GLOBAL COMPARISON PRINCIPLES FOR THE p-LAPLACE OPERATOR ON RIEMANNIAN MANIFOLDS

ILKKA HOLOPAINEN ${ }^{\dagger}$, STEFANO PIGOLA, AND GIONA VERONELLI

Abstract

We prove global comparison results for the p-Laplacian on a p parabolic manifold. These involve both real-valued and vector-valued maps with finite p-energy. Further L^{q} comparison principles in the non-parabolic setting are also discussed.

1. Introduction

Let $(M,\langle\rangle$,$) be a connected, m$-dimensional, complete Riemannian manifold and let $p>1$. Recall that the p-Laplacian of a real valued function $u: M \rightarrow \mathbb{R}$ is defined by $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. A function $u \in W_{\text {loc }}^{1, p}(M)$ is said to be p-subsolution if $\Delta_{p} u \geq 0$ weakly on M. In case any bounded above, p-subsolution is necessarily constant we say that the manifold M is p-parabolic. It is known that p-parabolicity is related to volume growth properties of the underlying manifold. Accordingly, M is p-parabolic provided, for some $x \in M$,

$$
\begin{equation*}
\left(\frac{r}{\operatorname{vol}_{m} B_{r}(x)}\right)^{\frac{1}{p-1}} \notin L^{1}(+\infty) \tag{1}
\end{equation*}
$$

where $B_{r}(x)$ denotes the metric ball centered at x, of radius $r>0$, and vol_{m} is the m-dimensional Hausdorff measure. Thus, for instance, the standard Euclidean space \mathbb{R}^{m} is p-parabolic if $m \leq p$. Condition (1) is quite natural in that it shares the quasi-isometry invariance of p-parabolicity. Moreover, it turns out that there are geometric situations where (1) is also necessary for M to be p-parabolic; see [5], [7] and references therein. On the other hand, it was established in [18], [16] and [6] that the most general volume growth condition ensuring p-parabolicity is that, for some $x \in M$,

$$
\left(\frac{1}{\operatorname{vol}_{m-1} \partial B_{r}(x)}\right)^{\frac{1}{p-1}} \notin L^{1}(+\infty)
$$

Now, suppose that M is p-parabolic, with $p \geq 2$. It is known, [13], that a smooth p-subharmonic function $u: M \rightarrow \mathbb{R}$ with finite p-energy $|\nabla u| \in L^{p}(M)$ must be constant. We shall show that this is nothing but a very special case of a genuine comparison principle for the p-Laplace operator.

Recall that, given a function $f \in L_{\mathrm{loc}}^{1}(M)$ and a vector field $X \in L_{\mathrm{loc}}^{1}(M)$, we say that $\operatorname{div} X \geq f$ weakly (or in the sense of distributions) on M if, for all

[^0]non-negative, compactly supported, smooth test functions $\varphi, 0 \leq \varphi \in C_{c}^{\infty}(M)$,
\[

$$
\begin{equation*}
(\operatorname{div} X, \varphi):=-\int\langle X, \nabla \varphi\rangle \geq \int f \varphi \tag{2}
\end{equation*}
$$

\]

In particular, if $X=|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v$ for some real-valued functions $u, v \in$ $W_{\text {loc }}^{1, p}(M)$ and $f \equiv 0$, we have that the weak inequality $\Delta_{p} u \geq \Delta_{p} v$ means

$$
\begin{equation*}
\left.\left.\left.\int\langle | \nabla u\right|^{p-2} \nabla u, \nabla \varphi\right\rangle \leq\left.\int\langle | \nabla v\right|^{p-2} \nabla v, \nabla \varphi\right\rangle \tag{3}
\end{equation*}
$$

for all $0 \leq \varphi \in C_{c}^{\infty}(M)$. Note that, by standard density results and by dominated convergence, it is equivalent to require the validity of (2) and (3) for all $0 \leq \varphi \in$ $W_{c}^{1, p}(M)$ if $|\nabla u|,|\nabla v| \in L^{p}(M)$. Above $W_{\text {loc }}^{1, p}(M)$ stands for the (local) Sobolev space of all functions $u \in L_{\mathrm{loc}}^{p}(M)$ whose weak (distributional) gradients also belong to $L_{\mathrm{loc}}^{p}(M)$. Furthermore, $W_{c}^{1, p}(M)$ is the closure of $C_{c}^{\infty}(M)$ in $W^{1, p}(M)$.

Theorem 1. Let $(M,\langle\rangle$,$) be a connected, p-parabolic Riemannian manifold, with$ $p>1$. Assume that $u, v \in W_{\text {loc }}^{1, p}(M) \cap C^{0}(M)$ satisfy

$$
\Delta_{p} u \geq \Delta_{p} v \text { weakly on } M
$$

and

$$
|\nabla u|,|\nabla v| \in L^{p}(M)
$$

Then, $u=v+A$ on M, for some constant $A \in \mathbb{R}$.
Simple examples show that both the p-parabolicity of M and the L^{p}-integrability of $|\nabla u|$ or $|\nabla v|$ are needed above. Indeed, let M be, for instance, the open unit ball in \mathbb{R}^{m}, u a constant function, and v a non-constant p-harmonic function in M (i.e. a continuous weak solution to $\Delta_{p} v=0$), with $|\nabla v| \in L^{p}(M)$. Then M is non-p-parabolic for all $p>1$ and the conclusion of Theorem 1 clearly fails. On the other hand, let M be the infinite cylinder $\mathbb{R} \times \mathbb{S}^{m-1}$ equipped with the product metric $d s^{2}=d r^{2}+d \vartheta^{2}$, where $d \vartheta^{2}$ is the standard metric of the sphere \mathbb{S}^{m-1}. Furthermore, let u be a constant function and $v(t, \vartheta)=t$. Now M is p-parabolic for all $p>1, u$ and v are p-harmonic in M, but the conclusion of Theorem 1 again fails.

