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Abstract. We define rectifiable sets in the Heisenberg groups
as countable unions of Lipschitz images of subsets of a Euclidean
space, in the case of low-dimensional sets, or as countable unions
of subsets of intrinsic C1 surfaces, in the case of low-codimensional
sets. We characterize both low-dimensional rectifiable sets and low
codimensional rectifiable sets with positive lower density, in terms
of almost everywhere existence of approximate tangent subgroups
or of tangent measures.
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1. Introduction

Rectifiable sets are basic concepts of geometric measure theory. They
were introduced in the 1920’s in the plane by Besicovitch and in 1947 in
general dimensions in Euclidean spaces by Federer. A systematic study
of rectifiable sets in general metric spaces was made by Ambrosio and
Kirchheim in [AK] in 2000. However, the definitions they used are not
always appropriate in Heisenberg groups, and many other Lie groups,
when equipped with their natural Carnot-Carathéodory metric; indeed,
often there are only trivial rectifiable sets of measure zero.

A different definition, in Heisenberg groups Hn and more general
Carnot groups, has been given in [FSS1], for sets of codimension 1,
and in general dimensions in [FSS4, FSS5]. Let us sketch the inspiring
ideas.

Along original Federer’s definition, rectifiable sets are contained, up
to a negligible set, in countable unions of images of Lipschitz maps or in
countable unions of C1 sub-manifolds. These definitions, in Euclidean
spaces, are equivalent (see [F, Si]).

Also in groups it is possible to follow the pattern of both defini-
tions, provided we have good intrinsic notions of Lipschitz maps and
of C1 sub-manifolds. Respectively we will define the classes of (k, HL)-
rectifiable sets and of (k, H)-rectifiable sets.

Let us begin with the notion of intrinsic C1 sub-manifold (see Defi-
nition 2.17). If k is an integer, 1 ≤ k ≤ 2n, intrinsic k-dimensional C1

sub-manifolds of Hn (also called H-regular surfaces) are locally defined,
if 1 ≤ k ≤ n, as images of continuously differentiable maps Rk → Hn

and, if n + 1 ≤ k ≤ 2n, as non critical level sets of continuously differ-
entiable functions Hn → R2n+1−k.

Notice that differentiable means always Pansu differentiable (see Def-
inition 2.11). We recall that, if d is the distance, defined in (2.1),
equivalent with the Carnot-Carathéodory metric, and if Sk is the k-
dimensional spherical Hausdorff measure in Hn, built using the dis-
tance d, then the Hausdorff dimension of Hn is 2n + 2 and a (typ-
ical) k-dimensional H-regular sub-manifold has Hausdorff dimension
km, where km = k, if 1 ≤ k ≤ n, and km = k + 1, if n + 1 ≤ k ≤ 2n.

Then we say that E ⊂ Hn is (k, H)-rectifiable if there is a sequence
of k-dimensional H-regular surfaces Si such that

Skm
(

E \
⋃

i

Si

)

= 0.

We introduce also the following analogue of Federer’s Lipschitz defi-
nition. If k is an integer with 1 ≤ k ≤ 2n, we say that E ⊂ Hn is
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(k, HL)-rectifiable if there is a sequence of Lipschitz functions fi : Ai ⊂
Rk → Hn such that

Skm
(

E \
⋃

i

fi(Ai)
)

= 0.

This last definition is non trivial only if 1 ≤ k ≤ n, because, for
n+ 1 ≤ k and f Lipschitz, always Skm(f(A)) = 0 (see [AK]), hence we
will consider (k, HL)-rectifiable sets only for 1 ≤ k ≤ n.

Given that the above mentioned generalization of Federer’s Lipschitz
definition is not a good one for high dimensional rectifiable sets in
Carnot groups, different related approaches have been proposed in the
literature. As an example, Pauls in [Pau] considered images in Hn of
Lipschitz maps defined not on Rk but on subgroups of Hn; in [FSS5] a
different notion of intrinsic Lipschitz sub-manifold is considered.

We explicitly observe that we do not know if (k, HL)-rectifiability
and (k, H)-rectifiability are equivalent if 1 ≤ k ≤ n. Clearly they are
not if n + 1 ≤ k ≤ 2n.

In this paper we approach the problem of characterizing intrinsic k-
rectifiable sets in Hn through almost everywhere existence and unique-
ness of generalized tangent subgroups or tangent measures.

We prove two main theorems. Suppose that E ⊂ Hn has locally
finite Skm measure.
• The first one, Theorem 3.27, deals with the case 1 ≤ k ≤ n and with

(k, HL)-rectifiability. We prove that E is (k, HL)-rectifiable if and only
if it has an approximate tangent subgroup, Sk almost everywhere. The
latter means that, for Sk almost all p ∈ E, there exists a homogeneous
subgroup Tp, of topological and Hausdorff dimension k, such that

lim
r→0

r−kSk
(

E ∩B(p, r) ∩ {q : d(p−1 · q, Tp) > sd(p, q)}
)

= 0

for all s > 0, where the distance d is defined in (2.1) and is comparable
with the Carnot-Carathéodory distance in Hn.
• The second main theorem, Theorem 3.28, deals with n+1 ≤ k ≤ 2n

and (k, H)-rectifiability. We prove that E is (k, H)-rectifiable if and
only if it has, Skm almost everywhere, an approximate tangent sub-
group and, additionally, positive lower density. These two conditions
mean that, for Skm almost all p ∈ E, there exists a homogeneous sub-
group Tp, of topological dimension k and Hausdorff dimension km =
k + 1, such that

lim
r→0

r−kmSkm
(

E ∩ B(p, r) ∩ {q : d(p−1 · q, Tp) > sd(p, q)}
)

= 0
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for all s > 0, and

lim inf
r→0

r−kmSkm
(

E ∩B(p, r)
)

> 0.

We don’t know if the assumption of positive lower density is necessary.
In both cases, we shall also give other equivalent conditions in terms

of weak convergence of blow-ups and existence of tangent measures.
One of these, condition (v) of Theorem 3.28, says that E, with positive
density as above, is (k, H)-rectifiable if and only if for Skm-a.e. p ∈
E there is a non-trivial Radon measure λp such that every tangent
measure at p of the restriction Skm E is a constant multiple of λp.
More informally, this means that, at all sufficiently small scales around
p, Skm E looks, suitably magnified, like λp. Note that this condition
does not refer to any particular kind of subgroups, parametrizations or
concepts of differentiability, whence its equivalence to rectifiability in
a way indicates that the concept of intrinsic rectifiability we are using
is a natural one.

Notice that Ambrosio and Kirchheim’s definition in general metric
spaces, when specialized to Heisenberg groups, coincides with (k, HL)-
rectifiability. They also have a characterization of rectifiability, under
the assumption of positive lower density, in terms of approximate tan-
gent planes. Their approach to the notion of (approximate) tangent
space is different from ours. Indeed they imbed their metric space into
a Banach space and use the linear structure there. However, eventually,
the two notions coincide.

Notice that we use the spherical Hausdorff measure Sm instead of the
usual Hausdorff measure Hm because the blow-up Theorem 3.4 is only
known for it and hence we can get the conditions (ii) and (iv), of both
main theorems, only for the spherical Hausdorff measure. As Sm and
Hm have the same null-sets, and even Hm(A) ≤ Sm(A) ≤ 2mHm(A)
for all A ⊂ Hn, the rectifiable sets are the same for both measures and
the equivalence of the conditions (i), (iii) and (v) in Theorem 3.27 and
3.28 holds also for Hm.

In [FSS1, FSS2], (2n, H)-rectifiable sets were used to establish De
Giorgi’s structure theory for sets of finite perimeter in step 2 Carnot
groups, see also [AKD] for more general Carnot groups. In Euclidean
spaces, rectifiable sets have been fundamental in many aspects of geo-
metric calculus of variations, in particular for minimal surfaces of gen-
eral dimensions. Problems of existence and regularity of minimal sur-
faces in Heisenberg groups have recently been considered by many peo-
ple and it could be expected that rectifiable sets would play a significant
role also here. See also, for a different application, the recent [CK].
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2. Heisenberg groups

2.1. Algebraic and metric structure of Hn. For a general review
on Carnot groups, and in particular on Heisenberg groups, we refer to
[BLU], [CDPT], [Gro], [St] and to [VSC]. We limit ourselves to fix
some notations.

Hn is the n-dimensional Heisenberg group, identified with R2n+1

through exponential coordinates. A point p ∈ Hn is denoted p =
(p1, . . . , p2n, p2n+1) = (p′, p2n+1), with p′ ∈ R2n and p2n+1 ∈ R. If p and
q ∈ Hn, the group operation is defined as

p · q :=

(

p′ + q′, p2n+1 + q2n+1 − 2
n

∑

i=1

(piqi+n − pi+nqi)

)

.

The inverse of p is p−1 := (−p′,−p2n+1) and e = 0 is the identity of
Hn.

The centre of Hn is the subgroup T := {p = (0, . . . , 0, p2n+1)}.
For any q ∈ Hn and r > 0, we denote as τq : Hn → Hn the left

translation p '→ q · p = τq(p) and as δr : Hn → Hn the dilation

p '→ (rp′, r2p2n+1) = δrp.

Notice that dilations are also automorphisms of Hn.
We denote, for all p, q ∈ Hn,

‖p‖ := d(p, e) := max{‖(p1, · · · , p2n)‖
R2n , |p2n+1|1/2}

and

(2.1) d(p, q) = d(q−1 · p, e) = ‖q−1 · p‖.

Then, for all p, q, z ∈ Hn and for all r > 0,

d(z · p, z · q) = d(p, q) and d(δrp, δrq) = rd(p, q).

Finally, U(p, r) and B(p, r) are the open and the closed ball associated
with d.

The standard basis of the Lie algebra h of Hn is given by

Xi := ∂i + 2xi+n∂2n+1, Yi := ∂i+n − 2xi∂2n+1, T := ∂2n+1,

for i = 1, . . . , n. The horizontal subspace h1 is the subspace of h spanned
by X1, . . . , Xn and Y1, . . . , Yn. Denoting by h2 the linear span of T , the
2-step stratification of h is expressed as

h = h1 ⊕ h2.

