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ABSTRACT. We study the boundedness and compactness of Toeplitz op-
erators T, on Bergman spaces AP(D), 1 < p < oo. The novelty is that
distributional symbols are allowed. It turns out that the belonging of
the symbol to a weighted Sobolev space W, ™>°(D) of negative order
is sufficient for the boundedness of T,,. We show the natural relation of
the hyperbolic geometry of the disc and the order of the distribution. A
corresponding sufficient condition for the compactness is also derived.

1. INTRODUCTION.

The aim of this work is to find a general class of distributions a on the
unit disc D of the complex plane C, such that a Toeplitz operator with
symbol a becomes well defined and bounded on (reflexive) Bergman spaces.
We provide a sufficient condition for boundedness, which involves a natural
connection of the order or singularity of the distribution on one hand, and of
the hyperbolic geometry of ID on the other hand: roughly, if the symbol a is a
kth order distributional derivative of a bounded function b : D — C, then the
function b(2)v(z)~* := b(2)(1 — |2|?)~* should be bounded (Theorem 3.1).
More precisely, the sufficient condition is expressed in terms of a belonging
to a weighted Sobolev space, see Definition 2.2. The corresponding sufficient
condition for compactness is given in Theorem 4.2.

Consider the space [P := [P(D), 1 < p < oo, defined using the nor-
malized area measure dA on D), and the Bergman space AP, which is the
closed subspace of LP consisting of analytic functions. The Bergman pro-
jection P is the orthogonal projection of L? onto A%, and it has the integral
representation

_ f(©)
Pf(z) = /D mdfl(f)-
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It is also known to be a bounded projection of LP onto AP, when 1 < p < oo.
For an integrable function a : D — C and, say, bounded analytic functions
f, the Toeplitz operator T, with symbol «a is defined by setting

Tof = P(af).

Since P is bounded, it follows easily that T} extends to a bounded operator
AP — AP for 1 < p < oo, whenever a is a bounded measurable function.
A more general sufficient condition for the boundedness of T, was recently
given in [9]. The condition is a rather weak requirement of the boundedness
of certain “averages” of a over hyperbolic rectangles (see Theorem 2.3 of
[9]).

As for distributional symbols, if a is a compactly supported distribution
on D, one can directly define the corresponding Toeplitz operator by

(1.1) Taf(2) = (f(O)(1 = 20) 7%, a)

where (-, )¢ denotes the dual paring of the test function and distribution
spaces and the test function is considered as a function of the variable ¢ with
z being a parameter. This definition is however not satisfactorily general,
since L'-functions which are compactly supported distributions, are also
compactly supported as functions. Below we give a more general definition
for distributional symbols, the supports of which do not have any artificial
restrictions, and the order of which may be arbitrary, though finite.

Obviously our sufficient condition for boundedness seems quite different
from the one in [9], although both conditions are related to the hyperbolic ge-
ometry. The exact relation of the both conditions remains an open problem;
the same holds of course for the problem of how close any of the conditions
is to being also necessary.

For an account of recent developments in the study of boundedness of
Toeplitz operators, see [7]. Distribution symbols have been used in the
reference [2], but for different purposes than in the present work. Other
related works are [3], [5], [8] (the case p = 1), [11], [12], [14]; see also the
references in [7] and [10].

Notation and terminology. We follow the definitions and terminology of [4]
and [6] for general theory of distributions. As for Sobolev spaces, we refer to
[1]. For operator theory and analytic function spaces, in particular Bergman
spaces, see [13]. By C, ', (1, ¢ etc. (respectively, (), etc.) we denote
positive constants independent of functions, variables or indices occurring
in the given calculations (respectively, depending only on n). These may
vary from place to place, but not in the same group of inequalities. For the
norm of an element f of a Banach function space X we use the notation
IIf; X||; for the operator norm of a bounded linear operator T': X — Y
we write |7 : X — Y. In the following we consider various function and
distribution spaces, all of which are defined on D, unless otherwise stated.
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The standard space of distributions on the disc is denoted by D' = D'(D).
The order of a multi-index a € N?, where N := {0,1,2,,...}, is denoted by

