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Abstract. We prove global comparison results for the p-Laplacian on a p-
parabolic manifold. These involve both real-valued and vector-valued maps
with finite p-energy. Further Lq comparison principles in the non-parabolic
setting are also discussed.

1. Introduction

Let (M, 〈, 〉) be a connected, m-dimensional, complete Riemannian manifold and
let p > 1. Recall that the p-Laplacian of a real valued function u : M → R is defined

by ∆pu = div(|∇u|p−2 ∇u). A function u ∈ W 1,p
loc (M) is said to be p-subsolution

if ∆pu ≥ 0 weakly on M . In case any bounded above, p-subsolution is necessarily
constant we say that the manifold M is p-parabolic. It is known that p-parabolicity
is related to volume growth properties of the underlying manifold. Accordingly, M
is p-parabolic provided, for some x ∈ M ,

(1)

(

r

volmBr (x)

)
1

p−1

/∈ L1 (+∞) ,

where Br (x) denotes the metric ball centered at x, of radius r > 0, and volm is
the m-dimensional Hausdorff measure. Thus, for instance, the standard Euclidean
space R

m is p-parabolic if m ≤ p. Condition (1) is quite natural in that it shares
the quasi-isometry invariance of p-parabolicity. Moreover, it turns out that there
are geometric situations where (1) is also necessary for M to be p-parabolic; see [5],
[7] and references therein. On the other hand, it was established in [18], [16] and
[6] that the most general volume growth condition ensuring p-parabolicity is that,
for some x ∈ M ,

(

1

volm−1∂Br (x)

)
1

p−1

/∈ L1 (+∞) .

Now, suppose that M is p-parabolic, with p ≥ 2. It is known, [13], that a smooth
p-subharmonic function u : M → R with finite p-energy |∇u| ∈ Lp (M) must be
constant. We shall show that this is nothing but a very special case of a genuine
comparison principle for the p-Laplace operator.

Recall that, given a function f ∈ L1
loc(M) and a vector field X ∈ L1

loc(M),
we say that div X ≥ f weakly (or in the sense of distributions) on M if, for all
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non-negative, compactly supported, smooth test functions ϕ, 0 ≤ ϕ ∈ C∞
c (M),

(2) (div X, ϕ) := −
∫

〈X,∇ϕ〉 ≥
∫

fϕ.

In particular, if X = |∇u|p−2∇u− |∇v|p−2∇v for some real-valued functions u, v ∈
W 1,p

loc (M) and f ≡ 0, we have that the weak inequality ∆pu ≥ ∆pv means

(3)

∫

〈

|∇u|p−2∇u,∇ϕ
〉

≤
∫

〈

|∇v|p−2∇v,∇ϕ
〉

,

for all 0 ≤ ϕ ∈ C∞
c (M). Note that, by standard density results and by dominated

convergence, it is equivalent to require the validity of (2) and (3) for all 0 ≤ ϕ ∈
W 1,p

c (M) if |∇u|, |∇v| ∈ Lp(M). Above W 1,p
loc (M) stands for the (local) Sobolev

space of all functions u ∈ Lp
loc(M) whose weak (distributional) gradients also belong

to Lp
loc(M). Furthermore, W 1,p

c (M) is the closure of C∞
c (M) in W 1,p(M).

Theorem 1. Let (M, 〈, 〉) be a connected, p-parabolic Riemannian manifold, with

p > 1. Assume that u, v ∈ W 1,p
loc

(M) ∩ C0(M) satisfy

∆pu ≥ ∆pv weakly on M,

and

|∇u| , |∇v| ∈ Lp (M) .

Then, u = v + A on M , for some constant A ∈ R.

Simple examples show that both the p-parabolicity of M and the Lp-integrability
of |∇u| or |∇v| are needed above. Indeed, let M be, for instance, the open unit
ball in R

m, u a constant function, and v a non-constant p-harmonic function in
M (i.e. a continuous weak solution to ∆pv = 0), with |∇v| ∈ Lp(M). Then M
is non-p-parabolic for all p > 1 and the conclusion of Theorem 1 clearly fails. On
the other hand, let M be the infinite cylinder R×S

m−1 equipped with the product
metric ds2 = dr2 + dϑ2, where dϑ2 is the standard metric of the sphere S

m−1.
Furthermore, let u be a constant function and v(t, ϑ) = t. Now M is p-parabolic
for all p > 1, u and v are p-harmonic in M , but the conclusion of Theorem 1 again
fails.

