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Abstract. We give sufficient conditions to guarantee that if two
self-conformal sets E and F have Lipschitz equivalent subsets of
positive measure, then there is a bilipschitz map of E into, or onto,
F .

1. Introduction

In this note we shall consider the following question: suppose that
E and F are self-conformal (see below for terminology) subsets of R

n

of the same Hausdorff dimension s. If there are measurable subsets
E ′ ⊂ E and F ′ ⊂ F of positive s-dimensional Hausdorff measure which
are Lipschitz equivalent, are then also E and F Lipschitz equivalent?
By Lipschitz equivalence we mean that there is a bilipschitz map of E
onto F . We shall prove that this is true for some Cantor type sets,
more precisely, when E and F satisfy the strong separation condition
and one of these sets is generated by two maps. If E and F satisfy the
open set condition we shall show that there is a bilipschitz map of E
into F , but not necessarily onto.

Lipschitz equivalence of self-similar and self-conformal sets has been
considered in [FM], [RRX] and [RRY], and a general study of sets hav-
ing many Lipschitz equivalent subsets can be found in [DS]. In par-
ticular, Falconer and Marsh gave necessary algebraic conditions on the
similarity ratios of the generating maps in order that two sets satisfying
strong separation condition could be Lipschitz equivalent. These im-
ply, for example, that many self similar subsets of Hausdorff dimension
log 2/ log 3 are not Lipschitz equivalent with the classical 1/3-Cantor
set. Hence by our result in such a case neither are any of their sub-
sets of positive measure. In [MS] it was shown for the much larger
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class of Ahlfors-David regular sets E ⊂ R
n and F ⊂ R

n of dimensions
s < t < 1, respectively, that E is Lipschitz equivalent to some subset
of F . Combining the results of Falconer and Marsh and the results of
this paper we see that this cannot be extended to the case s = t.

2. Preliminaries

We shall denote the closed ball with center x and radius r by B(x, r).
The diameter of a set A is denoted by d(A). A map h : A → B, A ⊂
R

n, B ⊂ R
p, is said to be bilipschitz, or L-bilipschitz, if there is L < ∞

such that

|x − y|/L ≤ |h(x) − h(y)| ≤ L|x − y| for all x, y ∈ A.

The smallest such a constant L is denoted by bilip(h). Note that we
don’t require h to be onto.

We shall make use of the following simple lemma:

2.1. Lemma. Let Ak ⊂ A ⊂ R
n, Bk ⊂ B ⊂ R

p, be compact and

hk : Ak → Bk, k = 1, 2, . . . , be such that for some L, 0 < L < ∞,

|x − y|/L ≤ |hk(x) − hk(y)| ≤ L|x − y| for all x, y ∈ Ak, k = 1, 2, . . . .

If for every x ∈ A there are xk ∈ Ak with xk → x, then there is an

L-bilipschitz map h : A → B. If also hk(Ak) = Bk and for every y ∈ B
there are yk ∈ Bk with yk → y, then h(A) = B.

Proof. We can extend the maps hk to L-Lipschitz maps R
n → R

p; we
shall denote by hk also the extended maps. By the Arzela-Ascoli the-
orem the sequence (hk) has a subsequence which converges uniformly
on compact subsets of R

n to an L-Lipschitz map h. It is easy to check
that h|A : A → B is L-bilipschitz, and also the last claim is simple. �

We denote by Hs the s-dimensional Hausdorff measure. We shall
use the fact (see, e.g. Theorem 6.2 in [M]) that for any Hs measurable
sets A ⊂ E ⊂ R

n with Hs(E) < ∞, Hs almost all points x ∈ A are
density points of A with respect to E in the sense that

lim
r→0

r−sHs(B(x, r) ∩ E \ A) = 0.(2.2)

We shall consider a conformal iterated function system {f1, . . . , fN}
in R

n following the scheme of [MU]. By this we mean that N ≥ 2 and
there is an open connected set V ⊂ R

n such that each fi : V → V is
an injective conformal contraction;

(2.3) |fi(x) − fi(y)| ≤ L0 < 1 for all x, y ∈ V, i = 1, . . . , N,

of class C1+γ for some fixed γ > 0, that is, the partial derivatives are
Hölder continuous with exponent γ. Of course, the last condition is only
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needed when n = 1, since the conformal maps in higher dimensions are
C∞. We shall also assume that there are positive constants c1 and C1

such that 0 < c1 < C1 < 1 and

c1 ≤ ||Dfi(x)|| ≤ C1 for all x ∈ V, i = 1, . . . , N.

