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Abstract

We consider one formulation of the Dirichlet problem for A-harmonic

functions on an unbounded domain of a Riemannian manifold. More

specifically if M is a connected Riemannian manifold, Ω ⊂ M is an

unbounded domain, and θ : M → R is a bounded Lipschitz func-

tion, then we provide a sufficient condition so that there exists an

A-harmonic function u : Ω → R such that limx→x0
u(x) = θ(x0) for

every x0 ∈ ∂Ω and |u(x) − θ(x)| → 0 as d(x, o) → ∞, where o ∈ M

is a fixed basepoint. This condition involves geometric inequalities for

M and an integral condition for |∇θ|. We then apply this results in

the context of the Dirichlet problem at infinity on a Cartan-Hadamard

manifold and prove new solvability results.

The existence of globally defined bounded nonconstant harmonic func-
tions on a given Riemannian manifold M = Mn depends heavily on the
manifold. Yau [13] proved that if M has nonnegative Ricci curvature, then
there are no positive (or bounded) harmonic functions other than the con-
stants. This fact and the work of Greene and Wu [5] has motivated people
to study the existence of bounded harmonic functions on Cartan-Hadamard
manifolds, in other words, complete simply connected Riemannian manifold
with nonpositive sectional curvature. Greene and Wu conjectured in [5] that
a Cartan-Hadamard manifold M admits a bounded nonconstant harmonic
function if

KM ≤ −C/ρ2

outside a compact set, where C > 0 is a constant and ρ is the distance to a
fixed base-point. This conjecture is still open in dimensions n ≥ 3.
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A Cartan-Hadamard manifold has a natural geometric boundary, the
sphere at infinity M(∞), such that M̄ = M∪M(∞), equipped with so called
cone topology, is homeomorphic to the closed ball B̄(0, 1) ⊂ R

n. Dirichlet
problem at infinity is to find for a given continuous function θ : M(∞) → R

a harmonic function u : M → R such that limx→x0
u(x) = θ(x0) for every

x0 ∈ M(∞) and we say that it is solvable if such u exists for every contin-
uous θ : M(∞) → R. Anderson [1] and Sullivan [11] proved that if M is a
Cartan-Hadamard manifold and

(0.1) −b2 ≤ KM ≤ −a2,

where a, b > 0 are constants, then the Dirichlet problem at infinity is solvable.
There are numerous generalizations of this result in the literature. In 2003
Hsu [10] proved that the Dirichlet problem at infinity is solvable on a Cartan-
Hadamard manifold satisfying either

(0.2) −ρ2φ−4−ε ≤ KM ≤ −φ(φ− 1)/ρ2

outside a compact set where ε > 0 and φ > 2 are constants, or

(0.3) −h(ρ)2e2kρ ≤ KM ≤ −k2,

where k > 0 is a constant and h is a positive and nonincreasing function with
∫ ∞

0
rh(r) dr <∞.
The Dirichlet problem at infinity has been recently studied in the context

of p-harmonic and A-harmonic functions. A continuous function u is A-
harmonic if it is a weak solution to the equation

(0.4) −divA(∇u) = 0,

where A is an operator satisfying 〈A(v), v〉 ≈ |v|p (1 < p < ∞) and other
conditions. Equation (0.4) is modelled after the p-Laplace equation where
A(v) = |v|p−2v and in this case the continuous weak solutions to (0.4) are
called p-harmonic functions. Note that a function is 2-harmonic if and only
if it is harmonic. Holopainen [7] proved that the Dirichlet problem at infinity
for p-harmonic functions is solvable under the pinching condition (0.1). This
problem is defined analogously by replacing the requirement that u is har-
monic with the requirement that it is p-harmonic. In [9] Holopainen and the
author showed that the Dirichlet problem at infinity for p-harmonic functions
is solvable under curvature condition −ρ−2−εe2kρ ≤ KM ≤ −k2 and, on the
other hand, under (0.2) in conjunction with the condition p < 1 + (n− 1)φ.
By generalizing a proof method by Cheng [2] the author proved in [12] that
the Dirichlet problem at infinity for A-harmonic functions is solvable under
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curvature upper bound KM ≤ −φ(φ − 1)/ρ2 and pointwise pinching condi-
tion |KM(P )| ≤ C|KM(P ′)|, where P, P ′ ⊂ TxM are 2-planes containing the
radial vector ∇ρ(x).

In this paper we generalize the results proven in [9] to include A-harmonic
functions. Our new results concerning the Dirichlet problem at infinity are
Theorem 3.6 and corollaries 3.7 and 3.8. More specifically, we prove that if
x0 ∈ M(∞) and U is a neighborhood of x0 in the cone topology, then x0 is
A-regular point at infinity if k > 0, ε > 0, and

−ρ(x)−4−ε exp
(

2kρ(x)
)

≤ KM(P ) ≤ −k2

for every x ∈ U ∩M and radial 2-plane P ⊂ TxM . On the other hand we
prove that x0 is A-regular if φ > 1, 1 < p <

(

1 + φ(n− 1)
)

α/β, ε > 0, and

−ρ(x)2φ−4
(

log ρ(x)
)−2−ε

≤ KM(P ) ≤ −φ(φ− 1)/ρ(x)2

for every x ∈ U ∩M and every radial 2-plane P ⊂ TxM . Here α, β are the
structure constants of A and the Dirichlet problem at infinity is solvable if
and only if every point at infinity is A-regular.

We prove these results concerning the Dirichlet problem at infinity by first
considering the following formulation of a Dirichlet problem on (possibly)
unbounded domains. Suppose that M is a connected Riemannian manifold
(not necessarily Cartan-Hadamard) and that Ω ⊂ M is an open set and θ :
M → R is a continuous function. Is there an A-harmonic function u : Ω → R

such that limx→x0
u(x) = θ(x0) for every x0 ∈ ∂Ω and |u(x) − θ(x)| → 0 as

ρ(x) → ∞? We provide a sufficient condition for this to be the case in our
main result, Theorem 2.4. In this result a crucial role is played by an integral
condition

∫

Ω

F
(

|∇θ|w
)

<∞,

where F (t) ≤ tp+ε exp(−t−1+ε) and w is a weight function related to the
geometry of Ω. To illustrate this result we note that in the case of the
Laplacian on a Cartan-Hadamard manifold M = Ω of dimension n ≥ 3 it
implies the following.

0.5 Theorem. Fix ε ∈ (0, 1). Suppose that M is a Cartan-Hadamard n-
manifold with n ≥ 3. Let θ : M → R be bounded and Lipschitz satisfying

(0.6)

∫

M

F
(

|∇θ|ρ
)

<∞,

where F : [0,∞) → [0,∞) is given by the formula F (t) = t2+ε exp
(

−t−1+ε
)

.
Then there exists a unique harmonic function u : M → R such that |u(x) −
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θ(x)| → 0 as ρ(x) → ∞. Recall that ρ is distance from a fixed point on the
manifold.

The integral condition (0.6) is sharp in the sense that if one allows the
case ε = 0, then the result no longer holds by Example 2.9.

Considering this kind of Dirichlet problem on unbounded domains, as an
explicit intermediate step towards solving the Dirichlet problem at infinity,
is a new approach as far as we are aware. The main techniques that we use
to prove Theorem 2.4 and Theorem 3.6 are based on ideas used by Cheng
[2].