The Lie algebra h is endowed with the scalar product 〈·, ·〉, that makes
X1, . . . , Yn, T orthonormal, and by the induced norm ‖ · ‖.
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The vector fields X1, . . . , Xn, Y1, . . . , Yn define a vector subbundle of
the tangent vector bundle THn, the so called horizontal vector bundle
HHn – according to the notation of Gromov, (see [Gro] and [Mon]). We
identify sections φ of HHn, using coordinates with respect to the moving
frame X1, . . . , Yn, with functions φ = (φ1, . . . ,φ2n) : Hn → R2n. We
will also identify sections φ : Ω ⊂ Hn → HHn with the map φ : Ω→ h1

defined as

φ(p) =
n

∑

j=1

φj(p)Xj + φn+j(p)Yj.

We denote by π : Hn → h1 the map defined as

(2.2) π(p) :=
n

∑

j=1

(pjXj + pn+jYj) .

2.3. Remark. Because the topologies defined by d and by the Euclidean
distance coincide, the topological dimension of Hn is 2n+1. Moreover d
is bilipschitz equivalent to the Carnot-Carathéodory metric dc induced
by the horizontal subbundle HHn (see [Gro, Mon]).

The (2n + 1)-dimensional Lebesgue measure L2n+1 on Hn ≡ R2n+1

is left (and right) invariant and it is a Haar measure of the group.
For m ≥ 0, we denote by Sm the m-dimensional spherical Haus-

dorff measure, obtained from the distance d following Carathédory’s
construction as in [F] Section 2.10.2.

For A ⊂ Hn and δ > 0, Sm(A) = limδ→0 Sm
δ (A), where

Sm
δ (A) = inf

{

∑

i

αmrm
i : A ⊂

⋃

i

B(pi, ri), ri ≤ δ

}

.

We have to be precise about the constants appearing in this definition.
Since explicit computations will be carried out only for m integer and
0 ≤ m ≤ 2n + 2, we limit ourselves to this case. If ωm is the Lm

measure of the unit Euclidean ball in Rm, we define

(2.4) αm :=

{

ωm if 1 ≤ m ≤ n,
2ωm−2 if n + 1 ≤ m.

With this choice, the Sm measure restricted to homogeneous subgroups
of G(Hn) (see Definition 2.27) coincides with the appropriate Lebesgue
measure. The precise statement is in Proposition 2.32.

Translation invariance and homogeneity under dilations of Hausdorff
measures follow as usual. For all A ⊆ Hn, for all p ∈ Hn, r ∈ (0,∞)
and 1 ≤ m ≤ 2n + 2

(2.5) Sm(τpA) = Sm(A), Sm(δr(A)) = rmSm(A).
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Finally we denote by Hm
euc the m-dimensional Hausdorff measure

related to the Euclidean distance in R2n+1.

2.2. Function spaces. If Ω is an open subset of Hn ≡ R2n+1 and
k ≥ 0 is a non negative integer, Ck(Ω) indicates the usual space of real
valued functions which are k times continuously differentiable in the
Euclidean sense. We denote by Ck(Ω, HHn) the set of all Ck-sections
of HHn where the Ck regularity is understood as regularity between
smooth manifolds.

2.6. Definition. If Ω is an open subset of Hn and f ∈ C1(Ω) we define
the horizontal gradient of f as

(2.7) ∇Hf := (X1f, . . . , Xnf, Y1f, . . . , Ynf) .

Alternatively ∇Hf can be defined as the section of HHn

∇Hf :=
n

∑

j=1

(Xjf) Xj + (Yjf) Yj

whose canonical coordinates are (X1f, . . . , Xnf, Y1f, . . . , Ynf).

2.8. Definition. We say that f : Hn → R is differentiable along Xj

(or along Yj) at p0 if the map r '→ f(p0 · δrej) (respectively: r '→
f(p0 · δrej+n)) is differentiable at r = 0. Here ek is the k-th vector of
the canonical basis of R2n+1.

Clearly, if f ∈ C1(Ω) then f is differentiable along Xj and Yj, for
j = 1, . . . , n, at all points of Ω and

df

dr
(p0 · δrej)

∣

∣

r=0
= Xjf(p0) ,

df

dr
(p0 · δrej+n)

∣

∣

r=0
= Yjf(p0)

for all p0 ∈ Ω. Hence, if f is differentiable along Xj ’s and Yj’s at p0

and we define the horizontal gradient to be

(2.9) ∇Hf(p0) :=
n

∑

j=1

Xjf(p0) Xj +
n

∑

j=1

Yjf(p0) Yj

then this definition naturally extends the one given in (2.7).

2.10. Definition. If U ⊂ Hn, we denote by C1
H(U) the set of continuous

real valued functions in U such that ∇Hf exists and is continuous in
U ; [C1

H(U)]k is the set of k-tuples f = (f1, · · · , fk) such that each
fi ∈ C1

H(U) for 1 ≤ i ≤ k.

Notice that C1(Ω) ⊂ C1
H(Ω), and the inclusion is strict (see [FSS1],

Remark 5.9).
The following definition of differentiability, for functions acting be-

tween Carnot groups, was given by Pansu in [Pan].
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2.11. Definition. Let (G1, d1) and (G2, d2) be Carnot groups and A ⊂
G1. A function f : A→ G2 is Pansu differentiable in g ∈ A if there is
a homogeneous homomorphism Lg : G1 → G2 such that

d2

(

f(g)−1 · f(g′), Lg(g−1 · g′)
)

d1(g, g′)
→ 0, as d1(g, g′)→ 0, g′ ∈ A.

The homogeneous homomorphism Lg is denoted dHfg and is called the
Pansu differential of f in g.

Pansu obtained, in [Pan], a Rademacher type theorem for Lipschitz
functions acting between Carnot groups proving that they are almost
everywhere differentiable, in the sense of Definition 2.11. We shall use
the following case of Pansu’s theorem, (see Theorem 3.4.11 in [Ma]).

2.12. Theorem. Let A ⊂ Rm be an Lm measurable set and f : A→ Hn

be a Lipschitz map. Then f is Pansu differentiable Lm-a.e. in A.

The functions of C1
H(Ω) are differentiable in Pansu’s sense (see [Pan]

and [FSS1]) and the Pansu differential dHf is represented by the hori-
zontal gradient ∇Hf .

2.13. Proposition. With the notations of Definition 2.8, f ∈ C1
H(Ω)

if and only if its distributional derivatives Xif , Yif (i = 1, . . . , n) are
continuous in Ω.

Moreover, if f ∈ C1
H(Ω), then for all p, p0 ∈ Ω

(2.14) f(p) = f(p0) + dHfp0
(p−1

0 · p) + o(d(p, p0)), as p→ p0.

We mention also the following ‘converse’ result to Theorem 2.12.

2.15. Proposition. Let 1 ≤ d ≤ n. If f : A ⊂ Rd → Hn is Pansu
differentiable in x0 then f is also Euclidean differentiable in x0 and

f(x0) · dHfx0
(Rd) = f(x0) + dfx0

(Rd).

Proof. By the contact property of H-linear maps (see [Ma] or [FSS4])
we know that L := dHfx0

is a classical linear map from Rd to R2n+1

and L(v) = (Av, 0) where A is a suitable 2n× d matrix. Then, for the
first 2n components f1, . . . , f2n of f , Pansu differentiability coincides
with Euclidean differentiability so that

A =





∇f1(x0)
...

∇f2n(x0)





while a not difficult computation yields

∇f2n+1(x0) = 2
n

∑

j=1

(

fj+n(x0)∇fj(x0)− fj(x0)∇fj+n(x0)
)

.
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It follows that, for all v ∈ Rd,

f(x0) · dHfx0
(v) = f(x0) + dfx0

(v)

and the proof is completed. !

We conclude this section mentioning the following Whitney’s exten-
sion theorem (see [FSS1]).

2.16. Theorem. Let F ⊂ Hn be a closed set, f : F → R, k : F → HHn

be continuous functions. Define

R(p′, p) :=
f(p′)− f(p)− 〈k(p), π(p−1 · p′)〉

d(p, p′)
,

and, if K ⊂ F is a compact set,

ρK(δ) := sup{|R(p′, p)| : p, p′ ∈ K, 0 < d(p, p′) < δ}.

If ρK(δ)→ 0 as δ → 0 for every compact set K ⊂ F , then there exists
f̃ : Hn → R, f̃ ∈ C1

H(Hn), such that

f̃|F = f and ∇H f̃|F = k.

2.3. H-regular surfaces. H-regular surfaces are the intrinsic C1 em-
bedded submanifolds in Hn. A systematic study of H-regular surfaces
has been recently carried out in [FSS4], [ASV], [CM], [AS]. Let us
begin with the definition.

2.17. Definition. S ⊂ Hn is a d-dimensional H-regular surface when
the following is true

(i) for 1 ≤ d ≤ n
for any p ∈ S there are open sets U ⊂ Hn, V ⊂ Rd and a func-
tion ϕ : V → U such that p ∈ U , ϕ is injective, and continuously
Pansu differentiable with dHϕp injective, and

S ∩ U = ϕ(V);

(ii) for n + 1 ≤ d ≤ 2n
for any p ∈ S there are an open set U ⊂ Hn and a function
f : U → R2n+1−d such that p ∈ U , f ∈ [C1

H
(U)]2n+1−d, with

dHfq surjective for every q ∈ U and

S ∩ U = {q ∈ U : f(q) = 0} .

In this second case, sometimes we speak of (2n + 1− d)-codimensional
H-regular surfaces.
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These notions of H-regular submanifolds are different from the cor-
responding Euclidean ones and from each other. Indeed d-dimensional
H-regular submanifolds, 1 ≤ d ≤ n, are a subclass of d-dimensional
Euclidean C1 submanifolds of R2n+1 (see [FSS4]). On the contrary,
k-codimensional H-regular submanifolds, 1 ≤ k ≤ n, can be very ir-
regular objects from a Euclidean point of view. An example of a 1-
codimensional H-regular surface in H1 ≡ R3, with fractional Euclidean
dimension equal to 2.5, is provided in [KS]. On the other side, the
horizontal plane {p : p2n+1 = 0} = exp h1 is Euclidean regular but not
intrinsic regular at the origin. Nevertheless, H-regular surfaces share
several properties with the Euclidean regular ones. To see this let us
first introduce the notion of intrisinc tangent subgroup to an H-regular
surface.

2.18. Definition. Let S be a d-dimensional H-regular surface in Hn

and ϕ and f as in Definition 2.17. The tangent group to S in p0 ∈ S,
denoted as THS(p0), is the homogeneous subgroup of Hn defined,

(i) for 1 ≤ d ≤ n, as

THS(p0) := {dHϕx0
(x) : x ∈ R

d}, where ϕ(x0) = p0.

