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Abstract. We examine mappings of finite distortion between Riemann-
ian manifolds. We use integral type isoperimetric inequalities to obtain
Liouville type growth results under mild assumptions on the distortion
of the mappings and the geometry of the manifolds.

1. Introduction

According to the classical Euclidean theory of quasiregular mappings
bounded entire quasiregular mappings are constant. A mapping f : R

n → R
n

in the Sobolev space W 1,n
loc (Rn,Rn) is K-quasiregular if

‖Df‖n 6 KJf a.e.,

where ‖Df‖ is the operator norm of the tangent map of f and Jf is the
Jacobian determinant.

This version of the classical Liouville’s theorem can be derived from the
following qualitative lower growth bound estimate: Given n > 2 and K > 1
there exists a constant α > 0 depending only on n and K so that every
K-quasiregular mapping f : R

n → R
n satisfying

lim
|x|→∞

|x|−α|f(x)| = 0

is constant [16, III.1.13].
These two growth results of Liouville type admit far reaching generaliza-

tions for quasiregular mappings into closed manifolds. Let Y be a closed,
connected, and oriented Riemannian n-manifold receiving a non-constant
K-quasiregular mapping from R

n. On the one hand, Varopoulos’s theo-
rem [20, Theorem X.11] states that the fundamental group of Y is virtually
nilpotent and has the growth of order at most n. On the other hand, Bonk
and Heinonen [1, Theorem 1.11] showed that quasiregular mappings into
non-trivial quasiregularly elliptic manifolds have a uniform lower bound in
growth rate in terms of averaged counting function. Precisely, their result
tells that if Y has a non-trivial de Rham cohomology ring then

(1.1) lim inf
r→∞

1

rα

∫

Bn(r)
Jf > 0
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where α > 0 depends only on n and K. Here and in what follows Bn(r)
stands for the open Euclidean n-ball centered at the origin of radius r.

In this paper we show that both of these theorems hold for a wider class
of mappings termed mappings of finite distortion and we give an interpre-
tation of the theorems through isoperimetric inequalities for mappings. To
be more precise, we consider continuous Sobolev mappings f : R

n → Y in
W 1,n

loc (Rn,Y), where Y is a connected and oriented Riemannian n-manifold.

A mapping f ∈ W 1,n
loc (Rn,Y) has finite distortion provided there exists a

measurable function K : R
n → [1,∞) such that

(1.2) ‖Df(x)‖n 6 K(x)Jf (x) for a.e. x ∈ R
n.

This class of mappings is intriguing. Such mappings may be seen as natural
generalizations of quasiregular mappings. Indeed, under a certain integrabil-
ity condition on the distortion function, mappings of finite distortion have
geometric and topological behavior similar to quasiregular mappings be-
tween Euclidean n-domains; see the book by Iwaniec and Martin [9], and
the references there.

According to our first theorem here, mappings of p-mean distortion, p >
n − 1, exhibit a similar growth rate as quasiregular mappings. This result
generalizes the theorem of Bonk and Heinonen. We say that f has mean
distortion in Lp, 1 6 p <∞, if

(1.3) Kp = Kf,p = sup
r>1

(

−
∫

Bn(r)
Kf (x)

p dx

)1/p

<∞.

Theorem 1. Let Y be a closed, connected, and oriented Riemannian n-
manifold, n > 2, and f : R

n → Y a non-constant slow mapping of finite
distortion with mean distortion in Ln−1. Then dimHℓ(Y) = 0 for 1 < ℓ <
n − 1. If f has mean distortion in Lp for some p > n − 1, then Y is a
rational homology sphere.

We say that a mapping of finite distortion f : R
n → Y is slow if

(1.4) lim
r→∞

1

rα

∫

Bn(r)
Jf = 0

for every α > 0.
Our second theorem gives an interpretation of Varopoulos’s theorem as

an end point in a spectrum of growth results.

Theorem 2. Let Y be an open and oriented Riemannian n-manifold, n > 2,
supporting a d-dimensional isoperimetric inequality, d > 2, and f : R

n → Y

a mapping of finite distortion with mean distortion in Ln−1. Then f is

(a) constant if d > n,
(b) either constant or f has at least logarithmic growth if d < n, and
(c) either constant or f is not slow if d = n.
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A mapping of finite distortion f : R
n → Y has at least logarithmic growth

if

lim inf
r→∞

1

(log r)α

∫

Bn(r)
Jf > 0

for some α > 0.
The original proof of Bonk and Heinonen is based on non-linear Hodge

theory and A-harmonic potential theory. In contrast, the proof of Varopou-
los’s theorem is based on an isoperimetric inequality and uses the fact that
a closed manifold admitting a non-constant quasiregular mapping from R

n

does not have a conformally hyperbolic universal cover. It seems that es-
pecially the method of Bonk and Heinonen relies heavily on the uniform
boundedness of the distortion function and, therefore, is not available in
our case. Our proofs are surprisingly simple, purely analytic, and use no
conformal geometry. Indeed, the proofs of Theorems 1 and 2 are based on
the existence of integral type isoperimetric inequalities for suitable Sobolev
mappings, and an interplay between volume growth and distortion.

The main tool in the proof of Theorem 1 is the concept of Cartan forms
[5]. This method has two advantages. First, the geometry of the domain
plays only a small role and the necessary geometric properties can easily be
axiomatized. Second, the obtained isoperimetric inequalities allow us to as-
sume that the mean distortion of the mapping is in Ln−1. In the Euclidean
theory of mappings of finite distortion, the Ln−1-integrability assumption
on the distortion function is considered to be the minimal requirement for
topological conclusions. For instance, the full analogue of Reshetnyak’s the-
orem is conjectured to hold if K ∈ Ln−1

loc and known under a slightly stronger
integrable assumption on K; that is, a non-constant mapping of finite dis-
tortion is both discrete and open provided K ∈ Lploc, p > n− 1 [12]. Apart
from continuity, our techniques do not rely on topological properties of the
mappings.

In the case of Theorem 2, we obtain an isoperimetric inequality for map-
pings through Gagliardo-Nirenberg-Sobolev type inequalities for BV func-
tions.