To prove Theorem 1 we will introduce an inequality for the p-Laplacian which
resembles a well known inequality for the mean curvature operator. A basic use of
this inequality will enable us to get also the next result in the spirit of [12].

Theorem 2. Let (M, 〈, 〉) be a complete Riemannian manifold. Let u, v ∈ C∞(M)
be such that

∆pu ≥ ∆pv on M

for some p ≥ 2. Suppose there exist q ≥ 1 and s > p such that

(4)

(

∫

∂Bt(o)

|u − v|q+ 1
s−1 (|∇u| + |∇v|)p− s

s−1

)1−s

/∈ L1(+∞),

for some o ∈ M . Then either u ≡ v + A for some constant A ∈ R or u ≤ v on M .

Besides real-valued functions one is naturally led to consider manifold-valued
maps. Several topological questions are related to the p-Laplacian of maps; [19],[15].
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Recall that the p-Laplacian (or the p-tension field) of a map u : M → N between
Riemannian manifolds is defined by

∆pu = div
(

|du|p−2
du
)

.

Here, du ∈ T ∗M ⊗ u−1TN denotes the differential of u and the bundle T ∗M ⊗
u−1TN is endowed with its Hilbert-Schmidt scalar product 〈, 〉. Moreover, − div
stands for the formal adjoint of the exterior differential d with respect to the
standard L2 inner product on vector-valued 1-forms. Say that u is p-harmonic
if ∆pu = 0. In [17], Schoen and Yau prove a general comparison principle for
homotopic (2-)harmonic maps with finite (2-)energy into non-positively curved tar-
gets. They assume that the complete, non-compact manifold M has finite volume
but the request that M is (2-)parabolic suffices, [13]. In this direction, comparisons
for homotopic p-harmonic maps with finite p-energy into non-positively curved
manifolds are far from being completely understood. Some progress in the special
situation of a single map homotopic to a constant has been made in [13]. In this
note, we focus our attention on the case N = R

n. According to [13], it is clear that,
if M is p-parabolic, then every p-harmonic map u : M → R

n with finite p-energy
|du| ∈ Lp (M) must be constant. However, using the very special structure of R

n,
we are able to extend this conclusion, thus establishing a comparison principle for
maps u, v : M → R

n having the same p-Laplacian. In some sense, this can be
considered as a further step towards the comprehension of the general comparison
problem alluded to above.

Theorem 3. Suppose that (M, 〈, 〉) is p-parabolic, with p ≥ 2. Let u, v : M → R
n

be smooth maps satisfying

(5) ∆pu = ∆pv on M,

and

|du| , |dv| ∈ Lp (M) .

If (M, 〈, 〉) is p-parabolic then u = v + A, for some constant A ∈ R
n.

Acknowledgement. The second and the third authors are indebted to A.G. Setti
for valuable conversations during the preparation of the paper.

2. Main tools

In the proofs of Theorems 1 and 3 we will use two main ingredients: (a) a
version for the p-Laplacian of a classical inequality for the mean-curvature operator,
which will be also used in a final section to prove Theorem 2; (b) a global form of
the divergence theorem in non-compact settings which inspires to a p-parabolicity
criterion involving vector fields.

2.1. A key inequality. The following basic inequality was discovered by Lindqvist,
[9].

Lemma 4. Let (V, 〈, 〉) be a finite dimensional, real vector space endowed with a
positive definite scalar product and let p > 1. Then, for every x, y ∈ V it holds

|x|p + (p − 1) |y|p − p |y|p−2 〈x, y〉 ≥ C(p)Ψ(x, y),



4 ILKKA HOLOPAINEN, STEFANO PIGOLA, AND GIONA VERONELLI

where

Ψ(x, y) :=

{

|x − y|p p ≥ 2
|x−y|2

(|x|+|y|)2−p 1 < p < 2,

and C(p) is a positive constant depending only on p.