(ii) for n + 1 ≤ d ≤ 2n, as

THS(p0) := {p ∈ H
n : dHfp0

(p) = 0}.

2.19. Remark. If 1 ≤ d ≤ n and if S is a H-regular d-dimensional sur-
face, then, for all p ∈ S, THS(p) is a d-dimensional subgroup contained
in HHn. Moreover the Euclidean tangent plane to S in p coincides with
THS(p) (see Theorem 3.5 in [FSS4]). If n+1 ≤ d ≤ 2n and if S is an H-
regular d-surface, then THS(p) is a d-dimensional subgroup containing
the centre T of Hn (see [FSS4]). Finally, it follows, from the very Defi-
nition 2.17, that S is a k-codimensional H-regular surface, 1 ≤ k < n, if
and only if S is, locally, the intersection of k 1-codimensional H-regular
hypersurfaces, with linearly independent normal vectors.

2.4. The intrinsic Grassmannian. A subgroup G of Hn is a homo-
geneous subgroup if

δrg ∈ G,

for all g ∈ G and for all r > 0. Notice that, through the identification of
Hn with R2n+1, homogeneous subgroups of Hn are vector subspaces of
R2n+1. Homogeneous subgroups either are contained in the horizontal
plane exp h1, and are then called horizontal, or they contain the centre
T of Hn, and are called vertical. Horizontal subgroups are commutative
while vertical subgroups are non-commutative normal subgroups of Hn.
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We use the symbol dim G to indicate the ‘linear’ dimension of the
subgroup G, i.e. the dimension of its Lie algebra, and the symbol
dimH G for its Hausdorff dimension, with respect to the metric d, de-
fined in (2.1). It follows from a general result of Mitchell (see [Mi]),
and also from direct verification in this case, that dimH V = dim V, if
V is a horizontal subgroup, and that dimH W = dim W + 1, if W is a
vertical subgroup.

In the following we will refer to homogeneous subgroups G of lin-
ear dimension d as d-subgroups and we will denote as dm the metric
dimension of G.

2.20. Definition. Two homogeneous subgroups V and W of Hn are
complementary subgroups in Hn, if W∩V = {e} and if, for all p ∈ Hn,
there are w ∈ W and v ∈ V such that p = w · v. If W and V are
complementary subgroups, we say that Hn is the product of W and V

and we write
H

n = W · V,

2.21. Remark. In Hn one of two complementary subgroups, is always a
normal subgroup and the other one a horizontal subgroup. Hence the
product Hn = W · V in Definition 2.20, is always a semidirect product
(see Proposition 2.28). We will use the symbol W for normal subgroups
and the symbol V for the horizontal ones.

2.22. Proposition. If Hn = W · V is as above, with V horizontal and
W vertical, each p ∈ Hn has unique components pW ∈ W, pV ∈ V,
such that

p = pW · pV.

For all p, q ∈ Hn and λ > 0, pW and pV depend continuously on p and,

(2.23) (p−1)W = (pV)−1 · (pW)−1 · pV, (p−1)V = (pV)−1

(δλp)W = δλpW, (p · q)W = pW · pV · qW · p−1
V

(δλp)V = δλpV, (p · q)V = pV · qV,
(2.24)

hence, in particular, the map p '→ pV, from Hn to V, is a homogeneous
homomorphism.
There is a constant c = c(W, V) > 0 such that, for all p ∈ Hn,

c (‖pW‖+ ‖pV‖) ≤ ‖p‖ ≤ ‖pW‖+ ‖pV‖,
c
(

‖p−1
V

· pW · pV‖+ ‖pV‖
)

≤ ‖p‖ ≤ ‖p−1
V

· pW · pV‖+ ‖pV‖.
(2.25)

and consequently

c‖pV‖ ≤ d(p, W) ≤ ‖pV‖,
c‖p−1

V
· pW · pV‖ ≤ d(p, V) ≤ ‖p−1

V
· pW · pV‖.

(2.26)
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Proof. Uniqueness, continuity, (2.23) and (2.24) are trivial. Then (2.25)
follows from triangular inequality and by a compactness argument,
observing also that p = pW · pV = pV · (pV)−1 · pW · pV.

Because

d(p, W) = inf{d(p, w) : w ∈W} = inf{‖w−1 · p‖ : w ∈W},

we get, from (2.25),

d(p, W) = inf{‖w−1 · pW · pV‖ : w ∈W} ≤ ‖pV‖

and, on the other side,

‖w−1 · pW · pV‖ ≥ c(‖w−1 · pW‖+ ‖pV‖) ≥ c‖pV‖

that gives the first one of (2.26).
Once more from (2.25),

d(p, V) = inf{‖p−1 · v‖ : v ∈ V}
= inf{‖(pV)−1 · (pW)−1 · pV · (pV)−1 · v‖ : v ∈ V}
≥ c inf{‖(pV)−1 · (pW)−1 · pV‖+ ‖(pV)−1 · v‖ : v ∈ V}
= c ‖p−1

V
· (pW)−1 · pV‖

= c ‖p−1
V

· pW · pV‖.

The estimate from above is obtained in the same way. !

2.27. Definition. Let d be a non negative integer. We denote by
H(Hn, d, dm) the set of all d-subgroups of Hn with metric dimension dm

and by H(Hn) the family of all homogeneous subgroups. A d-subgroup
G belongs to the intrinsic Grassmannian of the d-subgroups G(Hn, d),
if there is a (2n + 1− d)-subgroup H such that Hn = G · H, that is

G(Hn, d) :=

{

G :
G is a d-subgroup and H

n = G · H
for a (2n + 1− d)-subgroup H

}

.

The intrinsic Grassmannian is defined as

G(Hn) =
2n+1
⋃

d=0

G(Hn, d).

2.28. Proposition. The trivial subgroups {e} and Hn are the unique
elements of, respectively, G(Hn, 0) and G(Hn, 2n + 1). Moreover,

(i) for 1 ≤ d ≤ n, G(Hn, d) = H(Hn, d, d), the set of all horizontal
homogeneous d-subgroups;

(ii) for n + 1 ≤ d ≤ 2n, G(Hn, d) = H(Hn, d, d + 1) coincides with
the set of all vertical homogeneous d-subgroups.
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On the contrary, a vertical subgroup W with 1 ≤ dim W ≤ n is not in
G(Hn). In particular, the 1-subgroup T is not in G(Hn).

Proof. In all the possible splittings of Hn as semidirect product of two
subgroups, Hn = W · V, one of the two subgroups, say V, is horizontal
and the other one, W, contains T. In terms of Lie algebras, setting v
and w the Lie algebras of V and W, we have that h = v⊕w, v and w
are subalgebras of h and, V being horizontal, v is commutative.

Hence 0 ≤ dim V ≤ n because in h there are at most n linearly
independent, commuting horizontal vector fields. Consequently, n <
dim W = 2n + 1− dim V < 2n + 1. This shows that vertical subgroups
of linear dimension not exceeding n can never be a factor of a splitting
of Hn.

If L is any vector subspace of h1 then span{L, T} is a subalgebra of h
and exp{span{L, T}} is a vertical subgroup of Hn. It follows that all the
horizontal subgroups are in G(Hn). Indeed, given a horizontal subgroup
V, its Lie algebra v is a vector subspace of h1. Let L be any comple-
mentary vector subspace of v in h1 and define W := exp{span{L, T}}.
Then Hn is the semidirect product of V and W, so that V ∈ G(Hn).

On the other side, if W is a vertical subgroup of dimension larger
than n it is proved in Lemma 3.26 of [FSS4] that a complementary
horizontal subgroup V exists such that Hn is the direct product of W

and V. !

2.29. Remark. G(Hn) and H(Hn) are, in a natural way, subsets of the
Euclidean Grassmannian G(R2n+1) and are endowed with the same
topology. Moreover notice that G(Hn, d) and H(Hn, d, dm) are compact
metric spaces with respect to the distance

(2.30) ρ(G1, G2) := dHaus

(

G1 ∩ B(e, 1), G2 ∩ B(e, 1)
)

,

where dHaus is the Hausdorff distance induced by the distance d.

2.31. Remark. If S is a d-dimensional H-regular surface and p ∈ S then

THS(p) ∈ G(Hn, d).

2.32. Proposition. Let G ∈ H(Hn, d, dm). Then Hd
euc G, is a left

Haar measure of G and

Hd
euc G = Sdm G,

where

dm = d if G is a horizontal subgroup,

dm = d + 1 if G is a vertical subgroup.
13



In particular, if G ∈ G(Hn, d) then dimHG = dm, where

dm = d if 1 ≤ d ≤ n,

dm = d + 1 if n + 1 ≤ d ≤ 2n.
(2.33)

Proof. It is known, and can be checked by direct computation (see e.g.
[FS]), that the Lebesgue measure Ld is a, left and right invariant, Haar
measure on G. Moreover, for all Borel sets A ⊂ G and r > 0,

Ld(δrA) = rdmLd(A)

and
Ld

G = Hd
euc G.

Now, let A be a fixed Borel set and let p ∈ A ∩G. Then

Hd
euc

(

B(p, r) ∩G
)

= Ld
(

B(p, r) ∩G
)

= rdmLd
(

B(e, 1) ∩G
)

= rdmHd
euc

(

B(e, 1) ∩G
)

= αmrdm .

Then by [F, 2.10.17(2) and 2.10.19(3)]

Hd
euc

(

G ∩A
)

= Sdm
(

G ∩A
)

and the thesis follows. !

We say that two homogeneous subgroups are orthogonal if their sub-
algebras are orthogonal vector subspaces in h.

2.34. Remark. If 1 ≤ d ≤ n and V ∈ G(Hn, d), there is a unique
subgroup V⊥ ∈ G(Hn, 2n+1−d) that is orthogonal to V. Then V, V⊥

are complementary subgroups and we define the projections

PV : H
n → V and PV⊥ : H

n → V
⊥,

where, for all p ∈ Hn, PV(p) is the V-component of p in the decompo-
sition V, V⊥ of Hn and analogously for PV⊥(p).

As observed in Proposition 2.22, the function PV is a homogeneous
homomorphism and we can also state differently Proposition 2.22.

