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Abstract. The notion of a maximally conditional sequence is introduced for

sequences in a Banach space. It is then proved using Ramsey theory, that

every basic sequence in a Banach space has a subsequence which is either
an unconditional basic sequence, or a maximally conditional sequence. An

apparently novel, purely combinatorial lemma in the spirit of Galvin’s theorem

is used in the proof. An alternative, quicker proof of the dichotomy result for
sequences in Banach spaces is also sketched.

1. Introduction

A well-known and significant problem in Banach space theory that went back at
least to the 1958 paper of Bessaga and Pe lczyński [3] was whether every infinite-
dimensional Banach space contains an unconditional basic sequence. This was fi-
nally settled in the negative in 1991 by Gowers and Maurey with their construction
in [6] of a hereditarily indecomposable space. Earlier an important partial nega-
tive result was given when Maurey and Rosenthal constructed in [9] a weakly null
basic sequence without any unconditional subsequence. By contrast, it was known
already to Banach that any weakly null normalized sequence in a Banach space
always has a basic subsequence. The example of Maurey and Rosenthal prompted
a line of research begun by Elton in [5] where the property of unconditionality is
replaced by some weaker, but closely related property in order to obtain positive re-
sults. Thus Elton defined the concept of a near-unconditional sequence and showed
that every weakly null normalized sequence has a near-unconditional subsequence.
Later, other types of partial unconditionality conditions and corresponding results
were given by Odell [11] and Argyros et al [2]. The surveys [12] and [1] serve as good
introductions to the subject. A common thread is the use of a Ramsey theoretic
result at some point of the proof.

This paper has two objectives. The first is to address a natural question re-
garding basic sequences which fail to have any unconditional subsequences. More
specifically, it is proved that every such sequence has a subsequence which is max-
imally conditional, a concept defined in this paper as follows:

Definition 1.1. A basic sequence (xk) in a Banach space is maximally conditional,
if given any two infinite disjoint sets E,F ⊂ N and any positive real number C <∞
there exists a finitely supported sequence (ak)k∈E∪F of scalars such that

‖
∑
k∈E

akxk‖ > C‖
∑

k∈E∪F

akxk‖.
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More intuitively speaking, any two subspaces spanned by subsequences of (xk)
have angle 0. The result that any basic sequence has either an unconditional sub-
sequence or a maximally conditional subsequence appears below as Theorem 2.2.
Although much easier to prove, this theorem should be viewed as an analogue
of Gowers’ dichotomy theorem which says that every infinite-dimensional Banach
space contains either an unconditional basic sequence or a hereditarily indecompos-
able subspace. In fact, this result of Gowers’ can be rephrased as follows: any basic
sequence either has an unconditional block sequence or a block sequence (yk) such
that any two block subspaces of (yk) have angle 0. The reader is referred to the
relatively easygoing exposition in [8] for a proof of this fact and to [7] for a more
complete treatment of Gowers’ original proof.

The second purpose of this paper is to draw attention to an apparently novel
Ramsey theoretic lemma used in the proof of Theorem 2.2 on maximally conditional
subsequences. The lemma in question is related to Galvin’s theorem and expresses
the fact that for any set A of pairs (A,B) of disjoint finite subsets of N there exists
an infinite set M ⊂ N such that either there is no (A,B) ∈ A such that A∪B ⊂M ,
or else M is densely saturated by pairs (A,B) ∈ A in a specific sense. This purely
combinatorial result, which appears as Lemma 3.1 below, seems natural enough
to merit independent interest and should have potential applications beyond those
presented in this paper.

2. Maximally conditional sequences

Recall that a sequence (xk) in a Banach spaceX is called a basis forX, if for every
x ∈ X there exists a unique sequence (ak) of scalars such that x =

∑∞
k=1 akxk with

the series converging in the norm of X. A basic sequence is a sequence (xk) which
is a basis for the closed linear span [(xk)]. A basic sequence (xk) is unconditional,
if each convergent series of the form

∑∞
k=1 akxk is unconditionally convergent i.e.∑∞

k=1 aπ(k)xπ(k) converges for every permutation π : N→ N.
The following characterisation of unconditionality is convenient for the purposes

of this paper. A good reference for any of the facts about Banach spaces mentioned
without proof below is Megginson’s textbook [10] .

Lemma 2.1. A basic sequence (xk) in a Banach space X is unconditional, if and
only if there exists a constant C < ∞ such that for all finite sets E ⊂ N and all
sequences of scalars (ak) one has

(2.1) ‖
∑
k∈E

akxk‖ ≤ C‖
∞∑
k=1

akxk‖.

