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Abstract. We obtain a quantitative cohomological boundedness the-
orem for closed manifolds receiving entire mappings of bounded mean
distortion and finite lower order. We prove also an equidistribution the-
orem for mappings of finite distortion.

1. Introduction

By the classical Uniformization Theorem, the sphere S
2 and the torus

T
2 are the only closed Riemann surfaces admitting nonconstant conformal

mappings from the complex plane. The same rigidity is present in higher
dimensions; closed manifolds admitting conformal mappings from R

n are
quotients of S

n and T
n, see e.g. [2, Prop. 1.4]. However, if the distortion

of the conformal geometry is allowed, simple examples show that spaces
S

k1 × S
k2 × · · · × S

kℓ (k1 + · · · + kℓ = n) receive nonconstant mappings
of bounded distortion from R

n. A mapping f : M → N between oriented
Riemannian n-manifolds is said to be a mapping of bounded distortion, or
quasiregular, if f is a Sobolev mapping in W 1,n

loc (M ; N) and there exists a
constant K ≥ 1 so that

|Df |n ≤ KJf a.e. in M,

where |Df | is the operator norm of the differential Df and Jf is the Jacobian
determinant of f . By Reshetnyak’s theorem [18, p. 163], quasiregular map-
pings are discrete and open, and therefore examples of generalized branched
covers.

A connected and oriented Riemannian n-manifold receiving a nonconstant
(K-)quasiregular mapping from R

n is called (K-)quasiregularly elliptic. By
the Uniformization Theorem and the measurable Riemann Mapping Theo-
rem, the only closed quasiregularly elliptic 2-manifolds are S

2 and T
2. For

n = 3, closed quasiregularly elliptic manifolds are by Jormakka’s theorem
[11] quotients of S

3, S
2 × S

1, and T
3. In higher dimensions such characteri-

zations are not known. In dimension n = 4, a construction of Rickman [20]
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gives a positive answer to a question of Gromov [3, 2.41] on quasiregular
ellipticity of S

2 × S
2#S

2 × S
2.

The fundamental group and the de Rham cohomology ring yield ob-
structions for quasiregular ellipticity of a closed manifold. More precisely,
by Varopoulos’ theorem [24, Theorem X.11] the order of growth of the
fundamental group of a closed quasiregularly elliptic manifold cannot ex-
ceed the dimension of the manifold. Similarly, by a theorem of Bonk and
Heinonen [2, Theorem 1.1]: Given n ≥ 2 and K ≥ 1 there exists a constant

C = C(n,K) > 0 so that the dimension of the de Rham cohomology ring of

a closed K-quasiregularly elliptic n-manifold is at most C.

Local versions of these theorems show that analogous results hold for
mappings that are quasiregular in a neighborhood of the infinity; see [16].
The quasiregularity assumption can, however, be further relaxed. With
Onninen we showed in [15] that Varopoulos’ theorem holds for a larger
class of mappings, a subclass of mappings of finite distortion. In this vein,
we show that a cohomological boundedness phenomenon of Bonk-Heinonen
type holds for a subclass of mappings of bounded mean distortion. To state
our main results, we give some definitions.

We say that a nonconstant continuous mapping f : R
n → N is a mapping

of finite distortion if f belongs to the Sobolev space W 1,n
loc (Rn; N) and there

exists a measurable function K : R
n → [1,∞) so that

‖Df‖n ≤ KJf a.e. in R
n.

We set the outer distortion function Kf of f to be the function Kf (x) =
|Df(x)|n/Jf (x) whenever Jf (x) > 0 and Kf (x) = 1 otherwise.

We say that a mapping of finite distortion f has K-bounded p-mean dis-

tortion, p ≥ 1, if there exist constants K ≥ 1 and r0 > 0 so that
(

−

∫

Bn(r)
Kp

f

)1/p

≤ K

for every r ≥ r0. Here Bn(r) is the open ball of radius r about the origin in
R

n. We also say that f has finite lower order λ if

λ = lim inf
r→∞

log Af (r)

log r
< ∞.

Here and in what follows Af is the averaged counting function

Af (r) =

∫

Bn(r)
Jf .