Our approach allows us to formulate Theorems 1 and 2 in the context
of mappings of finite distortion between Riemannian manifolds (Theorems
13 and 12). In this setting, the cohomological assumptions on the spaces
translate into assumptions on the kernel of the induced mapping on the
level of de Rham cohomology. The geometric assumptions on the domain
manifold X tend to get quite technical very quickly. They allow us, however,
to include mappings from manifolds with boundary. For instance, Theorem
13 covers the case when the domain is the puncture unit ball B

n
◦ ⊂ R

n,
generalizing the main theorem in [15]. Indeed, one of the reasons to state
our results in this general framework is to cover both cases X = R

n and
X = B

n
◦ simultaneously. Furthermore, as in the results of Zorich [24] on the

injectivity of quasiregular mappings, the boundedness of mean Lp-distortion
can be relaxed in both theorems. For instance, the mean distortion integral
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in (1.3) can have logarithmic growth at infinity, see Condition (7.13) and
Theorems 12 and 13. The sharpness of Condition (7.13) is demonstrated in
Example 14.

Acknowledgments. This study stems from a question posed by Tadeusz
Iwaniec during Pankka’s visit to Syracuse University in spring 2007. Both
authors wish to thank Iwaniec for his inspiration and encouragement. Pankka
also wishes to thank the Department of Mathematics at Syracuse University
for its generous hospitality.

2. Preliminaries

Throughout the article we consider continuous Sobolev mappings of the
class W 1,n

loc (X,Y), where X and Y are connected and oriented Riemannian
n-manifolds. Our manifolds are not assumed to be closed unless otherwise
stated and they can have compact boundaries. If X has a compact boundary
∂X, we assume that the mapping in question is a restriction of a continuous
mapping in W 1,n

loc (X̃,Y) for some ambient open manifold X̃ containing X as
a submanifold with boundary.

A Sobolev mapping f ∈ W 1,n
loc (X,Y) induces a pull-back homomorphism

f∗ : C∞(
∧ℓ

Y) → L
n/ℓ
loc (X) locally of the form

f∗(udxi1 ∧ · · · ∧ dxiℓ) = (u ◦ f)d(xi1 ◦ f) ∧ · · · ∧ d(xiℓ ◦ f).

Moreover, the pull-back f∗ commutes with the exterior derivative, that is,
d◦f∗ = f∗ ◦d, where the left hand side is understood in the weak sense. By

the pointwise inequality, |f∗α| 6 |Df |ℓ(|α| ◦ f) for α ∈ C∞(
∧ℓ

Y), we can

conclude that f∗α ∈W d,n/ℓ
loc (

∧ℓ
X) for all closed forms α ∈ C∞(

∧ℓ
X). Here

W d,p
loc (
∧ℓ

X) is the local partial Sobolev space of ℓ-forms, see [10] for more
details.

The pull-back homomorphism f∗ induced by a mapping f induces in turn
a natural homomorphism f∗ : Hℓ(Y) → Hℓ(X), where Hℓ(X) and Hℓ(Y) are
the ℓth-de Rham cohomology groups of X and Y, respectively. A priori, f∗

induces only a homomorphism from Hℓ(Y) to the Sobolev-de Rham coho-

mology Hℓ,n/ℓ(X) of X, but cohomologies Hℓ,n/ℓ(X) and Hℓ(X) are naturally
isomorphic, see e.g. [21, Chapter 5] or [15].

3. Cartan forms

In this section we discuss Cartan forms on closed oriented Riemannian
manifolds. For a more detailed exposition we refer to [5].

We say that a smooth n-form ω on a closed Riemannian n-manifold Y is a

Cartan form if there exist closed forms ξ ∈ C∞(
∧ℓ

Y) and ζ ∈ C∞(
∧n−ℓ

Y)
for some ℓ ∈ {1, . . . , n− 1} so that

ω − ξ ∧ ζ
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is exact. Note that by [5, Proposition 2.3] our definition is equivalent with
the one given in [5].

According to Proposition 2.4 in [5] every n-form ω on Y is a Cartan form
if and only if Hℓ(Y) 6= 0 for some ℓ ∈ {1, . . . , n − 1}. In particular, if Y is
cohomologically non-trivial, the volume form volg of a Riemannian metric
g of Y is a Cartan form. Moreover, for every non-trivial cohomology class
c ∈ Hℓ(Y) the volume form volg can be represented using the harmonic

ℓ-form ξ ∈ C∞(
∧ℓ

Y) in c as

(3.5) volg =

(

1√
λ
ξ

)

∧ ∗
(

1√
λ
ξ

)

+ dτ

for some (n− 1)-form τ , where

λ =

∫

Y

ξ ∧ ∗ξ > 0,

see the proof of Proposition 2.4 in [5]. If λ = 1, we say that the harmonic
form ξ almost splits the volume form volg. If, in addition, dτ = 0 in (3.5), we
say that ξ splits volg. Product manifolds with product metrics give examples
of manifolds with splitting volume forms.

To measure the defect in splitting of the volume form of metric g, we
denote for every harmonic ℓ-form ξ almost splitting volg the splitting defect
of ξ by

(3.6) Cg(ξ) = inf
τ

(‖ξ‖2
∞ + ‖τ‖∞),

where the infimum is taken over all (n − 1)-forms τ satisfying (3.5). Fur-
thermore, we say that the maximal splitting defect of g is

(3.7) Cg = sup
ξ
Cg(ξ),

where the supremum is taken over all non-trivial harmonic forms. The
maximal splitting defect of g is finite by finite dimensionality of H∗(Y).

4. Controlled exhaustions

In this section we define a class of exhaustions of Riemannian manifolds.
Our exhaustions are modeled after Mattila and Rickman [13] and Zorich
[24]. Having these exhaustions at our disposal, we define mappings of p-mean
distortion. It is worth keeping in mind two important examples, R

n with the
exhaustion {Bn(r) : r ∈ [0,∞)} and the closed exterior ball R

n\B
n with an

exhaustion {Bn(r)\B
n : r > 1}. The exterior ball R

n\B
n equipped with this

exhaustion gives a conformally equivalent but a metrically complete model
for a punctured unit ball B̄

n
◦ with the exhaustion {B̄n \ B̄

n(r) : 0 < r < 1}.
Let X be a complete Riemannian n-manifold possibly with a compact

boundary ∂X. We say that D = {Dt : t ∈ I}, where the index set I ⊂ [0,∞)
is measurable, is an exhaustion of X if

(D1) X =
⋃

t∈I Dt,
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(D2) Ds ⊂ Dt for s < t,
(D3) Dt is a relatively compact open set and ∂Dt is a closed (n − 1)-

submanifold of X for all t ∈ I, and
(D4) ∂X is a boundary component of Dt for every t ∈ I.