Recall that if (xk) is any basic sequence, then for any finite set E ⊂ N one can
define a bounded linear projection PE (depending on the sequence (xk)) on the
closed linear span [(xk)] by setting

(2.2) PE(
∞∑
k=1

akxk) =
∑
k∈E

akxk.

For an infinite set E the series
∑
k∈E akxk, where the elements of E are enumerated

in ascending order, need not converge if (xk) is not an unconditional basic sequence.
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Next we introduce some notation which will be used for the rest of this paper.
For any basic sequence (xk), let

B(xk) = {E ⊂ N : PE is a bounded projection on [(xk)]}.

For disjoint E,F ⊂ N it holds that PE∪F = PE + PF , while for any E,F ⊂ N
we also have the identities PE∩F = PEPF = PFPE and PN\E = I − PE , where I
is the identity operator on [(xk)]. It follows from the above that B(xk) is in fact a
Boolean algebra of sets.

If B(xk) = P(N), then it can be deduced with little effort from the principle of
uniform boundedness that the condition of Lemma 2.1 holds. Thus B(xk) = P(N)
if and only if (xk) is an unconditional basic sequence.

If (xk) is not unconditional, how small can B(xk) in fact be? It follows from the
discussion above that each finite and co-finite subset of N must be an element of
B(xk). A well-known space demonstrates that

(2.3) B(xk) = {F ⊂ N : |F | <∞ or |N \ F | <∞}

is possible for a basic sequence (xk).
Namely, let (yk) be the summing basis, formally defined as the standard vector

basis of c00 in the completion of c00 given by the norm

‖(ak)‖Σ = sup
n∈N
|
n∑
k=1

akyk|.

The fact that equation (2.3) holds with (yk) in place of (xk) is easily verified directly,
a task left to the reader.

The definition of a maximally conditional sequence given in the introduction
can be rephrased as follows: (xk) is maximally conditional, if PE fails to define a
bounded operator on [(xk)E∪F ] for any pair of disjoint, infinite E,F ⊂ N. Now we
can state the main theorem of this paper.

Theorem 2.2. Every basic sequence in a Banach space has a subsequence, which
is either an unconditional basic sequence, or a maximally conditional sequence.

Note that if (xk) is maximally conditional, then (2.3) holds. The converse is not
true in general. Before proving Theorem 2.2, we give an example showing that the
property of being maximally conditional is in fact a strictly stronger property for
a sequence (xk) than the minimality property defined by (2.3).

Consider the basis (zk) which is again formally the sequence of natural basis
vectors in c00. The ambient space is the completion of c00 with respect to the norm

‖(ak)‖v = |a1|+
∞∑
k=1

|ak+1 − ak|.

Note that ‖zk‖ = 2 for all k. We claim that B(zk) = {F ⊂ N : |F | <∞ or |N\F | <
∞}. Take E ⊂ P(N) such that |E| = ∞ and |N \ E| = ∞. Now ‖

∑n
k=1 zk‖ = 2

for all n ≥ 1, while

‖PE(
n∑
k=1

zk)‖v ≥ |{k < n : k ∈ E, k + 1 /∈ E}| → ∞

as n→∞, so PE cannot be a bounded projection.
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On the other hand, if E,F ⊂ N are disjoint sets such that E ∪ F contains no
two consecutive numbers then in fact

‖
∑
k∈E

akzk‖v ≤ 2
∑
k∈E

|ak| ≤ ‖
∑

k∈E∪F

akzk‖v,

so the sequence (zk) is not maximally conditional.

3. Proof of the main theorem

We present two proofs of Theorem 2.2. This is justified by the fact that the longer
of the two proofs is based on a combinatorial lemma which seems natural enough
to merit independent interest. A more direct proof, relying only on well known
combinatorial results is presented at the end of the paper, with the permission of
Edward Odell who suggested it. At this point we follow [4] and introduce some
convenient notation related to sets. For a set M ⊂ N we let

M (∞) = {E ⊂M : |E| =∞}

and
M (<∞) = {E ⊂M : |E| <∞}.

In practice this notation is used only for countably infinite sets M , so that M (∞)

will always be an uncountable set and M (<∞) a countably infinite set.
We start preparing for the first proof of Theorem 2.2 by noting that (xk) is

maximally conditional if and only if, for any two disjoint sets E,F ∈ N(∞) and any
C > 0, there exist finite sets A ⊂ E and B ⊂ F and a sequence of scalars (ak) such
that

‖
∑
k∈A

akxk‖ > C‖
∑

k∈A∪B

akxk‖.