2.35. Proposition. Let V ∈ G(Hn, d), with 1 ≤ d ≤ n. Then there
is c1 = c1(d) > 0 such that (2.25) holds with c = c1 and pV = PV(p),
pW = PV⊥(p). Consequently, (2.26) becomes

c1‖PV(p)‖ ≤ d(p, V⊥) ≤ ‖PV(p)‖
c1‖PV(p)−1 · PV⊥(p) · PV(p)‖ ≤ d(p, V) ≤ ‖PV(p)−1 · PV⊥(p) · PV(p)‖,

(2.36)

for all p ∈ Hn.
14



Proof. We have to check only that, if W is V⊥, the constant in (2.25)
depends only on d. Indeed, by rotation, we can assume that

V = {(v1, . . . , vd, 0, . . . , 0)}

hence

W = V
⊥ = {(0, . . . , 0, wd+1, . . . , w2n+1)}

and the compactness argument gives a constant depending only on d.
Finally, (2.36) follows by the same proof giving (2.26) from (2.25). !

2.37. Lemma. Let V ∈ G(Hn, d), with 1 ≤ d ≤ n. Then there are
s = s(d) ∈ (0, 1) and η = η(s) > 0 such that the following holds:

(2.38) d(p−1 · q, V) < s d(p, q) =⇒ d
(

PV(p), PV(q)
)

> η d(p, q)

whenever p, q ∈ Hn.

Proof. Without loss of generality, we can assume p = e. Indeed, from
(2.24),

PV(p−1 · q) = PV(p)−1 · PV(q).

Hence (2.38) is equivalent to

(2.39) d(q, V) < s‖q‖ =⇒ ‖PV(q)‖ > η‖q‖,

for all q ∈ Hn.
To prove (2.39) observe that

q = PV(q) · PV(q)−1 · PV⊥(q) · PV(q);

then, by triangular inequality, by the second line of (2.36) and by the
assumption in (2.39), we have

‖PV(q)‖ ≥ ‖q‖ − ‖PV(q)−1 · PV⊥(q) · PV(q)‖

≥ ‖q‖ − 1

c1
d(q, V)

≥ (1− s/c1)‖q‖.

Hence, (2.38) is proved, if s < c1, with η = 1− s/c1. !

For A ⊂ Hn and r > 0, let

(2.40) A(r) = {p ∈ H
n : d(p,A) ≤ r}.

2.41. Lemma. For R > 0 and s > 0 there is δ = δ(R, s) > 0 depending
only on n, R, s such that if G ∈ G(Hn, d), 0 < r ≤ R and p ∈ B(e, R),
q1, q2 ∈ B(p, r), with d(q−1

2 · q1, G) ≥ sr, then

B(p, r) ∩ q1 · G(δsr) ∩ q2 · G(δsr) = ∅.
15



Proof. Denote B = B(e, 2R). Then, by compactness,

c(R, s) := inf
G∈G(Hn,d)

q1∈B\G(sR)

d
(

B ∩ q1 · G, B ∩G
)

> 0.

Defining δ = δ(R, s) = c(R, s)/(3sR), we get

d
(

B ∩ q1 · G, B ∩G
)

≥ 3δsR,

this gives by triangular inequality that for q1 ∈ B \ G(δsR),

B ∩ q1 · G(δsR) ∩G(δsR) = ∅.

By translation invariance this proves the thesis in the case r = R and
p = e. The general case follows easily from this applying the translation
by p−1 and the dilation δR/r.

!

2.42. Lemma. Let V ∈ G(Hn, d), with 1 ≤ d ≤ n. Then there is
c2 = c2(d) ≥ 1 such that, for all p ∈ Hn,

(2.43) d(p, PV(p)) ≤ c2 d(p, V).

Moreover, for all p ∈ Hn, q ∈ V and r > 0,

diam
(

P−1
V

(B(q, r)) ∩ p · V(r)
)

≤ 2(1 + c2)r.

Proof. To prove the first statement observe that, from (2.36),

d(p, PV(p)) = ‖p−1 · PV(p)‖ = ‖PV(p)−1 · PV⊥(p)−1 · PV(p)‖

≤ 1

c1
d(p, V).

Hence (2.43) follows with c2 = 1/c1.
To check the second inequality, let pi ∈ p ·V(r) with PV(pi) ∈ B(q, r)

for i = 1, 2. Set qi = p−1 · pi. Then d(qi, V) ≤ r and, as PV is a
homomorphism, d(PV(q1), PV(q2)) = d(PV(p1), PV(p2)) ≤ 2r. So, by
(2.43),

d(p1, p2) = d(q1, q2)

≤ d(q1, PV(q1)) + d(PV(q1), PV(q2)) + d(q2, PV(q2))

≤ 2(1 + c2)r.

This proves the lemma. !

The last lemma is false for n < d ≤ 2n; the second inequality only
holds with r replaced by C

√
r. This is the main obstacle for carrying

out the proof of the main theorem without the positive lower density
assumption in the case n < d ≤ 2n.
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2.5. Intrinsic cones. We begin with the definition of intrinsic cone in
Hn.

2.44. Definition. Let G be a d-subgroup of Hn. The intrinsic cone
X(p0, G, s), with vertex p0 ∈ Hn, axis G and opening s ∈ (0, 1), is

X(p0, G, s) :=
{

p ∈ H
n : d(p−1

0 · p, G) < s d(p, p0)
}

.

This definition is invariant by group translations, that is,

X(p0, G, s) = p0 · X(e, G, s)

= p0 · {p ∈ H
n : d(p, G) < s d(p, e)} .

(2.45)

If ν ∈ h1 we denote by N(ν) ∈ G(Hn, 2n) the 1-codimensional normal
subgroup orthogonal to ν, that is,

(2.46) N(ν) := {p ∈ H
n : 〈ν, π(p)〉 = 0} .

2.47. Proposition. If ν ∈ h1 and ‖ν‖ = 1, then, for all p0 ∈ Hn and
for all s ∈ (0, 1),

X(p0, N(ν), s) =
{

p ∈ H
n :

∣

∣〈ν, π(p−1
0 · p)〉

∣

∣ < s d(p, p0)
}

.

Proof. Given (2.45), we assume p0 = e. Then, because

d(p, N(ν)) = inf
{

d(p, q) : q ∈ N(ν)
}

= inf
{

|p′ − q′|R2n : q ∈ N(ν)
}

=
∣

∣

2n
∑

i=1

piνi

∣

∣/‖ν‖ =
∣

∣

2n
∑

i=1

piνi

∣

∣;

it follows that d(p, N(ν)) = |〈ν, π(p)〉|. !

Notice that an H-regular submanifold S is locally contained, at any
point p ∈ S, in a cone with axis the tangent group THS(p).

2.48. Lemma. Let S ⊂ Hn be a d-dimensional H-regular surface, let
p0 ∈ S. Then, for all α > 0, there exists r̄ = r̄(S, p0,α) > 0 such that

(2.49) U(p0, r̄) ∩ S ⊂ X(p0, THS(p0),α) .

Proof. We divide the proof in two cases.
Assume 1 ≤ d ≤ n. By Definitions 2.17 and 2.18, there are r > 0

and an injective continuously Pansu differentiable function ϕ : U ⊂
Rd → Hn such that

S ∩ U(p0, r) = {ϕ(x) : x ∈ U} , THS(p0) =
{

dHϕx0
(x) : x ∈ R

d
}

,

where p0 = ϕ(x0). Let p = ϕ(x), then

d
(

p−1
0 · p, THS(p0)

)

≤ ‖dHϕx0
(x0 − x) · ϕ(x0)

−1 · ϕ(x)‖ = o(|x0 − x|Rd).
(2.50)
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Since dHϕx0
: Rd → Hn is H-linear and injective, there is c = c(p0,ϕ) >

0 such that
‖dHϕx0

(x0 − x)‖ ≥ c|x0 − x|Rd .

Hence, for |x0 − x|Rd small,

‖p−1
0 · p‖ ≥ ‖dHϕx0

(x− x0)‖ − d(dHϕx0
(x− x0), p

−1
0 · p)

≥ (c/2)|x0 − x|Rd.
(2.51)

From (2.50) and (2.51) we get (2.49).
Assume n + 1 ≤ d ≤ 2n. Once more by Definitions 2.17 and 2.18,

there are r > 0 and f ∈ [C1
H(U(p0, r))]2n+1−d such that dHfp0

: Hn →
R2n+1−d is surjective and

S ∩ U(p0, r) = {p : f(p) = 0}
THS(p0) = ker(dHfp0

).

If p ∈ S ∩ U(p0, r) from (2.14) we have that

(2.52) |dHfp0
(p−1

0 · p)|R2n+1−d = o(d(p0, p))

On the other hand, since dHfp0
: Hn → R2n+1−d is H-linear, there is

c = c(p0, f) > 0 such that

(2.53) |dHfp0
(p−1

0 · p)|R2n+1−d ≥ c d(p−1
0 · p, ker(dHfp0

)).

Indeed, if L : Hn → R2n+1−d, n + 1 ≤ d ≤ 2n, is H-linear then ker(L)
is a vertical subgroup of Hn and (by Lemma 3.26 of [FSS4]) there is a
horizontal (2n + 1 − d)-subgroup V such that Hn = ker(L) · V. Then
L : V→ R2n+1−d is injective and there exists c > 0 such that

|L(v)|R2n+1−d ≥ c‖v‖,
for all v ∈ V.

From (2.52) and (2.53) we get (2.49). !

Now we collect a few technical Lemmas that will be used in the
proofs of the main results.

2.54. Lemma. Let G be a homogeneous subgroup of Hn and s ∈ (0, 1].
Then, for p ∈ Hn and q ∈ Hn \ X(p, G, s),

B
(

q,
s

2
d(p, q)

)

⊂ H
n \ X(p, G, s/3).

Proof. Let r = d(p, q) > 0 and z ∈ B(q, sr/2). Then d(z, p) ≤ sr/2 +
r ≤ 3r/2. If g ∈ G, then

d(p−1 · z, g) ≥ d(p−1 · q, g)− d(p−1z, p−1 · q)
≥ sd(p, q)− d(z, q)

≥ sr − sr/2 = sr/2 ≥ sd(z, p)/3,
18



whence d(p−1z, G) ≥ sd(z, p)/3 and z 5∈ X(p, G, s/3), which proves the
lemma. !

2.55. Lemma. If 1 ≤ d ≤ 2n and 0 < s ≤ 1, there are k = k(s) homo-
geneous subgroups of Hn, G1, . . . , Gk, with the same dimension d and
metric dimension dm such that for all p ∈ Hn and for all homogeneous
subgroups G with dimension d and metric dimension dm

X(p, G, s) ⊂ X(p, Gi, 3s), for some i = 1, . . . , k.

Proof. By a simple compactness argument, recalling Remark 2.29, we
find G1, . . . , Gk such that for all G, ρ(G, Gi) < s for some i = 1, . . . , k.
The inclusion follows easily from this, by definition of X(p, G, s). !