Theorem 1. For every n ≥ 2 there exists p = p(n) > n − 1 with the

following property. Let N be a closed, connected, and oriented Riemannian

n-manifold and let f : R
n → N be a mapping of K-bounded p-mean distortion

having finite lower order λ. Then there exists C = C(n, λ,K) > 0 so that

dim H∗(N) ≤ C.
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Let us recall that by the rescaling principle, see e.g. [2, Section 2], a
quasiregularly elliptic manifold always admits a quasiregular mapping hav-
ing finite lower order at most n. Thus we recover the Bonk-Heinonen theo-
rem from Theorem 1. As in the case of quasiregular mappings, the constant
C in Theorem 1 is known only for n = 2 and n = 3. By Varopoulos’ theo-
rem, the first de Rham cohomology has dimension at most n, and hence we
obtain the bound C = 2n for n = 2, 3.

The proof of the main theorem relies on two ingredients of possible inde-
pendent interest. In Section 2, we give a very simple proof for an extension
of a special case of the Mattila-Rickman equidistribution theorem [14, The-
orem 5.1]. For mappings of bounded mean distortion, our result reads as
follows.

Theorem 2. Let N be a closed, connected, and oriented Riemannian n-

manifold, n ≥ 2, u ∈ Lq(N), q > n, and suppose that f : R
n → N is

a mapping of bounded (n − 1)-mean distortion. Then there exists a set

E ⊂ [1,∞) of finite logarithmic measure so that

(1.1)
1

Af (r)

∫

Bn(r)
(u ◦ f)Jf → −

∫

N
u

as r → ∞, r 6∈ E.

We find it interesting that the proof of this equidistribution theorem does
not rely on discreteness and openness, as the sharper result of Mattila and
Rickman for quasiregular mappings does, but uses only the change of vari-
ables methods. In fact, it is not known to us whether the mappings in ques-
tion are discrete and open. A result of Manfredi and Villamor [12] states
that mappings of finite distortion having distortion in Lp

loc for p > n − 1
are discrete and open and hence branched covers. For n = 2, Iwaniec and
Šverák [10] proved that distortion in Lp

loc for p ≥ n − 1 implies discreteness
and openness. They also conjecture the same result in all dimensions n > 2.
For recent results in this direction, see [6].

In Section 3 we consider Caccioppoli type potential estimates for pull-
back forms under mappings of finite distortion. Instead of focusing on the
solutions of degenerate A-harmonic equations arising in the pull-back, we
consider pairs of closed forms (ξ, ζ) satisfying a nonnegativity condition
⋆(ξ ∧ ζ) ≥ 0. Such pairs arise naturally in the Hodge theory and in the
nonlinear Hodge theory; pairs (ξ, ⋆ξ) and (ξ, ⋆|ξ|p−2ξ) are nonnegative if ξ
is a harmonic or a p-harmonic form, respectively. These pairs are a special
case of Cartan forms of Haj lasz, Iwaniec, Malý, and Onninen [4].

Having the equidistribution result and a Caccioppoli type estimate at
our disposal, we finish the proof of Theorem 1 in Section 4. The argument
follows closely the proof of Bonk and Heinonen. The main difference is in the
replacement of conformal exponents by exponents within a range determined
by a Sobolev-embedding theorem for differential forms.
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2. A Mattila-Rickman type value distribution theorem

In this section we give a weak Mattila-Rickman type equidistribution the-
orem for mappings of finite distortion. Since the natural class of mappings
in this theorem is larger than mappings of bounded mean distortion, we
introduce first some notations. Let f : R

n → N be a mapping of finite
distortion.

The outer distortion function of f gives a raise to a logarithmic type
measure mf on (0,∞) defined by

mf (E) =

∫

E

dr

rkf (r)
,

where kf : (0,∞) → [1,∞] is the spherical mean distortion function

kf (r) =

(

−

∫

Sn−1(r)
Kn−1

f

)
1

n−1

.

For quasiregular mappings and mappings of K-bounded (n − 1)-mean
distortion, the measure mf is comparable, with a constant depending only
on K, to the logarithmic measure mlog,

mlog(E) =

∫

E

dr

r
.

For a more detailed discussion on the logarithmic measures in the value
distribution theory of quasiregular mappings, see e.g. [19, V.9.16].