This serves to motivate the Ramsey-theoretic Lemma 3.1 below, whose proof relies
on Galvin’s theorem (see [4] for a proof of this fundamental result). Galvin’s theo-
rem states that if A ⊂ N(<∞) and R ∈ N(∞), then there exists a subset S ∈ R(∞)

such that either
(1) There exists no C ∈ A such that C ⊂ S, or
(2) For every S′ ∈ S(∞) there exists an initial segment C of S′ such that C ∈ A.

We now come to the key lemma on which our first proof of Theorem 2.2 is based.

Lemma 3.1. Let A be a set of pairs of the form (A,B), where A,B ∈ N(<∞) and
A ∩ B = ∅. Let R ∈ N(∞). Then there exists a subset S ∈ R(∞) such that one of
the following alternatives holds:

(1) There exists no (A,B) ∈ A such that A ∪B ⊂ S, or
(2) For any two sets E,F ∈ S(∞) there exists a pair (A,B) ∈ A such that

A ⊂ E and B ⊂ F .

Proof. To start off, we apply Galvin’s theorem with the family

A′ = {A ∪B : (A,B) ∈ A}.

This gives us a a subset T ∈ R(∞) whith one of the following properties:
(i) There exists no C ∈ A′ such that C ⊂ T , or
(ii) For all T ′ ∈ T (∞) there exists an initial segment C of T ′ such that C ∈ A′.
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In the first case we can set S = T and the conclusion of the lemma follows. We
suppose then that (ii) holds. In this case simply setting S = T is not enough, but
rather we will find a set S ∈ T (∞) such that alternative (2) in the statement of the
theorem holds.

Let C be the family of all finite sets of the form {a1 < b1 < a2 < b2 < · · · < an <
bn} ⊂ N for some n ≥ 1, such that there exists (A,B) ∈ A with A ⊂ {a1, . . . .an}
and B ⊂ {b1, . . . .bn}. We apply Galvin’s theorem again, this time with C and T .

Let us show that for every T ′ ∈ T (∞) we can find a set C ∈ C with C ⊂ T ′,
thus ruling out the first alternative given by Galvin’s theorem. Let T ′ = {t1 <
t2 < · · · } and denote the set of even terms {t2k}∞k=1 by T ′′. Now T ′′ ∈ T (∞), so
by our assumption about T , there exists an initial segment {t2k}nk=1 = A ∪B with
(A,B) ∈ A. Since A ∩B = ∅ there exists a (unique) set C satisfying

{t2k}nk=1 ⊂ C ⊂ {tk}2n+1
k=1 ⊂ T

′,

and such that, enumerating C in increasing order, elements of A appear only as
odd terms, elements of B appear only as even terms and, in addition |C| is even.
Thus we have found E ⊂ T ′ with C ∈ C as claimed.

Now having ruled out the first alternative given by Galvin’s theorem, we find a
set S = {s1 < s2 < · · · } ∈ T (∞) such that every infinite subset of S has an initial
segment in C. If E,F ∈ S(∞), pick an increasing sequence of terms a1 < b1 < a2 <
b2 < · · · with ak ∈ E and bk ∈ F for all k. The resulting set must have an initial
segment in C. Hence there exists a pair (A,B) ∈ A with A ⊂ E and B ⊂ F . �

Let C > 0. We call a basic sequence (xk) projection-unconditional with constant
C, if (2.1) holds with C. The content of Lemma 2.1 is precisely that a sequence
is unconditional if and only if it is projection-unconditional with some constant
C <∞. We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Fix the basic sequence (xk). Let us assume that (xk) does
not have any unconditional subsequence. In particular, for each C < ∞ it fails
to have a subsequence which is projection-unconditional with constant C. For a
particular value of C, let AC consist of all pairs (A,B) where A,B ∈ N(<∞) such
that A ∩B = ∅ and there exists a sequence of scalars (ak) such that

‖
∑
k∈A

akxk‖ > C‖
∑

k∈A∪B

akxk‖.

Note that a subsequence (xk)k∈S related to an infinite set S ⊂ N of indices is
projection-unconditional with constant C if and only if there is no pair (A,B) ∈ AC
such that A∪B ⊂ S. Therefore we conclude from Lemma 3.1 and our assumption
that (xk) has no unconditional subsequence, that for every R ∈ N(∞) there exists
S ∈ R(∞) such that for any E,F ∈ S(∞) there exists a pair (A,B) ∈ AC with
A ⊂ E and B ⊂ F .