2.56. Lemma. Let G1, G2 be homogeneous subgroups of Hn, with di-
mension d and metric dimension dm. Assume G1 5= G2 and let d̄ =
dim(G1 ∩ G2) and d̄m be the metric dimension of G1 ∩ G2. Then
0 ≤ d̄ ≤ d − 1 and, for 0 < s < 1, there is δ(s) > 0 such that
lims→0 δ(s) = 0 and the following holds:

for all p ∈ Hn, 0 < r <∞ and 0 < s < 1,

B(p, r) ∩X(p, G1, s) ∩X(p, G2, s)

can be covered with k balls of radius δ(s)r, where k ≤ Cδ(s)−d̄m and
C = C(n, d̄).

Proof. We can assume that p = e and r = 1. Since G1 5= G2, then
0 ≤ d̄ = dim(G1 ∩ G2) ≤ d − 1. It follows that, for any 0 < t ≤ 1,
B(e, 1) ∩ G1 ∩ G2 can be covered with C1t−d̄m balls of radius t where
C1 depends only on n and d̄m. Next we observe that there is δ(s) > 0
with lims→0 δ(s) = 0 such that

B(e, 1) ∩X(e, G1, s) ∩X(e, G2, s) ⊂ (G1 ∩G2)
(

δ(s)/2
)

,

where A(r) is defined in 2.40. If this were not true, we could find η > 0,
qj ∈ B(e, 1), j = 1, 2 . . . , such that d(qj , Gi) ≤ d(qj, e)/j ≤ 1/j, i =
1, 2, and d(qj , G1 ∩ G2) ≥ η. By going to a suitable subsequence, we
could also assume that qj → q. Then q ∈ G1∩G2 and d(q, G1∩G2) ≥ η,
which is impossible. Combining the above two facts with t = δ(s)/2
we see that the lemma holds with C = C12d̄m ≤ C12d. !

2.57. Lemma. Let W ∈ G(Hn, d) with n < d ≤ 2n. Then there are
unit vectors ν1, · · · , ν2n+1−d ∈ h1, such that

V := exp
(

span{ν1, · · · , ν2n+1−d}
)

∈ G(Hn, 2n + 1− d),

is (a horizontal subgroup) complementary to W. The vectors νj can be
chosen continuously dependent on W in sufficiently small neighborhoods
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in G(Hn, d). Moreover, W =
⋂2n+1−d

j=1 N(νj), and, for all p ∈ Hn,

(2.58) X(p, W, s) ⊂
2n+1−d

⋂

i=1

X(p, N(νi), s).

Proof. The existence of a horizontal subgroup V, complementary to W,
is the content of Lemma 3.26 of [FSS4]. Moreover, from the proof of
that lemma, it follows that V depends continuously on W. Hence, we
can choose ν1, · · · , ν2n+1−d as an orthonormal basis of V, continuously
dependent on W.

Let w ⊂ h be the Lie algebra of W and let wi be the subalgebra gen-
erated by w, ν1, . . . , νi, νi+1, . . . , ν2n+1−d, for i = 1, . . . , 2n+1−d. Each
wi is a subalgebra of h, hence N(νi) = exp(wi) ∈ G(Hn, 2n) and W =
⋂

i N(νi). Finally, because d(p, N(νi)) ≤ d(p, W), also X(p, W, s) ⊂
X(p, N(νi), s) and (2.58) follows. !

3. Rectifiable sets and measures in Hn

3.1. Measures, densities and tangent measures. Let µ be an
outer measure in Hn. The image f#µ under a map f : Hn → Hn

is the measure on Hn defined by

f#µ(A) = µ
(

f−1(A)
)

, for all A ⊂ H
n.

For a ∈ Hn and r > 0, Ta,r : Hn → Hn is defined, for all p ∈ Hn, as

Ta,r(p) := δ1/r(a · p).

3.1. Definition. Let µ be a Radon measure on Hn. We say that ν is
a tangent measure of µ at a ∈ Hn if ν is a Radon measure on Hn with
ν(Hn) > 0 and there are positive numbers ci and ri, i = 1, 2, . . ., such
that ri → 0 and

ciTa,ri#µ ⇀ ν, weakly as i→∞.

We denote by Tan(µ, a) the set of all tangent measures of µ at a.

The numbers ci are normalization constants which are needed to
keep ν non-trivial and locally finite. Often, as below, one can use
ci = µ

(

B(a, ri))−1.

3.2. Definition. Let µ be a Radon measure on Hn. We say that µ has
a unique tangent measure ν at a if ν is a Radon measure on Hn such
that

Tan(µ, a) = {c ν : 0 < c <∞}.
Of course, such a ν is unique only up to multiplication by positive
constants.
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The following theorem was recently proved in [M2] in a much more
general setting, i.e., inside locally compact metric groups with dilations.

3.3. Theorem. Let µ be a Radon measure on Hn. Then the following
two conditions are equivalent:

(1) µ has a unique tangent measure νa at µ-a.e. a ∈ Hn.
(2) For µ-a.e. a ∈ Hn there exists a closed homogeneous subgroup

Ga of Hn for which

Tan(µ, a) = {cλa : 0 < c <∞}
where λa is a left Haar measure of Ga.

Moreover, if these conditions hold, it is possible to choose λa such that
1

µ(B(a, r))
Ta,r#µ ⇀ λa, weakly as r → 0.

Notice that the subgroups Ga of Theorem 3.3 not necessarily are
in G(Hn). The easiest example being µ := S2 T: in this case, µ is
invariant by dilations and µ is its own tangent measure at any point
a ∈ T. More generally, if γ ⊂ H1 is any non horizontal C1 curve, and
µ := S2 γ, then once more the unique tangent measure to µ in any
point a ∈ γ is the measure ν := S2 T.

Any H-regular surface S has, at each point p ∈ S, a unique tangent
measure in the sense of Definition 3.2; this tangent measure is always
supported on THS(p), hence it is supported on a subgroup in G(Hn)
(see [FSS1, Mon, FSS3]. Indeed we have

3.4. Theorem. Let S ⊂ Hn be a d-dimensional H-regular surface.
Then S has Hausdorff dimension dm (remember (2.33)) and, denot-
ing

Sp0,r :=
{

p ∈ H
n : p0 · δr(p

−1
0 · p) ∈ S

}

,

for p0 ∈ Hn and r > 0, we have

lim
r→0

Sdm(Sp0,r ∩ U(0, 1))

αdmrdm
=

Sdm(THS(p0) ∩ U(0, 1))

αdm

=
Hd

euc(THS(p0) ∩ U(0, 1))

αdm

= 1.

Moreover,

(3.5)
1

rdm
Tp0,r#(Sdm S) ⇀ Sdm THS(p0),

as r → 0, weakly in the sense of measures, whence

Tan(Sdm S, p0) = {cSdm THS(p0) : 0 < c <∞}.
Following [M1] we define
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3.6. Definition. Let µ be a Radon measure in Hn and m > 0. We
define the upper and lower m-densities of µ at p ∈ Hn as

Θ∗m(µ, p) := lim sup
r→0

µ(B(p, r))

αm rm

and

Θm
∗ (µ, p) := lim inf

r→0

µ(B(p, r))

αm rm
,

where αm is defined in (2.4). In particular, if E ⊂ Hn is Sm measurable
with Sm E locally finite, we define the upper and lower m-densities
of E at p ∈ Hn as

Θ∗m(E, p) := lim sup
r→0

Sm(E ∩B(p, r))

αm rm

and

Θm
∗ (E, p) := lim inf

r→0

Sm(E ∩ B(p, r))

αm rm
.

3.7. Lemma. Let E ⊂ Hn be Sm measurable with Sm(E) <∞. Then

2−m ≤ Θ∗m(E, p) ≤ 1, for Sm-a.e. p ∈ E;(i)

Θ∗m(E, p) = 0, for Sm-a.e. p ∈ H
n \ E;(ii)

Proof. All the statements follow from general results on densities of
spherical Hausdorff measures in metric spaces (see [M1], Theorem 6.2
and [F] 2.10.19). !

Following [M1] we define the approximate tangent group apTand
H(E, p)

of E at p ∈ Hn, as follows

3.8. Definition. Let E ⊂ Hn be Sdm measurable. We say that the
homogeneous subgroup Tp, of dimension d and metric dimension dm,
is a (d, H)-approximate tangent group to E at p if Θ∗dm(E, p) > 0 and

(3.9) lim
r→0

Sdm (E ∩ B(p, r) \ X(p, Tp, s))

rdm
= 0,

for all 0 < s < 1. We write apTand
H(E, p) for the set of all (d, H)-

approximate tangent groups to E at p. If there is only one subgroup
Tp ∈ apTand

H(E, p) we write Tp = apTand
H(E, p).

3.10. Remark. Let 1 ≤ d ≤ n, B be a Borel subset of Rd and f : B →
Hn be a Lipschitz function. If E = f(B) and if f is Pansu differentiable
at x0 ∈ B with injective Pansu differential dHfx0

then, at p0 = f(x0),

apTand
H(E, p0) = dHfx0

(Rd) = Tand(E, p0),
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where Tand(E, p0) is the approximate tangent space introduced in Def-
inition 5.5 of [AK], and, see Proposition 2.15,

f(x0) · apTand
H(E, p0) = f(x0) + Tand(E, p0).

The proof of the first equality is given in the first part of the proof
of Lemma 2.48. The second equality follows from the following consid-
erations.

If f : B ⊂ Rd → Hn is Lipschitz and if B is bounded then f is
also Euclidean Lipschitz from B to R2n+1. For a Euclidean Lipschitz
function f , in a differentiability point x0 of f , we have

Tand(f(B), f(x0)) = dfx0
(Rd).

where Tand(f(B), f(x0)) is the approximate tangent space of [AK] and
dfx0

is the usual differential of f . Then the second equality follows from
Proposition 2.15

Finally notice that, for 1 ≤ d ≤ n, also the tangent group THS(p) to
an H-regular surface S coincides with the approximate tangent space
Tand(S, p).

Approximate tangent groups are unique almost everywhere. Indeed
we have

3.11. Proposition. Let E ⊂ Hn be Sdm measurable, with Sdm(E) <∞,
and let A be the set of those p ∈ E for which E has some (d, H)-
approximate tangent subgroup at p of metric dimension dm. Then

(i) A is Sdm measurable,
(ii) E has a unique (d, H)-approximate tangent subgroup Gp at Sdm-

a.e. p ∈ A,
(iii) the mapping p '→ Gp is Sdm measurable.