We say that an exhaustion D is asymptotically small if there exist positive
constants tD, cD, cI , and cA so that

(D5) |I ∩ (0, t)| > cDt for t ∈ I ∩ (tD,∞),
(D6)

d

dt

∫

Dt

u > cI

∫

∂Dt

u

for almost every t ∈ I ∩ (tD,∞) for every non-negative u ∈ L1
loc(X),

and
(D7) |∂Dt| 6 cAt

n−1 for t ∈ I ∩ (tD,∞) and for some cA > 1.

Finally, we impose the following two conditions controlling the geometry
of differential forms with respect to the exhaustion. An exhaustion D is said
to admit small extendable potentials if for every t ∈ I

(D8) the inclusion ι : ∂Dt → Dt induces a surjection on ι∗ : Hℓ(Dt) →
Hℓ(∂Dt) for 1 6 ℓ 6 n− 2, and

(D9) for every p ∈ (1, n − 1) there exists CP = CP (n, p) > 0 such

that for every ω ∈ W d,p(
∧ℓ ∂Dt) there exists a closed form ωt ∈

W d,p(
∧ℓ ∂Dt) so that

(4.8)

(
∫

∂Dt

|ω − ωt|p
∗

dHn−1

)1/p∗

6 CP

(
∫

∂Dt

|dω|p dHn−1

)1/p

,

where p∗ = (n− 1)p/((n − 1) − p).

We say that an exhaustion D satisfying (D1) − (D9) is controlled. Fur-
thermore, we refer to constants cD, tD, cI , cA, CP , and set I as the data [D]
of D.

A mapping f : X → Y has mean distortion in Lp with respect to D =
{Dt : t ∈ I} if there exists t0 > 0 so that

(4.9) K̂p = K̂f,p = sup
t∈I∩(t0,∞)

(

−
∫

∂Dt

Kp
f

)1/p

<∞.

Remark 3. If X = R
n, then for every R > 1 there exists a subset J ⊂ (1, R)

so that |J | > R/4 and
(4.10)

sup
r∈(1,R)

(

−
∫

Bn(r)
Kp
f

)1/p

. sup
r∈J

(

−
∫

∂Bn(r)
Kp
f

)1/p

. sup
r∈(1,R)

(

−
∫

Bn(r)
Kp
f

)1/p

,

where the constants of comparability depend only on n and p. Thus, Kp ∼
K̂p; that is, (1.3) is equivalent with (4.9).
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In spite the lack of an explicit assumption on the conformal geometry,
manifolds admitting asymptotically small exhaustions are conformally par-
abolic. The converse is also true in the sense of the conformal gauge of
the metric. For more detailed discussion on conformal types of Riemannian
manifolds we refer to [8].

Proposition 4. Let (X, gX) be an open and oriented Riemannian n-manifold.
Then (X, gX) is conformally parabolic if and only if there exists a Riemann-
ian metric g conformally equivalent with gX and an asymptotically small
exhaustion D on (X, g).

Proof. Since every conformally parabolic manifold (X, gX) admits a complete
metric g with finite volume in the conformal gauge of gX, we have by Sard’s
theorem and coarea formula that the family {Bg(x0, r) : r > 0} of concentric
balls on X contains an asymptotically small exhaustion D as a subset.

Suppose now that (X, g) is a Riemannian manifold with an asymptoti-
cally small exhaustion D = {Dt : t ∈ I}. To show that (X, g) is conformally
parabolic, it is sufficient to show that the family of paths leaving every com-
pact set in X has zero conformal modulus. By the reciprocity of modulus of
path families and modulus of separating surfaces families [22], it is sufficient
to show that the surface family Σ = {∂Dt : t ∈ I} has infinite conformal
modulus. Let ρ be an admissible function on Σ and let

ϕ(t) =

∫

Dt

ρ
n

n−1

for t ∈ I. Then ϕ : I → [0,∞] is non-decreasing.
By (D5), we may fix q > 2/cD such that |I ∩ (qj−1, qj)| > qj−1 for j > 1.

By (D6), (D7), and Hölder’s inequality,

ϕ(qj) − ϕ(qj−1) >

∫

I∩(qj−1,qj)
ϕ′(t) dt &

∫

I∩(qj−1,qj)

(
∫

∂Dt

ρ
n

n−1

)

dt

&

∫

I∩(qj−1,qj)
|∂Dt|−

1
n−1

(
∫

∂Dt

ρ

)
n

n−1

dt

&

∫ qj

qj−qj−1

1

t
= log

(

q

q − 1

)

,

where constants of comparability depend only on cI , cA, and n. Thus every
Σj = {∂Dt : t ∈ I ∩ (qj−1, qj)} has conformal modulus uniformly bounded
from below. Since families Σj are disjoint, Σ has infinite conformal modulus.

�

Let us now discuss the implications of conditions (D8) and (D9). Condi-
tion (D9) imposes restrictions to the geometry of the differential forms on X.
Indeed, (D9) requires the manifold to support a uniform Sobolev-Poincaré
inequality on submanifolds ∂Dt. Let us recall that every closed manifold
supports a Poincaré inequality for differential forms with a constant de-
pending on the geometry of the manifold [10, Theorem 6.4]. Together with
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the Sobolev embedding theorem this yields the Sobolev-Poincaré inequality
(4.8) for every manifold ∂Dt with a constant depending on the geometry of
the manifold ∂Dt and p. The role of (D9) is therefore only to impose an
additional condition that this constant is independent on the submanifold
∂Dt.

For the reader’s convenience we give a sketch of a proof of the Sobolev-
Poincaré inequality for differential forms on closed manifolds. For the nota-
tion, we refer to [19, Section 2].

Lemma 5. Let Y be a closed oriented Riemannian n-manifold and p ∈
(1, n). Then there exists a constant CP = CP (p,Y) > 0 with the fol-

lowing property: For every ω ∈ W d,p(
∧ℓ

Y) there exists a closed form

ω0 ∈ Lp(
∧ℓ

Y) such that ω − ω0 ∈W 1,p(
∧ℓ

Y) and
(
∫

Y

|ω − ω0|p
∗

)1/p∗

6 CP

(
∫

Y

|dω|p
)1/p

,

where p∗ = np
n−p .