The main theorem of this section reads as follows.

Theorem 3. Let N be a closed, connected, and oriented Riemannian n-

manifold and suppose that f : R
n → N is such a mapping of finite distortion

that mf ([1,∞)) = ∞. Then for every n-form ω in Lq(
∧n N), q > n, there

exists a set E ⊂ [1,∞) of finite mf -measure so that

(2.2)
1

Af (r)

∫

Bn(r)
f∗ω → −

∫

N
ω

as r → ∞, r 6∈ E.

Theorem 2 can now be obtained as a special case of Theorem 3. Indeed,
as the measure mf is comparable to the logarithmic measure for mappings
of bounded (n − 1)-mean distortion, Theorem 2 is obtained by considering
n-forms ω = uvolN . Here volN is the Riemannian volume form on N .

Theorem 3 is analogous to the Euclidean version of the Mattila-Rickman
equidistribution theorem [14, Theorem 5.11]. For our applications, it suffices
to have the following version of this result.
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Theorem 4. Let N be a closed, connected, and oriented Riemannian n-

manifold and suppose that f : R
n → N is a mapping of finite distortion.

Then for every ε > 0 and every n-form ω in Lq(
∧n N), q > n, there exists

a set E ⊂ [1,∞) of finite mf -measure so that

(2.3)

(

−

∫

N
ω − ε

)
∫

Bn(r)
Jf <

∫

Bn(r)
f∗ω <

(

−

∫

N
ω + ε

)
∫

Bn(r)
Jf

for r ∈ [1,∞) \ E.

The proofs of Theorems 3 and 4 can be reduced to the following lemma
corresponding to the case of exact n-forms.

Lemma 5. Let N and f be as in Theorem 4. Then for every δ > (n−1)/n,

ε > 0, and every bounded (n − 1)-form τ in W 1,q(
∧n−1 N), q > n, there

exists a set E ⊂ [1,∞) of finite mf -measure so that

(2.4)

∣

∣

∣

∣

∣

∫

Sn−1(r)
f∗τ

∣

∣

∣

∣

∣

< ε

(

∫

Bn(r)
Jf

)δ

for r ∈ [1,∞) \ E.

The mappings we consider have the Lusin property (N) and hence support
the change of variables formula, see e.g. [5] and [13] or [8]. We use these
properties frequently in what follows.

Proof of Theorem 4 assuming Lemma 5. Let

ω̃ = ω −

(

−

∫

N
ω

)

volN ,

where volN is the volume form on N . Since
∫

N
ω̃ = 0,

ω̃ is weakly exact; see e.g. [17, Section 3]. Thus, by the Poincaré inequality

[9, Theorem 6.4], there exists an (n − 1)-form τ ∈ W 1,q(
∧n−1 N) so that

dτ = ω̃. Since q > n, τ is Hölder continuous, and hence bounded, by the
Sobolev embedding theorem.

Let ε > 0. Since
∫

Bn(r)
f∗ω̃ =

∫

Sn−1(r)
f∗τ

for almost every r > 0, we may apply Lemma 5 with δ = 1 and we obtain a
set E ⊂ [1,∞) of finite mf -measure so that

∣

∣

∣

∣

∣

∫

Bn(r)
f∗ω̃

∣

∣

∣

∣

∣

< ε

∫

Bn(r)
Jf

for r ∈ [1,∞) \ E. Since
∫

Bn(r)
f∗ω̃ =

∫

Bn(r)
f∗ω −

(

−

∫

N
ω

)
∫

Bn(r)
Jf ,
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the claim follows. �

Proof of Theorem 3 assuming Lemma 5. Suppose first that the avaraged count-
ing function Af is bounded. Let k be an integer so that the set X = {y ∈
N : card f−1(y) = k} has positive measure. Thus

∫

Bn(r)
(χX ◦ f)Jf =

∫

X
n(y,Bn(r); f)dy → k|X|

as r → ∞, where n(·, ·; f) is the counting function of f and |X| the Lebesgue
measure of X.

