GLOBAL COMPARISON PRINCIPLES FOR THE p-LAPLACE
OPERATOR ON RIEMANNIAN MANIFOLDS

ILKKA HOLOPAINENT, STEFANO PIGOLA, AND GIONA VERONELLI

ABSTRACT. We prove global comparison results for the p-Laplacian on a p-
parabolic manifold. These involve both real-valued and vector-valued maps
with finite p-energy. Further LY comparison principles in the non-parabolic
setting are also discussed.

1. INTRODUCTION

Let (M, (,)) be a connected, m-dimensional, complete Riemannian manifold and
let p > 1. Recall that the p-Laplacian of a real valued function v : M — R is defined
by Apu = div(|Vul’ > Vu). A function u € W,LP(M) is said to be p-subsolution
if Apu > 0 weakly on M. In case any bounded above, p-subsolution is necessarily
constant we say that the manifold M is p-parabolic. It is known that p-parabolicity
is related to volume growth properties of the underlying manifold. Accordingly, M
is p-parabolic provided, for some = € M,

1 : T

where B, () denotes the metric ball centered at z, of radius r > 0, and vol,, is
the m-dimensional Hausdorff measure. Thus, for instance, the standard Euclidean
space R™ is p-parabolic if m < p. Condition (1) is quite natural in that it shares
the quasi-isometry invariance of p-parabolicity. Moreover, it turns out that there
are geometric situations where (1) is also necessary for M to be p-parabolic; see [5],
[7] and references therein. On the other hand, it was established in [18], [16] and
[6] that the most general volume growth condition ensuring p-parabolicity is that,
for some x € M,

(W) ~ ¢ L' (+00).

Now, suppose that M is p-parabolic, with p > 2. It is known, [13], that a smooth
p-subharmonic function u : M — R with finite p-energy |Vu| € L? (M) must be
constant. We shall show that this is nothing but a very special case of a genuine
comparison principle for the p-Laplace operator.

Recall that, given a function f € L{ (M) and a vector field X € Ll (M),

we say that divX > f weakly (or in the sense of distributions) on M if, for all
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non-negative, compactly supported, smooth test functions ¢, 0 < ¢ € C°(M),

(2) @ivX.g) = [ (X.Ve) = [ fo.

In particular, if X = |Vu[P=2Vu —|Vv|P~2Vv for some real-valued functions u,v €
WLP(M) and f = 0, we have that the weak inequality A,u > A,v means

(3) / (VP2 Vu, V) < / (|VuP~2Vo, V)

for all 0 < ¢ € C°(M). Note that, by standard density results and by dominated
convergence, it is equivalent to require the validity of (2) and (3) for all 0 < ¢ €
Whe(M) if |[Vul,|Vo| € LP(M). Above VVl(laf(M) stands for the (local) Sobolev
space of all functions u € L} (M) whose weak (distributional) gradients also belong
to LY (M). Furthermore, W}P(M) is the closure of C2°(M) in WP (M).

Theorem 1. Let (M, (,)) be a connected, p-parabolic Riemannian manifold, with
p > 1. Assume that u,v € WP (M) N CO(M) satisfy

loc

Apu > Apv weakly on M,

and
|Vul,|Vu| € LP (M).
Then, u=v+ A on M, for some constant A € R.

Simple examples show that both the p-parabolicity of M and the LP-integrability
of |[Vu| or |Vu| are needed above. Indeed, let M be, for instance, the open unit
ball in R™, u a constant function, and v a non-constant p-harmonic function in
M (i.e. a continuous weak solution to Apv = 0), with |Vv| € LP(M). Then M
is non-p-parabolic for all p > 1 and the conclusion of Theorem 1 clearly fails. On
the other hand, let M be the infinite cylinder R x S™~! equipped with the product
metric ds?> = dr? + d¥?, where d¥? is the standard metric of the sphere S™~!.
Furthermore, let u be a constant function and v(¢,9) = t. Now M is p-parabolic
for all p > 1, u and v are p-harmonic in M, but the conclusion of Theorem 1 again
fails.