la] := a1 + ay. The notation o > [ for the multi-indices «, 5 means that
a; > B for 7 =1,2. As for derivatives, the notation D®f stands for

oM 9o

e @f :

if f is a function of z = x + iy, where z, ¥y € R, and « is a multi-index.
The same notation is used for both classical and distributional derivatives.
We also write D¢ f, if it is necessary to indicate the same differentation of
a function f with respect to its variable (. For an analytic function f, we
denote by f® the l:th derivative with respect to z € C, for all [ € N.

2. WEIGHTED SOBOLEV SPACES.
We define the standard weight function v : D — R* by
(2.1) v(z) =1— 2]~

Given m € N, we denote by W1 := W™(D) the weighted Sobolev space
consisting of measurable functions f on ID such that the distributional deriva-
tives satisfy

(2.2) £ Wt

=) /|Daf(z)|u(z)|a|dA(z) < 0.

la|<m

The following fact is known, but we sketch the proof for the convenience of
the reader.

Lemma 2.1. The subspace C3° := C§°(D) of compactly supported infinitely
smooth functions on the disc is dense in W™

Proof. First we remark that if the support of a g € W™!(DD) is contained in
a compact disc Q, := {|z| < r} with 0 < r < 1, then it can be approximated
in W™(D) by an element of C§°(ID). This follows from Lemma 3.15 of [1]
by choosing the set €' there to be a disc 2, with s > r: the convergence
lim. o J. % g = g in W™(Q) (in the notation of the citation) implies also
the convergence in W1(D).

Consequently, it suffices to approximate an arbitrary f € W™! by a
compactly supported element of W', To this end, notice that it is possible
to define a sequence of radial cut-off functions x,, € C§°, n =4,5,6, ..., such
that xn(2) = xn(|2]) for 2 €D, 0 < xp(r) < lforall 0 <r <1, x,(r)=1
for 0 <r <1-=3/n, xu(r) =0for 1 —1/n <r < 1, and such that for all
keN

dk)(n(T)‘ < Cknk

(2:3) ‘ drk -
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for all 0 < r < 1: in fact one can define Y,, as the usual convolution
(2.4) Xu(T) = / X[—1+2/n,1—2/n](Q)Jn(T — 0)do,

where X{_142/n1-2/n is the characteristic function of the interval [—1 +
2/n,1 —2/n] and J, is the standard mollifier

Jo(r) = Cne~ VA=) if | < 1/n
" 0, if |r| > 1/n.

and C' > 0 is a constant independent of n making the integral f_oooo Jp dr
equal to 1. The property (2.3) now follows by differentiating .J, under the
integral sign in (2.4).

A good approximation of a given f € WP is then y, f for a large enough
n. To see this for example in the case m = 1 one denotes D,, := {z | |z| >
1 —3/n} and estimates one of the terms (o = (1,0) ) in (2.2) as

/\a (= x| udA</\gf\|1 xn|vdA+/|f|\8X“

< C/‘a—i‘udA-l—C/Um(l—(1—3/n))dA

(2.5) = c/‘gf‘ydA+0'/|f|dA
D,

where we used the facts that 0x,/0x vanishes ouside D,, and |0x,/dz| < Cn
on D, by (2.3). Now (2.5) approaches 0 as n — oo, since the area of D,
tends to 0 and the integrals [ |f|dA and [ |0f/0z| vdA are bounded (by
). The other terms in (2.2) have similar or easier estimates, which
proves the lemma for m = 1.

The idea for the higher m is similar: the higher powers of v in (2.2) cancel
out the growth of higher derivatives in (2.3). O

As a consequence of this it is possible to describe the dual space.