By an application of Theorem 4 to χXvolN and by the change of variables,
there exists for every ε > 0 a set E ⊂ [1,∞) of finite mf measure so that

(k − ε)vol(N) < Af (r) < (k + ε)vol(N)

for r ∈ [1,∞) \ E. Since mf ([1,∞)) = ∞, we have that Af (r) → kvol(N)
as r → ∞. Hence N \ X is a zero set and f is a k-to-1 map. Thus

∫

Rn

f∗ω = k

∫

N
ω =

(

−

∫

N
ω

)

kvol(N)

for all ω ∈ Lq(N), q > n, by the change of variables.
Suppose now that the avaraged counting function Af is unbounded. Let

ω and ω̃ be n-forms as in the proof of Theorem 4. Then an application of
Lemma 5 with (n−1)/n < δ < 1 yields a set E ⊂ [1,∞) of finite mf -measure
so that

∣

∣

∣

∣

∣

∫

Bn(r)
f∗ω̃

∣

∣

∣

∣

∣

<

(

∫

Bn(r)
Jf

)δ

for r ∈ [1,∞) \ E. Thus
∣

∣

∣

∣

∣

1

Af (r)

∫

Bn(r)
f∗ω̃

∣

∣

∣

∣

∣

< Af (r)δ−1 → 0,

as r → ∞, r 6∈ E. The claim follows. �

Proof of Lemma 5. Let E ⊂ [1,∞) be the set of such radii r ≥ 1 that (2.4)
does not hold. Then, for almost every r ∈ E, Hölder’s inequality yields

ε

(

∫

Bn(r)
Jf

)δ

≤

∫

Sn−1(r)
|Df |n−1 (|τ | ◦ f)

≤ ‖τ‖∞

(

∫

Sn−1(r)
Kn−1

f

)
1

n
(

∫

Sn−1(r)
Jf

)
n−1

n

.

Thus the averaged counting function Af satisfies the differential inequality

ε
n

n−1 Af (r)δ n
n−1 ≤ ‖τ‖

n
n−1

∞ rkf (r)A′

f (r)
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for almost every r ∈ E. Since

(

‖τ‖∞
ε

)
n

n−1

∫

∞

1

A′

f (r)

Af (r)δ n
n−1

dr ≥

∫

E

dr

rkf (r)
= mf (E)

by the differential inequality and
∫

∞

1

A′

f (r)

Af (r)δ n
n−1

dr ≤
1

δ n
n−1 − 1

Af (1)1−δ n
n−1 ,

the claim follows. �

3. A Caccioppoli type estimate

In this section we deduce a counterpart for the Caccioppoli type estimate
used in the proof of Bonk and Heinonen. In what follows we use the notation
q′ to denote the Hölder conjugate q/(q − 1) of q > 1.

We begin with a potential theoretic lemma of Caccioppoli type for non-
negative pairs of forms.

Lemma 6. Let 0 < r < R, 1 ≤ ℓ ≤ n − 1, and q > 1. Let ω and ω′

be closed forms in Lq(
∧ℓ Bn(R)) and Lq′(

∧n−ℓ Bn(R)), respectively, so that

⋆(ω ∧ ω′) ≥ 0. Then there exists C = C(n) > 0 so that

(3.5)

∫

Bn(r)
ω ∧ ω′ ≤

C

R − r

(

∫

Bn(R)
|τ |q

)1/q (
∫

Bn(R)
|ω′|q

′

)1/q′

for every τ ∈ W d,q(
∧ℓ−1 Bn(R)) satisfying dτ = ω.

Proof. Since ⋆(ω ∧ ω′) ≥ 0, we have, by Stokes’ theorem and Hadamard’s
and Hölder’s inequalities,
∫

Bn(r)
ω ∧ ω′ ≤

1

R − r

∫ R

r

∫

Bn(t)
ω ∧ ω′ =

1

R − r

∫ R

r

∫

Sn−1(t)
τ ∧ ω′

≤
1

R − r

∫ R

r

∫

Sn−1(t)
|τ ∧ ω′| ≤

C

R − r

∫

Bn(R)
|τ ||ω′|

≤
C

R − r

(

∫

Bn(R)
|τ |q

)1/q (
∫

Bn(R)
|ω′|q

′

)1/q′

,

where C = C(n) > 0. �

The main result of this section combines the Caccioppoli type estimate
with value distribution results for mappings of finite distortion having finite
lower order. The proof uses the following observation, typical in the value
distribution theory; see e.g. [2, Lemma 4.14]. For the reader’s convenience
we give a simple proof.
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Lemma 7. Let λ > 0 and ϕ : (0,∞) → (0,∞) be a nondecreasing function

so that

(3.6) λ = lim inf
r→∞

log ϕ(r)

log r
< ∞.