Sketch of a proof. Let ω ∈ W d,p(
∧ℓ

Y). By [10, Theorem 6.4], there exists

C > 0, depending only on Y and p, and ω0 ∈ Lp(
∧ℓ

Y) such that ω − ω0 ∈
W 1,p(

∧ℓ
Y) and

‖ω − ω0‖W 1,p(
Vℓ

Y) 6 C‖dω‖p.

Since ω − ω0 ∈W 1,p(
∧ℓ

Y), we have that |ω − ω0| ∈W 1,p(Y). Thus, by the
Sobolev embedding theorem on manifolds, see e.g. [6, Theorem 3.5],

‖ω − ω0‖p∗ 6 C ′‖∇|ω − ω0|‖p.
By the Gaffney type inequality of Scott [19, Proposition 4.5],

‖∇(ω − ω0)‖pp 6 C ′′
(

‖d(ω − ω0)‖pp + ‖d∗(ω − ω0)‖pp
)

.

Thus the claim follows from

‖∇|ω − ω0|‖p 6 ‖∇(ω − ω0)‖p
as in the proof of [10, Theorem 6.4]. �

In contrast to the other requirements on the exhaustion, (D8) imposes
restrictions to the topology of X in scales controlled by the exhaustion.
Having (D8) at our disposal, the inclusion mappings ∂Dt →֒ D̄t induce

surjections W d,p(
∧ℓDt) →W d,p(

∧ℓ ∂Dt) for every t ∈ I.
We end this section with two examples on manifolds and their controlled

exhaustions.

Example 6. (1) The basic examples of controlled exhaustions are exhaus-
tion of R

n with balls B
n(r) and R

n \ B
n with annuli B

n(r) \ B
n. Indeed,

in these cases it suffices to verify conditions (D8) and (D9). Whereas (D8)
follows from cohomological triviality of Sn−1, (D9) follows from similarity
of boundary components of exhausting sets.
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(2) The previous example can be further modified to allow topologically
non-trivial domains. Let

X = · · ·#Xk#Xk+1# · · · ,
where Xk are closed, connected, and oriented Riemannian n-manifolds. If
manifolds Xk and Xk+1 are glued in a geometrically controlled fashion, X

admits a controlled exhaustion. To be more precise, suppose that there exists
δ > 0 such that the neighborhood of the gluing is isometric to Sn−1(r) ×
(−δ, δ) for some r > 0. In this case, we may take such an exhaustion
{Dt : t ∈ I} that components of ∂Dt are similar to Sn−1.

5. Isoperimetric inequality for Sobolev mappings

In this section, we show that an isoperimetric inequality of the target
space yields an integral type isoperimetric inequality for continuous Sobolev
mappings in W 1,n.

We say that Y supports a d-dimensional isoperimetric inequality with a
constant CY > 0 if if Y satisfies (1, ϕ)-isoperimetric inequality with CY > 0,
that is,

ϕ(|Ω|)|Ω| 6 CY|∂Ω|
for all domains Ω ⊂ Y, where

ϕ(r) = min{r−1/d, r−1/n} =

{

r−1/d, r > 1

r−1/n, r < 1.

Theorem 7. Let n > 2 and d > 2. Let X be a complete, open, and oriented
Riemannian n-manifold and D = {Dt : t ∈ I} an exhaustion of X. Suppose
that Y is a connected and oriented Riemannian n-manifold supporting a
d-dimensional isoperimetric inequality with a constant CY > 0. Let also
f : X → Y be a continuous Sobolev mapping in W 1,n

loc (X,Y). Then there
exists C = C(CY, d) > 0 so that for almost every t ∈ I we have

(i)
∫

Dt

Jf 6 C

(
∫

∂Dt

|D#f |
)

d
d−1

if d > n, and

(ii)
∫

Dt

Jf 6 Cmax

{

(
∫

Dt

Jf

)1/n

,

(
∫

Dt

Jf

)1/d
}

(
∫

∂Dt

|D#f |
)

if d < n.

Although the following lemma is certainly well-known, we include a proof
for the reader’s convenience.

Lemma 8. Let X be an open and oriented Riemannian n-manifold, Ω ⊂ X

an open set with a smooth boundary, Y an oriented Riemannian n-manifold,
and f : X → Y a smooth mapping. Then

y 7→ deg(y,Ω; f)
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is a BV function on Y and

|D deg(·,Ω; f)|(Y) 6

∫

∂Ω
|D#f |.

An L1-function u : Y → R is a said to be BV if

|Du|(Y) := sup

{
∫

Y

u divϕ volY : ϕ ∈ C∞
0 (TY), |ϕ| 6 1

}

<∞.

Proof of Lemma 8. Let ϕ be a compactly supported smooth vector field on
Y. Then, by definition,

divϕ volY = d(ϕxvolY)

and by Stokes’ theorem,
∫

Ω
df∗(ϕxvolY) =

∫

∂Ω
ι∗f∗(ϕxvolY).

Thus
∫

Ω
(divϕ) ◦ fJfvolX =

∫

Ω
f∗(divϕ volY) =

∫

Ω
f∗(d(ϕxvolY))

=

∫

Ω
df∗(ϕxvolY) =

∫

∂Ω
ι∗f∗(ϕxvolY)

6

∫

∂Ω
|D#f ||ϕxvolY| ◦ f 6 ‖ϕ‖∞

∫

∂Ω
|D#f |.

By the change of variables,
∣

∣

∣

∣

∫

Y

(divϕ) deg(·,Ω; f)volY

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
(divϕ) ◦ fJfvolX

∣

∣

∣

∣

6 ‖ϕ‖∞
∫

∂Ω
|D#f |.

This concludes the proof. �

The following L1 estimate for BV functions is a combination of results of
Coulhon, Grigorýan, and Levin [2, Prop 2.1] and Miranda, Pallara, Paronetto,
and Preunkert [14, Prop 1.4].