To prove Theorem 1 we will introduce an inequality for the p-Laplacian which
resembles a well known inequality for the mean curvature operator. A basic use of
this inequality will enable us to get also the next result in the spirit of [12].

Theorem 2. Let (M, (,)) be a complete Riemannian manifold. Let u,v € C*°(M)
be such that

Apu > Apv on M
for some p > 2. Suppose there exist ¢ > 1 and s > p such that

1-s
(4) (/ Ju— o] (V| + IWI)pssl> ¢ L' (+00),
9By (0)

for some o € M. Then either u = v+ A for some constant A€ R oru<v on M.

Besides real-valued functions one is naturally led to consider manifold-valued
maps. Several topological questions are related to the p-Laplacian of maps; [19],[15].
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Recall that the p-Laplacian (or the p-tension field) of a map v : M — N between
Riemannian manifolds is defined by

Apu = div (|du|pi2 du) :

Here, du € T*M ® u™'TN denotes the differential of v and the bundle T*M ®
u~ITN is endowed with its Hilbert-Schmidt scalar product (,). Moreover, — div
stands for the formal adjoint of the exterior differential d with respect to the
standard L? inner product on vector-valued 1-forms. Say that w is p-harmonic
if Apu = 0. In [17], Schoen and Yau prove a general comparison principle for
homotopic (2-)harmonic maps with finite (2-)energy into non-positively curved tar-
gets. They assume that the complete, non-compact manifold M has finite volume
but the request that M is (2-)parabolic suffices, [13]. In this direction, comparisons
for homotopic p-harmonic maps with finite p-energy into non-positively curved
manifolds are far from being completely understood. Some progress in the special
situation of a single map homotopic to a constant has been made in [13]. In this
note, we focus our attention on the case N = R™. According to [13], it is clear that,
if M is p-parabolic, then every p-harmonic map v : M — R™ with finite p-energy
|du| € L? (M) must be constant. However, using the very special structure of R™,
we are able to extend this conclusion, thus establishing a comparison principle for
maps u,v : M — R™ having the same p-Laplacian. In some sense, this can be
considered as a further step towards the comprehension of the general comparison
problem alluded to above.

Theorem 3. Suppose that (M, (,)) is p-parabolic, with p > 2. Let u,v: M — R"
be smooth maps satisfying

(5) Apu = Apv on M,
and
|du|, |dv| € LP (M) .
If (M, {,)) is p-parabolic then uw=v+ A, for some constant A € R™.

Acknowledgement. The second and the third authors are indebted to A.G. Setti
for valuable conversations during the preparation of the paper.

2. MAIN TOOLS

In the proofs of Theorems 1 and 3 we will use two main ingredients: (a) a
version for the p-Laplacian of a classical inequality for the mean-curvature operator,
which will be also used in a final section to prove Theorem 2; (b) a global form of
the divergence theorem in non-compact settings which inspires to a p-parabolicity
criterion involving vector fields.

2.1. A key inequality. The following basic inequality was discovered by Lindqvist,
[9].

Lemma 4. Let (V,(,)) be a finite dimensional, real vector space endowed with a
positive definite scalar product and let p > 1. Then, for every x,y € V it holds

2"+ (p = 1) [yl = plylP " (2,y) > C(p)T(z,y),
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where

lz -yl p>2
V(@y) = { eyl <o

(z[+lyD>—P
and C(p) is a positive constant depending only on p.
As a consequence, we deduce the validity of the next

Corollary 5. In the above assumptions, for every x,y € V, it holds
(6) (Jaf 22 = "2 y,0 — y) = 200)¥(,y).
Proof. We start computing
(JelP =z = |yl gz —y) = [al” + [y = (w,9) (JalP~ +[yP7?)