As a consequence, we deduce the validity of the next

Corollary 5. In the above assumptions, for every x, y ∈ V , it holds

(6)
〈

|x|p−2 x − |y|p−2 y, x − y
〉

≥ 2C(p)Ψ(x, y).

Proof. We start computing
〈

|x|p−2
x − |y|p−2

y, x − y
〉

= |x|p + |y|p − 〈x, y〉
(

|x|p−2
+ |y|p−2

)

.

On the other hand, applying twice Lindqvist inequality with the role of x and y
interchanged we get

p (|x|p + |y|p) ≥ p
(

|x|p−2
+ |y|p−2

)

〈x, y〉 + 2C(p)Ψ(x, y).

Inserting into the above completes the proof. �

Remark 6. Inequality (6) can be considered as a version for the p-Laplacian of the
classical Mikljukov-Hwang-Collin-Krust inequality; [11], [8], [1]. This latter states
that, for every x, y ∈ V ,

〈

x√
1+|x|2

− y√
1+|y|2

, x − y

〉

≥
√

1+|x|2+
√

1+|y|2

2

∣

∣

∣

∣

x√
1+|x|2

− y√
1+|y|2

∣

∣

∣

∣

2

,

equality holding if and only if x = y. This analogy suggests the validity of global
comparison results, without any p-parabolicity asssumption, in the spirit of [12], as
exemplified by Theorem 2. See Section 4.

2.2. p-parabolicity and related properties. As we mentioned in the intro-
duction, a manifold M is p-parabolic if a Liouville type property holds for p-
subsolutions that are bounded above. It is well known that this is just one of
the several equivalent definitions of p-parabolicity; see [4]. For instance, and in
view of future purposes, we recall the next

Theorem 7. The manifold M is p-parabolic if and only if the (relative) p-capacity
of any compact set K vanishes. This means that

inf

∫

M

|∇ϕ|p = 0

where the infimum is taken over all compactly supported smooth functions ϕ satis-
fying ϕ = 1 on K.

A further very useful characterization of (non-)p-parabolicity involves special vec-
tor fields on the underlying manifold. It goes under the name of Kelvin-Nevanlinna-
Royden criterion. In the linear setting p = 2 it was proved in a paper by T. Lyons
and D. Sullivan, [10]. See also Theorem 7.27 in [14]. The following non-linear
extension is due to Gol’dshtein and Troyanov, [2].



GLOBAL COMPARISON PRINCIPLES FOR THE p-LAPLACE OPERATOR 5

Theorem 8. The manifold M is not p-parabolic if and only if there exists a vector
field X on M such that:

(a) |X | ∈ L
p

p−1 (M)

(b) div X ∈ L1
loc

(M) and min (div X, 0) = (div X)− ∈ L1 (M)

(c) 0 <
∫

M
div X ≤ +∞.

Accordingly, if M is p-parabolic and X is a vector field satisfying (a’) |X | ∈
L

p

p−1 (M), (b’) div X ∈ L1
loc (M), and (c’) div X ≥ 0 on M , then we must necessar-

ily conclude that div X = 0 on M . It is worth pointing out that, even if condition
(b’) is not satisfied, we can obtain a similar conclusion as shown in the next

Proposition 9. Let (M, 〈, 〉) be a p-parabolic Riemannian manifold, p > 1. Let X

be a vector field satisfying |X | ∈ L
p

p−1 (M) and

div X ≥ f ≥ 0

in the sense of distributions, for some 0 ≤ f ∈ L1
loc

(M). Then

f ≡ 0.