Lemma 9. Let Y support a d-dimensional isoperimetric inequality, 2 6 d 6
n, with constant CY > 0 and let u : Y → Z be a compactly supported BV
function on Y. Then

‖u‖1 6 Cmax{‖u‖1/d
1 , ‖u‖1/n

1 }|Du|(Y),

where C = C(CY) > 0

Proof. By considering ϕ̃ = ϕ/CY if necessary, we may assume that CY = 1.
Since Y supports d-dimensional isoperimetric inequality, by [2, Prop. 2.1]
it also supports F -Sobolev inequality for compactly supported Lipschitz
functions, that is,

∫

Y

|v|F
(

v

‖v‖1

)

6

∫

Y

|∇v|,
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where F (r) = cϕ(2/r), for every v ∈ Lip0(Y). Here c > 0 is universal.
Suppose now that u ∈ BV (Y) is compactly supported and let Ω be a

relatively compact domain of Y containing the support of u. By [14, Prop.
1.4], there exists a sequence (uk) in C∞

0 (Ω) so that uk → u in L1 and

|Du|(Y) = lim
k→∞

∫

Y

|∇uk|.

Thus, by continuity of F and Fatou’s lemma, we have
∫

Y

|u|F
( |u|
‖u‖1

)

6 lim inf
k→∞

∫

Y

|uk|F
( |uk|
‖uk‖1

)

6 lim inf
k→∞

∫

Ω
|∇uk| = |Du|(Y).

Let Ω′ = {y : |u(y)| 6 2‖u‖1}. Then

F

( |u(y)|
‖u‖1

)

= cϕ

(

2
‖u‖1

|u(y)|

)

=











c
(

u(y)
2‖u‖1

)1/n
, y 6∈ Ω′

c
(

u(y)
2‖u‖1

)1/d
, y ∈ Ω′

Thus

‖u‖1 =

∫

Y

|u| =

∫

Ω′

|u| +
∫

Y\Ω′

|u|

6

∫

Ω′

|u|1+ 1
d +

∫

Y\Ω′

|u|1+ 1
n

6 C

(

∫

Ω′

|u|F
( |u|
‖u‖1

)

‖u‖1/d
1 +

∫

Y\Ω′

|u|F
( |u|
‖u‖1

)

‖u‖1/n
1

)

6 Cmax{‖u‖1/d
1 , ‖u‖1/n

1 }
∫

Y

|u|F
( |u|
‖u‖1

)

6 Cmax{‖u‖1/d
1 , ‖u‖1/n

1 }|Du|(Y),

where C > 0 is universal. �

Proof of Theorem 7. Let (fk) be a sequence of smooth mappings X → Y

tending to f in W 1,n
loc (X,Y), see [17] and [18].

Suppose first that d > n. Since r
d−1

d 6 r
n−1

n for r 6 1, by the d-
dimensional isoperimetric inequality there exists C = C(CY) > 0 so that

|Ω| 6 C|∂Ω|
d

d−1

for all domains Ω in Y. Thus Y supports a classical Gagliardo-Nirenberg-
Sobolev inequality

‖u‖ d
d−1

6 |Du|(Y).
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for BV functions u on Y, see e.g. [7, 3.30] and [3, 5.6.2]. Thus, by Lemma
8, we have

‖deg(·,Dt, fk)‖ d
d−1

6 CY|D deg(·,Dt, fk)|(Y) 6 CY

∫

∂Dt

|D#fk|

for every t ∈ I and every k. Since deg(·,Dt, fk) is integer valued,
∫

Dt

Jfk
=

∫

Y

deg(·,Dt, fk) 6

∫

Y

|deg(·,Dt, fk)|
d

d−1 6

(

CY

∫

∂Dt

|D#fk|
)

d
d−1

for every t ∈ I.
Suppose now that Y supports a d-dimensional isoperimetric inequality for

2 6 d < n with a constant CY. By Lemma 9 and Lemma 8 together with
the change of variables, we obtain

∫

Dt

Jfk
6 Cmax

{

(
∫

Dt

Jfk

)1/n

,

(
∫

Dt

Jfk

)1/d
}

(
∫

∂Dt

|Dfk|n−1

)

.

for every t ∈ I and every k. Thus for every d > 2, the claim holds for smooth
mappings fk.

By a usual telescoping decomposition of the Jacobian in local coordinates
[9, 8.1], we obtain

∫

Dt

Jfk
→
∫

Dt

Jf

as k → ∞.
By (D6) and using the telescoping decomposition again, we have
∫

I∩(0,s)

∫

∂Dt

∣

∣

∣
|D#fk| − |D#f |

∣

∣

∣
dt 6

1

cI

∫

Ds

∣

∣

∣
|D#fk| − |D#f |

∣

∣

∣

6
1

cI

∫

Ds

∣

∣

∣
D#fk −D#f

∣

∣

∣
→ 0

for every s > tD as k → ∞. Thus
∫

∂Dt

|D#fk| →
∫

∂Dt

|D#f |

for almost every t ∈ I. The claim follows. �

6. Cohomological isoperimetric inequality for Sobolev

mappings

In this section we study mappings into closed target manifolds. We prove
that the non-trivial kernel of the induced pull-back mapping yields an inte-
gral type isoperimetric inequality for mappings. This extends the result of
Giannetti and Passarelli di Napoli [4].

Theorem 10. Let X be a connected, open, and oriented Riemannian n-
manifold, n > 2, and D = {Dt : t ∈ I} a controlled exhaustion of X, (Y, gY)
a closed, connected, and oriented Riemannian n-manifold, and f : X → Y a
continuous Sobolev mapping in W 1,n

loc (X,Y). Let p ∈ [n− 1, n). If either
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(i) p > n− 1 and ker f∗ 6= 0, or
(ii) p = n − 1, n > 4, and there exists ℓ ∈ {2, . . . , n − 2} such that

ker(f∗ : Hℓ(Y) → Hℓ(X)) 6= 0,

then

(6.11)

∫

Dt

Jf 6 C|∂Dt|
n

n−1
−n

p

(
∫

∂Dt

|Df |p
)

n
p

+ C

∫

∂Dt

|Df |n−1

for almost every t ∈ I, where C = C(n, p,CP , CgY
).

For the proof we recall the following version of Stokes’ theorem.

Lemma 11. Let X be an open and oriented Riemannian manifold, {Dt : t ∈
I} an exhaustion satisfying (D6), and ω ∈ W d,p

loc (
∧n−1

X), p > 1. Then, for

almost every t ∈ I, ι∗ω ∈W d,p
(

∧n−1 ∂Dt

)

and
∫

∂Dt

ι∗ω =

∫

Dt

dω.

Furthermore, if t ∈ I, ω ∈ W d,p(
∧n−1 D̄t) is weakly closed, and ι∗ω ∈

W d,p(
∧n−1 ∂Dt) then

∫

∂Dt

ι∗ω = 0.