On the other hand, applying twice Lindqvist inequality with the role of x and y
interchanged we get

p(al” +1y) = p (1o + 19177 (2, 9) + 20(0) ¥ ().
Inserting into the above completes the proof. O

Remark 6. Inequality (6) can be considered as a version for the p-Laplacian of the
classical Mikljukov-Hwang-Collin-Krust inequality; [11], [8], [1]. This latter states
that, for every x,y € V,

2

. _y c—y)> VitzP+y/ 14y r oy
Vit VP’ - 2 Vit Vil |
equality holding if and only if z = y. This analogy suggests the validity of global

comparison results, without any p-parabolicity asssumption, in the spirit of [12], as
exemplified by Theorem 2. See Section 4.

2.2. p-parabolicity and related properties. As we mentioned in the intro-
duction, a manifold M is p-parabolic if a Liouville type property holds for p-
subsolutions that are bounded above. It is well known that this is just one of
the several equivalent definitions of p-parabolicity; see [4]. For instance, and in
view of future purposes, we recall the next

Theorem 7. The manifold M is p-parabolic if and only if the (relative) p-capacity
of any compact set K vanishes. This means that

hﬁ/|VMp:0
M

where the infimum is taken over all compactly supported smooth functions ¢ satis-
fying o =1 on K.

A further very useful characterization of (non-)p-parabolicity involves special vec-
tor fields on the underlying manifold. It goes under the name of Kelvin-Nevanlinna-
Royden criterion. In the linear setting p = 2 it was proved in a paper by T. Lyons
and D. Sullivan, [10]. See also Theorem 7.27 in [14]. The following non-linear
extension is due to Gol’dshtein and Troyanov, [2].
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Theorem 8. The manifold M is not p-parabolic if and only if there exists a vector
field X on M such that:

(a) |X| € L+ (M)

(b) div X € L1 _(M) and min (div X, 0) = (div X)_ € L' (M)

(c) 0 < [, divX < +oo0.

Accordingly, if M is p-parabolic and X is a vector field satisfying (a’) |X| €
L1 (M), (b") divX € LL_(M), and (¢’) div X > 0 on M, then we must necessar-

loc

ily conclude that div X = 0 on M. It is worth pointing out that, even if condition
(b’) is not satisfied, we can obtain a similar conclusion as shown in the next

Proposition 9. Let (M, {(,)) be a p-parabolic Riemannian manifold, p > 1. Let X
be a vector field satisfying | X| € LT (M) and

divX>f>0
in the sense of distributions, for some 0 < f € L} (M). Then
f=0.

Proof. Let {Q; };io be an increasing sequence of precompact open sets with smooth
boundaries such that ©; , M. Let ¢; be the p-equilibrium potential of the con-

denser C(£;,Q), namely
/ Vsl zmin/ Vol
M M

where the minimum is taken over all smooth ¢ compactly supported in §2; and
satisfying ¢ = 1 on Qq. Then, ; solves the Dirichlet problem

App; =0 Qj\Q_O
p; =1 on Qg
p;j =0 on 0);

and we have

— [ v
M
p—1 1
| X |71 Vi [P )
M M
Note that, by Theorem 7,

/ [Vp,|P — 0, as j — 0o,
M

which implies that the RHS of (7) vanishes as j — co. Moreover, by the comparison
principle on precompact domains it follows that 0 < ¢; < 1 is a non-decreasing
sequence of functions pointwise converging to some ¢ > 0. Hence, taking limits in
(7) and using monotone convergence,

OS/ of <0
M

IA
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and this latter gives f = 0. (]

Remark 10. Using an Ahlfors type characterization of p-parabolicity in terms of a
boundary maximum principle for p-harmonic functions on generic domains we see
that, in fact, ¢ = 1.

3. PROOFS OF THE FINITE-ENERGY COMPARISON PRINCIPLES

We are now in the position to prove the main results.