To prove Theorem 1 we will introduce an inequality for the p-Laplacian which resembles a well known inequality for the mean curvature operator. A basic use of this inequality will enable us to get also the next result in the spirit of [12].

Theorem 2. Let $(M,\langle\rangle$,$) be a complete Riemannian manifold. Let u, v \in C^{\infty}(M)$ be such that

$$
\Delta_{p} u \geq \Delta_{p} v \text { on } M
$$

for some $p \geq 2$. Suppose there exist $q \geq 1$ and $s>p$ such that

$$
\begin{equation*}
\left(\int_{\partial B_{t}(o)}|u-v|^{q+\frac{1}{s-1}}(|\nabla u|+|\nabla v|)^{p-\frac{s}{s-1}}\right)^{1-s} \notin L^{1}(+\infty) \tag{4}
\end{equation*}
$$

for some $o \in M$. Then either $u \equiv v+A$ for some constant $A \in \mathbb{R}$ or $u \leq v$ on M.
Besides real-valued functions one is naturally led to consider manifold-valued maps. Several topological questions are related to the p-Laplacian of maps; [19],[15].

Recall that the p-Laplacian (or the p-tension field) of a map $u: M \rightarrow N$ between Riemannian manifolds is defined by

$$
\Delta_{p} u=\operatorname{div}\left(|d u|^{p-2} d u\right)
$$

Here, $d u \in T^{*} M \otimes u^{-1} T N$ denotes the differential of u and the bundle $T^{*} M \otimes$ $u^{-1} T N$ is endowed with its Hilbert-Schmidt scalar product \langle,$\rangle . Moreover, -\operatorname{div}$ stands for the formal adjoint of the exterior differential d with respect to the standard L^{2} inner product on vector-valued 1-forms. Say that u is p-harmonic if $\Delta_{p} u=0$. In [17], Schoen and Yau prove a general comparison principle for homotopic (2-)harmonic maps with finite (2-)energy into non-positively curved targets. They assume that the complete, non-compact manifold M has finite volume but the request that M is (2-)parabolic suffices, [13]. In this direction, comparisons for homotopic p-harmonic maps with finite p-energy into non-positively curved manifolds are far from being completely understood. Some progress in the special situation of a single map homotopic to a constant has been made in [13]. In this note, we focus our attention on the case $N=\mathbb{R}^{n}$. According to [13], it is clear that, if M is p-parabolic, then every p-harmonic map $u: M \rightarrow \mathbb{R}^{n}$ with finite p-energy $|d u| \in L^{p}(M)$ must be constant. However, using the very special structure of \mathbb{R}^{n}, we are able to extend this conclusion, thus establishing a comparison principle for maps $u, v: M \rightarrow \mathbb{R}^{n}$ having the same p-Laplacian. In some sense, this can be considered as a further step towards the comprehension of the general comparison problem alluded to above.

Theorem 3. Suppose that $(M,\langle\rangle$,$) is p-parabolic, with p \geq 2$. Let $u, v: M \rightarrow \mathbb{R}^{n}$ be smooth maps satisfying

$$
\begin{equation*}
\Delta_{p} u=\Delta_{p} v \text { on } M \tag{5}
\end{equation*}
$$

and

$$
|d u|,|d v| \in L^{p}(M) .
$$

If $(M,\langle\rangle$,$) is p-parabolic then u=v+A$, for some constant $A \in \mathbb{R}^{n}$.
Acknowledgement. The second and the third authors are indebted to A.G. Setti for valuable conversations during the preparation of the paper.

2. Main tools

In the proofs of Theorems 1 and 3 we will use two main ingredients: (a) a version for the p-Laplacian of a classical inequality for the mean-curvature operator, which will be also used in a final section to prove Theorem 2; (b) a global form of the divergence theorem in non-compact settings which inspires to a p-parabolicity criterion involving vector fields.
2.1. A key inequality. The following basic inequality was discovered by Lindqvist, [9].