Proof. By Borel regularity we may assume that E is a Borel set. We
shall show that then A is a Suslin set (see Section 2.2 of [F] for the
required facts on Suslin sets). Define for r > 0, i = 1, 2 . . . , p ∈ E and
G ∈ H(Hn, d, dm),

fi,r(p, G) = r−dmSdm(E ∩B(p, r) \ X(p, G, 1/i)),

fi(p, G) = lim sup
r→0

fi,r(p, G).

One checks easily that fi,r is upper semicontinuous and the upper limit
can be taken through rational values of r, whence fi is a Borel function.
Let B be the set of those (p, G) ∈ E ×H(Hn, d, dm) such that G is a
(d, H)-approximate tangent subgroup of E at p. Then

B =
∞
⋂

i=1

{(p, G) : fi(p, G) = 0},
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and so B is a Borel set. Clearly A is the projection on E of B, conse-
quently A is a Suslin set. This proves (i).

For Borel sets F ⊂ E we have, for Sdm-a.e. p ∈ F , that G is a
(d, H)-approximate tangent subgroup of F at p if and only is G is a
(d, H)-approximate tangent subgroup of E at p. This follows from the
fact that Θ∗dm(E \ F, p) = 0 for Sdm-a.e. p ∈ F , recall Lemma 3.7.
Since Θ∗dm(E, p) ≤ 1 for Sdm-a.e. p ∈ F , we may assume that

Sdm(E ∩ B(p, r)) ≤ 2αdmrdm for all p ∈ E, r > 0,

whence

(3.12) Sdm(E ∩ B(p, r)) ≤ 21+dmαdmrdm for all p ∈ H
n, r > 0,

by decomposing E as a countable union of sets of this type and a set
of measure 0.

By Lemma 2.56 for G1, G2 ∈ H(Hn, d, dm) with G1 5= G2 and for
0 < s < 1, there is δ(s) > 0 such that lims→0 δ(s) = 0 and the following
holds: for all p ∈ Hn, 0 < r <∞ and 0 < s < 1, B(p, r)∩X(p, G1, s)∩
X(p, G2, s) can be covered with k balls of radius δ(s)r where k ≤
Cδ(s)1−dm . Then by (3.12)

Sdm(E ∩ B(p, r) ∩X(p, G1, s) ∩X(p, G2, s)) ≤ 21+dmCδ(s)αdmrdm .

If G1 and G2 are (d, H)-approximate tangent subgroups of E at p, then

lim
r→0

r−dmSdm
(

E ∩B(p, r) \ (X(p, G1, s) ∩X(p, G2, s))
)

= 0,

so Θ∗dm(E, p) ≤ 21+dmCδ(s). This concludes the proof of (ii), since by
Lemma 3.7, Θ∗dm(E, p) ≥ 2−dm for Sdm-a.e. p ∈ E.

By (i) and (ii) the set C of those p ∈ A for which E has a unique
(d, H)-approximate tangent subgroup Gp at a is Sdm measurable. So to
prove (iii), it is enough to show that for every Borel set D ⊂ C the map
p '→ Gp, p ∈ D, is Borel measurable. Let F = B ∩ (D ×H(Hn, d, dm))
where B is the Borel set of the proof of (i). Then F is a Borel set and
the projection Π : F → D is 1-1. Thus Π(H) is a Borel set for every
Borel set H ⊂ F , (see [F], p. 67). Let f = Π−1 : D → F , that is
f(p) = (p, Gp). Then for every Borel set H ⊂ F , f−1(H) = Π(H) is a
Borel set and so f is Borel measurable. Thus also p '→ Gp, p ∈ D, is
Borel measurable. !

We shall now give a general result in the spirit that approximate
tangent group properties imply positive lower density. This will allow
us to prove the main result without positive lower density assumption
in low dimensions.
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3.13. Theorem. Let 1 ≤ d ≤ n. There exists η, 0 < η < 1, depend-
ing only on n and d with the following property. Let E ⊂ Hn be Sd

measurable with Sd(E) <∞ such that for Sd-a.e. p ∈ E there exists a
horizontal subgroup Vp ∈ G(Hn, d) for which

(3.14) lim
r→0

r−dSd(E ∩ B(p, r) \ X(p, Vp, η)) = 0.

Then

(3.15) θd
∗(E, p) > 0

for Sd-a.e. p ∈ E.

Proof. Denote µ = Sd E. Then, by Lemma 3.7, for Sd-a.e. p ∈ E,

(3.16) θ∗d(µ, p) ≥ 2−d.

Let A be a Borel subset of E such that for p ∈ A (3.16) and (3.14)
hold and

(3.17) θd
∗(µ, p) = 0.

We need to show that µ(A) = 0. By decomposing µ almost all of A
into countable unions we shall make various reductions of the problem.
First, by (3.16), we may assume that

(3.18) θ∗d(µ, p) > 2−d−1 for p ∈ A.

Let c2 be as in Lemma 2.42 and let C = 2(1+c2)d, c = (26 ·C)−dαd, s =
(2C)−1, δ = δ(1/2, s) > 0 as in Lemma 2.41 and η = δs/6. Let 0 <
ε < c. We can assume that A ⊂ B(e, 1/2). By Lemma 2.55 we may
assume that there is V ∈ G(Hn, d) such that for p ∈ A,

X(p, Vp, δs/6) ⊂ X(p, V, δs/2),

whence for r > 0,

B(p, r) ∩X(p, Vp, η) ⊂ {q ∈ H
n : d(q, p · V) < δsr/2} = p · V(δsr/2),

and so by (3.14)

lim
r→0

r−dµ(B(p, 2r) \ p · V(δsr)) = 0.

Hence we may assume that for some r0, 0 < r0 < 1/2,

(3.19) µ(B(p, 2r) \ p · V(δsr)) < brd for p ∈ A, 0 < r ≤ r0,

with b = 2−1 ·C−dε. Finally, if µ(A) > 0, using the fact θ∗d(µ A, p) =
θ∗d(µ, p) for µ-a.e. p ∈ A (by Lemma 3.7), we may assume by (3.18)
that for some p0 ∈ A and with r0 as above

(3.20) A ⊂ B(p0, (2
4 · C)−1r0) with µ(A) > crd

0.

We shall show that this leads to a contradiction.
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Under the above assumptions we have that for all p ∈ Hn and 0 <
r ≤ r0/2,

(3.21) A ∩ B(p, r) ⊂ q · V(sr) for q ∈ A ∩B(p, r).

whenever µ(B(p, r)) ≥ 2brd.
To see this let q ∈ A∩B(p, r) and suppose there is q′ ∈ A∩B(p, r) \

q · V(sr). Then by Lemma 2.41

B(p, r) ⊂ (B(q, 2r) \ q · V(δsr)) ∪ (B(q′, 2r) \ q′ · V(δsr)),

whence by (3.19)

µ(B(p, r)) ≤ µ(B(q, 2r) \ q · V(δsr)) + µ(B(q′, 2r) \ q′ · V(δsr)) < 2brd

which is a contradiction and proves (3.21).
We may assume that

V = {(p, t) ∈ H
n : pi = 0 for i > d and t = 0},

identified as Rd. Let k0 be the integer defined by C · 22−k0 ≤ r0 <
C · 23−k0 and

Q0 = {(p1, . . . , pd) ∈ V : 0 ≤ pi < 2−k0}.

Let Qjk0
= Q0 and let Qjk0

,...,jk
, k = k0 +1, k0 +2, . . . , ji = 1, . . . , 2d, be

the cubes of side-length 2−k constituting the standard dyadic decompo-
sition of Q0 in such a way that Qjk0

,...,jk+1
⊂ Qjk0

,...,jk
. Let P : Hn → V

be the natural projection and set

S0 = P−1(Q0), Sjk0
,...,jk

= P−1(Qjk0
,...,jk

).

By translating A we may assume that A ⊂ S0 by (3.20) and the
choice r0 < C ·23−k0. Let I be the set of those multi-indices (jk0

, . . . , jk)
such that

µ(A ∩ Sjk0
,...,jk

) < ε2−kd = εLd(Qjk0
,...,jk

)

and

µ(A ∩ Sjk0
,...,jl

) ≥ ε2−ld

for all l < k, and let J be the set of those multi-indices (jk0
, . . . , jk)

such that

(3.22) µ(A ∩ Sjk0
,...,jl

) ≥ ε2−ld

for all 1 ≤ l ≤ k.
Then the sets Sι, ι ∈ I, are disjoint. We shall prove that for each

ι ∈ I ∪ J , ι = (jk0
, . . . , jk), there is pι ∈ A such that

(3.23) A ∩ Sι ⊂ B(pι, C · 2−k).
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Then

A ⊂
⋃

ι∈I

Sι.

Otherwise there is p ∈ A and jk0
, jk0+1, . . . , such that ι(k) = (jk0

, . . . , jk) ∈
J and p ∈ A ∩ Sι(k) for every k. As

p ∈ A ∩ Sι(k) ⊂ B(pι(k), C · 2−k) ⊂ B(p, C · 21−k)

we get a contradiction from (3.17) and (3.22). Hence

µ(A) ≤
∑

ι∈I

µ(A ∩ Sι) ≤ ε
∑

ι∈I

Ld(Qι) ≤

εLd(Q0) = ε · 2−k0d < εrd
0 < crd

0,

which is a contradiction with (3.20), gives us that µ(A) = 0 and proves
the theorem.

We prove (3.23) by induction on k starting with k = k0. This case
is clear by (3.20). Suppose k is such that (3.23) holds for all ι =
(j1, . . . , jl) ∈ I ∪ J , l < k. Let κ = (j1, . . . , jk) ∈ I ∪ J . Then
ι = (j1, . . . , jk−1) ∈ J and (3.23) holds for pι ∈ A. So

A ∩ Sκ ⊂ A ∩ Sι ⊂ A ∩B(pι, C · 21−k).

Since ι ∈ J , we have, by (3.22), that

µ(A ∩B(pι, C · 21−k) ≥ µ(A ∩ Sι) ≥ ε2(1−k)d = 2b(C · 21−k)d,

and so we have by (3.21), since C · 21−k ≤ r0/2, that

A ∩ Sκ ⊂ pι · V(sC · 21−k) ∩ Sι = pι · V(2−k) ∩ Sι.

As Qι is contained in a ball of radius d · 2−k, we have by Lemma 2.42

diam(pι · V(2−k) ∩ Sι) ≤ C · 2−k,

from which (3.23) follows for κ.
!