Definition 2.2. Given m € N we denote by W, = W, ™>(D) the
(weighted Sobolev) space consisting of distributions a on D which can be
written in the form

(2.6) a= Y (=1D,,

0<]al<m
where

b EL Lgci|a|(ID)> i.e.

v—lal ¢
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(2.7) s 22 ]| 2= ess sup v(2) 19/ (2)] < .
v}

Here every b, is considered as a distribution like a locally integrable function,
and the identity (2.6) contains distributional derivatives.

Given such an a, the representation (2.6) is not unique in general. Hence,
we define the norm of a by
(2.8) llal| == [ja; W, ™| :=inf max ||ba; Lol

0<[al<m v
where the infimum is taken over all representations (2.6).

Lemma 2.3. The dual of W™ is isometrically isomorphic to W, ™ with
respect to the dual paring

(2.9) )= ¥ / (D" f)badA,

0<]a|<m
where [ € W™l a € W, ™ and the functions b, are as in (2.6).

This can be proven using Lemma 2.1 and following the arguments of [1],
Sections 3.8-3.10: It is clear that a defines a bounded linear functional on
Wl via (2.9). By the argument of 3.8 in [1], the dual norm of a coincides
with (2.8). On the other hand, 3.9-3.10 of the reference show that every
element of the dual space comes from a distribution satisfying (2.7).

Remark 2.4. Let a € W™ be given. Although the representation (2.6)
is not unique, the value of the expression on the right hand side of (2.9) is.
This is so, since for every ¢ € C§°, the value of

> [ (DY)badA

0<]al<m

coincides with {p, a), by the standard definition of distributional derivative.
The uniqueness of (2.9) now follows from Lemma 2.1.

3. BOUNDEDNESS OF TOEPLITZ OPERATORS WITH DISTRIBUTIONAL
SYMBOLS.

In the following, a is a distribution on ID having a finite order. Assuming
a belongs to a weighted Sobolev space described in the previous section,
we give the definition of a Toeplitz operator with symbol a, and prove its
boundedness on reflexive Bergman spaces. We remark that this result can be
applied for example to all compactly supported distributions, but since such
distributions actually determine compact operators, this case is considered
only in the next section.
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Theorem 3.1. Assume that the distribution a € D' belongs to W, ™ for
some m. Then the Toeplitz opemtor Ta, defined by the formula

(3.1) Z / De 1_z T Vo(@aa) | rea

is well defined and bounded AP — AP for all 1 < p < oo. The resulting
operator is independent of the choice of the representation (2.6). Moreover,
there is a constant C' > 0 such that

(3.2) Ty : AP — AP|| < C||a; W, ™|
Proof. As for the boundedness, let us fix a representation (2.6) such that
1
. el > — ba; L2 10|
3:3) o Wm0l > 5 e i L]

Since 2|1 — 2¢| > 1 — |¢], we can estimate for every f € AP

> ot (o

oot
ey 3 (D°NQDE (1= 20)72| bal€)
< caijé; ;ij\<z>ﬂf>«3<1-—z&>—2—M*HﬁW|ba<<>
scﬂ%;;ﬂuﬂﬁ@ﬂr—irﬂﬂ—KW*W“%le
< oW ||Z< ﬂZ (D71 = 20)72| (1= I¢)”
(3.4) < Cylla;W, m°°||z BRG] 1Z<_|2|<|2>j;

notice that |DPf| = |fU%)| for all analytic functions. We now recall that,
given g € AP, the functions |g®(2)|(1 — |z|?)! belong to LP with norms
bounded by C'|g||, (see [13], Theorem 4.28). Moreover, the maximal Bergman
projection is bounded on P, i.e., for some constant C' > 0

| [ 225aa0)] < Clal,

for all g € LP (see [13, Corollary 3.13]). These facts together with the
definition (3.1) and the estimate (3.4) prove that T'f € AP with the norm
estimate (3.2).
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The uniqueness of the definition (3.1) is a direct consequence of Remark
2.4, as soon as we prove that for all f € AP, every fixed z € D, the function

i)
(1—2¢)?
of the variable ¢ belongs to the Sobolev space W™!. But this follows from
the above cited result that |f®(C)|(1 — [¢|*)! € LP C L' for all | € N: we
also get |[(DF.)(Q)|(1 — [¢[*)l*l € L for all a, |a] < m, since the factor