Proof (of Theorem 1). Fix any xg € M, let A = u (x9) — v (z9) and define Q4 to
be the connected component of the open set

{reM: A-1<u(z)—v(z) < A+1}

which contains xp. By standard topological arguments, Q4 # 0 is a (connected)
open set. Let a: R — R>( be the piece-wise linear function defined by

0 t<A-1
at)y=X t—A+1)/2 A-1<t<A+1
1 t>A+1.

Consider the vector field
X =ao(u—v) {|Vu|p_2 Vu — |[VolP™? VU} ,
and note that, for a suitable constant C' > 0,

|X|71 < C(|Vul|P + |[Vol’) € L* (M) .

(From now on we abbreviate a(u —v) = ao (u —v), o' (u —v) = & o (u —v), etec.
Since a(u —v) € WLP(M) then, by assumption, for all functions 0 < ¢ € C°(M)
we have

0> /<V(gpa(u—v)),|vu|“2 Vu — |VolP~2 W>

_ /<Vsﬁ, o (u— v) {|Vu|p72 Yo — |VU|P*2 VU}>
+ [ ! (= 0) (V= 9o, [0 V= [0l 0

> _(div X, ) + 2C(p) / o (u—v) U(z,y)

where in the last inequality we have used Corollary 5 and the fact that o’ > 0.
Then

divX > 2C(p) (u —v) ¥(z,y) >0
in the sense of distributions and Proposition 9 yields
o (u—v)|Vu— Vo =0.
Since o/ (u — v) # 0 on Q 4, we deduce
u—v=A,onQa.

It follows that the open set 4 is also closed. Since M is connected we must
conclude that Q4 = M and u —v = A on M. O
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Remark 11. In the above proof, inequality (6) is not used in its full strength.
What we really need is that

<|Vu|p_2 Vu — |Vo|P ™ Vo, Vu — Vv> >0

whenever Vu # Vv. According to this observation, the same proof works with
minor changes for more general operators such as the A-Laplacian of [3] or the
¢-Laplacian of [16]. In this latter case, ¢(t) is required to be increasing.

Proof (of Theorem 3). We suppose that either u or v is non-constant, for otherwise
there’s nothing to prove. Fix ¢o € M. Set C := u(qo) — v(go) € R™ and introduce
the radial function r : R” — R defined as r(x) = |x — C|. For T > 0, consider the
piecewise differentiable vector field X7 on M defined as

Xr(z):= [th|(u_U)(m) o (|du(z)[P~*du(z) — |alv(ac)|p*2dv(x))}ti , x€M,

where hr € C'(R™,R) is the function

r2(z) .
he(z) = { - ifr(z) <T

Tr(x) — T; ifr(z) >T

and f denotes the isomorphism defined by using the Riemannian metric as (w#, V) =
w(V) for all differential 1-forms w and vector fields V. We observe that hr €
C? where r(z) # T and that Xr is well defined since there exists a canonical
identification

Tu-v)@R" = TyR" = Ty R" = R".

We also observe that, by Sard theorem, for a.e. T > 0, the levelset {jlu —v — C| =T}
is a smooth (possibly empty) hypersurface, hence a set of measure zero. Thus, the

vector field Xr is weakly differentiable and, for a.e. T' > 0, the weak divergence of

X7 is given by

div X7 = d(5)|(u_v) © (Apu — Ay0)
+ Mty (Hess(é)ku,v) (du — dv, |dulP~?du — |dv|p_2dv))
if r(z) < T and
div X1 = d(T7)| (u=v) © (Apu — Apv)
+ Mtr (Hess(T'r)|(y—v) (du — dv, |du|P~2du — |dv[P~dv))

if r(z) > T. In both cases the first term on the RHS vanishes by assumption.
Moreover, by standard computations, we have Hess(r) = r=((,)p. — dr ® dr) on
R™\ {C}. Thus,

Hess(g) =dr @dr +rHess(r) = (, )gn if r(z) <T,
Hess(Tr) = T Hess(r) = L((,)g. — dr @ dr)) if r(z) >T.