Proof. Let {Ωj}∞j=0 be an increasing sequence of precompact open sets with smooth

boundaries such that Ωj ↗ M . Let ϕj be the p-equilibrium potential of the con-

denser C(Ωj , Ω0), namely

∫

M

|∇ϕj |p = min

∫

M

|∇ϕ|p

where the minimum is taken over all smooth ϕ compactly supported in Ωj and

satisfying ϕ = 1 on Ω0. Then, ϕj solves the Dirichlet problem










∆pϕj = 0 Ωj \ Ω0

ϕj = 1 on Ω0

ϕj = 0 on ∂Ωj

and we have

0 ≤
∫

M

ϕjf ≤ (div X, ϕj)(7)

= −
∫

M

〈X,∇ϕj〉

≤
(
∫

M

|X | p

p−1

)

p−1
p
(
∫

M

|∇ϕj |p
)

1
p

.

Note that, by Theorem 7,
∫

M

|∇ϕj |p → 0, as j → ∞,

which implies that the RHS of (7) vanishes as j → ∞. Moreover, by the comparison
principle on precompact domains it follows that 0 ≤ ϕj ≤ 1 is a non-decreasing
sequence of functions pointwise converging to some ϕ > 0. Hence, taking limits in
(7) and using monotone convergence,

0 ≤
∫

M

ϕf ≤ 0



6 ILKKA HOLOPAINEN, STEFANO PIGOLA, AND GIONA VERONELLI

and this latter gives f ≡ 0. �

Remark 10. Using an Ahlfors type characterization of p-parabolicity in terms of a
boundary maximum principle for p-harmonic functions on generic domains we see
that, in fact, ϕ ≡ 1.

3. Proofs of the finite-energy comparison principles

We are now in the position to prove the main results.

Proof (of Theorem 1). Fix any x0 ∈ M , let A = u (x0) − v (x0) and define ΩA to
be the connected component of the open set

{x ∈ M : A − 1 < u (x) − v (x) < A + 1}
which contains x0. By standard topological arguments, ΩA 6= ∅ is a (connected)
open set. Let α : R → R≥0 be the piece-wise linear function defined by

α (t) =







0 t ≤ A − 1
(t − A + 1) /2 A − 1 ≤ t ≤ A + 1
1 t ≥ A + 1.

Consider the vector field

X = α ◦ (u − v)
{

|∇u|p−2 ∇u − |∇v|p−2 ∇v
}

,

and note that, for a suitable constant C > 0,

|X |
p

p−1 ≤ C (|∇u|p + |∇v|p) ∈ L1 (M) .

¿From now on we abbreviate α(u − v) = α ◦ (u − v), α′(u − v) = α′ ◦ (u − v), etc.

Since α(u − v) ∈ W 1,p
loc (M) then, by assumption, for all functions 0 ≤ ϕ ∈ C∞

c (M)
we have

0 ≥
∫

〈

∇(ϕα(u − v)), |∇u|p−2 ∇u − |∇v|p−2 ∇v
〉

=

∫

〈

∇ϕ, α (u − v)
{

|∇u|p−2 ∇u − |∇v|p−2 ∇v
}〉

+

∫

ϕα′ (u − v)
〈

∇u −∇v, |∇u|p−2 ∇u − |∇v|p−2 ∇v
〉

≥ −(div X, ϕ) + 2C(p)

∫

ϕα′ (u − v) Ψ(x, y)

where in the last inequality we have used Corollary 5 and the fact that α′ ≥ 0.
Then

div X ≥ 2C(p)α′ (u − v)Ψ(x, y) ≥ 0

in the sense of distributions and Proposition 9 yields

α′ (u − v) |∇u −∇v| = 0.

Since α′ (u − v) 6= 0 on ΩA, we deduce

u − v ≡ A, on ΩA.

It follows that the open set ΩA is also closed. Since M is connected we must
conclude that ΩA = M and u − v = A on M . �
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Remark 11. In the above proof, inequality (6) is not used in its full strength.
What we really need is that

〈

|∇u|p−2 ∇u − |∇v|p−2 ∇v,∇u −∇v
〉

> 0

whenever ∇u 6= ∇v. According to this observation, the same proof works with
minor changes for more general operators such as the A-Laplacian of [3] or the
ϕ-Laplacian of [16]. In this latter case, ϕ(t) is required to be increasing.