Here || · || is the operator norm of a linear map. Then there is a unique
compact invariant set E such that (see [H])

E =

N⋃

i=1

fi(E).

We shall use the following notation. Let N = {1, 2, ..., n} and

N k = {i = (i1, ..., ik) : ij ∈ N ∀ j = 1, ...k}.

For i = (i1, ..., ik) ∈ N k let

fi = fi1 ◦ fi2 ◦ ... ◦ fik ,

Ei = fi(E),

di = d(Ei).

Then for every k = 1, 2, . . . ,

E =
⋃

i∈N k

fi(E).

We shall assume that the system {fi} satisfies the open set condition,
that is, there is a non-empty bounded open set O ⊂ V such that the
closure of O is contained in V and the sets fi(O) are disjoint subsets
of O. Then the following bounded distortion property holds, see [MU],
Remark 2.3: there is constant K such that for i ∈ N k,

||Dfi(x)|| ≤ K||Dfi(y)|| for all x, y ∈ V.

Let s be the Hausdorff dimension of E. The open set condition im-
plies (and it is in fact equivalent to) that 0 < Hs(E) < ∞, see [PRSS].
From the bounded distortion property one can conclude that there exist
positive constants c < 1, C and R such that for all i = (i1, . . . , ik) ∈ N k

and ii = (i1, . . . , ik, i) ∈ N k+1,

(2.4) cdi ≤ ||Dfi(x)|| ≤ Cdi for x ∈ V,

(2.5) B(fi(x), cdir) ⊂ fi(B(x, r)) for x ∈ E, 0 < r < R,

(2.6) cdi|x − y| ≤ |fi(x) − fi(y)| ≤ Cdi|x − y| for x, y ∈ E,

(2.7) di ≤ Cdii,

(2.8) di ≤ Lk
0d(E), di → 0 when i ∈ N k, k → ∞,
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(2.9) crs ≤ Hs(B(x, r) ∩ E) ≤ Crs for x ∈ E, 0 < r < R.

Here (2.4) and (2.5) are proven in Section 2 of [MU], (2.6) follows
easily from (2.4), (2.7) follows from (2.6), (2.8) follows from (2.3), and
(2.9) is proven in Lemma 3.14 of [MU] (where a measure m is used
instead of Hs, but this is equivalent).

We shall assume all the time that fi, E, Ei, di, s, c and C are as above.
We shall also consider another conformal iterated function system
{g1, . . . , gP} in R

p and use the corresponding notation gi, F, Fi, ei, s, c
and C; in particular we assume that E and F have the same Hausdorff
dimension s and we choose the constants c and C so that they match
both systems.

3. Open set condition

We shall use the result of Peres, Rams, Simon and Solomyak from
[PRSS] (proven first by Schief in [S] for self-similar sets) according
to which the open set condition is equivalent to the strong open set
condition: for some open set O as in the open set condition E∩O 6= ∅.
Both are also equivalent with 0 < Hs(E) < ∞.

It is easy to see that if O is as in the open set condition, then E ⊂ Ō,
and so for all i ∈ N k, Ei ⊂ fi(Ō). Using the strong open set condition,
choose x0 ∈ E ∩ O and r0, 0 < r0 < 1, such that B(x0, r0) ⊂ O. Then
for all i ∈ N k by (2.5), B(fi(x0), cdir0) ⊂ fi(B(x0, r0)) ⊂ fi(O), from
which it follows that

(3.1) (E \ Ei) ∩ B(fi(x0), cdir0) = ∅.

3.2. Lemma. Suppose that the system {f1, . . . , fN} satisfies the open

set condition. Let b = cr0/2 where r0 is as above. Then for Hs almost

all x ∈ E there are ik, k = 1, 2, . . . , such that x ∈ Eik , dik → 0 and

(E \ Eik) ∩ B(x, bdik) = ∅ for all k = 1, 2, . . . .

Proof. Let Am, m = 1, 2, . . . , be the set of x ∈ E such that (E \ Ei) ∩
B(x, bdi) 6= ∅ whenever x ∈ Ei and di < 1/m. We shall show that
Hs(Am) = 0 which implies the lemma.

