N(n) =
[y − x

δn

]
(3.22)

where [y−x
δn

] is the integral part of y−x
δn

. Then we can write

f(x)− f(y) =
N−1∑

i=0

(f(x + iδn)− f(x + (i + 1)δn)) + f(x + Nδn)− f(y).
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This formula, (3.21) and (3.5) imply

|f(x)− f(y)| ≤
N−1∑

i=0

(1 + ε)δnD+f(0) + f(|(y − x)−Nδn|)

= (N − 1)(1 + ε)δnD+f(0) + f(|(y − x)−Nδn|). (3.23)

Using (3.22) and the continuity of f at 0 we obtain

lim
n→∞(N − 1)δn = |x− y| and lim

n→∞ f(|(y − x)−Nδn|) = 0.

Consequently (3.23) implies that

|f(x)− f(y)| ≤ (1 + ε)D+f(0)|x− y|.

Letting n →∞ we have (3.20).

We are ready now to finish the

Proof of Theorem 3.8. Let i be an invertible element of (F , ◦) and let i(1) =
1. Corollary 3.14 and Lemma 3.15 imply that i is a Lipschitz function and
Lip(i) ≤ 1. Consequently i is an absolutely continuous function. Hence the
derivative i′(t) exists almost every on [0,∞), and the inequality

i′(t) ≤ 1 (3.24)

holds a.e. on [0,∞), and the equality

i(t) =

t∫

0

i′(t) dt (3.25)

holds for each t ∈ [0,∞). See, for example, [7, Chapter IX]. Formulas (3.9)
and (3.25) imply that

n =

n∫

0

i′(t) dt (3.26)

for each n ∈ N. Inequality (3.24) shows that if (3.26) is true for all n ∈ N,
then i′(t) = 1 a.e. on R⊕. Consequently, by (3.25), we have the desired
equality

i(t) =

t∫

0

dt = t

for all t ∈ R⊕.

The following continuity properties of functions belonging to F were, in
fact, obtained during the proof of Theorem 3.8.
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3.16 Proposition. Let f : R⊕ → R⊕ belong to F .

(i) If f is continuous at 0, then f is uniformly continuous on R⊕.

(ii) If the lower right Dini derivative of f at 0 is finite, D+f(0) < ∞, then
f is differentiable a.e. on R⊕ and there is a (right) derivative f ′(0) of
f at 0 and

D+f(0) = f ′(0) > 0. (3.27)

Proof. Statement (i) follows from Lemma 3.15. The inequality D+f(0) <
∞ implies, by Lemma 3.15, that f is Lipschitz. Consequently, by the
Rademacher theorem, f is differentiable a.e. on R⊕. It follows from (3.19)
that

D+f(0) := lim sup
x→0
x>0

f(x)− f(0)
x− 0

≤ D+f(0).

The converse inequality D+f(0) ≥ D+f(0) is trivial. Hence D+f(0) =
D+f(0), that implies the existence of the (right) derivative f ′(0). If f ′(0) =
0, then, using (3.19), we obtain f(t) = f(0) = 0 for all t ∈ R⊕, contrary to
the condition f ∈ F .

3.17 Remark. Theorem 3.8 and Proposition 3.16 are closely related to
Theorem 7.11.2 in the book [6].

3.18 Definition. Let S be a semigroup. A bilateral ideal A of S is prime if

xy ∈ A implies (x ∈ A) or (y ∈ A)

for each x, y ∈ S.

3.19 Corollary. The set I := {f ∈ F : D+f(0) = ∞} is a prime bilateral
ideal of the semigroup (F , ◦).
Proof. Let f and g be elements of F . Statement (ii) of Proposition 3.16
implies that there is a constant c > 0 such that

(D+f(0)) ∧ (D+g(0)) > c.

Using (3.17) we can obtain the inequality

D+(f ◦ g)(0) ≥ D+f(0) ·D+g(0).

Hence if D+f(0) = ∞, or D+(g(0)) = ∞ then D+(f ◦ g)(0) = ∞ i.e., I is a
bilateral ideal of (F , ◦).