Proof (of Theorem 3). We suppose that either u or v is non-constant, for otherwise
there’s nothing to prove. Fix q0 ∈ M . Set C := u(q0) − v(q0) ∈ R

n and introduce
the radial function r : R

n → R defined as r(x) = |x − C|. For T > 0, consider the
piecewise differentiable vector field XT on M defined as

XT (x) :=
[

dhT |(u−v)(x) ◦
(

|du(x)|p−2du(x) − |dv(x)|p−2dv(x)
)

]]

, x ∈ M,

where hT ∈ C1(Rn, R) is the function

hT (x) :=

{

r2(x)
2 if r(x) < T

Tr(x) − T 2

2 if r(x) ≥ T

and ] denotes the isomorphism defined by using the Riemannian metric as 〈ω], V 〉 =
ω(V ) for all differential 1-forms ω and vector fields V . We observe that hT ∈
C2 where r(x) 6= T and that XT is well defined since there exists a canonical
identification

T(u−v)(q)R
n ∼= Tu(q)R

n ∼= Tv(q)R
n ∼= R

n.

We also observe that, by Sard theorem, for a.e. T > 0, the level set {|u − v − C| = T }
is a smooth (possibly empty) hypersurface, hence a set of measure zero. Thus, the
vector field XT is weakly differentiable and, for a.e. T > 0, the weak divergence of
XT is given by

div XT = d( r2

2 )|(u−v) ◦ (∆pu − ∆pv)

+ M tr
(

Hess( r2

2 )|(u−v)

(

du − dv, |du|p−2du − |dv|p−2dv
)

)

if r(x) < T and

div XT = d(Tr)|(u−v) ◦ (∆pu − ∆pv)

+ M tr
(

Hess(Tr)|(u−v)

(

du − dv, |du|p−2du − |dv|p−2dv
))

if r(x) ≥ T . In both cases the first term on the RHS vanishes by assumption.
Moreover, by standard computations, we have Hess(r) = r−1(〈, 〉

Rn − dr ⊗ dr) on
R

n \ {C}. Thus,

Hess( r2

2 ) = dr ⊗ dr + r Hess(r) = 〈, 〉
Rn if r(x) < T,

Hess(Tr) = T Hess(r) = T
r
(〈, 〉

Rn − dr ⊗ dr〉) if r(x) ≥ T.

As a consequence, for q ∈ M such that r((u − v)(q)) < T , by Corollary 5 we get

(8) div XT =
〈

du − dv, |du|p−2du − |dv|p−2dv
〉

≥ 2C(p)|du − dv|p,
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while, for q ∈ M such that r((u − v)(q)) ≥ T , it holds

div XT =
T

r(u − v)

〈

du − dv, |du|p−2du − |dv|p−2dv
〉

(9)

− T

r(u − v)

〈

dr|(u−v)(du − dv), dr|(u−v)(|du|p−2du − |dv|p−2dv)
〉

≥ T

r(u − v)
2C(p)|du − dv|p − (|du| + |dv|)(|du|p−1 + |dv|p−1)

≥ T

r(u − v)
2C(p)|du − dv|p − (|du|p + |dv|p + |du|p−1|dv| + |dv|p−1|du|)

≥ T

r(u − v)
2C(p)|du − dv|p − 2(|du|p + |dv|p),

where we have used again Corollary 5 for the first term and Cauchy-Schwarz in-
equality, Young’s inequality and the facts that |dr| = 1 and r(u − v) ≥ T for the

second one. Let us now compute the L
p

p−1 -norm of XT . Since

∣

∣|du|p−2du − |dv|p−2dv
∣

∣

p

p−1 ≤
(

|du|p−1 + |dv|p−1
)

p

p−1 ≤ 2
1

p−1 (|du|p + |dv|p) ,

we have
∫

{|u−v−C|<T}

|XT |
p

p−1 ≤
∫

{|u−v−C|)<T}

|u − v − C| p

p−1

∣

∣|du|p−2du − |dv|p−2dv
∣

∣

p

p−1

≤ T
p

p−1 2
1

p−1

(

‖du‖p
p + ‖dv‖p

p

)

< +∞

and
∫

{|u−v−C|)>T}

|XT |
p

p−1 ≤
∫

{|u−v−C|>T}

T
p

p−1

∣

∣|du|p−2du − |dv|p−2dv
∣

∣

p

p−1

≤ T
p

p−1 2
1

p−1

(

‖du‖p
p + ‖dv‖p

p

)

< +∞.