Then for every r0 > 0 there exists r1 ≥ r0 so that

(3.7) ϕ(r) ≤ 5λϕ(r/2)

for all r1/2 ≤ r ≤ r1. In particular, (3.7) holds in a set of infinite logarithmic

measure.

Proof. Let r0 > 0. We show first that there exists r1 ≥ r0 so that ϕ(r1) ≤
5λϕ(r1/4). Should this not be the case, ϕ(4kr0) ≥ 5kλϕ(r0) for every k ≥ 0.
To show that this is a contradiction, let k0 > 0 to be fixed later. Let k ≥ k0

and 4kr0 ≤ r ≤ 4k+1r0. Then

log ϕ(r)

log(r)
≥

log(ϕ(4kr0))

log(4k+1r0)
≥

log(5kλϕ(r0))

log(4k4r0)
=

kλ log 5 + log ϕ(r0)

k log 4 + log(4r0)
> Cλ,

where C = C(k0) > 1 for k0 large. This contradicts (3.6). Thus there exists
r1 ≥ r0 so that ϕ(r1) ≤ 5λϕ(r1/4). Then

ϕ(r) ≤ ϕ(r1) ≤ 5λϕ(r1/4) ≤ 5λϕ(r/2).

for every r1/2 ≤ r ≤ r1. �

The following proposition combines the Caccioppoli type estimate with
the value distribution and finite lower order.

Proposition 8. Let N be a closed, connected, and oriented Riemannian n-

manifold so that vol(N) = 1, and let f : R
n → N be a mapping of K-bounded

p-mean distortion for p > n − 1 having finite lower order λ.

Let 1 ≤ ℓ ≤ n − 1 and suppose that q > n/ℓ satisfies

q′ =
p

p + 1

(n

ℓ

)

′

.

Let also ξ and ζ be closed forms in L∞(
∧ℓ N) and in L∞(

∧n−ℓ N), respec-

tively, so that ⋆(ξ ∧ ζ) ≥ 0. Then there exists a constant C = C(n, ℓ, λ, ‖ξ ∧
ζ‖1, ‖ζ‖ n

n−ℓ
) > 0 and a set F ⊂ [1,∞) of infinite logarithmic measure so

that for every α ∈ W d,q
loc

(

∧ℓ−1 Bn(r)
)

satisfying dα = f∗ξ we have

(

∫

Bn(r)
Jf

)ℓ/n

≤ CK
n−ℓ

n r
ℓ−1−n

q

(

∫

Bn(r)
|α|q

)1/q

for r ∈ F .



MAPPINGS OF BOUNDED MEAN DISTORTION 9

Proof. We show first that

∫

Bn(r)
f∗ξ ∧ f∗ζ

≤
C

R − r

(

∫

Bn(R)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(R)
|α|q

)1/q (
∫

Bn(r)
|ζ|

n
n−ℓ ◦ fJf

)
n−ℓ

n

(3.8)

for R > r ≥ 1, where s = n
n−ℓ

1
q′ .

Since ⋆(f∗ξ ∧ f∗ζ) = ⋆(ξ ∧ ζ) ◦ fJf ≥ 0, it suffices, by Lemma 6, to show
that

(

∫

Bn(R)
|f∗ζ|q

′

)1/q′

≤

(

∫

Bn(R)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(r)
|ζ|

n
n−ℓ ◦ fJf

)
n−ℓ

n

.

By Hölder’s inequality, we obtain

∫

Bn(R)
|f∗ζ|q

′

≤

∫

Bn(R)
(KfJf )

n−ℓ
n

q′ (|ζ| ◦ f)q′

=

∫

Bn(R)
K

1

s

f (|ζ| ◦ f)q′ J
1

s

f

≤

(

∫

Bn(R)
K

1

s−1

f

)
s−1

s
(

∫

Bn(R)
(|ζ| ◦ f)

n
n−ℓ Jf

)
1

s

.