Furthermore, Statement (ii) of Proposition 3.16 implies also that f and
g are differentiable at 0 if f, g 6∈ I. In this case it follows from the Chain
Rule that

D+(f ◦ g)(0) = f ′(0) · g′(0) < ∞.

Consequently I is prime.
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As we have seen from Example 2.2 that a function f ∈ F can be dis-
continuous everywhere. By Statement (i) of Proposition 3.16 a nonvoid set
of discontinuity of f ∈ F must contain 0. Moreover it is well known, that
the set of discontinuity of each real-valued function f is a Fσ-subset of the
domain of definition of f .

3.20 Proposition. The following two statements are equivalent for each
nonvoid set A ⊆ R⊕.

(i) There is f ∈ F such that A is the set of discontinuity of f .

(ii) A is of type Fσ and 0 ∈ A.

Proof. It is sufficient to prove (ii)⇒(i). Let A be a Fσ-subset of R⊕ and let
0 ∈ A. There is a function f : (0,∞) → R such that the Fσ-set A\{0} is the
set of discontinuity of f . A simple construction of such function can be found
in [http://en.wikipedia.org/wiki/Thomeae’s function]. Let h : R→ (1, 2) be
a homeomorphism. The function

g(t) =

{
0 if t = 0
h(f(t)) if t > 0

belongs to F , see Example 2.2, and has A as the set of discontinuity.

4 Monotone functions transferring
metrics to metrics

Write Fm and, respectively, Fmc for the set of all increasing functions f ∈ F
and, respectively, for the set of all continuous functions f ∈ Fm. It is clear
that (Fm, ◦) and (Fmc, ◦) are subsemigroups of (F , ◦) and that a function
f belongs to Fm if and only if f is monotone and f ∈ F .

4.1 Theorem. Let f : R⊕ → R⊕ be an increasing function such that f(0) =
0 and f(t) > 0 for all t > 0. Then f ∈ Fm if and only if the inequality

f(x + y) ≤ f(x) + f(y) (4.1)

holds for all x, y ∈ R⊕.

Proof. In view of Lemma 2.17 it is sufficient to show that subadditivity (4.1)
implies f ∈ F .

Suppose f to be subadditive. Let a, b, c ∈ R⊕ such that a ≤ b+ c. Using
the increase of f and (4.1) we obtain

f(a) ≤ f(b + c) ≤ f(b) + f(c).

Hence the inequality 2(a ∨ b ∨ c) ≤ a + b + c implies

2(f(a) ∨ f(b) ∨ f(c)) ≤ f(a) + f(b) + f(c).

Consequently, by Theorem 1.1, f belongs to F .
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Another way to prove the subadditivity of an increasing function f :
R⊕ → R⊕ with f(0) = 0 is to show that the function t−1f(t) is decreasing
on (0,∞) [9, Section 3.2.3]. The last condition is true in the case of concave
functions.

4.2 Corollary. If a function f : R⊕ → R⊕ is increasing, concave and
f(0) = 0 and f(x) > 0 for all x > 0, then f ∈ Fm.

In this case, f is continuous on (0,∞) because each bounded concave
function is continuous on open intervals belonging to its domain of definition,
see, for example [7, Chapter X, §5, Theorem 5].

It is interesting to note that the functions belonging to Fm can be also
characterized as the “first moduli of continuity” of bounded real-valued func-
tions.

Let us define the set W of functions f : R⊕ → R⊕ by the rule:

(f ∈ W) ⇔ (f is nonconstant and ∀ ε > 0 ∃ δ > 0
such that |f(x)− f(y)| < δ whenever |x− y| < ε). (4.2)

It is clear that every uniformly continuous f : R⊕ → R⊕ belongs to W.
Write, for f ∈ W

ω(f, ε) := sup
|t−x|≤ε
t,x∈R

|f(t)− f(x)|. (4.3)

Rule (4.2) simply means that ω(f, ε) < ∞ for each ε > 0 if f ∈ W. Lemmas
2.6 and 3.9 imply F ⊆ W. In the case where f is uniformly continuous on
R, the function ω(f, ·) is simply the first modulus of continuity of f . We
shall apply this term to arbitrary functions ω(f, ·) of form (4.3).