Hence XT is a weakly differentiable vector field with |XT | ∈ L
p

p−1 (M) and div XT ∈
L1

loc(M). To apply Theorem 8, it remains to show that (div XT )− ∈ L1(M). By
inequalities (8) and (9), we deduce that

(10)

∫

M

∣

∣(div XT )−
∣

∣ ≤ 2

∫

{|u−v−C|>T}

(|du|p + |dv|p) ≤ 2(‖du‖p
p + ‖dv‖p

p) < +∞.

Then, the assumptions of Theorem 8 are satisfied and we get, for a.e. T > 0,

∫

M

div XT ≤ 0.

According to (10) we now choose a sequence Tn ↗ +∞ such that

∫

M

∣

∣(div XTn
)−
∣

∣ ≤ 2

∫

{|u−v−C|>Tn}

(|du|p + |dv|p) <
1

n
.
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As a consequence,
∫

{|u−v−C|<Tn}

2C(p)|du − dv|p ≤
∫

{|u−v−C|<Tn}

(div XTn
)+(11)

≤
∫

M

(div XTn
)+

≤ −
∫

M

(div XTn
)− <

1

n
.

Therefore, letting n go to +∞, we obtain
∫

M

C(p)|d(u − v)|p = 0,

that is, u − v ≡ u(q0) − v(q0) = C on M . �

4. Further comparison results without parabolicity

In this last section we give a proof of Theorem 2. Note that the techniques
developed in [12] can be used to conclude further (e.g. L∞) comparison results.
We shall need the following lemma

Lemma 12. Let p ≥ 2. Then, for every x, y ∈ R
n, it holds

||x|p−2x − |y|p−2y| ≤ (p − 1)(|x| + |y|)p−2|x − y|.
Proof. Set E(x) := |x|p−2x. We start by computing

| d

dt
E(tx + (1 − t)y)| ≤ (p − 1)|tx + (1 − t)y|p−2|x − y|

≤ (p − 1)(|x| + |y|)p−2|x − y|,
from which we obtain

|E(x) − E(y)| = |
∫ 1

0

d

dt
E(tx + (1 − t)y)dt|

≤
∫ 1

0

| d

dt
E(tx + (1 − t)y)|dt

≤ (p − 1)(|x| + |y|)p−2|x − y|.
�

Proof (of Theorem 2). First of all, for the ease of notation, we set

E(ξ) := |ξ|p−2ξ, ξ ∈ TM.

Suppose that u − v is not constant and, by contradiction, assume that there ex-
ists a point x0 ∈ M such that u(x0) > v(x0). Fix a real number 0 < ε <
(u(x0) − v(x0))/2 and define Ωε to be the connected component of the open set
{x ∈ M : u(x) − v(x) > ε} which contains x0. Note that, necessarily, u − v is not
constant on Ωε. Indeed, otherwise, by standard topological arguments we would
have Ωε = M and u − v would be constant on all of M . We choose a smooth,
non-decreasing function λ such that λ(t) = 0 for every t < 2ε and 0 < λ(t) ≤ 1 for
every t > 2ε and we define the vector field

X := λ(u − v)(u − v)q (E(∇u) − E(∇v)) .
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We write BR for BR(o) and ∂/∂r for the radial vector field centered at o. Applying
the divergence theorem, Lemma 12 and Hölder inequality, we get

∫

BR∩Ωε

div X

=

∫

∂BR∩Ωε

〈

X,
∂

∂r

〉

≤
∫

∂BR∩Ωε

|E(∇u)−E(∇v)|λ(u−v)(u−v)q

≤ (p − 1)

∫

∂BR∩Ωε

λ(u−v)(|∇u|+|∇v|)p−2|∇u−∇v|(u−v)q

≤ (p − 1)

(
∫

∂BR∩Ωε

F (u, v)