Let x ∈ Am. If x ∈ Ei and di < 1/m, then by (3.1) and the choice
of b,

(E \ Ei) ∩ B(fi(x0), 2bdi) = ∅,

and so

(E \ Ei) ∩ B(y, bdi) = ∅ for all y ∈ B(fi(x0), bdi),

whence

B(fi(x0), bdi) ⊂ B(x, (1 + b)di) \ Am.
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Therefore by (2.9),

Hs(B(x, (1 + b)di) ∩ E \ Am) ≥ c(bdi)
s.

It follows that x cannot be a density point of Am and proves that
Hs(Am) = 0. �

3.3. Theorem. Suppose that the systems {f1, . . . , fN} and {g1, . . . , gP}
satisfy the open set condition. If there are an Hs measurable subset E ′

of E with Hs(E ′) > 0 and a bilipschitz map h : E ′ → F , then there

exists a bilipschitz map h̃ : E → F .

Proof. We may assume that E ′ is compact. Let x ∈ E ′ be a density
point of E ′ such that also y = h(x) is a density point of F ′ = h(E ′) and
that, using Lemma 3.2, there are b > 0 and jk such that y ∈ Fjk , ejk → 0
and (F\Fjk)∩B(y, bejk) = ∅ for all k = 1, 2, . . . . Let L be the bilipschitz
constant of h. For k = 1, 2, . . . , let ik be a multi-index of shortest length
such that x ∈ Eik and Ldik ≤ bejk . Then

h(E ′ ∩ Eik) ⊂ B(y, Ldik) ∩ F ′ ⊂ B(y, bejk) ∩ F ′ ∩ Fjk ,

and, by the minimality of ik and (2.7), if ik = ii, then

dik ≥ C−1di ≥ (CL)−1bejk .

Denote

hk = g−1

jk
◦ h ◦ fik : Ak := f−1

ik
(E ′ ∩ Eik) → F.

Then by (2.6) hk is bilipschitz with bilip(hk) ≤ L′ with L′ indepen-
dent of k. To complete the proof we shall check that the condition of
Lemma 2.1 holds for Ak and A = E.

Suppose it doesn’t. Then there are a ∈ E and r, 0 < r < R, such that
for some subsequence of (ik), which we assume to be the full sequence,
we have B(a, r) ∩ f−1

ik
(E ′ ∩ Eik) = ∅. Then by (2.5)

B(fik(a), cdikr) ∩ Eik ⊂ fik(B(a, r)) ∩ Eik ⊂ B(x, dik) ∩ (E \ E ′).

This gives by (2.9) that

Hs(B(x, dik) ∩ (E \ E ′)) ≥ cs+1(dikr)
s.

This contradicts the fact that x is a density point and proves the the-
orem. �

3.4. Remark. We would like to thank Tamas Keleti for the following
observation: in Theorem 3.3 we cannot always get the map h̃ to be
onto. To see this, take in Theorem 3.3 E ′ = E ⊂ R to be a self-similar
set satisfying the open set condition with positive Lebesgue measure
and E not being an interval, F a compact interval containing E and
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h = id, the identity map. That such a set E exists can be seen for
example from [B].

Also note that, as a straightforward consequence of Theorem 3.3, we
find that a self-similar set in R

n with open set condition and positive
Lebesgue measure must have a non-empty interior. A simple direct
proof for this fact can be found in [S].

4. Strong separation condition

We say that the strong separation condition holds if the sets fi(E), i =
1, . . . , N , are disjoint. Then we can choose the constant c so that, in
addition to the previous properties,

(4.1) dist(Eii, Eij) ≥ cdi for i 6= j.

4.2. Theorem. Suppose that p = 2 and the systems {f1, . . . , fN} and

{g1, g2} satisfy the strong separation condition. If there are an Hs

measurable subset E ′ of E with Hs(E ′) > 0 and a bilipschitz map

h : E ′ → F , then there exists a bilipschitz map h̃ : E → F with

h̃(E) = F .

Proof. By Theorem 3.3, we may assume that E ′ = E. Let x ∈ E
be such that y = h(x) is a density point of F ′ = h(E). For every
k ∈ N, choose Eik such that x ∈ Eik and dik → 0. Then there are sets
Fk,l = Fjk(l)

and the corresponding maps gk,l = gjk(l)
, l = 1, . . .mk, such

that d(Fk,l) ≥ c1dik and mk ≤ m, where c1 > 0 and m are independent
of k, F ′ ∩ Fk,l 6= ∅ and

h(Eik) =

mk⋃

l=1

F ′ ∩ Fk,l.