4.3 Theorem. The following statements hold for every function F : R⊕ →
R⊕.

(i) F belongs to Fm if and only if there is g ∈ W such that F = ω(g, ·).
(ii) F belongs to Fmc if and only if there is uniformly continuous, noncon-

stant g : R⊕ → R⊕ such that F = ω(g, ·).
In view of Theorem 4.1, statement (ii) is, in fact, equivalent to the clas-

sical Lebesgue–Nikolsky characterization of the first moduli of continuity
as increasing, subadditive, continuous functions f with f(0) = 0. State-
ment (i) is an extension of this result on moduli of continuity (4.3) which
are, generally speaking, discontinuous. The proof of these statements can
be obtained as a simple variation of the standard one, see [9, Section 3.2]
or [6, Section 7.10].

4.4 Corollary. Let g : R⊕ → R⊕ be an increasing, nonconstant function.
Then the superposition g ◦d is a metric for each metric d if and only if g ◦ω
is the first modulus of continuity for each first modulus of continuity ω.
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Proof. By statement (i) of Theorem 4.3, the function g belongs to Fm if
and only if g is the first modulus of continuity. Since (Fm, ◦) is a semigroup
with the unit, the set of all nonzero, first moduli of continuity forms also a
semigroup with the unit. Hence the superposition of each two first modulus
of continuity is a such modulus and every nonconstant function g : R⊕ → R⊕
transferring the set of these moduli into itself belongs to Fm.

The known properties of the usual first moduli of continuity imply the
corresponding properties for f ∈ Fm. For instance we have

4.5 Corollary. A function f ∈ W belongs to Fm if and only if f is a fixed
point of the mapping

W 3 f 7−→ ω(f, ·) ∈ W.

The proof is simple and it is omitted here. A similar property for classical
moduli of continuity was firstly noted by S. M. Nikolsky in [8].

Consider now some examples of functions belonging to Fm.

4.6 Example. If α ∈ (0, 1), then the function sα(t) = tα, t ∈ R⊕, belongs
to Fm. If (X, d) is a metric space, then (X, sα ◦d) is so called the snowflaked
version of (X, d). Letting α → 0 we obtain

lim
α→0

tα = f1(t) =

{
0 if t = 0
1 if t > 0,

see Example 2.1.

4.7 Example. The function

µ(x) =

{
x if x ∈ N
[x] + 1 if x ∈ R⊕ \ N,

where [x] is the integral part of x is increasing and subadditive. This function
belongs to Fm, see Remark 2.20. Let G1m be a family of all functions f ∈ Fm

such that f(1) = 1. Then µ is the upper envelope of the family G1,m, i.e.,

µ(x) =
∨

f∈G1,m

f(x) (4.4)

for each x ∈ R⊕. If x ∈ R⊕ \ (0, 1), then formula (4.4) follows from Theo-
rem 2.16, because G1,m ⊆ G1. In the case x ∈ (0, 1) we have

f(x) ≤ f(1) = 1 = µ(x)

for each f ∈ G1,m. Consequently (4.4) holds for all x ∈ R⊕.
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4.8 Example. Let x ∈ [0, 1] and expand x as

x =
∑

n=1

anx

3n
, anx ∈ {0, 1, 2}.

Denote by Nx the smallest n with anx = 1 if it exists and put Nx = ∞ if
there is no such anx. The Cantor function G : [0, 1] → R⊕ can be defined as

G(x) :=
1

2Nx
+

1
2

Nx−1∑

n=1

anx

2n
.

Define an extended Cantor’s function Ĝ : R⊕ → R⊕ as follows

Ĝ(x) =

{
G(x) if 0 ≤ x ≤ 1
1 if x > 1.