Using this fact we construct a sequence (Sk) of sets Sk ∈ N(∞) such that Sk+1 ⊂
Sk for all k and also that for any E,F ∈ S(∞)

k there exists a pair (A,B) ∈ Ak with
A ⊂ E and B ⊂ F . Finally, construct a set S = {sk}∞k=1 by picking an increasing
sequence (sk) of integers with sk ∈ Sk for each k. Now it is easy to verify that the
related subsequence (xk)k∈S is maximally conditional, using the fact that for any
E,F ∈ S(∞) we have |E ∩ Sk| = |F ∩ Sk| =∞ for all k. �
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Having given a proof of Theorem 2.2 via Lemma 3.1 let us sketch an alternative
proof which uses a slightly stronger Ramsey result than Galvin’s theorem, namely
the Galvin-Prikry theorem. This alternative, and somewhat more direct proof is
based on an outline suggested by Edward Odell, and is included with his kind
permission. We use standard terminology and results from infinite-dimensional
Ramsey theory to the extent found in the final chapter of the book [4].

Fix a basic sequence (xk). Call M ∈ N(∞) an even-projection set if, writing M
as an increasing sequence (mk), the formula

∞∑
k=1

akxmk
7→

∞∑
k=1

a2kxm2k

defines a bounded projection on [(xmk
)]. For each C <∞ the family

{{mk} ∈ N(∞) : ‖
∞∑
k=1

a2kxm2k
‖ ≤ C‖

∞∑
k=1

akxmk
‖ for all (ak) ⊂ R}

where the sets {mk} are indexed as increasing sequences, is a closed subset of
N(∞) in the classical topology (recalled in Section 4 below), so the set of all even-
projection sets is in fact an Fσ set. By the Galvin-Prikry theorem one can then
conclude that there exists a set S ∈ N(∞) such that either every S′ ∈ S(∞) is an
even-projection set or none is.

Suppose first that every S′ ∈ S(∞) is an even-projection set. Writing S as
an increasing sequence (sk), let T = {s2k}∞k=1. Let us show that the associated
sequence (xk)k∈T is unconditional by showing that for any E ⊂ T the projection∑

k∈T

akxk 7→
∑
k∈E

akxk

is always well-defined. Fix E ⊂ T . Now we can find a set R = {rk}∞k=1 indexed as
an increasing sequence such that E ⊂ T ⊂ R ⊂ S and elements of E appear only
as even terms in the sequence (rk). Now any sequence (ak)k∈T can be extended to
a sequence (ak)k∈R by setting ak = 0 for k ∈ R \ T . Since R is an even-projection
set, the projection ∑

k∈T

akxk =
∑
k∈R

akxk 7→
∑
k∈E

akxk

is well-defined.
Suppose now that no S′ ∈ S(∞) is an even-projection set. Now we can show

directly that (xk)k∈S is maximally conditional. Let E,F ∈ S(∞). Pick an increasing
sequence (rk) with odd terms in E and even terms is F . Then R = {rk}∞k=1 is not
an even-projection set, so for any C > 0 we can find scalars (ak)k∈E∪F with ak = 0
for k /∈ R such that ‖

∑
k∈E akxk‖ > C‖

∑
k∈E∪F akxk‖.

4. An open problem

We conclude by stating an interesting question regarding the family B(xk) intro-
duced in Section 2. The Cantor topology on P(N) is defined by taking as basic
open sets all sets of the form

UA,B = {M ∈ P(N) : A ⊂M,B ∩M = ∅},
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where A,B ⊂ N are finite sets. The restriction of this topology to the subspace
N(∞) is variously called the classical topology or the Baire topology on N(∞). Now
it is an elementary observation, that for any C > 0 the set

BC = {M ∈ B(xk) : ‖PE‖ ≤ C}
is a closed subset of P(N) with respect to the Cantor topology. Since we can write

B(xk) =
∞⋃
n=1

Bn,

it follows, that B(xk) is in fact an Fσ subset of P(N).
The unanswered question regards the structure of B(xk). It is conjectured by

the author that for any Boolean subalgebra B ⊂ P(N), which is an Fσ set with
respect to the Cantor topology and which contains all finite sets, one can find a
basic sequence (xk) in some Banach space such that B(xk) = B.
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