As a consequence, for ¢ € M such that r((u — v)(q)) < T', by Corollary 5 we get
(8) div X7 = (du — dv, |du|P~*du — |dv[P~*dv) > 2C(p)|du — dvl?,



8 ILKKA HOLOPAINEN, STEFANO PIGOLA, AND GIONA VERONELLI
while, for ¢ € M such that r((u —v)(¢)) > T, it holds

9)

T
div X7 = ———— (du — dv, |du[""*du — |dv["~2dv)
r(u —v)
T - —
= sty (Al (@ = do),dr o (1dul”~du = |dol?*dv)
T
2 — dv|P — p—1 p—1
2 iy 20 @) ldu = dop” = ((dul + |dvl)(dul”™" + |dop™)
T
> m?C(pﬂdu — dvlP — (|dul? + |dv[? + |duP~ |dv| + |dv]P~ |dul)
T
_ T » ,
> oy 2CWldu — dvl” = 2(1dul? + [dvf?),

where we have used again Corollary 5 for the first term and Cauchy-Schwarz in-
equality, Young’s inequality and the facts that |dr| = 1 and r(u — v) > T for the

second one. Let us now compute the L7 T-norm of Xr. Since
_pP_ _P_
[ldulP~?du — |do[""dv| ™ < (|duf’™" + |doP )7 < 277 (|dul? + |dv]?),

we have
/ | X 7|71 §/ |lu—v—C|?—1 ||du|p*2du— |dv|p*2alv|”‘1
{lu—v—C|<T} {lu—v-C)<T}
< Too125m1 (||du||§ + ||dv||5) < +oo
and
/ | X7 < / T ||dulP~?du — |dv|7"_2dv|ﬁ
{lu—v—C|)>T} {lu—v—C|>T}
< TR (||du||g + ||dv||§) < +o0.

Hence X7 is a weakly differentiable vector field with |X7| € L7~ (M) and div X7 €
LL (M). To apply Theorem 8, it remains to show that (div Xr)_ € L'(M). By

loc

inequalities (8) and (9), we deduce that
10 [ Javxn_|<z2 [ (dul? + ldoP) < 2(dull; + dv]) < +x.
M {lu—v—=C|>T}

Then, the assumptions of Theorem 8 are satisfied and we get, for a.e. T > 0,

/ div X7 <0.
M

According to (10) we now choose a sequence T3, /* +00 such that

1
/ I(divXr,)_| < 2/ (ldul” + |dvl?) < =
M {lu—v—C|>Tn} n
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As a consequence,

(11) / 20(p)|du — dvl? < / (div Xz,),
{lu—v—C|<Tp} {lu—v—C|<Ty}

g/ (diVXTn)_i_
M

1
< —/ (diVXTn)_ < —.
M n

Therefore, letting n go to 400, we obtain
| coli-vr =0
M
that is, u — v = u(qo) — v(go) = C on M. O
4. FURTHER COMPARISON RESULTS WITHOUT PARABOLICITY

In this last section we give a proof of Theorem 2. Note that the techniques
developed in [12] can be used to conclude further (e.g. L) comparison results.
We shall need the following lemma

Lemma 12. Let p > 2. Then, for every x,y € R™, it holds
lelP~=2z — |y|P~2y| < (p — V(|| + [y)P 2|z — yl.
Proof. Set E(z) := |z[P~22. We start by computing

E(tz+ (1 —t)y)| < (p— Dlte + (1 = t)y| |z — y|

< (p = 1)(J2l + [y~ — yl,

dt

from which we obtain

E@) - E(y)| = | / Bt + (1 )
/| E(te + (1 — t)y)|dt

= 1)(J2] + )"z —yl.

Proof (of Theorem 2). First of all, for the ease of notation, we set
B(€) = [¢]P7%¢, £ e TM.