3.2. Intrinsic rectifiable sets. The notion of H-regular surfaces in-
troduced in Definition 2.17 allows to give the following definition of
intrinsic rectifiable sets. This definition was given in [FSS1], for dimen-
sion 2n, to prove De Giorgi’s structure result for sets of finite perime-
ter in Heisenberg groups, and later for any dimension in [FSS4] and in
Carnot groups of step 2 in [FSS2].
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3.24. Definition. We say that E ⊆ Hn is d-dimensional H-rectifiable,
or E is (d, H)-rectifiable, if there exists a sequence of d-dimensional
H-regular surfaces (Si)i∈N such that

Sdm
(

E \
⋃

i∈N

Si

)

= 0,

where dm = d if 1 ≤ d ≤ n and dm = d + 1 if n + 1 ≤ d ≤ 2n.

3.25. Remark. We recall that, for n + 1 ≤ d ≤ 2n, a d-dimensional
Euclidean rectifiable set E ⊂ R2n+1 ≡ Hn always is a (d, H)-rectifiable
set, while the converse is false. On the contrary, for 1 ≤ d ≤ n, a (d, H)-
rectifiable set is d-dimensional Euclidean rectifiable while the opposite
is false. (see [BRS], [FSS2] and [FSS4]).

At the moment we are unable to prove our main theorem for (d, H)-
rectifiable sets when 1 ≤ d ≤ n. Hence we give an alternative definition.
In Euclidean spaces these two definitions are equivalent and in fact the
type of definition below was the original definition of Federer and it has
also often been used in general metric spaces. We don’t know if they
are equivalent in Hn. The problem is that we don’t have a suitable
Whitney extension theorem for maps f : F → Hn when F is a closed
subset of Rd.

3.26. Definition. Let 1 ≤ d ≤ n. We say that E ⊂ Hn is (d, HL)-
rectifiable if there exist Lipschitz mappings fi : Ai → Hn, Ai ⊂ Rd, i =
1, 2, . . . , such that

Sd
(

E \
⋃

i∈N

fi(Ai)
)

= 0.

Note that we can always take the sets Ai to be compact since the
Lipschitz maps fi trivially extend to the closures of the sets Ai and
closed sets are countable unions of compact sets.

Notice also that (d, H)-rectifiability implies (d, HL)-rectifiability, for
1 ≤ d ≤ n. Indeed, a continuous Pansu differentiable function ϕ : V ⊂
Rd → Hn is also locally Lipschitz (see Theorem 3.5 of [FSS4]).

3.3. Main Theorem. Now we can state the main results of this paper.

3.27. Theorem. Let 1 ≤ d ≤ n be an integer and E ⊂ Hn be a Borel
set such that Sd E is locally finite. Then the following conditions are
equivalent:

(i) E is (d, HL)-rectifiable.
(ii) For Sd-a.e. p ∈ E there is Tp ∈ G(Hn, d) with

1

rd
Tp,r#(Sd E) ⇀ Sd

Tp, as r → 0,
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weakly in the sense of measures.
(iii) For Sd-a.e. p ∈ E there is Tp ∈ G(Hn, d) such that

Tp = apTand
H(E, p).

(iv) For Sd-a.e. p ∈ E there is Tp ∈ G(Hn, d) such that

Tan(Sd E, p) =
{

cSd
Tp : 0 < c <∞

}

.

Finally, if d = 1, (i) to (iv) are also equivalent with:

(v) for S1-a.e. p ∈ E there exists a Radon measure λp such that

Tan(S1 E, p) = {cλp : 0 < c <∞} .

Notice that (v) does not imply the other conditions if d > 1. Indeed,
for any 2 ≤ d ≤ n, take E a (d − 1)-dimensional vertical subgroup.
Then Tan(Sd E, p) = {cSd E, 0 < c <∞} but E /∈ G(Hn, d− 1).

3.28. Theorem. Let n + 1 ≤ d ≤ 2n be an integer and E ⊂ Hn

be a Borel set such that Sdm E is locally finite. Then the following
conditions are equivalent:

(i) E is (d, H)-rectifiable.
(ii) For Sdm-a.e. p ∈ E there is Tp ∈ G(Hn, d) with

1

rdm
Tp,r#(Sdm E) ⇀ Sdm Tp, as r → 0,

weakly in the sense of measures.
(iii) For Sdm-a.e. p ∈ E, Θdm

∗ (E, p) > 0 and there is Tp ∈ G(Hn, d)
such that

Tp = apTand
H(E, p).

(iv) For Sdm-a.e. p ∈ E, Θdm
∗ (E, p) > 0 and there is Tp ∈ G(Hn, d)

such that

Tan(Sdm E, p) =
{

cSdm Tp : 0 < c <∞
}

.

(v) For Sdm-a.e. p ∈ E, Θdm
∗ (E, p) > 0 and there exists a Radon

measure λp such that

Tan(Sdm E, p) = {cλp : 0 < c <∞} .

Before proving the two main theorems we state the following corol-
lary that gives the Heisenberg version of a different easier characteri-
zation of rectifiable sets (see for istance Theorem 2.61 of [AFP]).

3.29. Corollary. Let d be an integer with 1 ≤ d ≤ 2n and dm as in
(2.33). Let E ⊂ Hn be a Borel set with Sdm(E) <∞. Assume that for
all p ∈ E there are rp > 0, αp > 0 and Tp ∈ G(Hn, d) such that

E ∩B(p, rp) ⊂ X(p, Tp,αp).
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Then

(i) if 1 ≤ d ≤ n, E is (d, HL)-rectifiable
(ii) if n + 1 ≤ d ≤ 2n and Θdm

∗ (E, p) > 0 for Sdm-a.e. p ∈ E, E is
(d, H)-rectifiable.

Proof of Theorems 3.27 and 3.28. We shall prove both theorems
simultaneously making only the different arguments in appropriate
places. The scheme of the implications in the proof is the following:
(i)⇒ (ii)⇒ (iv)⇒ (iii)⇒ (i), and (iv) ⇐⇒ (v).

1. Proof of (i) ⇒ (ii). We first prove the case n + 1 ≤ d ≤ 2n. By
assumption

E = E0 ∪ (∪∞i=1Ei)

where Sdm(E0) = 0 and, for i ≥ 1, Ei ⊂ Si with Si is a d-dimensional
H-regular surface. By (3.5) for a fixed i ≥ 1, at each p ∈ Si,

(3.30)
1

rdm
Tp,r#(Sdm Si) ⇀ Sdm THSi(p) as r → 0.

On the other hand, by Lemma 3.7, for a fixed i and for Sdm-a.e. p ∈ Ei,

(3.31) Θ∗dm(E \ Ei, p) = 0 and Θ∗dm(Si \ Ei, p) = 0.

Now observe that for p ∈ Ei and for ϕ ∈ C0
c (Hn),

1

rdm

∫

E

ϕ ◦ Tp,r dSdm =

=
1

rdm

∫

E\Ei

ϕ ◦ Tp,r dSdm +
1

rdm

∫

Si

ϕ ◦ Tp,r dSdm−

1

rdm

∫

Si\Ei

ϕ ◦ Tp,r dSdm

(3.32)

Thus by (3.30) and (3.31) taking the limit as r → 0 in (3.32) we get
that, for Sdm-a.e. p ∈ E, (ii) holds with Tp ≡ THSi(p) ∈ G(Hn, d).

Now we consider the case 1 ≤ d ≤ n. Since E is (d, HL)-rectifiable,
there are compact sets Ci ⊂ Rd and Lipschitz maps fi : Ci → Hn such
that

Sd

(

E \
⋃

i∈N

fi(Ci)

)

= 0.

Using Theorem 2.12 and Propositions 4.3.3 and 4.3.1 in [Ma] we can
further decompose the sets Ci into null-sets and countable unions to
obtain Borel sets Bi ⊂ Rd and Lipschitz maps fi : Bi → Hn with the
following properties:

(i) E = E0 ∪
⋃

i∈N
Si with Si = fi(Bi) and Sd(E0) = 0,

(ii) the sets Si are disjoint,
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(iii) every x ∈ Bi is a Lebesgue point of Jfi
χBi

,
(iv) fi is Pansu differentiable and (dHfi)x is injective at every x ∈

Bi,
(v) fi is bi-Lipschitz.

The Jacobian for a map f at a point x of differentiability is defined by

Jf(x) =
Sd(dHfx(BEuc(0, 1)))

Ld(BEuc(0, 1))
,

where BEuc is the Euclidean ball in Rd. This is as in [Ma], Definition
4.2.1, except that we are using spherical Hausdorff measures instead of
ordinary Hausdorff measures. It is easy to check from [Ma] that the
area formula which we shall use with Jf is also valid for the spherical
Hausdorff measure.

We shall now verify that (3.30) holds at an arbitrary point p =
fi(x) ∈ Si, x ∈ Bi, with THSi(p) replaced by (dHfi)x(Rd). This will be
enough since the rest of the argument goes as in the case n+1 ≤ d ≤ 2n.
For simplicity write f = fi, B = Bi and S = Si. Let ϕ ∈ C0

c (H
n). As

dHfx is injective and f is bi-Lipschitz, it follows that there is a positive
number c such that ‖dHfx(y)‖ ≥ c|y|Rd for y ∈ Rd and d(f(x), f(y)) ≥
c|x− y|Rd for y ∈ B. Let R > 0 be such that sptϕ ⊂ B(0, R). Then

ϕ(δ1/r(p
−1 · f(y))) = ϕ(dHfx((y − x)/r)) = 0,

if |x−y|Rd ≥ Rr/c. Using this, the definition of dHfx and the fact that
x is a Lebesgue point of JfχB, one checks easily that
∫

B

ϕ(δ1/r(p
−1 ·f(y)))Jf(y)dy−Jf (x)

∫

B

ϕ(dHfx((y−x)/r)))dy = o(rd)

as r → 0.
By a simple change of variable (note that Sd dHfx(Rd) is just the

Lebesgue measure on the d-plane dHfx(Rd)) we have, for any r > 0,
∫

Hn

ϕd(Sd dHfx(R
d)) =

∫

dfx(Rd)

ϕdSd

= r−dJf(x)

∫

Rd

ϕ(dHfx((y − x)/r)))dy.