Lemma 4. Let $(V,\langle\rangle$,$) be a finite dimensional, real vector space endowed with a$ positive definite scalar product and let $p>1$. Then, for every $x, y \in V$ it holds

$$
|x|^{p}+(p-1)|y|^{p}-p|y|^{p-2}\langle x, y\rangle \geq C(p) \Psi(x, y),
$$

where

$$
\Psi(x, y):= \begin{cases}|x-y|^{p} & p \geq 2 \\ \frac{|x-y|^{2}}{(|x|+|y|)^{2-p}} & 1<p<2\end{cases}
$$

and $C(p)$ is a positive constant depending only on p.
As a consequence, we deduce the validity of the next
Corollary 5. In the above assumptions, for every $x, y \in V$, it holds

$$
\begin{equation*}
\left.\left.\langle | x\right|^{p-2} x-|y|^{p-2} y, x-y\right\rangle \geq 2 C(p) \Psi(x, y) \tag{6}
\end{equation*}
$$

Proof. We start computing

$$
\left.\left.\langle | x\right|^{p-2} x-|y|^{p-2} y, x-y\right\rangle=|x|^{p}+|y|^{p}-\langle x, y\rangle\left(|x|^{p-2}+|y|^{p-2}\right)
$$

On the other hand, applying twice Lindqvist inequality with the role of x and y interchanged we get

$$
p\left(|x|^{p}+|y|^{p}\right) \geq p\left(|x|^{p-2}+|y|^{p-2}\right)\langle x, y\rangle+2 C(p) \Psi(x, y) .
$$

Inserting into the above completes the proof.
Remark 6. Inequality (6) can be considered as a version for the p-Laplacian of the classical Mikljukov-Hwang-Collin-Krust inequality; [11], [8], [1]. This latter states that, for every $x, y \in V$,

$$
\left\langle\frac{x}{\sqrt{1+|x|^{2}}}-\frac{y}{\sqrt{1+|y|^{2}}}, x-y\right\rangle \geq \frac{\sqrt{1+|x|^{2}}+\sqrt{1+|y|^{2}}}{2}\left|\frac{x}{\sqrt{1+|x|^{2}}}-\frac{y}{\sqrt{1+|y|^{2}}}\right|^{2}
$$

equality holding if and only if $x=y$. This analogy suggests the validity of global comparison results, without any p-parabolicity asssumption, in the spirit of [12], as exemplified by Theorem 2. See Section 4.
2.2. p-parabolicity and related properties. As we mentioned in the introduction, a manifold M is p-parabolic if a Liouville type property holds for p subsolutions that are bounded above. It is well known that this is just one of the several equivalent definitions of p-parabolicity; see [4]. For instance, and in view of future purposes, we recall the next

Theorem 7. The manifold M is p-parabolic if and only if the (relative) p-capacity of any compact set K vanishes. This means that

$$
\inf \int_{M}|\nabla \varphi|^{p}=0
$$

where the infimum is taken over all compactly supported smooth functions φ satisfying $\varphi=1$ on K.

A further very useful characterization of (non-) p-parabolicity involves special vector fields on the underlying manifold. It goes under the name of Kelvin-NevanlinnaRoyden criterion. In the linear setting $p=2$ it was proved in a paper by T. Lyons and D. Sullivan, [10]. See also Theorem 7.27 in [14]. The following non-linear extension is due to Gol'dshtein and Troyanov, [2].

Theorem 8. The manifold M is not p-parabolic if and only if there exists a vector field X on M such that:
(a) $|X| \in L^{\frac{p}{p-1}}(M)$
(b) $\operatorname{div} X \in L_{l o c}^{1}(M)$ and $\min (\operatorname{div} X, 0)=(\operatorname{div} X)_{-} \in L^{1}(M)$
(c) $0<\int_{M} \operatorname{div} X \leq+\infty$.

Accordingly, if M is p-parabolic and X is a vector field satisfying (a') $|X| \in$ $L^{\frac{p}{p-1}}(M)$, (b') div $X \in L_{\mathrm{loc}}^{1}(M)$, and (c') $\operatorname{div} X \geq 0$ on M, then we must necessarily conclude that $\operatorname{div} X=0$ on M. It is worth pointing out that, even if condition (b') is not satisfied, we can obtain a similar conclusion as shown in the next
Proposition 9. Let $(M,\langle\rangle$,$) be a p-parabolic Riemannian manifold, p>1$. Let X be a vector field satisfying $|X| \in L^{\frac{p}{p-1}}(M)$ and

$$
\operatorname{div} X \geq f \geq 0
$$

in the sense of distributions, for some $0 \leq f \in L_{\text {loc }}^{1}(M)$. Then

$$
f \equiv 0
$$

Proof. Let $\left\{\Omega_{j}\right\}_{j=0}^{\infty}$ be an increasing sequence of precompact open sets with smooth boundaries such that $\Omega_{j} \nearrow M$. Let φ_{j} be the p-equilibrium potential of the condenser $C\left(\Omega_{j}, \overline{\Omega_{0}}\right)$, namely

$$
\int_{M}\left|\nabla \varphi_{j}\right|^{p}=\min \int_{M}|\nabla \varphi|^{p}
$$

where the minimum is taken over all smooth φ compactly supported in Ω_{j} and satisfying $\varphi=1$ on $\overline{\Omega_{0}}$. Then, φ_{j} solves the Dirichlet problem

$$
\begin{cases}\Delta_{p} \varphi_{j}=0 & \Omega_{j} \backslash \overline{\Omega_{0}} \\ \varphi_{j}=1 & \text { on } \overline{\Omega_{0}} \\ \varphi_{j}=0 & \text { on } \partial \Omega_{j}\end{cases}
$$

and we have

$$
\begin{align*}
0 \leq \int_{M} \varphi_{j} f & \leq\left(\operatorname{div} X, \varphi_{j}\right) \tag{7}\\
& =-\int_{M}\left\langle X, \nabla \varphi_{j}\right\rangle \\
& \leq\left(\int_{M}|X|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}\left(\int_{M}\left|\nabla \varphi_{j}\right|^{p}\right)^{\frac{1}{p}} .
\end{align*}
$$