The inequality (3.8) now follows.
Since f has finite lower order λ, we have, by Lemma 7, that there exists

C = C(λ) > 0 so that

(3.9) Af (r) ≤ CAf (r/2)

for r ∈ F ′, where F ′ ⊂ [1,∞) is a set of infinite logarithmic measure.
By Theorem 4, we can also fix a set E ⊂ [1,∞) of finite logarithmic

measure so that

(3.10)
C

2

∫

Bn(r/2)
Jf ≤

∫

Bn(r/2)
f∗ξ ∧ f∗ζ

and

(3.11)

∫

Bn(r)
(|ζ| ◦ f)

n
n−ℓ Jf ≤ 2C

∫

Bn(r)
Jf

for r ∈ [1,∞)\E, where C = C(n, ℓ, ‖ξ∧ζ‖1, ‖ζ‖ n
n−ℓ

) > 0. We set F = F ′\E.
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Thus (3.8) and (3.9) together with (3.10) yield
∫

Bn(r)
Jf ≤ C

∫

Bn(r/2)
Jf ≤ C

∫

Bn(r/2)
f∗ξ ∧ f∗ζ

≤
C

r

(

∫

Bn(r)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(r)
|α|q

)1/q (
∫

Bn(r)
|ζ|

n
n−ℓ ◦ fJf

)
n−ℓ

n

≤
C

r

(

∫

Bn(r)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(r)
|α|q

)1/q (
∫

Bn(r)
Jf

)
n−ℓ

n

,

where C = C(n, ℓ, λ, ‖ξ ∧ ζ‖1, ‖ζ‖ n
n−ℓ

) > 0.

Since q satisfies q′ = p
p+1

(

n
ℓ

)

′

, we have

1

s − 1
=

1
n

n−ℓ
1
q′ − 1

=
q′

(

n
ℓ

)

′

− q′
= p

and
(

∫

Bn(r)
K

1

s−1

)
s−1

sq′

=

(

∫

Bn(r)
Kp

)
1

sq′p

≤ K
n−ℓ

n
p r

n

sq′p = K
n−ℓ

n
p r

n−ℓ
p .

This concludes the proof. �

4. Proof of Theorem 1

By the Poincaré duality, it suffices to consider cohomology groups Hℓ(N)
for 1 ≤ ℓ ≤ n/2. We may also assume that vol(N) = 1.

Suppose d = dim Hℓ(N) > 0. By the non-linear Hodge theory [21], we
may fix (n/ℓ)-harmonic ℓ-forms ξ1, . . . , ξd on N so that the cohomology
classes of the forms span Hℓ(N) and that the forms satisfy

‖ξi‖n/ℓ = 1 and ‖ξi − ξj‖n/ℓ ≥ 1

for all i and j 6= i. For every i, we set ζi to be the (n/ℓ)-harmonic conjugate

of ξi, i.e., ζi = ⋆|ξi|
n
ℓ
−2ξi. Then ‖ζi‖ n

n−ℓ
= 1. Forms ξi and ζi are Hölder

continuous by results of Uhlenbeck [22] and Ural’tseva [23]. Especially, they
are bounded.

Since n/ℓ ≥ 2, we have, by a pointwise monotonicity estimate (see e.g.
[1, p. 288]), that

∫

N
(ξi − ξj) ∧ (ζi − ζj) ≥ C

∫

N
|ξi − ξj|

n
ℓ ≥ C,

where C = C(n, ℓ) > 0. By Hölder’s inequality, we also obtain
∫

N
(ξi − ξj) ∧ (ζi − ζj) ≤ C‖ξi − ξj‖n/ℓ

(

‖ζi‖ n
n−ℓ

+ ‖ζj‖ n
n−ℓ

)