The extended Cantor function is subadditive, i.e.,

Ĝ(x + y) ≤ Ĝ(x) + Ĝ(y) (4.5)

for all x, y ∈ R⊕. Moreover Ĝ(0) = 0, Ĝ(x) > 0 for all x > 0 and Ĝ is a
continuous increasing function. Hence Ĝ ∈ Fmc. The proof of inequality
(4.5) can be found in the book [9, Section 3.2.4] or in the paper [5].

4.9 Example. For every k > 0, a > 0 and all x ∈ R⊕ write

Fk,a(x) = (kx) ∧ a, (4.6)

and put
Fk,∞(x) := kx, (4.7)

i.e., Fk,∞ = gk, see Example 2.1. Corollary 4.4 implies that each Fk,a belongs
to Fm,c. A simple calculation shows that

Fk,a ◦ Fc,b = Fkc,(kb)∧a (4.8)

for all k, c ∈ (0,∞) and a, b ∈ (0,∞]. Hence the set of all functions Fk,a forms
a subsemigroup of the semigroup Fm,c. We denote this subsemigroup by Fi.
We shall find a purely algebraic characterization of Fi as a subsemigroup of
Fm,c in Theorem 4.13. To this purpose we start with the description of the
idempotents in Fm,c.

Recall that an element e of a semigroup S is called an idempotent of S
if ee = e. It is well known that, for every nonvoid set X, an element α of
the symmetric semigroup TX of all functions f : X → X is an idempotent
if and only if

α(t) = t

for each t ∈ α(X) = {α(x) : x ∈ X}. See, for example, [4, §1.1, Exercise 9].
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4.10 Proposition. An element e of the semigroup Fm,c is idempotent if
and only if there is a ∈ (0,∞] such that

e = F1,a. (4.9)

Proof. Using (4.8) we see that

F1,a ◦ F1,a = F1·1,a∧a = F1,a

for each a ∈ (0,∞]. Hence each F1,a is an idempotent of Fm,c.
Conversely, suppose that e is an idempotent of Fm,c. Then each point

of the set e(R⊕) is a fixed point of the function e. Since e is continuous and
e(0) = 0 and e(x) > 0 for x > 0, the set e(R⊕) is a nondegenerate interval
containing 0. If this interval is unbounded, then e = F1,∞. In the opposite
case there is a > 0 such that

either e(R⊕) = [0, a] or e(R⊕) = [0, a).

The second equality is impossible because e([0, a)) = [0, a) and, by continu-
ity, we have

e(a) = lim
x→a
x<a

e(x) = lim
x→a

x = a.

The equalities e(R⊕) = [0, a], e(a) = a and the increase of e imply the
equality e(x) = a for all x ≥ a. Thus there is a > 0 such that (4.9)
holds.

4.11 Corollary. Every two idempotents of Fm,c are commuting.

Proof. By (4.8) we have

F1,a ◦ F1,b = F1,a∧b = F1,b ◦ F1,a

for each a, b ∈ (0,∞].

4.12 Definition. Let S be a semigroup. An element e ∈ S is regular if
there is x ∈ S such that

axa = a.

The semigroup S is regular if each a ∈ S is regular. The semigroup S is
inverse if for every a ∈ S there is a unique b ∈ S such that

aba = a and bab = b. (4.10)

The following theorem shows that Fi, see Example 4.9, is the largest
inverse subsemigroup of Fmc.

4.13 Theorem. The semigroup Fi is inverse and each inverse subsemigroup
of Fmc lies in Fi.
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The following characterization of inverse semigroup shall be used in the
proof of Theorem 4.13.

4.14 Lemma. A semigroup S is inverse if and only if S regular and every
two idempotents of S are commuting.

For the proof see, for example, [4, §1.9 Theorem 1.17].

Proof of Theorem 4.13. Lemma 4.14 and Corollary 4.11 imply that Fi is
inverse if and only if each Fk,a is regular. Using (4.8) we obtain

Fk,a ◦ Fc,b ◦ Fk,a = Fkc,(kb)∧a ◦ Fk,a = Fkck,(kca)∧((kb)∧a).