Proof. By the density of smooth forms, we may fix a sequence (ωk) such

that ωk → ω in W d,p
loc (

∧ℓ
X). Since

∫

I∩(0,s)

∫

∂Dt

|ι∗(ω − ωk)|p dt 6
1

cI

∫

Ds

|ι∗(ω − ωk)|p 6
1

cI

∫

Ds

|ω − ωk|p → 0

as k → ∞ by (D6), we have that
∫

∂Dt

|ι∗(ω − ωk)|p → 0

for almost every t ∈ I. Hence, for almost every t ∈ I,
∫

Dt

dω = lim
k→∞

∫

Dt

dωk = lim
k→∞

∫

∂Dt

ι∗ωk =

∫

∂Dt

ι∗ω.

Suppose now that t ∈ I, ω ∈ W d,p(
∧n−1 D̄t) is weakly closed, and ι∗ω ∈

W d,p(
∧n−1 ∂Dt). Then ι∗ω is weakly closed and there exist sequences (ηk)

and (η′k) of smooth closed forms in C∞(
∧n−1 D̄t) and C∞(

∧n−1 U), where
U is a tubular neighborhood of ∂Dt, such that ηk → ω and ι∗η′k → ι∗ωk
in W d,p(

∧n−1 D̄t) and W d,p(
∧n−1 ∂Dt), respectively. We may assume that

η′k − ηk = dτk in U ∩ Dt for some smooth (n − 2)-forms τk defined in U .
Thus we may set ωk = ηk + d(ϕτk), where ϕ ∈ C∞

0 (U) satisfies ϕ ≡ 1 in a
neighborhood of ∂Dt. Thus ι∗ωk = ι∗η′k and dωk = dηk in Dt. Then

∫

∂Dt

ι∗ω = lim
k→∞

∫

∂Dt

ι∗ωk = lim
k→∞

∫

Dt

dωk = 0.

The proof is complete. �
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Proof of Theorem 10. Under either the assumption (i) or (ii), we may fix
a harmonic ℓ-form ξ on Y such that f∗ξ is weakly exact. Furthermore, we
may assume that

volY = ξ ∧ ∗ξ + dτ

where τ ∈ C∞(
∧n−1

Y). Thus
∫

Dt

JfvolX =

∫

Dt

f∗(volY) =

∫

Dt

f∗(ξ) ∧ f∗(∗ξ) +

∫

Dt

f∗(dτ)

for every t ∈ I. Since
∫

Dt

f∗(dτ) =

∫

Dt

df∗τ =

∫

∂Dt

ι∗f∗τ 6 ‖τ‖∞
∫

∂Dt

|Df |n−1

for almost every t ∈ I by Stokes’ theorem (Lemma 11), it suffices to show
that

∫

Dt

f∗(ξ) ∧ f∗(∗ξ) 6 C‖ξ‖2
∞|∂Dt|

n
n−1

−n
p

(
∫

∂Dt

|Df |p
)

n
p

for almost every t ∈ I.
Suppose first that (i) holds. Since f∗(ξ) is weakly exact, we may fix

ω ∈W
d,n/ℓ
loc (

∧ℓ−1
X) so that dω = f∗(ξ). Thus, by weak exactness of f∗(∗ξ),

∫

Dt

f∗(ξ) ∧ f∗(∗ξ) =

∫

Dt

dω ∧ f∗(∗ξ) =

∫

Dt

d(ω ∧ f∗(∗ξ))

for every t ∈ I.
We set

q =
p

ℓ
, q∗ =

(n− 1)q

(n − 1) − q
, and s =

q∗

q∗ − 1
.

Since D is controlled, for almost every t ∈ I we may fix a weakly closed form

ω̃ ∈W d,q(
∧ℓDt) such that ι∗ω̃ ∈W d,q∗

(

∧ℓ−1 ∂Dt

)

and

(6.12)

(
∫

∂Dt

|ι∗ω − ι∗ω̃|q∗ dHn−1

)1/q∗

6 CP

(
∫

∂Dt

|dι∗ω|q dHn−1

)1/q

.

Let ω̂ = ω − ω̃. Since ω̃ is closed, we have, by Stokes’ theorem,
∫

∂Dt

ι∗ω̃ ∧ ι∗f∗(∗ξ) =

∫

Dt

dω̃ ∧ f∗(∗ξ) = 0.

Thus
∫

Dt

f∗(ξ) ∧ f∗(∗ξ) =

∫

∂Dt

ι∗(ω ∧ f∗(∗ξ)) =

∫

∂Dt

ι∗ω̂ ∧ ι∗f∗(∗ξ)

6 C

∫

∂Dt

|ι∗ω̂||ι∗f∗(∗ξ)| 6 C

∫

∂Dt

|ι∗ω̂||f∗(∗ξ)|,

where C depends only on n. Since

|f∗(ξ)|q 6 |Df |qℓ(|ξ|q ◦ f) 6 ‖ξ‖q∞|Df |p

and
|f∗(∗ξ)|s 6 |Df |s(n−ℓ)‖∗ξ‖s∞ = ‖ξ‖s∞|Df |s(n−ℓ),
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where

s(n− ℓ) = p
(n− 1)(n − ℓ)

np− nℓ+ ℓ
< p

(n− 1)(n − ℓ)

n(n− 1) − nℓ+ ℓ
= p,

we have, by Hölder’s inequality and (6.12), that

∫

∂Dt

|ι∗ω̂||f∗(∗ξ)| 6

(
∫

∂Dt

|ι∗ω̂|q∗
)1/q∗ (∫

∂Dt

|f∗(∗ξ)|s
)1/s

6 CP

(
∫

∂Dt

|dω̂|q
)1/q (∫

∂Dt

|f∗(∗ξ)|s
)1/s

6 CP

(
∫

∂Dt

|f∗(ξ)|q
)1/q (∫

∂Dt

|f∗(∗ξ)|s
)1/s

6 CP |∂Dt|
n

n−1
−n

p ‖ξ‖2
∞

(
∫

∂Dt

|Df |p
)

n
p

.

This proves (6.11).
Let us now assume (ii). Set

q0 =
n− 1

ℓ
, q∗0 =

(n− 1)q0
(n − 1) − q0

, and s0 =
q∗0

q∗0 − 1
.