The paper is divided into four sections. Section 1 contains the prelim-
inaries for this work. In Section 2 we consider the Dirichlet problem on
unbounded domains and prove our main result 2.4. In Section 3 we ap-
ply this result to the Dirichlet problem at infinity for A-harmonic functions.
The last section is Appendix, where we deal with the construction of certain
auxiliary functions needed in the proof of Theorem 2.4.

Throughout the paper c denotes an arbitrary positive constant that may
vary even within a line. All manifolds are without boundary.

1 Preliminaries

In this section we recall definitions for the basic concepts that we use: A-
harmonic functions, Cartan-Hadamard manifolds and the Dirichlet problem
at infinity, and finally A-regular points at infinity on Cartan-Hadamard man-
ifolds.

1.1 A-harmonic functions

Let M be a Riemannian manifold and 1 < p < ∞. Suppose that A :
TM → TM is an operator that satisfies the following assumptions for some
0 < α ≤ β < ∞: the mapping Ax = A|TxM : TxM → TxM is continuous
for almost every x ∈ M and the mapping x 7→ Ax(Vx) is measurable for all
measurable vectorfields V on M ; for almost every x ∈M and every v ∈ TxM :

〈Ax(v), v〉 ≥ α|v|p,

|Ax(v)| ≤ β|v|p−1,
〈

Ax(v) −Ax(w), v − w
〉

> 0,

whenever w ∈ TxM \ {v}, and

Ax(λv) = λ|λ|p−2Ax(v)
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for all λ ∈ R \ {0}. We denote the set of all such operators by Ap(M). The
constants α and β are called structure constants of A.

Suppose that U ⊂ M is an open set and A ∈ Ap(M). A function u ∈
C(U) ∩W 1,p

loc (U) is A-harmonic in U if it is a weak solution of the equation

(1.2) −divA(∇u) = 0,

in other words, if

(1.3)

∫

U

〈

A(∇u),∇ϕ
〉

= 0

for every test function ϕ ∈ C∞
0 (U). If |∇u| ∈ Lp(U), then it is equivalent to

require (1.3) for all ϕ ∈W 1,p
0 (U) by approximation.

A lower semicontinuous function u : U → (−∞,∞] is A-superharmonic
if u 6≡ ∞ in each component of U , and for each open D ⊂⊂ U and each
h ∈ C(D̄), A-harmonic in D, h ≤ u on ∂D implies h ≤ u in D.

In the case of the p-Laplacian A(v) = |v|p−2v, the continuous weak so-
lutions of (1.2) are called p-harmonic functions. In this case α = β = 1.
A function u ∈ C(U) ∩W 1,2

loc (U) is 2-harmonic if and only if it belongs to
C∞(U) and ∆u ≡ 0 in U , i.e. u is harmonic in the usual sense.

The A-harmonic functions have many features in common with har-
monic functions. See [6] for properties and theory of A-harmonic and A-
superharmonic functions in Rn.

1.4 Cartan-Hadamard manifolds and Dirichlet problem

at infinity

A Cartan-Hadamard manifoldM is a complete simply connected Riemannian
n-manifold, n ≥ 2, with nonpositive sectional curvature. Cartan-Hadamard
theorem then implies that the exponential map expx : TxM → M is a diffeo-
morphism for every x ∈M . In particular, M is diffeomorphic to R

n.
Let us recall the definition of cone topology. For details and proofs, see

[4]. We say that two unit speed geodesics γ, σ : R → M are asymptotic if
supt≥0 d

(

γ(t), σ(t)
)

< ∞. This defines an equivalence relation. Denote the
equivalence class of γ by γ(∞) and the set of all equivalence classes byM(∞).
We call elements of M(∞) points at infinity and denote M̄ = M ∪M(∞).
For every x ∈M and y ∈ M̄ \ {x} there exists a unique unit speed geodesic
γx,y such that γx,y(0) = x and y ∈ γx,y(0,∞]. Given x ∈M , v ∈ TxM \ {0},
δ > 0, and r > 0, we define a cone

C(v, δ) = {y ∈ M̄ \ {x} : ^(v, γ̇x,y
0 ) < δ}
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and a truncated cone T (v, δ, r) = C(v, δ) \ B̄(x, r) with vertex x. The collec-
tion

{open balls} ∪ {truncated cones with vertex o}

is a basis for cone topology on M̄ . This topology is independent of o and,
equipped with this topology, M̄ is homeomorphic to the closed unit ball
B̄(0, 1) ⊂ Rn and M(∞) to Sn−1. We always equip M̄ with this topology.

Suppose that p ∈ (1,∞) and A ∈ Ap(M). The Dirichlet problem at
infinity (for A-harmonic functions) is to find for a given θ ∈ C(M(∞)) a
function u ∈ C(M̄) such that u|M is A-harmonic and u|M(∞) = θ. We
say that the Dirichlet problem at infinity is solvable if such u exists for every
θ ∈ C(M(∞)).

1.5 Perron’s method and regular points at infinity

Suppose now that M is a Cartan-Hadamard manifold. We approach the
Dirichlet problem at infinity using Perron’s method. The definitions of the
upper and lower Perron solutions follow [6], where such concepts are defined
for A-harmonic functions in the Euclidean setting. Fix p ∈ (1,∞) and
A ∈ Ap(M).

1.6 Definition. A function u : M → (−∞,∞] belongs to the upper class
Uf of f : M(∞) → [−∞,∞] if

(i) u is A-superharmonic in M ,

(ii) u is bounded below, and

(iii) lim infx→x0
u(x) ≥ f(x0) for all x0 ∈M(∞).

The function
Hf = inf{u : u ∈ Uf}

is called the upper Perron solution.

1.7 Theorem. One of the following is true:

(i) Hf is A-harmonic in M ,

(ii) Hf ≡ ∞ in M ,

(iii) Hf ≡ −∞ in M .

Proof. As in [6, Theorem 9.2].
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Note that if f is bounded, then Hf is also bounded and it is then A-
harmonic in M by Theorem 1.7. Hence the upper Perron solution is a good
candidate to be the solution of the Dirichlet problem at infinity with bound-
ary data f .

1.8 Definition. A point x0 ∈M(∞) is A-regular, if

lim
x→x0

Hf (x) = f(x0)

for each continuous f : M(∞) → R.

Define the lower class Lf = −U−f and the lower Perron solution Hf =

−H−f . Then Hf ≥ Hf .
The concept of regularity is related to the Dirichlet problem at infinity

in the way that the Dirichlet problem at infinity is solvable for A-harmonic
functions if and only if every point at infinity is A-regular.

2 Dirichlet problem on unbounded domains

In this section we formulate and prove our main result Theorem 2.4 that
concerns the existence of a bounded A-harmonic function on a domain of
a Riemannian manifold with prescribed boundary values and behavior at
infinity. Throughout the section M is a complete connected Riemannian n-
manifold, p ∈ (1,∞), and A ∈ Ap(M) is an operator as defined in Section
1.1. Note that we do not assume M to be Cartan-Hadamard. Let o ∈M be
a fixed basepoint and denote ρ = d(o, ·).