By the area formula, see Corollary 4.3.6 in [Ma],
∫

B

ϕ(δ1/r(p
−1 · f(y)))Jf(y)dy =

∫

S

ϕ(δ1/r(p
−1 · q))dSd(q)

=

∫

Hn

ϕd(Tp,r#(Sd S)).
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Using these we get
∫

Hn

ϕ d
(

Sd dHfx(R
d)

)

= lim
r→0

r−dJf(x)

∫

ϕ
(

dHfx((y − x)/r))
)

dy

= lim
r→0

1

rd

∫

B

ϕ
(

δ1/r(p
−1 · f(y))

)

Jf(y)dy

= lim
r→0

1

rd

∫

ϕd
(

Tp,r#(Sd S)
)

.

This completes the proof of the implication (i)⇒ (ii).
2. Proof of (ii)⇒ (iv).
By definition, ν ∈ Tan(Sdm E, p) if there are positive sequences

(ci)i and (ri)i with limi ri = 0 such that

ci Tp,ri#(Sdm E) ⇀ ν, as i→ +∞.

On the other hand, by assumption (ii), we know that

Tp,r#(Sdm E)/rdm ⇀ Sdm Tp, as r → 0.

Hence limi r
dm

i ci exists and

ci Tp,ri#(Sdm E) ⇀

(

lim
i→+∞

rdm

i ci

)

Sdm Tp.

Moreover, (ii) implies easily that Θdm(E, p) = 1 for Sdm-a.e. p ∈ E.
3. Proof of (iv)⇒ (iii).
By our assumption and Theorem 3.3 we have for Sdm-a.e. p ∈ E

that for some positive number c,

1

Sdm(E ∩ (B(p, r))
Tp,r#(Sdm E) ⇀ cSdm Tp, as r → 0.

Since Sdm
(

Tp ∩ ∂(B(e, 1) \ X(e, Tp, s))
)

= 0 for every s ∈ (0, 1), we
infer

lim
r→0

Sdm E (B(p, r) \ X(p, Tp, s))

Sdm(E ∩ (B(p, r))

= lim
r→0

1

Sdm(E ∩ (B(p, r))
Tp,r#(Sdm E)

(

B(e, 1) \ X(e, Tp, s)
)

= Sdm Tp

(

B(e, 1) \ X(e, Tp, s)
)

= 0.

Since by Lemma 3.7, Θ∗dm(E, p) > 0 for Sdm-a.e. p ∈ E, we obtain that
Tp is an approximate tangent subgroup. Almost everywhere uniqueness
of the approximate tangent subgroup follows from Proposition 3.11.

4. Proof of (iii) =⇒ (i).
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Because d-dimensional H-regular surfaces are defined differently if d
is smaller or larger than n, we have to divide the proof of the implication
(iii) =⇒ (i) in two parts.

Assume n + 1 ≤ d ≤ 2n. By assumption, for Sdm-a.e. p ∈ E there
are r(p), l(p) > 0 and Tp = apTand

H(E, p) ∈ G(Hn, d) such that, for
0 < r < r(p),

(3.33) Sdm(E ∩ B(p, r)) > l(p)rdm ,

and for all 0 < s < 1,

(3.34) lim
r→0

Sdm E (B(p, r) \ X(p, Tp, s))

rdm
= 0.

For i = 1, 2, . . . , let Ei be the set of those p ∈ E as above for which
r(p) > 1/i and l(p) > 1/i. Then Sdm(E \ E∗) = 0 where E∗ = ∪∞i=1Ei.

Recall now that, from Lemma 2.57, we have that for all p ∈ E∗,
there are 2n + 1 − d horizontal unit vectors ν̃h(p) = νh(Tp) ∈ HHn

p ,
transversal to Tp, such that

Vp := exp (span{ν̃1(p), · · · , ν̃2n+1−d(p)})

is a horizontal subgroup of Hn and Hn is the semi-direct product of Vp

and Tp = apTand
H(E, p). Moreover, E∗ can be written as a countable

union of Sdm measurable sets Fj such each ν̃h|Fj
is Sdm measurable.

We get this using the continuity part of Lemma 2.57 and Proposition
3.11. We see then that the functions ν̃h : E∗ → HHn are measurable
sections of HHn, for each 1 ≤ h ≤ 2n + 1− d.

Define for i, j = 1, 2 . . . , h = 1, . . . , 2n + 1− d, and p ∈ E∗,

ρi,h,j(p) = sup

{

|〈ν̃h(p), π(p−1 · q)〉|
d(p, q)

: q ∈ Ei, 0 < d(p, q) < 1/j

}

.

We want to prove that for i = 1, 2 . . . , h = 1, . . . , 2n+1−d, and p ∈ E∗,

(3.35) lim
j→∞

ρi,h,j(p) = 0 .

Assume, by contradiction, that this fails. Then there is s > 0 and for
all 0 < τ < 1/i there is q ∈ Ei such that

(3.36) |〈ν̃h(p), π(p−1 · q)〉| > s d(p, q) and 0 < d(p, q) < τ.

Let r = d(p, q). Then, by (3.36), q ∈ B (p, r)\X(p, N(ν̃h(p)), s). Hence,
from Lemma 2.54, we have

(3.37) B (q, sr/2) ⊂ B (p, 2r) \ X (p, N(ν̃h(p)), s/3) .
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By (2.58), (3.37) and (3.33),

Sdm (E ∩ B(p, 2r) \ X(p, Tp, s/3)) ≥
Sdm (E ∩ B(p, 2r) \ X(p, N(ν̃h(p)), s/3)) ≥
≥ Sdm (E ∩ B(q, sr/2)) ≥ (1/i)(sr/2)dm .

This is a contradiction with (3.34) and proves (3.35).
Applying Lusin’s theorem to each ν̃h and Egoroff’s theorem to the

sequences (ρi,h,j)j we can write Ei = Ei,0∪∞k=1Ki,k such that Sdm(Ei,0) =
0, the sets Ki,k are compact, each ν̃h|Ki,k

is continuous and ρi,h,j → 0 as
j →∞ uniformly on Ki,k. We can apply Whitney’s Extension Theorem
(Theorem 2.16) with K ≡ Ki,k, f ≡ 0, k ≡ ν̃h getting the existence of
a C1

H function f̃i,k,h : Hn → R with (f̃i,k,h)|Ki,k
= 0, ∇H f̃i,k,h = ν̃h and

|∇H f̃i,k,h| 5= 0 on Ki,k.
Define Si,k,h := {p ∈ Hn : f̃i,k,h(p) = 0 , |∇H f̃i,k,h(p)|p 5= 0}. Then

Si,k,h is a 1-codimensional H-regular surface and Ki,k ⊂ Si,k,h. Finally
define

Si,k =
2n+1−d

⋂

h=1

Si,k,h.

Recalling Remark 2.19 we have that Si,k is a d-dimensional H-regular
surface and Ki,k ⊂ Si,k (i = 1, 2, . . . ). Moreover

E ⊂ E0 ∪ (∪∞i=1 ∪∞k=1 Si,k)

with E0 = (E \ E∗) ∪ ∪∞i=1Ei,0 and Sdm(E0) = 0.

Now we shall deal with the case 1 ≤ d ≤ n.
Let s and η be as in Lemma 2.37. Since, by Theorem 3.13,Θd

∗(E, p) >
0 and E has an approximate tangent subgroup Tp for Sd-a.e. p ∈ E,
we can write E as the union of sets Ei, i = 0, 1, 2, . . . , with Sd(E0) = 0
and such that for i = 1, 2, . . . , with some positive numbers ci and ri,
we have for p ∈ Ei, 0 < r < ri,

(3.38) Sd(E ∩B(p, r)) ≥ cir
d

and

Sd(E ∩ B(p, r) \ X(p, Tp, s/9)) < εir
d

with εi = ci(s/4)d. Fix i and let T1, ..., Tk be the subgroups given by
Lemma 2.55 and corresponding to s/9 in place of s. For every p ∈ Ei

there is Tj =: Ti,j with

(3.39) X(p, Tp, s/9) ⊂ X(p, Ti,j, s/3).
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Hence we can decompose Ei as a countable union of Borel sets Ei,j

such that diam(Ei,j) < ri/2 and (3.39) holds for p ∈ Ei,j. Then for
p ∈ Ei,j , 0 < r < ri,

(3.40) Sd(E ∩B(p, r) \ X(p, Ti,j, s/3)) < εir
d.

We check now that

(3.41) Ei,j ⊂ X(p, Ti,j, s) for p ∈ Ei,j.

Suppose there were p, q ∈ Ei,j with q 5∈ X(p, Ti,j, s). Then r =
d(p, q) ≤ diam(Ei,j) < ri/2. By Lemma 2.54, B(q, sr/2) ⊂ B(p, 2r) \
X(p, Ti,j, s/3). Hence by (3.38),

Sd(E ∩B(p, 2r) \ X(p, Ti,j, s/3)) ≥
Sd(E ∩B(q, sr/2)) ≥ ci(sr/2)d = εi(2r)

d.

This contradicts with (3.40) and proves (3.41), which implies that
d(p−1q, Ti,j) < s d(p, q) for p, q ∈ Ei,j and p 5= q. Hence, by Lemma
2.37, the projection Hn → Ti,j, restricted to Ei,j, is 1-1 with Lipschitz
inverse. As Ti,j is isometric with Rd, the rectifiability of E follows from
this.

5. Proof of (iv)⇒ (v).
It is immediate by definition.
6. Proof of (v) ⇒ (iv). From (v) and Theorem 3.3 we get for

Sdm-a.e. p ∈ E the existence of a homogeneous subgroup Tp of Hn such
that λp is a left Haar measure of Tp and by Proposition 2.32 we have
with α = dimH Tp that

λp = cSα
Tp.

So for q ∈ Tp and r > 0,

(3.42) λp(B(q, r)) = λp(B(e, 1))rα.

For Sdm-a.e. p ∈ E we have, by (i) of Lemma 3.7, that

2−dm ≤ Θ∗dm(E, p) ≤ 1.

Hence for all sufficiently small r > 0,

Sdm(E ∩ (B(p, r)) ≤ 2αdmrdm ,

and for some sequence ri > 0, ri → 0,

Sdm(E ∩ (B(p, ri)) ≥ 2−dm−1αdmrdm

i .

Since λp(∂B(e, ρ)) = 0 for all ρ > 0, we get thus by (3.42 and Theorem
3.3 that

λp(B(e, 1)ρα = lim
i→∞

Sα(E ∩ (B(p, ρri))

Sα(E ∩ (B(p, ri))
≤ 2dm+2ρdm .
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Since this holds for all ρ > 0, we must have α = dm, whence λp =
cSdm Tp, and if d = 1 or d > n then Tp ∈ G(Hn, d).

!
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