Suppose that u — v is not constant and, by contradiction, assume that there ex-
ists a point zp € M such that u(xg) > v(xg). Fix a real number 0 < e <
(u(zo) — v(x0))/2 and define 2, to be the connected component of the open set
{x € M : u(x) —v(z) > e} which contains xy. Note that, necessarily, © — v is not
constant on .. Indeed, otherwise, by standard topological arguments we would
have Q. = M and u — v would be constant on all of M. We choose a smooth,
non-decreasing function A such that A\(¢) = 0 for every ¢ < 2¢ and 0 < A\(¢) <1 for
every t > 2¢ and we define the vector field

X = AMNu—v)(u—0)!(E(Vu) — E(Vv)).
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We write Bg for Br(o) and 9/9r for the radial vector field centered at o. Applying
the divergence theorem, Lemma 12 and Hélder inequality, we get

/ div X
BrNQ.

e )
BBRQQE 8r

< / |[E(Vu)—E(Vv)|XA(u—v)(u—v)?
BBRQQE

< (p — 1)/ Au—v)(|Vu|+|Vo])P~ 2| Vu—Vo|(u—v)?
(9BRQQ€

1

<o-u([ Fwo)
BBRQQE
s—1
(p—2)s (1-2) =2 sa—at1 ) °
X AMu—v)(|Vu|+|Vv|) =1 |Vu—Vou| s/s=T(y—v) s-1
OBRrNQ.

1 s—1
<(p-1) </ F(uyv)) (/ uv”ﬁuvwvm‘“‘ﬁ) ,
OBRrNQ. O0BR

where

F(u,v) = Au —v)|Vu — Vo|P(u — ’U)qfl

and, we recall, s > p. On the other hand, computing the divergence of X we obtain

/ vt = N (u = v)(u = v)" (B(Va) — E(Vo), Vu — Vo)
BrNQe BrNQ.
' q/B (=) A =) (B(Vu) — B(Vv), Vu = Vo)
" ~/BRQQE (Apu = Apv) Mu = v)(u = v)?

> 24C(p) / Fu,v),

BrNQ.
where, in the last inequality, we have used Corollary 5. It follows that

(12) H(R)" < C"¢(R)H'(R),

where we have defined

H(R) ::/B . F(u,v) > 0;

s—1
&(R) = </ |uv|‘”sll<w+|w|>”fl)
OBRr

C":=(p—1)°[2¢C(p)] "

Choose 1 >> 1 such that F'(u,v) does not vanish identically on By, N{2.. According
to (12) we have £(R), H(R) > 0, for every R > ri. Therefore, we can integrate (12)
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on [r1,rs] to obtain

N [

"2 dt

> —.

~ S &)
Letting ro — oo, the RHS of (13) goes to infinity by assumption, and this force
H(r1) =0 for all r;. Hence

V(u—v) =0 on £,
proving that u — v is constant on .. Contradiction. ]

Remark 13. Applying Hélder and reverse Holder inequalities, we can see that
condition (4) in Theorem 2 is implied by the stronger assumption

R 1
[l

as R — oo, for some ¢ € [1, +oc] and z € (—00,0) U (1, +00). Here [|f|, o denotes
the L norm of f on Q. In particular we obtain that Theorem 2 holds if we replace
(4) with either of the following set of assumptions:

1—=

s—1
z—1
i 0B, dr oo,

5=
z

z R
d -
0B, " / |[(IVu| + [Vvl)

1—s
4.1) |Vul,|Vv| € L*(M) and U()Br lu — v|q+ﬁ} ) ¢ L*(+00) for some g > 1

and s > p;
s J1l-s
4.ii) |u —v| € L®(M) and [faBT(|Vu| + |Vv|)pfﬁ} ¢ L'(+00) for some
s> Dp;

4.iii) |Vul,|Vv| € L(pfs'_il)t(M), for some s > p and ¢t > 1, and
(-s)(t-1)

[, =] T g n s

for some g > 1;
4.iv) |u—wv| € L((H'ﬁ)t(M), for some s > p, g >1and ¢t > 1, and
(1—s)(t—1)

[ avas e T g e,

r
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