Let us first define two geometric inequalities that we need in formulation
of our main result. We say that an open subset U of M satisfies a weighted
(1, 1)-Sobolev inequality with weight w : U → [0,∞) if

(2.1)

∫

U

|η| ≤

∫

U

|∇η|w

for every test function η ∈ C∞
0 (U). We say that M satisfies a local Sobolev

inequality if there exist constant rS > 0 and CS <∞ such that

(2.2)
(

∫

B

|η|n/(n−1)
)(n−1)/n

≤ CS

∫

B

|∇η|

holds for every ball B = B(x, rS) ⊂ M of radius rS and every η ∈ C∞
0 (B).
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2.3 Remark. (i) Suppose that M is a Cartan-Hadamard n-manifold. Then
(2.1) holds with U = M \ {o} and w(x) = ρ(x)/n. In particular this applies
if M = R

n. If KM ≤ −a2 for some constant a > 0, then (2.1) holds on M
with constant weight w = 1/(n− 1)a. If KM ≤ −φ(φ− 1)/ρ2 holds outside
a compact set with some constant φ > 1 and if λ < 1 + (n − 1)φ, then
(2.1) holds with weight function w(x) = ρ(x)/λ on M \K, where K is some
compact set. We prove the last claim in Lemma 3.1 and the others can be
proved similarly.

(ii) The local Sobolev inequality (2.2) holds on a complete connected
Riemannian manifold M if injM > 0. To see this one can use [3, Theorem
11] to prove a local isoperimetric inequality and from this the local Sobolev
inequality. In particular (2.2) holds on any Cartan-Hadamard manifold.

The following is our main theorem.

2.4 Theorem. Suppose that M is a complete connected Riemannian n-
manifold with n ≥ 2, p ∈ (1,∞), and A ∈ Ap(M).

Let Ω ⊂ M be a nonempty open set and w : Ω → [0,∞) a nonnegative
Lipschitz function with constant satisfying

(2.5) pLipw < α/β,

where α and β are the structure constants of A as in 1.1. Suppose that K ⊂ Ω
is a compact set and Ω\K satisfies the weighted (1, 1)-Sobolev inequality (2.1)
with weight w. Suppose that M satisfies the local Sobolev inequality (2.2).

Let θ : M → R be a continuous function in W 1,∞(M) (i.e. ‖θ‖∞, ‖∇θ‖∞ <
∞) satisfying

(2.6)

∫

Ω

F
(

|∇θ|w
)

<∞,

where F : [0,∞) → [0,∞) is given by

F (t) = tp+ε exp
(

−
1

t

(

log
(

e+
1

t

)

)−1−ε)

for some constant ε > 0.
Then there exists a bounded A-harmonic function u : Ω → R such that

u(x) → θ(x0) whenever x→ x0 and x0 ∈ ∂Ω is an A-regular boundary point.
Also, |u(xk) − θ(xk)| → 0 for every sequence (xk) in Ω with ρ(xk) → ∞ as
k → ∞.

2.7 Remark. (i) The special case Ω = M can be interesting in itself. For
example, Theorem 0.5 is an immediate corollary of Theorem 2.4 with Ω = M .
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(ii) One cannot in general allow equality in (2.5), see Example 2.8 below.
(iii) The behavior of F near 0 is close to being sharp in the sense that

the result does not hold in general if one allows the possibility ε = 0. This is
shown by Example 2.9. We could, however, replace F in Theorem 2.4 with
any function in the class Fp as defined in the Appendix. This is clear from
the proof that we present.

(iv) The function u in Theorem 2.4 is unique if every boundary point
x0 ∈ ∂Ω is A-regular and either M is noncompact or ∂Ω 6= ∅. This follows
easily from the comparison principle.

We illustrate Theorem 2.4 with the following easy example.

2.8 Example. Glue two copies of Rn, n ≥ 2, together with a compact pipe
to form a complete connected Riemannian n-manifold M . Denote the pipe
by P and the two components of M \P by U1 and U2 so that M = U1∪P ∪U2

is a union of disjoint sets and Ū1 ∩ Ū2 = ∅.
Consider the p-Laplacian on Ω = M with p ∈ (1,∞). By Remark 2.3(i)

the weighted (1, 1)-Sobolev inequality holds on M \K for some compact set
K and weight function w with Lipschitz constant 1/n. The local Sobolev
inequality holds on M by Remark 2.3(ii). Since pLipw = p/n, (2.5) holds if
and only if p < n.

Choose a Lipschitz function θ : M → R such that θ|U1 ≡ 0 and θ|U2 ≡ 1.
Then the integral condition (2.6) holds trivially since the integrand vanishes
outside P .

Theorem 2.4 then implies that if p ∈ (1, n), then there exists a bounded
p-harmonic function u on M with u(x) → 0 as ρ(x) → ∞, x ∈ U1, and
u(x) → 1 as ρ(x) → ∞, x ∈ U2.

On the other hand, if p ≥ n, then M is p-parabolic by [8, Theorem 1.4(i)]
and in particular there are no nonconstant bounded p-harmonic functions on
M . This shows that one cannot in general allow equality in (2.5).

2.9 Example. In this example we show that if F0 : [0,∞) → [0,∞) is any
function satisfying

(2.10) F0(t) ≤ exp
(

−
1

t

(

log
1

t

)−1)

for all sufficiently small t, then Theorem 2.4 can fail if instead of (2.6) one
assumes

(2.11)

∫

Ω

F0

(

|∇θ|w
)

<∞.

To show this note that one can assume without loss of generality that
equality holds in (2.10) for all small t. Consider the Laplacian (p = 2) on
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Ω = M = R3. Then (2.2) holds and (2.1) holds with w(x) = |x|/3 and
K = {0} by Remark 2.3(i). Also, pLipw = 2/3 so that (2.5) holds.

Suppose that Φ : [0,∞) → [0,∞) is a smooth function with Φ(t) =
2−1 log log log t for all large enough t and let θ : R3 → R, θ(x) = sin

(

Φ(ρ(x))
)

.
Then θ ∈W 1,∞(R3) is a continuous function.

Now (2.10) implies that

F0

(

Φ′(t)t/3
)

= F0

(

6−1(log t)−1(log log t)−1
)

≤ exp
(

−
6(log t)(log log t)

log
(

6(log t)(log log t)
)

)

≤ exp
(

−
6(log t)(log log t)

(3/2) log log t

)

= t−4

for all large enough t so that

∫

R3

F0

(

|∇θ|w
)

≤ c

∫ ∞

0

F0

(

Φ′(t)t/3
)

t2 dt ≤ c +

∫ ∞

c

t−4+2 dt <∞.

Therefore (2.11) holds.
Since there exist no nonconstant bounded harmonic functions on R3 by

Liouville’s theorem, the conclusion in Theorem 2.4 fails. This shows that one
cannot in general replace F in Theorem 2.4 with any function F0 satisfying
(2.10) for all small enough t.

Our goal for the rest of this section is to prove Theorem 2.4. There-
fore until the end of this section we use the assumptions and notation from
Theorem 2.4 in order to prove it.