Then s0(n − ℓ) = n− 1. Following the proof above by almost verbatim, we
have
∫

Dt

f∗(ξ) ∧ f∗(∗ξ) 6 CP

(
∫

∂Dt

|f∗(ξ)|q0
)1/q0 (∫

∂Dt

|f∗(∗ξ)|s0
)1/s0

6 CP ‖ξ‖2
∞

(
∫

∂Dt

|Df |n−1

)
n

n−1

.

This concludes the proof. �

7. Growth of mappings of finite distortion

In this section we state and prove geometric versions of Theorems 1 and 2.
First, we give a sharp geometric version of Theorem 2 in terms of a growth
condition of the Jacobian. For this, let X be a Riemannian n-manifold with
an exhaustion D = {Dt : t ∈ I}, K : X → [1,∞) a measurable function, and
p > 1. We set

Kp(t) = KK,p(t) = sup
s∈I∩(0,t]

(

−
∫

∂Ds

Kp

)1/p

and

(7.13) ψp(t) = ψKp(t) =

∫ t

tD

ds

sKp(s)

for t > tD.
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Theorem 12. Let X be a complete, open, and oriented Riemannian n-
manifold and D = {Dt : t ∈ I} an asymptotically small exhaustion of X.
Suppose that Y is a connected and oriented Riemannian n-manifold support-
ing a d-dimensional isoperimetric inequality, d > 2, with a constant CY > 0.
Let f : X → Y be a mapping of finite distortion with distortion K : X → R.
Suppose that supt∈I ψKn−1(t) = ∞. Then f is constant if d > n.

Furthermore, if d 6 n, then either f is constant or we have the following
two cases:

(a) For d < n there exists α = α(n, d) > 0 such that

lim inf
t→∞,t∈I

1

(ψn−1(cDt))
α

∫

Dt

Jf > 0.

(b) For d = n there exists β = β(n,CY, [D]) > 0 such that

lim inf
t→∞,t∈I

1

eβψn−1(cDt)

∫

Dt

Jf > 0.

Proof. Suppose first that d > n. By Theorem 7 and Hölder’s inequality,

∫

Dt

Jf 6

(

CY

∫

∂Dt

|D#f |
)

d
d−1

6 C
d

d−1

Y

(
∫

∂Dt

Kn−1

)
1
n

d
d−1
(
∫

∂Dt

Jf

)
n−1

n
d

d−1

6 C
d

d−1

Y
|∂Dt|

1
γ(n−1) Kn−1(t)

1/γ

(
∫

∂Dt

Jf

)1/γ

for almost every t ∈ I, where

γ =
n

n− 1

d− 1

d
.

Set

ϕ(t) =

∫

Dt

Jf

for t ∈ I. Then, by (D6) and (D7),

ϕ(t)γ 6 C
n

n−1

Y
|∂Dt|

1
n−1 Kn−1(t)

1

cI
ϕ′(t) 6

C
n

n−1

Y
cA

cI
tKn−1(t)ϕ

′(t)

for almost every t ∈ I.
Suppose that f is non-constant. Since f is a mapping of finite distortion,

there exists t0 ∈ I so that ϕ(t0) > 0.
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By (D5) we have, for every t > t0, that
∫

I∩(t0,t)

ϕ′(s)

ϕ(s)γ
ds > β

∫

I∩(t0,t)

ds

sKn−1(s)

> β

∫ t0+|I∩(t0,t)|

t0

ds

sKn−1(s)

= β(ψn−1(t0 + |I ∩ (t0, t)|) − ψn−1(t0))

> β(ψn−1(cDt) − ψn−1(t0)),

(7.14)

where β =

(

C
n

n−1
Y

CA

CR

)−1

.

If d = n then γ = 1 and we obtain (b). Indeed, by (7.14),

ϕ(t) > ϕ(t0)e
β(ψn−1(cDt)−ψn−1(t0))

for t > t0.
For d > n, we have γ > 1 and

ϕ(t)1−γ − ϕ(t0)
1−γ

1 − γ
> β(ψn−1(cDt) − ψn−1(t0)).

Thus there exists t > t0 so that ϕ(t) < 0. This contradicts the positivity of
the Jacobian of f . Thus f is constant for d > n.

Suppose now that d < n. Then, by Theorem 7,

(7.15)

∫

Dt

Jf 6 C

{

(
∫

Dt

Jf

)1/n

,

(
∫

Dt

Jf

)1/d
}

(
∫

∂Dt

|Df |n−1

)

for almost every t ∈ I, where C = C(CY, d) > 0. We show first that there
exists t2 > 0 so that

∫

Dt

Jf 6 C

(
∫

∂Dt

|Df |n−1

)
d

d−1

for t ∈ I ∩ (t2,∞). It is enough to show that there exists t ∈ I so that

ϕ(t) =

∫

Dt

Jf > 1.

Suppose towards contradiction that ϕ(t) 6 1 for all t ∈ I, then (7.15) yields
∫

Dt

Jf 6 C

(
∫

∂Dt

|Df |n−1

)
n

n−1

for all t ∈ I. This is a contradiction, since ϕ is not bounded by the argument
in the case d = n above. Thus such t2 ∈ I exists.

We set

γ =
n

n− 1

d− 1

d
< 1

as above. We may assume that t0 ∈ I ∩ (t2,∞).
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Since (7.14) yields

ϕ(t)1−γ > ϕ(t0)
1−γ + (1 − γ)β(ψn−1(cDt) − ψn−1(t0)),

we have that (a) holds with α = 1/(1 − γ) in the case d < n. �

Proof of Theorem 2. Theorem 2 follows immediately from Theorem 12. In-
deed, if X = R

n then there exists an exhaustion D = {Bn(r) : r ∈ I} so that
|I ∩ (0, R)| > 1

4R from R > 1 and

sup
r∈(1,R)

(

−
∫

Bn(r)
Kn−1

)1/(b−1)

. Kn−1(R) . sup
r∈(1,R)

(

−
∫

Bn(r)
Kn−1

)1/(n−1)

whenever R ∈ I, see Remark 3. Combining this with (1.3) we find that
Kn−1(t) is bounded. Therefore, we have ψn−1(t) log t & 1 for all t ∈ I ∩
(tD,∞). Here the constant of comparability depends only on n. �

Next we formulate a sharp version of Theorem 1.