This is essentially Lemma 3.2 in [FM] but we give a quick proof.
By (4.1) dist(Eik , Eλ) ≥ cdik whenever Eik ∩ Eλ = ∅. If for such λ
and for some j, h(Eik) ∩ Fj 6= ∅ and h(Eλ) ∩ Fj 6= ∅, then d(Fj) ≥
dist(h(Eik), h(Eλ)) ≥ (c/L)dik where L is the bilipschitz constant of
h. Therefore we can take as Fk,l all the maximal sets Fj such that
h(Eik) ∩ Fj 6= ∅ and d(Fj) < (c/L)dik . Denoting dk,l = d(Fk,l) we have
then by (2.7) (as c/L ≤ 1),

(4.3) c(LC)−1dik ≤ dk,l ≤ dik .

Since p = 2, we can choose disjoint sets F̃k,i = Fjl(i) , i = 1, . . . , mk,

such that d(F̃k,i) ≥ c2, with c2 > 0 independent of k, and F = ∪mk

i=1
F̃k,i.

Let g̃k,i be the corresponding maps. Note that the maps g̃k,i are selected
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from a fixed finite family, so their bilipschitz constants have an upper
bound independent of k. Define

hk : E → F

by setting

hk(x) = g̃k,i(g
−1

k,i (h(fik(x)))) if x ∈ f−1

ik
(h−1(F ′ ∩ Fk,i)).

Then bilip(hk) ≤ L′ where L′ is independent of k. Namely, the case
when x, y ∈ f−1

ik
(h−1(F ′∩Fk,i)), follows by composition. Furthermore,

the strong separation condition provides us with constants M1, M2 > 0
such that

dist(F̃k,i, F̃k,j) ≥ M1

and
dist(Fk,i, Fk,j) ≥ M2dik

for all i 6= j, i, j = 1, ...mk. This takes care of the case x ∈ f−1

ik
(h−1(F ′∩ Fk,i)),

y ∈ f−1

ik
(h−1(F ′ ∩ Fk,j)) with i 6= j.

We still need to check that the sets

hk(E) =

mk⋃

i=1

g̃k,i(g
−1

k,i (F
′ ∩ Fk,i))

and F satisfy the condition for Bk and B in Lemma 2.1. Suppose
this is not so. Then there are a ∈ F and r, 0 < r < R, such that
B(a, r)∩hk(E) = ∅ for some arbitrarily large k. For such a k, a belongs

to some F̃k,i0. For some c3 > 0 independent of k, B(g̃−1

k,i0
(a), c3r) ⊂

g̃−1

k,i0
(B(a, r)) and so, with b = gk,i0(g̃

−1

k,i0
(a)) by (2.5),

B(b, c3crdk,i0) ⊂ gk,i0(g̃
−1

k,i0
(B(a, r))) ⊂ R

n \ F ′.

Since y ∈ h(Eik), b ∈ Fk,i0, Fk,i0 ∩ h(Eik) 6= ∅, and dk,i0 ≤ dik, by (4.3),
we have d(y, b) ≤ (L + 1)dik and so by (4.3),

B(b, c4dik) ⊂ B(b, c3crdk,i0) ⊂ B(y, (L + 1)dik + c3rdk,i0) ⊂ B(y, c5dik)

with c4 = c3c
2(LC)−1r, c5 = L + 1 + c3r. Hence by (2.9),

Hs(B(y, c5dik) ∩ (F \ F ′)) ≥ Hs(B(b, c4dik) ∩ F ) ≥ c(c4dik)
s

contradicting the fact that y is a density point of F ′.
�

4.4. Remark. We don’t know if the condition p = 2 is needed in Theo-
rem 4.2. Clearly the proof gives for general p that there is a bilipschitz
map of E onto F0 where F0 is a finite union of sets Fj. This raises a
question: under what conditions is such a union Lipschitz equivalent
with F ?
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Falconer and Marsh proved in [FM] that for self-similar sets E and
F satisfying the strong separation condition the Lipschitz equivalence
of E and F implies certain algebraic conditions on the similarity ratios
of the generating maps. Possibly their method could be modified to
prove the same conditions already if E and F have Lipschitz equivalent
measurable subsets of positive measure. However, we could not deduce
from this the Lipschitz equivalence of E and F in general since it is
not clear when the necessary conditions of Falconer and Marsh are also
sufficient.
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