In the proof we need several auxiliary functions defined on the positive real
axis. We need functions F0, G0, ϕ : [0,∞) → [0,∞) that are all homeomor-
phisms and smooth on (0,∞). They need to satisfy the following conditions:
F0 ≤ F simply so that we can replace F with F0 that suits us better,

(2.12) G0 ◦ ϕ
′ = ϕ

that is a condition used in the proof of Lemma 2.17 below and that ties G0

and ϕ together, and

(2.13) lim
t→0+

ϕ′′(t)ϕ(t)

ϕ′(t)2
= 1

for technical reasons. In addition we need to use Young’s inequality in the
proof of Lemma 2.17 and for this reason we require that F0(·

1/p) and G0(·
1/p)p

are complementary Young functions. The construction of these functions is
done in the Appendix and we refer the reader interested in the details there.
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We define one more auxiliary function ψ := (ϕ′)p−1ϕ. Then ψ : [0,∞) →
[0,∞) is also a homeomorphism that is smooth on (0,∞). It follows from
(2.13) that

(2.14) lim
t→0+

ψ′(t)

ϕ′(t)p
= p.

The following Caccioppoli type inequality plays a central role in what fol-
lows. It is a technical tool that yields information on A-harmonic functions.

2.15 Lemma. Let U ⊂ M be open and relatively compact. Suppose that
η ≥ 0 is a Lipschitz function on U . Suppose that θ̃, u ∈ L∞(U) ∩W 1,p(U)
are continuous functions and that u is A-harmonic in U . Denote h = |u− θ̃|
and suppose that

ηpψ(h) ∈W 1,p
0 (U).

Then
(2.16)
(

∫

U

ηpψ′(h)|∇u|p
)1/p

≤
β

α

(

∫

U

ηpψ′(h)|∇θ̃|p
)1/p

+
pβ

α

(

∫

U

ψp

(ψ′)p−1
(h)|∇η|p

)1/p

Proof. Denote f = ηpψ((u − θ̃)+) − ηpψ((u − θ̃)−). Then f ∈ W 1,p(U) and
its gradient is

∇f = ηpψ′(h)(∇u−∇θ̃) + pηp−1sgn(u− θ̃)ψ(h)∇η.

Since |f | = ηpψ(h) ∈ W 1,p
0 (U) by assumption, we have f ∈ W 1,p

0 (U), cf. [6,
Lemma 1.25(iii)]. Testing A-harmonicity of u with the test function f and
using of Hölder’s inequality we get

∫

U

ηpψ′(h)|∇u|p ≤
1

α

∫

U

〈

A(∇u), ηpψ′(h)∇u
〉

=
1

α

∫

U

〈

A(∇u), ηpψ′(h)∇θ̃
〉

−
p

α

∫

U

〈

A(∇u), ηp−1sgn(u− θ̃)ψ(h)∇η
〉

≤
β

α

∫

U

ηpψ′(h)|∇u|p−1|∇θ̃| +
pβ

α

∫

U

ηp−1ψ(h)|∇u|p−1|∇η|

≤
β

α

(

∫

U

ηpψ′(h)|∇u|p
)(p−1)/p(

∫

U

ηpψ′(h)|∇θ̃|p
)1/p

+
pβ

α

(

∫

U

ηpψ′(h)|∇u|p
)(p−1)/p(

∫

U

ψp

(ψ′)p−1
(h)|∇η|p

)1/p

.

We simplify this to finish the proof.
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The following lemma establishes an integral estimate for |ur − θ|, where
ur is the unique A-harmonic function in Ω ∩ B(o, r) with boundary data θ.
It is important that this estimate is uniform with respect to r as this makes
a limiting argument possible later on.

2.17 Lemma. Suppose that θ̃ ∈ W 1,∞(M) is a continuous function with
‖θ̃‖∞ ≤ 1. Let r > 0 be so large that U := Ω ∩ B(o, r) 6= ∅. Let u be the
unique A-harmonic function in U that satisfies u− θ̃ ∈W 1,p

0 (U). Then
∫

U

ϕ
(

|u− θ̃|/c0
)p

≤ c0 + c0

∫

U

F
(

c0|∇θ̃|w
)

,

where c0 > 1 is a constant that is independent of r and θ̃.

Proof. By assumption (2.5) there exists a constant δ > 0 so that (1 +
δ)2pLipw < α/β.

By using the assumption ‖θ̃‖∞ ≤ 1 and by replacing θ̃ with cθ̃ and u with
cu if necessary, we can assume without loss of generality for the rest of this
proof that ‖θ̃‖∞ is smaller than a given constant that does not depend on
r or θ̃. For this reason and (2.14) we can assume without loss of generality
that ‖θ̃‖∞ is so small that

(2.18) ψ′(t)/2p ≤ ϕ′(t)p ≤ (1 + δ)pp−1ψ′(t)

and

(2.19)
ψ(t)p

ψ′(t)p−1
≤ (1 + δ)pp1−pϕ(t)p

for every t ∈ (0, 2‖θ̃‖∞].
We denote h = |u − θ̃| : U → [0,∞). Fix a function η ∈ C∞

0 (M) such
that 0 ≤ η ≤ 1 and η|K ≡ 1. Then (1− η)ϕ(h)p ∈W 1,1

0 (U \K) so that (2.1)
implies

∫

U

ϕ(h)p =

∫

U

ηϕ(h)p +

∫

U

(1 − η)ϕ(h)p

≤ c+

∫

U

∣

∣∇
(

(1 − η)ϕ(h)p
)
∣

∣w ≤ c+ p

∫

U

ϕ(h)p−1ϕ′(h)|∇h|w,

where the constants depend on the manifold, p, w, ϕ, and η. Hölder’s in-
equality then implies

(

∫

U

ϕ(h)p
)1/p

≤ c+ p
(

∫

U

ϕ′(h)p|∇h|pwp
)1/p

.
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Using (2.18), Lemma 2.15, and (2.19) we get

(

∫

U

ϕ(h)p
)1/p

≤ c+ p
(

∫

U

ϕ′(h)p|∇h|pwp
)1/p

≤ c + (1 + δ)p1−1/p
(

∫

U

ψ′(h)|∇h|pwp
)1/p

≤ c + c
(

∫

U

ψ′(h)|∇θ̃|pwp
)1/p

+ (1 + δ)p2−1/p(Lipw)
β

α

(

∫

U

ψp

(ψ′)p−1
(h)

)1/p

≤ c + c
(

∫

U

ϕ′(h)p|∇θ̃|pwp
)1/p

+ (1 + δ)2p(Lipw)
β

α

(

∫

U

ϕ(h)p
)1/p

.

Since (1 + δ)2p(Lipw)β/α < 1, we can combine the left side term and the
last term to get

∫

U

ϕ(h)p ≤ c+ c

∫

U

ϕ′(h)p|∇θ̃|pwp.

The auxiliary functions F0 and G0 are chosen such that F0(·
1/p) and G0(·

1/p)p

are complementary Young functions. Therefore we can use Young’s inequal-
ity

xy ≤ kG0(x
1/p)p + kF0(k

−1/py1/p), for all x, y ≥ 0 and k > 0,

and identity (2.12) to obtain
∫

U

ϕ(h)p ≤ c+ c

∫

U

ϕ′(h)p|∇θ̃|pwp

≤ c+ ck

∫

U

G0(ϕ
′(h)

)p
+ ck

∫

U

F0

(

k−1/p|∇θ̃|w
)

≤ c+
1

2

∫

U

ϕ(h)p + c

∫

U

F0

(

c|∇θ̃|w
)

if we choose k appropriately small. The claim follows.

In order to pass from the integral estimate in Lemma 2.17 to a pointwise
estimate we need the following lemma. Its proof is based on the idea of Moser
iteration.