Theorem 13. Let X be a complete, connected, and oriented Riemannian n-
manifold and D = {Dt : t ∈ I} a controlled exhaustion of X. Let (Y, gY) be a
closed, connected, and oriented Riemannian n-manifold and let f : X → Y be
a non-constant mapping of finite distortion with distortion K : X → [1,∞).
Let p ∈ [n− 1, n) and that either

(i) p > n− 1 and ker f∗ 6= 0, or
(ii) p = n − 1, n > 4, and ker{f∗ : Hℓ(Y) → Hℓ(X)} 6= 0 for some

ℓ ∈ {2, . . . , n− 2}.
If supt∈I ψK,p(t) = ∞ then there exists α = α(n, p,CgY

, [D]) > 0 so that

(7.16) lim inf
t→∞,t∈I

1

eαψp(cDt)

∫

Dt

Jf > 0,

where cD > 0 is as in (D5).

Proof. We may assume that tD > 1. Set q = np/(p+1). Then n−1 6 q < n
and 1 − n/q = 1/p. Applying Theorem 10 with exponent q and Hölder’s
inequality with n/q and with n/(n − 1), we obtain, for t ∈ I ∩ (tD,∞),

∫

Dt

Jf 6 C|∂Dt|
n

n−1
−n

q

(
∫

∂Dt

|Df |q
)

n
q

+ C

∫

∂Dt

|Df |n−1

6 C|∂Dt|
n

n−1
−n

q

(
∫

∂Dt

Kp

)1/p ∫

∂Dt

Jf + C

(
∫

∂Dt

Kn−1

)1/n ∫

∂Dt

Jf

6 C|∂Dt|
1

n−1 Kp(t)

∫

∂Dt

Jf + C|∂Dt|
1
n Kn−1(t)

n−1
n

∫

∂Dt

Jf

6 CcAtKp(t)

∫

∂Dt

Jf ,

(7.17)
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where C is the constant in Theorem 10. Here we also used the facts that
|∂Dt|1/n 6 cAt, |∂Dt|1/(n−1) 6 cAt, and Kp(t) > Kn−1(t) > 1 for every
t ∈ I ∩ (tD,∞).

Let

ϕ(t) =

∫

Dt

Jf

for t ∈ I. Then

ϕ′(t) > cI

∫

∂Dt

Jf

for almost every t ∈ I. Since f is not constant, there exists t0 ∈ I ∩ (tD,∞)
so that ϕ(t0) > 0. Thus

log
ϕ(t)

ϕ(t0)
>

∫

I∩(t0,t)

ϕ′(s)

ϕ(s)
ds > α

∫

I∩(t0,t)

ds

sKp(s)

> α

∫ t0+|I∩(t0,t)|

t0

ds

sKp(s)

= α (ψ(t0 + |I ∩ (t0, t)|) − ψ(t0))

> α (ψ(cDt) − ψ(t0)) ,

(7.18)

where α depends on n, p, CgY
, and [D]. Thus

ϕ(t)

eαψ(cDt)
> ϕ(t0)e

−αψ(t0)

The claim follows. �

Proof of Theorem 1. Since f has mean distortion in Lp we have ψp(t) ∼ log t
for t ∈ I where I is as in the proof of Theorem 2. Therefore, Theorem 1
follows from Theorem 13 with the exhaustion {Bn(r) ; r ∈ I} and we have

β = α/K̂f,p. �

Example 14. The following construction demonstrates the sharpness of the
assumption supt∈I ψK,p(t) = ∞ in Theorems 12 and 13. The construction
is well-known in the context of locally quasiregular mappings and due to
Zorich [23]; see also [11] for a Liouville type theorem in this context. We
thank Peter Lindqvist for these references.

Suppose that we are given a measurable function M : [1,∞) → [1,∞) so
that

(7.19)

∫ ∞

1

dt

tM(t)
<∞.

Then first, we define M̃(t) = M(t) for t > 1 and M̃(t) = t−2 for 0 < t < 1.
Second, we set

F (s) =

∫ s

0

dt

tM̃(t)
and F̃ (s) =

F (s)

F (∞)
,
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where F (∞) = lims→∞ F (s). Now, we are ready to define a homeomorphism
f : R

n → Bn by the rule

f(x) = F̃ (|x|) x|x|
for all x ∈ R

n. A simple computation shows that the mapping f has finite
distortion K with

(

−
∫

∂Bt

Kp

)1/p

∼M(t)

for almost every t > 1 and all p > n−1, where the constants of comparability
depend only on F (∞). Together with the assumption (7.19) we have that
supr>1 ψp(r) < ∞. Since Bn can be embedded into any manifold with a
bilipschitz embedding, our construction is completed.

Both Theorems 12 and 13 admit local versions in the context of manifolds
with boundary. We formulate a local version of Theorem 13 generalizing [15,
Theorem 1].

Theorem 15. Let X be a complete, connected, and oriented Riemannian
n-manifold with a compact boundary ∂X, D = {Dt : t ∈ I} a controlled
exhaustion of X, and let (Y, gY) be a closed, connected, and oriented Rie-
mannian n-manifold. Suppose f : X → Y is a mapping of finite distortion
with distortion K : X → R. Let p ∈ [n− 1, n) and suppose that either

(i) f has mean distortion in Ln−1, n > 4, and ker{f∗ : Hℓ(Y) → Hℓ(X)} 6=
0 for some ℓ ∈ {2, . . . , n − 2}, or

(ii) f has mean distortion in Lp for some p > n− 1 and ker f∗ 6= 0.

If supt∈I ψK,p(t) = ∞, Jf |∂X ∈ L1(∂X), and there exists t0 > 0 such that

(7.20)

∫

Dt0

Jf > 2CcAt0Kp,Kf
(t0)

∫

∂X

Jf .

where C is the constant of Theorem 10, then there exists α = α(n, p,CgY
, [D]) >

0 so that

(7.21) lim inf
t→∞,t∈I

1

eαψ(cDt)

∫

Dt

Jf > 0.

Proof. As the proof is merely a modification of the proof of Theorem 13, we
only indicate the differences. Let

ϕ(t) =

∫

Dt

Jf

as in the proof of Theorem 13. Then

ϕ′(t) > cI

∫

∂Dt\∂X

Jf

for almost every t ∈ I. It is now sufficient to observe that by (7.17) and
(7.20) we have

∫

Dt

Jf 6 CcAtKp(t)

∫

∂Dt

Jf 6 CcAtKp(t)

∫

∂Dt\∂X

Jf +
1

2

∫

Dt0

Jf
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for t ∈ I ∩ (t0,∞). The claim now follows from (7.18). �
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