≤ C,

where C = C(n) > 0. For brevity, we set ξij = ξi − ξj and ζij = ζi − ζj for
every i 6= j.
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To obtain an estimate for the number of forms ξi, we show that there
exists exponents s and q and a radius r > 0 so that the Poincaré homotopy

operator T : Ls(
∧ℓ Bn) → Lq(

∧ℓ−1 Bn) of Iwaniec and Lutoborski [7] is
compact and that we have the estimates

‖Tλ∗

rf
∗ξi‖q ≤ C

(

∫

Bn(r)
Jf

)ℓ/n

and

‖Tλ∗

rf
∗ξi − Tλ∗

rf
∗ξj‖q ≥

1

C

(

∫

Bn(r)
Jf

)ℓ/n

,

where C = C(n, ℓ, λ,K) > 0 and λr : R
n → R

n is the similarity mapping
x 7→ rx. Then, by the compactness of T , the number of forms λ∗

rf
∗ξi, and

hence also ξi, is bounded by a constant depending only on n, λ, and K.
We fix

s =
1

2

(

n

ℓ + 1
+

n

ℓ

)

and q =
1

2

(n

ℓ
+ s∗

)

,

where s∗ = ns/(n − s) is the Sobolev conjugate of s. Since s > n/(ℓ + 1),
we have s∗ > n/ℓ and n/ℓ < q < s∗. Thus q′ < (n/ℓ)′ and there exists p̃ > 1
so that

q′ =
p̃

p̃ + 1

(n

ℓ

)

′

.

Since 1 ≤ ℓ ≤ n/2, we may fix p = p(n) > n − 1 so that

p ≥ max

{

p̃,
sℓ

n − sℓ

}

.

Suppose now that f : R
n → N is a mapping of K-bounded p-mean distor-

tion. We fix a set E ⊂ [1,∞) of finite logarithmic measure so that
∫

Bn(r)
(|ξi|

n/ℓ ◦ f)Jf ≤ C

∫

Bn(r)
Jf

for every i and every r ∈ [1,∞) \ E, where C = C(n, ℓ) > 0.
Using Hölder’s inequality, we obtain

(

∫

Bn(r)
|f∗ξi|

s

)1/s

≤

(

∫

Bn(r)
K

ℓs
n−ℓs

f

)
n−ℓs

ns
(

∫

Bn(r)
(|ξi|

n
ℓ ◦ f)Jf

)ℓ/n

≤ C

(

−

∫

Bn(r)
Kp

f

)
ℓ

np

r
n−ℓs

s

(

∫

Bn(r)
Jf

)ℓ/n

≤ CK
ℓ
n r

n−ℓs
s

(

∫

Bn(r)
Jf

)ℓ/n

(4.12)
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for every r ∈ [1,∞) \ E, where C = C(n) > 0. Thus

(
∫

Bn

|λ∗

rf
∗ξi|

s

)1/s

≤ CK
ℓ
n

(

∫

Bn(r)
Jf

)ℓ/n

for every r ∈ [1,∞) \ E.
Since

dTλ∗

rf
∗ξij = λ∗

rf
∗ξij − Tdλ∗

rf
∗ξij = λ∗

rf
∗ξij,

we may set αij = λ∗

1/rTλ∗

rf
∗ξij and we have

dαij = f∗ξij.

for every i 6= j. By Proposition 8, there exists a set F ⊂ [1,∞) of infinite
logarithmic measure and C = C(n, ℓ, λ) > 0 so that

(4.13)

(

∫

Bn(r)
Jf

)ℓ/n

≤ CK
n−ℓ

n rℓ−1−n
q

(

∫

Bn(r)
|αij |

q

)1/q

for r ∈ F .
Since E has finite logarithmic measure, we may fix r ∈ F \ E so that

(4.12) and (4.13) hold for every i 6= j.
Since

(
∫

Bn

|Tλ∗

rf
∗ξij|

q

)1/q

= r
ℓ−1−n

q

(

∫

Bn(r)
|αij |

q

)1/q

,

we obtain the last required estimate

‖Tλ∗

rf
∗ξij‖q ≥ C

(

∫

Bn(r)
Jf

)ℓ/n

.

This concludes the proof of Theorem 1.
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Odetl. Mat. Inst. Steklov, 7:184–222, 1968.
[24] N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon. Analysis and geometry on groups,

volume 100 of Cambridge Tracts in Mathematics. Cambridge University Press, Cam-
bridge, 1992.

Department of Mathematics and Statistics, P.O. Box 68, FI-00014 Univer-
sity of Helsinki, Finland. e-mail: pekka.pankka@helsinki.fi