2.20 Lemma. Suppose that ‖θ‖∞ ≤ 1. Suppose that r ∈ (0, rS) is a constant
and x ∈ M . Denote B = B(x, r). Suppose that u ∈ W 1,p

loc (M) is a function
that is A-harmonic in the open set Ω ∩ B, satisfies u − θ ∈ W 1,p

0 (Ω), and
u = θ a.e. in M \ Ω. Then

ess sup
B/2

ϕ
(

|u− θ|
)p(n+1)

≤ c

∫

B

ϕ
(

|u− θ|
)p
,

where the constant is independent of x.
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Proof. We denote h = |u− θ| and Φ = ϕp. Without loss of generality we can
assume that Ω ∩ B 6= ∅.

Suppose that η ≥ 0 is a Lipschitz function with supp η ⊂ B. Since
u − θ ∈ W 1,p

0 (Ω) and supp η ⊂ B, we have ηpΦ(h)m ∈ W 1,p
0 (Ω ∩ B) for all

m ≥ 1. Hence we can use Lemma 2.15 (with Φm replacing ψ) to obtain
∫

B

ηp(Φm)′(h)|∇h|p =

∫

Ω∩B

ηp(Φm)′(h)|∇h|p

≤ c

∫

Ω∩B

ηp(Φm)′(h)|∇θ|p + c

∫

Ω∩B

Φmp

(mΦ′Φm−1)p−1
(h)|∇η|p

≤ c

∫

B

ηp(Φm)′(h)|∇θ|p + cm1−p

∫

B

Φ(h)m|∇η|p

(2.21)

for all m ≥ 1. Here we used the fact that Φ′(t) ≥ cΦ(t) for all t ∈ (0, 2] that
holds since ϕ′(t) ≥ cϕ(t) for all r ∈ (0, 2] by (2.12).

Denote κ = n/(n − 1). We denote rj = r(1 + κ−j)/2 and Bj = B(x, rj).
Note that rj → r/2 as j → ∞. Let ηj be a Lipschitz function with 0 ≤ ηj ≤ 1,
ηj |Bj+1 ≡ 1, and ηj |M \ Bj ≡ 0. We choose it to be (rj − rj+1)

−1-Lipschitz
so that |∇ηj | ≤ cκj .

If m ≥ 1, then
∣

∣∇
(

ηp
j Φ(h)m

)
∣

∣ ≤ pηp−1
j Φ(h)m|∇ηj| +mηp

j Φ
′(h)Φ(h)m−1|∇h|

≤ cκjηp−1
j Φ(h)m +mηp

j Φ
′(h)Φ(h)m−1

(

1 + |∇h|p
)

≤ c(κj +m)ηp−1
j Φ(h)m−1 + ηp

j (Φ
m)′(h)|∇h|p

(2.22)

so that the local Sobolev inequality (2.2) and (2.21) imply for m ≥ 1 that

(

∫

Bj+1

Φ(h)κm
)1/κ

≤
(

∫

Bj

(

ηp
j Φ(h)m

)κ
)1/κ

≤ CS

∫

Bj

∣

∣∇
(

ηp
j Φ(h)m

)
∣

∣

≤ c(κj +m)

∫

Bj

ηp−1
j Φ(h)m−1 + c

∫

Bj

ηp
j (Φ

m)′(h)|∇h|p

≤ c(κj +m)

∫

Bj

Φ(h)m−1 + c

∫

Bj

ηp
j (Φ

m)′(h)|∇θ|p + cm1−p

∫

Bj

Φ(h)m|∇ηj|
p

≤ c(κj +m+m1−pκjp)

∫

Bj

Φ(h)m−1.

We apply this with m = mj + 1, where mj := (n + 1)κj − n. Note that
mj+1 = κ(mj + 1) so that we get

(

∫

Bj+1

Φ(h)mj+1

)1/κ

≤ cκj

∫

Bj

Φ(h)mj .(2.23)
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By denoting Ij =
(∫

Bj
Φ(h)mj

)1/κj

we can write (2.23) as a recursion formula

Ij+1 ≤ c1/κj

κj/κj

Ij. Since

lim sup
j→∞

Ij ≥ lim
j→∞

(

∫

B/2

Φ(h)mj

)(n+1)/mj

= ‖Φ(h)‖n+1
L∞(B/2),

we get

ess sup
B/2

Φ(h)n+1 ≤ lim sup
j→∞

Ij ≤ c
∑

∞

k=0
1/κk

κ
∑

∞

k=0
k/κk

I0 ≤ c

∫

B

Φ(h)

as claimed.

Proof of Theorem 2.4. Note first that by scaling θ (and u) if necessary, we
can assume without loss of generality that ‖θ‖∞ ≤ 1/c0, where c0 is as in
Lemma 2.17. By scaling we can also assume without loss of generality instead
of (2.6) that

∫

Ω
F (c20|∇θ|w) <∞.

Let j0 ∈ N be so large that Ω ∩ B(o, j0) 6= ∅. If j ≥ j0, we denote Ωj =
Ω ∩ B(o, j). Let uj be the unique A-harmonic function in Ωj that satisfies
uj − θ ∈ W 1,p

0 (Ωj). Now (uj)j≥j0 is a bounded sequence of A-harmonic
functions and it follows that it is equicontinuous. Ascoli’s theorem implies
that this sequence has a locally uniformly converging subsequence. We denote
this subsequence by (uij). The limit function u : Ω → R is an A-harmonic
function in Ω. Suppose that x0 ∈ ∂Ω is an A-regular boundary point of Ω
and that (xk) is a sequence of points in Ω so that xk → x0 as k → ∞. Using
the fact that x0 is A-regular and standard potential theoretic arguments one
can prove that u(xk) → θ(x0) as k → ∞. We omit this proof as it is very
similar to an argument in the proof of [12, Theorem 4.1]. This takes care of
the first claim in Theorem 2.4.

Fix a sequence (xk) of points in Ω so that ρ(xk) → ∞ as k → ∞. We
have to prove that |u(xk) − θ(xk)| → 0 as k → ∞. Denote θ̃ = c0θ and
ũ = c0u. Fatou’s lemma together with Lemma 2.17 applied with U = Ωkj

imply

∫

Ω

ϕ
(

|u− θ|
)p

=

∫

Ω

ϕ
(

|ũ− θ̃|/c0
)p

≤ lim inf
j→∞

∫

Ωij

ϕ
(

|ũij − θ̃|/c0
)p

≤ c0 + c0

∫

Ω

F
(

c0|∇θ̃|w
)

= c0 + c0

∫

Ω

F
(

c20|∇θ|w
)

<∞.

(2.24)

Let x ∈ Ω. Since uij − θ ∈ W 1,p
0 (Ωij ), we can extend uij to a function in

W 1,p
loc (M) by setting uij (y) = θ(y) if y ∈M \Ωij . If j is large enough then the
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extension uij satisfies the assumptions of Lemma 2.20 for fixed r ∈ (0, rS)
and hence

ess sup
B(x,r/2)

ϕ
(

|uij − θ|
)p(n+1)

≤ c

∫

B(x,r)

ϕ
(

|uij − θ|
)p
.