In particular,
Fk,a ◦ F 1

k
, a
k
◦ Fk,a = Fk,a

because, for c = 1
k and b = a

k , we have

kck = a and (kca) ∧ ((kb) ∧ a) = a ∧ (a ∧ a) = a.

Thus Fi is an inverse semigroup.
Conversely, suppose that S is an inverse subsemigroup of Fm,c. If e, l ∈ S

and (4.10) holds, then

(e ◦ l ◦ e) ◦ l = e ◦ l and (l ◦ e ◦ l) ◦ e = l ◦ e.

Hence e ◦ l and l ◦ e are idempotents. Consequently, by Proposition 4.10,
there are a, b ∈ (0,∞] such that

l(e(t)) =

{
t if 0 ≤ t ≤ b

b if t > b
and e(l(t)) =

{
t if 0 ≤ t ≤ a

a if t > a.
(4.11)

Since
e ◦ (l ◦ e) = e and l ◦ (e ◦ l) = l,

we obtain from (4.11) that

e(t) = e(l(e(t))) = e(b),

for t ≥ b, and, similarly, for t ≥ a,

l(t) = l(e(l(t))) = l(a).

Since D+(e ◦ l)(0) = 1, Corollary 3.19 and formula (4.11) show that

D+e(0) < ∞ and D+l(0) < ∞.

Proposition 3.16 gives that e and l are differentiable at 0 and

l′(0) > 0 and e′(0) > 0.
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Write k := l′(0). The Chain Rule and (4.11) imply e′(0) = 1
k . By Lem-

ma 3.15, the functions e and l are Lipshitz and

Lip(e) =
1
k

and Lip(l) = k. (4.12)

Consequently
l(t) ≤ Fk,l(a)(t) and e(t) ≤ F 1

k
,e(b)(t) (4.13)

for all t ∈ R⊕. We claim that the strict inequalities are possible neither
in the left part nor in the right part of (4.13). Indeed, suppose there is
t ∈ (0, a] such that

l(t) < Fk,l(a)(t).

Rewriting the last inequality as

|l(t)− l(0)| < k|t− 0|

and using (4.11)–(4.13) we obtain

t = e(l(t)) = e(l(t))− e(l(0)) ≤ 1
k
|l(t)− l(0)| < k

k
|t− 0| = t.

This contradiction shows that the equality

l(t) = Fk,l(a)(t) (4.14)

holds for each t ∈ [0, a]. Since l and Fk,l(a) are constant functions on [a,∞),
equality (4.14) holds also on [a,∞). Hence we have l = Fk,l(a). The equality
e = F 1

k
,e(b) can be obtained similarly.

The function µ, see Example 4.7, is a discontinuous idempotent of the
semigroup (Fm, ◦). Hence Fi is not the largest inverse subsemigroup of Fm.
Nevertheless the following proposition holds.

4.15 Proposition. The semigroup Fi is a maximal inverse subsemigroup
of (Fm, ◦) in the sense that the inclusions Fi ⊆ F ′ ⊆ Fm imply the equality
Fi = F ′ for every inverse semigroup F ′.
Proof. Suppose that F ′ is an inverse subsemigroup of Fm and Fi ⊆ F ′ and
that

F ′ \ Fi 6= ∅.
Let f ∈ F ′\Fi. Since Fi is the largest inverse semigroup in Fic, the function
f is not continuous. Theorem 2.11 implies that there is a > 0 such that

f(x) ≥ a
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for all x > 0. A simple calculation shows that fa ◦ f = fa where

fa(t) =

{
0 if t = 0
a if t > 0,

see Example 2.1. Moreover we have

Fk,∞ ◦ fa = fka

for each k ∈ (0,∞). Consequently the set A of all left zeros of F is a subset
of F ′. It is clear that each left zero is an idempotent,

fa ◦ fa = fa,

and that
fa ◦ fb = fa 6= fb = fb ◦ fa

for distinct a and b. Thus these idempotents are not commutative. By
Lemma 4.14 the semigroup F ′ cannot be inverse, contrary to the supposition.

4.16 Corollary. The semigroup Fi does not have the largest inverse sub-
semigroup.
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