Note that, by Theorem 7,

$$
\int_{M}\left|\nabla \varphi_{j}\right|^{p} \rightarrow 0, \quad \text { as } j \rightarrow \infty
$$

which implies that the RHS of (7) vanishes as $j \rightarrow \infty$. Moreover, by the comparison principle on precompact domains it follows that $0 \leq \varphi_{j} \leq 1$ is a non-decreasing sequence of functions pointwise converging to some $\varphi>0$. Hence, taking limits in (7) and using monotone convergence,

$$
0 \leq \int_{M} \varphi f \leq 0
$$

and this latter gives $f \equiv 0$.
Remark 10. Using an Ahlfors type characterization of p-parabolicity in terms of a boundary maximum principle for p-harmonic functions on generic domains we see that, in fact, $\varphi \equiv 1$.

3. Proofs of the finite-Energy comparison principles

We are now in the position to prove the main results.
Proof (of Theorem 1). Fix any $x_{0} \in M$, let $A=u\left(x_{0}\right)-v\left(x_{0}\right)$ and define Ω_{A} to be the connected component of the open set

$$
\{x \in M: A-1<u(x)-v(x)<A+1\}
$$

which contains x_{0}. By standard topological arguments, $\Omega_{A} \neq \emptyset$ is a (connected) open set. Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ be the piece-wise linear function defined by

$$
\alpha(t)= \begin{cases}0 & t \leq A-1 \\ (t-A+1) / 2 & A-1 \leq t \leq A+1 \\ 1 & t \geq A+1\end{cases}
$$

Consider the vector field

$$
X=\alpha \circ(u-v)\left\{|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right\}
$$

and note that, for a suitable constant $C>0$,

$$
|X|^{\frac{p}{p-1}} \leq C\left(|\nabla u|^{p}+|\nabla v|^{p}\right) \in L^{1}(M) .
$$

¿From now on we abbreviate $\alpha(u-v)=\alpha \circ(u-v), \alpha^{\prime}(u-v)=\alpha^{\prime} \circ(u-v)$, etc. Since $\alpha(u-v) \in W_{\mathrm{loc}}^{1, p}(M)$ then, by assumption, for all functions $0 \leq \varphi \in C_{c}^{\infty}(M)$ we have

$$
\begin{aligned}
0 & \left.\geq\left.\int\langle\nabla(\varphi \alpha(u-v)),| \nabla u\right|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right\rangle \\
& =\int\left\langle\nabla \varphi, \alpha(u-v)\left\{|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right\}\right\rangle \\
& \left.+\left.\int \varphi \alpha^{\prime}(u-v)\langle\nabla u-\nabla v,| \nabla u\right|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right\rangle \\
& \geq-(\operatorname{div} X, \varphi)+2 C(p) \int \varphi \alpha^{\prime}(u-v) \Psi(x, y)
\end{aligned}
$$

where in the last inequality we have used Corollary 5 and the fact that $\alpha^{\prime} \geq 0$. Then

$$
\operatorname{div} X \geq 2 C(p) \alpha^{\prime}(u-v) \Psi(x, y) \geq 0
$$

in the sense of distributions and Proposition 9 yields

$$
\alpha^{\prime}(u-v)|\nabla u-\nabla v|=0
$$

Since $\alpha^{\prime}(u-v) \neq 0$ on Ω_{A}, we deduce

$$
u-v \equiv A, \text { on } \Omega_{A}
$$

It follows that the open set Ω_{A} is also closed. Since M is connected we must conclude that $\Omega_{A}=M$ and $u-v=A$ on M.

Remark 11. In the above proof, inequality (6) is not used in its full strength. What we really need is that

$$
\left.\left.\langle | \nabla u\right|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v, \nabla u-\nabla v\right\rangle>0
$$

whenever $\nabla u \neq \nabla v$. According to this observation, the same proof works with minor changes for more general operators such as the \mathcal{A}-Laplacian of [3] or the φ-Laplacian of [16]. In this latter case, $\varphi(t)$ is required to be increasing.

Proof (of Theorem 3). We suppose that either u or v is non-constant, for otherwise there's nothing to prove. Fix $q_{0} \in M$. Set $C:=u\left(q_{0}\right)-v\left(q_{0}\right) \in \mathbb{R}^{n}$ and introduce the radial function $r: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as $r(x)=|x-C|$. For $T>0$, consider the piecewise differentiable vector field X_{T} on M defined as

$$
X_{T}(x):=\left[\left.d h_{T}\right|_{(u-v)(x)} \circ\left(|d u(x)|^{p-2} d u(x)-|d v(x)|^{p-2} d v(x)\right)\right]^{\#}, \quad x \in M,
$$

where $h_{T} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is the function

$$
h_{T}(x):= \begin{cases}\frac{r^{2}(x)}{2} & \text { if } r(x)<T \\ \operatorname{Tr}(x)-\frac{T^{2}}{2} & \text { if } r(x) \geq T\end{cases}
$$

and \sharp denotes the isomorphism defined by using the Riemannian metric as $\left\langle\omega^{\sharp}, V\right\rangle=$ $\omega(V)$ for all differential 1-forms ω and vector fields V. We observe that $h_{T} \in$ C^{2} where $r(x) \neq T$ and that X_{T} is well defined since there exists a canonical identification

$$
T_{(u-v)(q)} \mathbb{R}^{n} \cong T_{u(q)} \mathbb{R}^{n} \cong T_{v(q)} \mathbb{R}^{n} \cong \mathbb{R}^{n}
$$