(1 — 2¢)~2 and all of its derivatives are bounded functions of ¢ (for a fixed
2). O

(3.5) F.(¢) =

A nontrivial example is the symbol

0
(36) a = b(070) + D(I’O)b(LO) = b(op) + %b(l’o)’

where, for 2 = x + iy = re,

0, ifz<0
b@M@:{zu if >0

and
0, if 7 <0
%m@):{l—ﬂ, if © > 0.

Notice that b ) can be written as the product Y (z)(1 — r?), where Y is
the usual step function of one real variable. Denoting by do(x) the Dirac
measure of 0 with respect to the variable x € R, we get

a = b(070) + D(17O)b(170)
= by + (DY (2))(1 —r?) + Y (2) DEO(1 — r?)

= do(x)(1 —7?)
= do(2)(1 = y°),
since DY) (1 — 72) = —2z. The symbol a is thus a weighted Dirac measure

of the line segment {z € D | Rez = 0}. Clearly, a € W, 5> and hence
defines a bounded Toeplitz operator AP — AP. Notice that the support of a
is not compact in .

4. COMPACTNESS OF TOEPLITZ OPERATORS WITH DISTRIBUTIONAL
SYMBOLS.
We start with a remark on distributional symbols with compact supports.

Proposition 4.1. Any distribution a € D' with compact support belongs
to the Sobolev space W ™. Via the formula (3.1), it defines a Toeplitz
operator which is a compact operator AP — AP.
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Proof of Proposition 4.1. A well-known basic result in distribution theory
(see e.g. [6], Theorem 6.26) states that any compactly supported distribution
a has a finite order m and can be presented as

a= Y D°,,

laj<m

where the functions b, can be assumed continuous and supported in an
arbitrary neighbourhood V' of supp a. In particular we may assume that the
closure V is a compact subset of D. Trivially, such functions b, satisfy (2.7),
hence, a € W, Also the compactness of the supports of b, imply that
the operator (3.1) is compact on A?. [

Theorem 4.2. Assume that the symbol a € D' belongs to W ™ for some
m. The Toeplitz operator T,, (3.1), is compact, if a has a representation
(2.6) such that the functions b, satisfy
(4.1) lim essup v(2) "1 by (2)| = 0.
bzl
Proof. If the functions b,, 0 < |a| < m, are as in (4.1) and 0 < r < 1, we
define for all a the compactly supported functions

— ba(2> ) if |Z| S T
bar(2) = {0 : if |z] > r.

We also define the compactly supported distribution

a,= Y (-1)D%,,.

0<|a|<m

where the derivatives are again distributional. The Toeplitz operator T, :
AP — AP is compact for every r, by Proposition 4.1. On the other hand,
due to the definition (2.8), the property (4.1) and the norm estimate (3.2),
the operator norm ||T, — T,, : AP — AP|| = ||T,_q, : A? — AP|| can be made
arbitrarily small choosing r close enough to 1. Hence, T, must be a compact
operator. [

Returning to the example (3.6), let us redefine the functions by and
ba,0) by
b _J0, if z <0
00)(2) = 2cx(1—r?)t | ifx>0
and
b ], it x <0
10)(2) = { (1—r%He, ifz>0,
where ¢ > 1 is arbitrary. Again, the symbol is a weighted Dirac measure of
the line segment {z € D | Rez = 0} with noncompact support; moreover,
in this case the resulting Toeplitz operator A? — AP is even compact.
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