Here ess sup is needed instead of sup since |uij − θ| need not be continuous
on the boundary of Ω. This and the dominated convergence theorem imply

sup
Ω∩B(x,r/2)

ϕ
(

|u− θ|
)p(n+1)

= sup
Ω∩B(x,r/2)

lim
j→∞

ϕ
(

|uij − θ|
)p(n+1)

≤ lim sup
j→∞

ess sup
B(x,r/2)

ϕ
(

|uij − θ|
)p(n+1)

≤ c lim sup
j→∞

∫

B(x,r)

ϕ
(

|uij − θ|
)p

= c

∫

Ω∩B(x,r)

ϕ
(

|u− θ|
)p
.

We apply this with x = xk and note that (2.24) implies that

lim
k→∞

∫

Ω∩B(xk,r)

ϕ
(

|u− θ|
)p

= 0

to see that |u(xk) − θ(xk)| → 0 as k → ∞.

3 Solving the Dirichlet problem at infinity us-

ing Theorem 2.4

In this section we apply Theorem 2.4 to obtain new solvability results for
the Dirichlet problem at infinity on Cartan-Hadamard manifolds or more
specifically the A-regularity of a point at infinity x0 ∈ M(∞) under some
curvature conditions. The results we obtain are Theorem 3.6 and corollaries
3.7 and 3.8. Within this section M is a Cartan-Hadamard n-manifold, o ∈M
is a fixed basepoint, ρ = d(o, ·), and A ∈ Ap(M) with p ∈ (1,∞).

If a : [0,∞) → [0,∞) is a smooth function that is constant in a neighbor-
hood of 0, we denote by fa the solution to the initial value problem fa(0) = 0,
f ′

a(0) = 1, and f ′′
a = a2fa. These functions are valuable to us because they

can be used to bound growth of normalized Jacobi fields on a unit speed
geodesic ray γ with γ(0) = o provided that KM(γ(t)) is bounded from above
(or below) by a(t) for every t ≥ 0, see [9, Proposition 2.5(a)]. Some basic
properties that we will use in this section are proved for these functions in
[9, Section 2.2].

The following result tells us that the weighted (1, 1)-Sobolev inequality
in a truncated cone can be obtained from a suitable curvature upper bound.
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3.1 Lemma. Let φ > 1. Let T (v, δ, r0) be a truncated cone with v ∈ SoM ,
δ > 0, and r0 > 0. Suppose that

KM(P ) ≤ −φ(φ− 1)/ρ(x)2

for every x ∈ T (v, δ, r0) ∩M and every 2-dimensional subspace P ⊂ TxM
that contains the radial vector ∇ρ(x). Suppose that 0 < λ < 1 + (n − 1)φ.
Then there exists r1 > r0 such that

λ

∫

M

|η| ≤

∫

M

|∇η|ρ

for every η ∈ C∞
0

(

T (v, δ, r1) ∩M
)

.

Proof. Let a : [0,∞) → [0,∞) be a smooth function such that

a(t)











= 0 if t ∈ [0, r0],

≤
√

φ(φ− 1)/t if t ∈ [r0, r0 + 1],

=
√

φ(φ− 1)/t if t ≥ r0 + 1.

Then the radial curvatures in C(v, δ)∩M are bounded from above by −a(ρ)2.
It follows that ∆ρ ≥ (n − 1)f ′

a(ρ)/fa(ρ) in C(v, δ) ∩M by [9, Proposition
2.5(b)]. Since a(t) =

√

φ(φ− 1)/t for all t ≥ r0 + 1, there exist constants
c1 > 0 and c2 ∈ R such that fa(t) = c1t

φ + c2t
1−φ for all t ≥ r0 + 1. From

this and the assumption λ < 1 + φ(n− 1) we can conclude that there exists
a constant r1 ≥ r0 + 1 such that ∆ρ ≥ (λ− 1)/ρ in T (v, δ, r1) ∩M .

Now let η ∈ C∞
0

(

T (v, δ, r1) ∩ M
)

. Without loss of generality we can
assume that η ≥ 0. Then

(λ− 1)

∫

M

η ≤

∫

M

ηρ∆ρ = −

∫

M

〈

∇(ηρ),∇ρ
〉

= −

∫

M

η −

∫

M

ρ〈∇η,∇ρ〉

so that λ
∫

M
η ≤

∫

M
|∇η|ρ.

In the following lemma we apply Theorem 2.4 to show that a point at
infinity is A-regular assuming a curvature upper bound and control on the
growth of various Jacobi fields.

For x ∈M\{o} we denote by J(x) the supremum and by j(x) the infimum
of |V (ρ(x))| over all Jacobi fields V along the unit speed geodesic γo,x from
o to x that satisfy V (0) = 0, |V ′(0)| = 1, and V ′(0)⊥γ̇o,x

0 .

3.2 Lemma. Let x0 ∈M(∞) be a point at infinity and φ > 1. Suppose that
x0 has a neighborhood U in the cone topology such that

KM(P ) ≤ −φ(φ− 1)/ρ(x)2
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for every x ∈ U ∩ M and every 2-dimensional subspace P ⊂ TxM that
contains the radial vector ∇ρ(x).

Let h : [0,∞) → [0,∞) be a function that satisfies
∫ ∞

0
h(t) dt < ∞.

Suppose that F ∈ Fp is as in Definition 4.1 in Appendix and

F
(ρ(x)

j(x)

)

J(x)n−1 ≤ h
(

ρ(x)
)

for every x ∈ U ∩M . Suppose that

1 < p <
α

β

(

1 + (n− 1)φ
)

,

where α and β are the structure constants of A. Then x0 is an A-regular
point at infinity.

Proof. Let f : M(∞) → R be a continuous function. We have to prove that

lim
x→x0

Hf(x) = f(x0).

Fix λ ∈
(

pβ/α, 1 + (n− 1)φ
)

and ε > 0. Denote v = γ̇o,x0

0 and let δ ∈ (0, π)
be so small and r0 > 0 so large that T (v, δ, r0) ⊂ U and |f(x1) − f(x0)| < ε
whenever x1 ∈ C(v, δ)∩M(∞). Let r1 > r0 be as in Lemma 3.1. We denote
Ω = T (v, δ, r1) ∩ M . Then (2.1) holds for every η ∈ C∞

0 (Ω) with weight
w = ρ/λ.

We define θ ∈ C(M̄) by the formula

θ(x) = min
(

1,max
(

r1 + 1 − ρ(x), δ−1
^o(x0, x)

)

)

.

By [12, Lemma 2] there exists a constant c1 > 0 such that |∇θ(x)| ≤ c1/j(x)
for all x ∈ Ω. Denote F̃ = F (c−1

1 λ·). Then F̃ ∈ Fp by Remark 4.2 and
∫

Ω

F̃
(

|∇θ|w
)

≤

∫

Ω

F
(

c−1
1 |∇θ|ρ

)

=

∫ ∞

r1

∫

SoM∩C(v,δ)

F
(

c−1
1 |∇θ(r, ξ)|r

)

λM(r, ξ) dξ dr

≤

∫ ∞

r1

∫

SoM∩C(v,δ)

F
( r

j(r, ξ)

)

J(r, ξ)n−1 dξ dr ≤ c

∫ ∞

r1

h(r) dr <∞.