We also observe that, by Sard theorem, for a.e. $T>0$, the level set $\{|u-v-C|=T\}$ is a smooth (possibly empty) hypersurface, hence a set of measure zero. Thus, the vector field X_{T} is weakly differentiable and, for a.e. $T>0$, the weak divergence of X_{T} is given by

$$
\begin{aligned}
\operatorname{div} X_{T} & =\left.d\left(\frac{r^{2}}{2}\right)\right|_{(u-v)} \circ\left(\Delta_{p} u-\Delta_{p} v\right) \\
& +{ }^{M} \operatorname{tr}\left(\left.\operatorname{Hess}\left(\frac{r^{2}}{2}\right)\right|_{(u-v)}\left(d u-d v,|d u|^{p-2} d u-|d v|^{p-2} d v\right)\right)
\end{aligned}
$$

if $r(x)<T$ and

$$
\begin{aligned}
\operatorname{div} X_{T} & =\left.d(\operatorname{Tr})\right|_{(u-v)} \circ\left(\Delta_{p} u-\Delta_{p} v\right) \\
& +{ }^{M} \operatorname{tr}\left(\left.\operatorname{Hess}(T r)\right|_{(u-v)}\left(d u-d v,|d u|^{p-2} d u-|d v|^{p-2} d v\right)\right)
\end{aligned}
$$

if $r(x) \geq T$. In both cases the first term on the RHS vanishes by assumption. Moreover, by standard computations, we have $\operatorname{Hess}(r)=r^{-1}\left(\langle,\rangle_{\mathbb{R}^{n}}-d r \otimes d r\right)$ on $\mathbb{R}^{n} \backslash\{C\}$. Thus,

$$
\begin{array}{ll}
\operatorname{Hess}\left(\frac{r^{2}}{2}\right)=d r \otimes d r+r \operatorname{Hess}(r)=\langle,\rangle_{\mathbb{R}^{n}} & \text { if } r(x)<T \\
\left.\operatorname{Hess}(T r)=T \operatorname{Hess}(r)=\frac{T}{r}\left(\langle,\rangle_{\mathbb{R}^{n}}-d r \otimes d r\right\rangle\right) & \text { if } r(x) \geq T
\end{array}
$$

As a consequence, for $q \in M$ such that $r((u-v)(q))<T$, by Corollary 5 we get

$$
\begin{equation*}
\left.\operatorname{div} X_{T}=\left.\langle d u-d v,| d u\right|^{p-2} d u-|d v|^{p-2} d v\right\rangle \geq 2 C(p)|d u-d v|^{p} \tag{8}
\end{equation*}
$$

while, for $q \in M$ such that $r((u-v)(q)) \geq T$, it holds

$$
\begin{align*}
\operatorname{div} X_{T} & \left.=\left.\frac{T}{r(u-v)}\langle d u-d v,| d u\right|^{p-2} d u-|d v|^{p-2} d v\right\rangle \tag{9}\\
& -\frac{T}{r(u-v)}\left\langle\left. d r\right|_{(u-v)}(d u-d v),\left.d r\right|_{(u-v)}\left(|d u|^{p-2} d u-|d v|^{p-2} d v\right)\right\rangle \\
& \geq \frac{T}{r(u-v)} 2 C(p)|d u-d v|^{p}-(|d u|+|d v|)\left(|d u|^{p-1}+|d v|^{p-1}\right) \\
& \geq \frac{T}{r(u-v)} 2 C(p)|d u-d v|^{p}-\left(|d u|^{p}+|d v|^{p}+|d u|^{p-1}|d v|+|d v|^{p-1}|d u|\right) \\
& \geq \frac{T}{r(u-v)} 2 C(p)|d u-d v|^{p}-2\left(|d u|^{p}+|d v|^{p}\right)
\end{align*}
$$

where we have used again Corollary 5 for the first term and Cauchy-Schwarz inequality, Young's inequality and the facts that $|d r|=1$ and $r(u-v) \geq T$ for the second one. Let us now compute the $L^{\frac{p}{p-1}}$ norm of X_{T}. Since

$$
\left||d u|^{p-2} d u-|d v|^{p-2} d v\right|^{\frac{p}{p-1}} \leq\left(|d u|^{p-1}+|d v|^{p-1}\right)^{\frac{p}{p-1}} \leq 2^{\frac{1}{p-1}}\left(|d u|^{p}+|d v|^{p}\right)
$$

we have

$$
\begin{aligned}
\int_{\{|u-v-C|<T\}}\left|X_{T}\right|^{\frac{p}{p-1}} & \leq\left.\int_{\{|u-v-C|)<T\}}|u-v-C|^{\frac{p}{p-1}}| | d u\right|^{p-2} d u-\left.|d v|^{p-2} d v\right|^{\frac{p}{p-1}} \\
& \leq T^{\frac{p}{p-1}} 2^{\frac{1}{p-1}}\left(\|d u\|_{p}^{p}+\|d v\|_{p}^{p}\right)<+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\{|u-v-C|)>T\}}\left|X_{T}\right|^{\frac{p}{p-1}} & \leq \int_{\{|u-v-C|>T\}} T^{\frac{p}{p-1}} \|\left.d u\right|^{p-2} d u-\left.|d v|^{p-2} d v\right|^{\frac{p}{p-1}} \\
& \leq T^{\frac{p}{p-1}} 2^{\frac{1}{p-1}}\left(\|d u\|_{p}^{p}+\|d v\|_{p}^{p}\right)<+\infty
\end{aligned}
$$