)
1
s

×
(
∫

∂BR∩Ωε

λ(u−v)(|∇u|+|∇v|)
(p−2)s

s−1 |∇u−∇v|(1−
p
s ) s

s−1 (u−v)
sq−q+1

s−1

)

s−1
s

≤ (p − 1)

(
∫

∂BR∩Ωε

F (u, v)

)
1
s
(
∫

∂BR

|u−v|
q+ 1

s−1 (|∇u|+|∇v|)
p−

s
s−1

)
s−1

s

,

where

F (u, v) = λ(u − v)|∇u −∇v|p(u − v)q−1

and, we recall, s > p. On the other hand, computing the divergence of X we obtain

∫

BR∩Ωε

div X =

∫

BR∩Ωε

λ′(u − v)(u − v)q 〈E(∇u) − E(∇v),∇u −∇v〉

+ q

∫

BR∩Ωε

(u − v)q−1λ(u − v) 〈E(∇u) − E(∇v),∇u −∇v〉

+

∫

BR∩Ωε

(∆pu − ∆pv)λ(u − v)(u − v)q

≥ 2qC(p)

∫

BR∩Ωε

F (u, v),

where, in the last inequality, we have used Corollary 5. It follows that

(12) H(R)s ≤ C′ξ(R)H ′(R),

where we have defined

H(R) :=

∫

BR∩Ωε

F (u, v) ≥ 0;

ξ(R) :=

(
∫

∂BR

|u−v|
q+ 1

s−1 (|∇u|+|∇v|)
p−

s
s−1

)s−1

C′ := (p − 1)s [2qC(p)]
−s

.

Choose r1 >> 1 such that F (u, v) does not vanish identically on Br1∩Ωε. According
to (12) we have ξ(R), H(R) > 0, for every R ≥ r1. Therefore, we can integrate (12)
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on [r1, r2] to obtain
(

C′

s − 1

)

1

H(r1)s−1
≥
(

C′

s − 1

)

(

−H(r2)
1−s + H(r1)

1−s
)

(13)

≥
∫ r2

r1

dt

ξ(t)
.

Letting r2 → ∞, the RHS of (13) goes to infinity by assumption, and this force
H(r1) = 0 for all r1. Hence

∇(u − v) ≡ 0 on Ωε

proving that u − v is constant on Ωε. Contradiction. �

Remark 13. Applying Hölder and reverse Hölder inequalities, we can see that
condition (4) in Theorem 2 is implied by the stronger assumption

(

∫ R ∥
∥

∥
|u − v|q+ 1

s−1

∥

∥

∥

− s−1
z

t,∂Br

dr

)z (
∫ R

∥

∥(|∇u| + |∇v|)p− s
s−1

∥

∥

s−1
z−1

t
t−1 ,∂Br

dr

)1−z

↗ ∞,

as R → ∞, for some t ∈ [1, +∞] and z ∈ (−∞, 0) ∪ (1, +∞). Here ‖f‖t,Ω denotes

the Lt norm of f on Ω. In particular we obtain that Theorem 2 holds if we replace
(4) with either of the following set of assumptions:

4.i) |∇u|, |∇v| ∈ L∞(M) and
[

∫

∂Br
|u − v|q+ 1

s−1

]1−s

/∈ L1(+∞) for some q ≥ 1

and s > p;

4.ii) |u − v| ∈ L∞(M) and
[

∫

∂Br
(|∇u| + |∇v|)p− s

s−1

]1−s

/∈ L1(+∞) for some

s > p;

4.iii) |∇u|, |∇v| ∈ L(p− s
s−1 )t(M), for some s > p and t > 1, and

[
∫

∂Br

|u − v|(q+ 1
s−1 )

t
t−1

]

(1−s)(t−1)
s+t−1

/∈ L1(+∞)

for some q ≥ 1;

4.iv) |u − v| ∈ L(q+ 1
s−1 )t(M), for some s > p, q ≥ 1 and t > 1, and

[
∫

∂Br

(|∇u| + |∇v|)(p− s
s−1 )

t
t−1

]

(1−s)(t−1)
s+t−1

/∈ L1(+∞).
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