Now the assumptions of Theorem 2.4 are satisfied with F̃ ∈ Fp replacing F
(see Remark 2.7(iii)). Thus there exists an A-harmonic function u : Ω → R

so that

(3.3) lim
x→x0

u(x) = θ(x0) = 0
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and

(3.4) lim
x→y

u(x) = θ(y) = 1

for every y ∈M ∩ ∂Ω.
Now we define ũ : M → R,

ũ(x) =

{

min(1, 2u)(x), if x ∈ Ω,

1, if x ∈M \ Ω.

Since the minimum of two A-superharmonic functions is A-superharmonic
and (3.4) holds for every y ∈ M ∩ ∂Ω, we see that ũ is continuous and A-
superharmonic in some neighborhood of each point inM . Since A-superharmonicity
is a local property, ũ is A-superharmonic. Now

Hf ≤ f(x0) + ε+ 2(sup |f |)ũ

by the definition of Hf . By this and (3.3) we get lim supx→x0
Hf(x) ≤

f(x0) + ε. Similarly one proves that lim infx→x0
Hf(x) ≥ f(x0) − ε. Taking

into account Hf ≥ Hf and that ε > 0 is arbitrary, we get limx→x0
Hf (x) =

f(x0).

We would like to get rid of the technical functions j and J involving
Jacobi fields in the assumptions in Lemma 3.2 and replace the assumption
F

(

ρ(x)/j(x)
)

J(x)n−1 ≤ h
(

ρ(x)
)

with some curvature condition. The fol-
lowing gives us one way to do this assuming a curvature bound of the type
−(b ◦ ρ)2 ≤ KM ≤ −(a ◦ ρ)2.

3.5 Lemma. Suppose that a, b : [0,∞) → [0,∞) are smooth functions that
are constant in some neighborhood of 0. Let U = T (v, δ, r0) be a truncated
cone at o with v ∈ SoM , δ > 0, and r0 > 0. Suppose that

−b
(

ρ(x)
)2

≤ KM(P ) ≤ −a
(

ρ(x)
)2

for all 2-dimensional subspaces P ⊂ TxM , x ∈ U ∩M , containing the radial
vector. Suppose that

a(t) ≥
√

φ(φ− 1)/t

for some constant φ > 1 and all sufficiently large t.
Suppose that limt→∞ b′(t)/b(t)2 = 0 and that there exists a constant ε > 0

such that

b(t) ≤
f ′

a(t)

t
(

log fa(t)
)1+ε
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for all sufficiently large t. Then there exists F ∈ Fp such that

F
(ρ(x)

j(x)

)

J(x)n−1 ≤ ρ(x)−2

for every x ∈ U ∩M outside a compact set.

Proof. We have j(x) ≥ c1fa

(

ρ(x)
)

, where c1 > 0 is a constant, and J(x) ≤
cfb

(

ρ(x)
)

for every x ∈ U∩M . This follows from [9, Proposition 2.5(a)] if the
curvature bound holds in C(v, δ) ∩M and in the general case by modifying
a and b in a bounded set so that the curvature bound holds in C(v, δ) ∩M
and by applying [9, Lemma 2.4]. Fix ε0 ∈ (0, ε). By Proposition 4.3 there
exists F ∈ Fp such that F ≤ F̃ , where

F̃ (t) = exp
(

−
1

t

(

log
1

t

)−1−ε0
)

for all small t. We denote

Φ(t) =
(

t−2/F̃
( t

c1fa(t)

))1/(n−1)

= t−2/(n−1) exp
( 1

n− 1

c1fa(t)

t

(

log
c1fa(t)

t

)−1−ε0
)

for all large t. One can use [9, Lemma 2.2] to obtain lim infs→∞ sf ′
a(s)/fa(s) ≥

φ > 1 and if t is sufficiently large, then this and fa(t) ≥ ctφ imply that

Φ′(t)

Φ(t)
=

−2t+ c1

(

1 − (1 + ε0)
(

log c1fa(t)
t

)−1)
(

tf ′
a(t) − fa(t)

)

(

log c1fa(t)
t

)−1−ε0

(n− 1)t2

≥
cf ′

a(t)
(

log cfa(t)
t

)−1−ε0

t
≥

cf ′
a(t)

t
(

log fa(t)
)1+ε0

≥ 2
f ′

a(t)

t
(

log fa(t)
)1+ε ≥ 2b(t).

Since b′(t)/b(t)2 → 0 as t→ ∞, we have

lim
t→∞

f ′
b(t)/fb(t)

b(t)
= 1

by [9, Lemma 2.3]. Therefore Φ′(t)/Φ(t) ≥ 2b(t) ≥ f ′
b(t)/fb(t) for all large t.

From this we see that Φ(t) ≥ cfb(t) for all sufficiently large t. Therefore

F
(ρ(x)

j(x)

)

J(x)n−1 ≤ F̃
(ρ(x)

j(x)

)

J(x)n−1 ≤ cF̃
( ρ(x)

c1fa

(

ρ(x)
)

)

fb

(

ρ(x)
)n−1

≤ cF̃
( ρ(x)

c1fa

(

ρ(x)
)

)

Φ
(

ρ(x)
)n−1

= ρ(x)−2

for all x ∈ U ∩M outside a compact set.
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By combining lemmas 3.2 and 3.5 we now obtain the following result that
gives sufficient curvature conditions so that a point at infinity is A-regular.

3.6 Theorem. Let a, b : [0,∞) → [0,∞) be smooth functions that are con-
stant in some neighborhood of 0. Let φ > 1 and ε > 0 be constants such that
limt→∞ b′(t)/b(t)2 = 0,

a(t) ≥
√

φ(φ− 1)/t,

b(t) ≤
f ′

a(t)

t
(

log fa(t)
)1+ε

for all sufficiently large t.
Suppose that M is a Cartan-Hadamard manifold, o ∈M , ρ = d(·, o), and

A ∈ Ap(M), where

1 < p <
α

β

(

1 + (n− 1)φ
)

and α, β are the structure constants of A. Let x0 ∈ M(∞) and let U be a
neighborhood of x0 in the cone topology such that

−b
(

ρ(x)
)2

≤ KM(P ) ≤ −a
(

ρ(x)
)2

for all x ∈ U ∩M and all 2-dimensional subspaces P ⊂ TxM that contain
the radial vector. Then x0 is an A-regular point at infinity.

Now if we are given a curvature upper bound KM ≤ −(a◦ρ)2, we can try
to find a corresponding function b for the lower bound so that the assumptions
of Theorem 3.6 are satisfied. The following corollaries cover the two most
natural special cases of this result in this way.

3.7 Corollary. Suppose that M is a Cartan-Hadamard manifold, o ∈ M ,
ρ = d(·, o), and A ∈ Ap(M), where

1 < p <
α

β

(

1 + (n− 1)φ
)

.

Fix φ > 1 and ε > 0. Let x0 ∈ M(∞) and let U be a neighborhood of x0 in
the cone topology such that

−ρ(x)2φ−4
(

log ρ(x)
)−2−ε

≤ KM(P ) ≤ −φ(φ− 1)/ρ(x)2

for all x ∈ U ∩M and all 2-dimensional subspaces P ⊂ TxM that contain
the radial vector. Then x0 is an A-regular point at infinity.