Hence X_{T} is a weakly differentiable vector field with $\left|X_{T}\right| \in L^{\frac{p}{p-1}}(M)$ and $\operatorname{div} X_{T} \in$ $L_{\mathrm{loc}}^{1}(M)$. To apply Theorem 8 , it remains to show that $\left(\operatorname{div} X_{T}\right)_{-} \in L^{1}(M)$. By inequalities (8) and (9), we deduce that
(10) $\int_{M}\left|\left(\operatorname{div} X_{T}\right)_{-}\right| \leq 2 \int_{\{|u-v-C|>T\}}\left(|d u|^{p}+|d v|^{p}\right) \leq 2\left(\|d u\|_{p}^{p}+\|d v\|_{p}^{p}\right)<+\infty$.

Then, the assumptions of Theorem 8 are satisfied and we get, for a.e. $T>0$,

$$
\int_{M} \operatorname{div} X_{T} \leq 0
$$

According to (10) we now choose a sequence $T_{n} \nearrow+\infty$ such that

$$
\int_{M}\left|\left(\operatorname{div} X_{T_{n}}\right)_{-}\right| \leq 2 \int_{\left\{|u-v-C|>T_{n}\right\}}\left(|d u|^{p}+|d v|^{p}\right)<\frac{1}{n}
$$

As a consequence,

$$
\begin{align*}
\int_{\left\{|u-v-C|<T_{n}\right\}} 2 C(p)|d u-d v|^{p} & \leq \int_{\left\{|u-v-C|<T_{n}\right\}}\left(\operatorname{div} X_{T_{n}}\right)_{+} \tag{11}\\
& \leq \int_{M}\left(\operatorname{div} X_{T_{n}}\right)_{+} \\
& \leq-\int_{M}\left(\operatorname{div} X_{T_{n}}\right)_{-}<\frac{1}{n}
\end{align*}
$$

Therefore, letting n go to $+\infty$, we obtain

$$
\int_{M} C(p)|d(u-v)|^{p}=0
$$

that is, $u-v \equiv u\left(q_{0}\right)-v\left(q_{0}\right)=C$ on M.

4. Further comparison results without parabolicity

In this last section we give a proof of Theorem 2. Note that the techniques developed in [12] can be used to conclude further (e.g. L^{∞}) comparison results. We shall need the following lemma

Lemma 12. Let $p \geq 2$. Then, for every $x, y \in \mathbb{R}^{n}$, it holds

$$
\left||x|^{p-2} x-|y|^{p-2} y\right| \leq(p-1)(|x|+|y|)^{p-2}|x-y| .
$$

Proof. Set $E(x):=|x|^{p-2} x$. We start by computing

$$
\begin{aligned}
\left|\frac{d}{d t} E(t x+(1-t) y)\right| & \leq(p-1)|t x+(1-t) y|^{p-2}|x-y| \\
& \leq(p-1)(|x|+|y|)^{p-2}|x-y|
\end{aligned}
$$

from which we obtain

$$
\begin{aligned}
|E(x)-E(y)| & =\left|\int_{0}^{1} \frac{d}{d t} E(t x+(1-t) y) d t\right| \\
& \leq \int_{0}^{1}\left|\frac{d}{d t} E(t x+(1-t) y)\right| d t \\
& \leq(p-1)(|x|+|y|)^{p-2}|x-y|
\end{aligned}
$$

Proof (of Theorem 2). First of all, for the ease of notation, we set

$$
E(\xi):=|\xi|^{p-2} \xi, \xi \in T M
$$

Suppose that $u-v$ is not constant and, by contradiction, assume that there exists a point $x_{0} \in M$ such that $u\left(x_{0}\right)>v\left(x_{0}\right)$. Fix a real number $0<\epsilon<$ $\left(u\left(x_{0}\right)-v\left(x_{0}\right)\right) / 2$ and define Ω_{ϵ} to be the connected component of the open set $\{x \in M: u(x)-v(x)>\epsilon\}$ which contains x_{0}. Note that, necessarily, $u-v$ is not constant on Ω_{ϵ}. Indeed, otherwise, by standard topological arguments we would have $\Omega_{\epsilon}=M$ and $u-v$ would be constant on all of M. We choose a smooth, non-decreasing function λ such that $\lambda(t)=0$ for every $t<2 \epsilon$ and $0<\lambda(t) \leq 1$ for every $t>2 \epsilon$ and we define the vector field

$$
X:=\lambda(u-v)(u-v)^{q}(E(\nabla u)-E(\nabla v)) .
$$

We write B_{R} for $B_{R}(o)$ and $\partial / \partial r$ for the radial vector field centered at o. Applying the divergence theorem, Lemma 12 and Hölder inequality, we get