Proof. This follows from Theorem 3.6 by choosing a(t) =
√

φ(φ− 1)/t and
b(t) = tφ−2(log t)−1−ε/2 for all large t.
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3.8 Corollary. Suppose that M is a Cartan-Hadamard manifold, o ∈ M ,
ρ = d(·, o), and A ∈ Ap(M), where p ∈ (1,∞) is an exponent. Fix k > 0
and ε > 0. Let x0 ∈ M(∞) and let U be a neighborhood of x0 in the cone
topology such that

−ρ(x)−4−ε exp
(

2kρ(x)
)

≤ KM(P ) ≤ −k2

for all x ∈ U ∩M and all 2-dimensional subspaces P ⊂ TxM that contain
the radial vector. Then x0 is an A-regular point at infinity.

Proof. This follows from Theorem 3.6 by choosing a(t) = k and b(t) =
t−2−ε/2 exp(kt) for all large t.

3.9 Remark. (i) One can replace the curvature bound in Corollary 3.8 with
−ρ(x)−2−ε exp

(

2kρ(x)
)

≤ KM(P ) ≤ −k2. This is done by rewriting the
earlier results in this section with curvature bound KM ≤ −k2 instead of
KM ≤ −φ(φ− 1)/ρ(x)2 and making appropriate changes.

(ii) These corollaries (together with (i)) generalize those given in [9, Corol-
lary 3.22] and [9, Corollary 3.23] in two important ways. First, we handle all
A ∈ Ap(M) instead of just the p-Laplacian. Second, the curvature bounds
now involve only radial curvatures. Furthermore, the proof method used here
is more natural in the nonlinear potential theoretic setting than the pointwise
argument used in [9].

4 Appendix: Auxiliary functions

In this section we define auxiliary functions F , G, and ϕ on the positive real
axis and prove their properties that we need in the proof of our main result.
Fix an exponent p ∈ (1,∞).

4.1 Notation. Suppose that G is a Young function that is a homeomorphism
[0,∞) → [0,∞) and is a diffeomorphism (0,∞) → (0,∞) and satisfies

(A1)

∫ 1

0

dt

G−1(t)
<∞

and

(A2) lim
t→0

tG′(t)

G(t)
= 1.

Then G(·1/p)p is also a Young function and we can define a function F :
[0,∞) → [0,∞) so that F (·1/p) and G(·1/p)p form a complementary Young
pair. In this case write F ∈ Fp.
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4.2 Remark. If G is as in Notation 4.1, then λG and G(λ·) satisfy (A1) and
(A2) as well for every λ > 0. It follows that if F ∈ Fp, then λF ∈ Fp and
F (λ·) ∈ Fp for every λ > 0.

The existence of functions in Fp is guaranteed by the following.

4.3 Proposition. Fix ε ∈ (0, 1). Then there exists F ∈ Fp such that

F (t) ≤ tp+ε exp
(

−
1

t

(

log
(

e+
1

t

)

)−1−ε)

for all t ∈ [0,∞).

Proof. We choose λ ∈ (1, 1 + ε) and a homeomorphism H : [0,∞) → [0,∞)
that is a diffeomorphism (0,∞) → (0,∞) and satisfies

H(t) =

{

(

log 1
t

)−1(
log log 1

t

)−λ
if t is small enough,

tp/ε if t is large enough.

We define G(t) =
∫ t

0
H(s) ds and denote G̃(t) = G(t1/p)p. Then G̃ is a Young

function and we denote its Young conjugate by F̃ and also F (t) = F̃ (tp).
Now tH ′(t)/H(t) → 0 as t → 0 so that tH(t)/G(t) → 1 as t → 0 by

l’Hospital’s rule and we see that G satisfies (A2). Denote R(t) = t/H(t).
Then R(k·) ≈ R for every constant k > 0 so that

R
(

G(t)
)

≈ R
(

tH(t)
)

= t
H(t)

H
(

tH(t)
) ≈ t

for all small enough t. Hence G−1(t) ≈ R(t) for all small enough t. Since
λ > 1, it follows that G satisfies (A1) and therefore F ∈ Fp.

We still have to estimate F from above. Since G(t) ≈ tH(t) for all t, we
get

(4.4) G̃′(t) = t1/p−1G(t1/p)p−1H(t1/p) ≈ H(t1/p)p

for all t. SinceH(t1/p)p ≥ cH(t)p for all sufficiently small t, F̃ ′(t) = (G̃′)−1(t) ≤
H−1(ct1/p) for all small enough t. Thus

F (t) = p

∫ t

0

sp−1F̃ ′(sp) ds ≤ p

∫ t

0

sp−1H−1(cs) ds ≤ cH−1(ct)

for all small enough t. Now

H−1(t) = exp
(

− exp
(

λW
(

λ−1t−1/λ
)

))

,
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for all sufficiently small t, where W is the Lambert W function defined by
the identity W (s)eW (s) = s. It is easy to verify that W satisfies W (s) ≥
log s− log log s for all s ≥ e so that we can estimate

F (t) ≤ cH−1(ct) ≤ c exp
(

− exp
(

λW
(

ct−1/λ
)

))

≤ c exp
(

− exp
(

λ log(ct−1/λ) − λ log log(ct−1/λ)
))

= c exp
(

−ct−1
(

log(ct−1/λ)
)−λ)

≤ c exp
(

−c
1

t

(

log
1

t

)−λ)

for all small enough t. On the other hand, if t is large enough, then (4.4)
implies that G̃′(t) ≈ H(t1/p)p = ctp/ε and hence F̃ ′(t) = (G̃′)−1(t) ≤ ctε/p for
all large enough t. From this we see that

F (t) = p

∫ t

0

sp−1F̃ ′(sp) ds ≤ ctp+ε

if t is large enough. Putting all the above together with λ < 1 + ε we obtain

F (t) ≤ ctp+ε exp
(

−
1

t

(

log
(

e+
1

t

)

)−1−ε)

for all t. The claim follows since kF ∈ Fp for all k > 0 by Remark 4.2.

We define an additional auxiliary function in the following way

ϕ(t) :=
(

∫ ·

0

1

G−1

)−1

(t).

This function is well defined by (A1).

4.5 Lemma. The function ϕ is a homeomorphism [0,∞) → [0,∞) that is
smooth on (0,∞) and satisfies

G ◦ ϕ′ = ϕ

and

lim
t→0

ϕ′′(t)ϕ(t)

ϕ(t)2
= 1.

Proof. Since G is convex, G(t) ≥ ct for all t ≥ 1 and hence we have G−1(t) ≤
ct for all large enough t. It follows that

∫ ∞

0
1/G−1 = ∞ and hence

∫ ·

0
1/G−1 is

a homeomorphism [0,∞) → [0,∞) that is a diffemorphism (0,∞) → (0,∞).
Hence the same holds for its inverse ϕ.
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In order to see that G ◦ ϕ′ = ϕ, notice that G−1 = 1/(ϕ−1)′ = ϕ′ ◦ ϕ−1

and compose this from left with G and from right with ϕ.
Finally, since G ◦ ϕ′ = ϕ, we can differentiate both sides to obtain (G′ ◦

ϕ′)ϕ′′ = ϕ′ and using this we can write

ϕ′′ϕ

(ϕ′)2
=

ϕ′

G′◦ϕ′
· (G ◦ ϕ′)

(ϕ′)2
=

G

id ·G′
◦ ϕ′

Since limt→0 ϕ
′(t) = limt→0G

−1
(

ϕ(t)
)

= 0, (A2) implies that ϕ′′(t)ϕ(t)/ϕ′(t)2 →
1 as t→ 0.
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