$$
\begin{aligned}
& \int_{B_{R} \cap \Omega_{\epsilon}} \operatorname{div} X \\
& =\int_{\partial B_{R} \cap \Omega_{\epsilon}}\left\langle X, \frac{\partial}{\partial r}\right\rangle \\
& \leq \int_{\partial B_{R} \cap \Omega_{\epsilon}}|E(\nabla u)-E(\nabla v)| \lambda(u-v)(u-v)^{q} \\
& \leq(p-1) \int_{\partial B_{R} \cap \Omega_{\epsilon}} \lambda(u-v)(|\nabla u|+|\nabla v|)^{p-2}|\nabla u-\nabla v|(u-v)^{q} \\
& \leq(p-1)\left(\int_{\partial B_{R} \cap \Omega_{\epsilon}} F(u, v)\right)^{\frac{1}{s}} \\
& \times\left(\int_{\partial B_{R} \cap \Omega_{\epsilon}} \lambda(u-v)(|\nabla u|+|\nabla v|)^{\frac{(p-2) s}{s-1}}|\nabla u-\nabla v|^{\left(1-\frac{p}{s}\right) \frac{s}{s-1}}(u-v)^{\frac{s q-q+1}{s-1}}\right)^{\frac{s-1}{s}} \\
& \leq(p-1)\left(\int_{\partial B_{R} \cap \Omega_{\epsilon}} F(u, v)\right)^{\frac{1}{s}}\left(\int_{\partial B_{R}}|u-v|^{q+\frac{1}{s-1}}(|\nabla u|+|\nabla v|)^{p-\frac{s}{s-1}}\right)^{\frac{s-1}{s}}
\end{aligned}
$$

where

$$
F(u, v)=\lambda(u-v)|\nabla u-\nabla v|^{p}(u-v)^{q-1}
$$

and, we recall, $s>p$. On the other hand, computing the divergence of X we obtain

$$
\begin{aligned}
\int_{B_{R} \cap \Omega_{\epsilon}} \operatorname{div} X & =\int_{B_{R} \cap \Omega_{\epsilon}} \lambda^{\prime}(u-v)(u-v)^{q}\langle E(\nabla u)-E(\nabla v), \nabla u-\nabla v\rangle \\
& +q \int_{B_{R} \cap \Omega_{\epsilon}}(u-v)^{q-1} \lambda(u-v)\langle E(\nabla u)-E(\nabla v), \nabla u-\nabla v\rangle \\
& +\int_{B_{R} \cap \Omega_{\epsilon}}\left(\Delta_{p} u-\Delta_{p} v\right) \lambda(u-v)(u-v)^{q} \\
& \geq 2 q C(p) \int_{B_{R} \cap \Omega_{\epsilon}} F(u, v),
\end{aligned}
$$

where, in the last inequality, we have used Corollary 5. It follows that

$$
\begin{equation*}
H(R)^{s} \leq C^{\prime} \xi(R) H^{\prime}(R) \tag{12}
\end{equation*}
$$

where we have defined

$$
\begin{aligned}
H(R) & :=\int_{B_{R} \cap \Omega_{\epsilon}} F(u, v) \geq 0 \\
\xi(R) & :=\left(\int_{\partial B_{R}}|u-v|^{q+\frac{1}{s-1}}(|\nabla u|+|\nabla v|)^{p-\frac{s}{s-1}}\right)^{s-1} \\
C^{\prime} & :=(p-1)^{s}[2 q C(p)]^{-s} .
\end{aligned}
$$

Choose $r_{1} \gg 1$ such that $F(u, v)$ does not vanish identically on $B_{r_{1}} \cap \Omega_{\epsilon}$. According to (12) we have $\xi(R), H(R)>0$, for every $R \geq r_{1}$. Therefore, we can integrate (12)
on $\left[r_{1}, r_{2}\right]$ to obtain

$$
\begin{align*}
\left(\frac{C^{\prime}}{s-1}\right) \frac{1}{H\left(r_{1}\right)^{s-1}} & \geq\left(\frac{C^{\prime}}{s-1}\right)\left(-H\left(r_{2}\right)^{1-s}+H\left(r_{1}\right)^{1-s}\right) \tag{13}\\
& \geq \int_{r_{1}}^{r_{2}} \frac{d t}{\xi(t)}
\end{align*}
$$

Letting $r_{2} \rightarrow \infty$, the RHS of (13) goes to infinity by assumption, and this force $H\left(r_{1}\right)=0$ for all r_{1}. Hence

$$
\nabla(u-v) \equiv 0 \text { on } \Omega_{\epsilon}
$$

proving that $u-v$ is constant on Ω_{ϵ}. Contradiction.
Remark 13. Applying Hölder and reverse Hölder inequalities, we can see that condition (4) in Theorem 2 is implied by the stronger assumption

$$
\left(\int^{R}\left\||u-v|^{q+\frac{1}{s-1}}\right\|_{t, \partial B_{r}}^{-\frac{s-1}{z}} d r\right)^{z}\left(\int^{R}\left\|(|\nabla u|+|\nabla v|)^{p-\frac{s}{s-1}}\right\|_{\frac{t}{t-1}, \partial B_{r}}^{\frac{s-1}{z-1}} d r\right)^{1-z} \nearrow \infty
$$

as $R \rightarrow \infty$, for some $t \in[1,+\infty]$ and $z \in(-\infty, 0) \cup(1,+\infty)$. Here $\|f\|_{t, \Omega}$ denotes the L^{t} norm of f on Ω. In particular we obtain that Theorem 2 holds if we replace (4) with either of the following set of assumptions:
4.i) $|\nabla u|,|\nabla v| \in L^{\infty}(M)$ and $\left[\int_{\partial B_{r}}|u-v|^{q+\frac{1}{s-1}}\right]^{1-s} \notin L^{1}(+\infty)$ for some $q \geq 1$ and $s>p$;
4.ii) $|u-v| \in L^{\infty}(M)$ and $\left[\int_{\partial B_{r}}(|\nabla u|+|\nabla v|)^{p-\frac{s}{s-1}}\right]^{1-s} \notin L^{1}(+\infty)$ for some $s>p$
4.iii) $|\nabla u|,|\nabla v| \in L^{\left(p-\frac{s}{s-1}\right) t}(M)$, for some $s>p$ and $t>1$, and

$$
\left[\int_{\partial B_{r}}|u-v|^{\left(q+\frac{1}{s-1}\right) \frac{t}{t-1}}\right]^{\frac{(1-s)(t-1)}{s+t-1}} \notin L^{1}(+\infty)
$$

for some $q \geq 1$;
4.iv) $|u-v| \in L^{\left(q+\frac{1}{s-1}\right) t}(M)$, for some $s>p, q \geq 1$ and $t>1$, and

$$
\left[\int_{\partial B_{r}}(|\nabla u|+|\nabla v|)^{\left(p-\frac{s}{s-1}\right) \frac{t}{t-1}}\right]^{\frac{(1-s)(t-1)}{s+t-1}} \notin L^{1}(+\infty) .
$$

References

[1] P. Collin, R. Krust. Le problème de Dirichlet pour l'equation des surfaces minimales sur des domaines non bornés. Bull. Soc. Math. France, 119 (1991), 443-458.
[2] V. Gol'dshtein, M. Troyanov, The Kelvin-Nevanlinna-Royden criterion for p-parabolicity. Math Z. 232 (1999), 607-619.
[3] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
[4] I. Holopainen, Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 74 (1990), 45 pp.
[5] I. Holopainen, Volume growth, Green's function, and parabolicity of ends. Duke Math. J. 97 (1999), 319-346.
[6] I. Holopainen, Quasiregular mappings and the p-Laplace operator. Contemp. Math. 338 Amer. Math. Soc., Providence, RI, 2003.
[7] I. Holopainen, P. Koskela, Volume growth and parabolicity. Proc. Amer. Math. Soc. 129 (2001), 3425-3435.
[8] J.-F. Hwang, Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1988), 341-355.
[9] P. Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$. Proc. Amer Math. Soc. 109 (1996), 157-164.
[10] T. Lyons, D. Sullivan, Function theory, random paths and covering spaces. J. Diff. Geom. 18 (1984), 229-323.
[11] V.M. Mikljukov. A new approach to Bernstein theorem and to related questions for equations of minimal surface type (in Russian). Mat. Sb. 108 (1979), 268-289; Engl. transl. in Math. USSR Sb., 36 (1980), 251-271.
[12] S. Pigola, M. Rigoli, A.G. Setti, Some remarks on the prescribed mean curvature equation on complete manifolds. Pacific J. Math. 206 (2002), no. 1, 195-217.
[13] S. Pigola, M. Rigoli, A.G. Setti, Constancy of p-harmonic maps of finite q-energy into nonpositively curved manifolds. Math. Z. 258 (2008), 347-362.
[14] S. Pigola, M. Rigoli, A.G. Setti, Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique. Progress in Mathematics 266 (2008), Birkhäuser.
[15] S. Pigola, G. Veronelli, On the homotopy class of maps with finite p-energy into non-positively curved manifolds. To appear in Geometriae Dedicata.
[16] M. Rigoli, A.G. Setti, Liouville type theorems for φ-subharmonic functions. Rev. Mat. Iberoamer. 17 (2001), 471-450.
[17] R. Schoen, S.T. Yau, Compact group actions and the topology of manifolds with nonpositive curvature. Topology 18 (1979), 361-380.
[18] M. Troyanov, Parabolicity of manifolds. Siberian Adv. Math. 9 (1999), no. 4, 125-150.
[19] S.W. Wei, Representing homotopy groups and spaces of maps by p-harmonic maps. Indiana Math. J. 47 (1998), 625-669.

Department of Mathematics and Statistics, P.O. Box 68, FIN-00014 University of Helsinki, Finland.

E-mail address: ilkka.holopainen@helsinki.fi
Dipartimento di Fisica e Matematica, Università dell'Insubria - Como, via Valleggio 11, I-22100 Como, Italy.

E-mail address: stefano.pigola@uninsubria.it
Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, I-20133 Milano, Italy.

E-mail address: giona.veronelli@unimi.it

[^0]: Date: December 1, 2009.
 2000 Mathematics Subject Classification. 35B05, 31C45.
 Key words and phrases. Nonlinear comparisons, finite p-energy, p-parabolicity.
 ${ }^{\dagger}$ Work partially supported by the Academy of Finland, project 123633.

