AHLFORS-DAVID REGULAR SETS AND BILIPSCHITZ MAPS

PERTTI MATTILA AND PIRJO SAARANEN

Abstract

Given two Ahlfors-David regular sets in metric spaces, we study the question whether one of them has a subset bilipschitz equivalent with the other.

1. InTRODUCTION

In this paper we shall study Ahlfors-David regular subsets of metric spaces. Throughout (X, d) and (Y, d) will be metric spaces. For $E, F \subset$ X and $x \in X$ we shall denote by $d(E)$ the diameter of E, by $d(E, F)$ the distance between E and F, and by $d(x, E)$ the distance from x to E. The closed ball with center x and radius r is denoted by $B(x, r)$.
1.1. Definition. Let $E \subset X$ and $0<s<\infty$. We say that E is s regular if it is closed and if there exists a Borel (outer) measure μ on X and a constant $C_{E}, 1 \leq C_{E}<\infty$, such that $\mu(X \backslash E)=0$ and

$$
r^{s} \leq \mu(B(x, r)) \leq C_{E} r^{s} \text { for all } x \in E, 0<r \leq d(E), r<\infty .
$$

Observe that this implies that the right hand inequality holds for all $x \in E, r>0$, and

$$
\mu(B(x, r)) \leq 2^{s} C_{E} r^{s} \text { for all } x \in X, r>0
$$

We would get an equivalent definition (up to the value of C_{E}), if we would use the restriction of the s-dimensional Hausdorff measure on E, with r^{s} on the left hand side replaced by r^{s} / C_{E}. When we shall speak about a regular set E, μ will always stand for a measure as above.

We remark that closed and bounded subsets of regular sets are compact, see Corollary 5.2 in [DS2]. Self similar subsets of \mathbb{R}^{n} satisfying the open set condition are standard examples of regular sets, see $[\mathrm{H}]$.

[^0]A map $f: X \rightarrow Y$ is said to be bilipschitz if it is onto and there is a positive number L, called a bilipschitz constant of f, such that

$$
d(x, y) / L \leq d(f(x), f(y)) \leq L d(x, y) \text { for all } x, y \in X
$$

The smallest such L is denoted by $\operatorname{bilip}(f)$. Evidently any bilipschitz image of an s-regular set is s-regular. But two regular sets of the same dimension s need not be bilipschitz equivalent. This is so even for very simple Cantor sets in \mathbb{R}, see $[F M],[R R X]$ and $[R R Y]$ for results on the bilipschitz equivalence of such Cantor sets, and for [DS2] for extensive analysis of bilipschitz invariance properties of fractal type sets.

The main content of this paper is devoted to the following question: suppose E is s-regular and F is t-regular. If $s<t$, does F have a subset which is bilipschitz equivalent to E ? In this generality the answer is obviously no due to topological reasons; E could be connected and F totally disconnected. We shall prove in Theorem 3.1 that the answer is yes for any $0<s<t$ if E is a standard s-dimensional Cantor set in some \mathbb{R}^{n} with $s<n$. We shall also prove in Theorem 3.3 that the answer is always yes if $s<1$. In Section 4 we show that if E and F as above are subsets of \mathbb{R}^{n} and s is sufficiently small, then a bilipschitz map f with $f(E) \subset F$ can be defined in the whole of \mathbb{R}^{n}. We don't know if this holds always when $0<s<1$.

In the last section of the paper we shall discuss sub- and supersets of regular sets. It follows from Theorem 3.1 that an s-regular set contains a t-regular subset for any $0<t<s$. In the other direction we shall show that if $E \subset X$ is s-regular and X is u-regular, then for any $s<t<u$ there is a t-regular set F such that $E \subset F \subset X$. On the other hand there are rather nice sets which do not contain any regular subsets: we shall construct a compact subset of \mathbb{R} with positive Lebesgue measure which does not contain any s-regular subset for any $s>0$.

Regular sets in connection of various topics of analysis are discussed for example in [DS1] and [JW].

2. Some lemmas on regular sets

In this section we shall prove some simple lemmas on regular sets.
2.1. Lemma. Let $0<s<\infty$ and let $E \subset X$ be s-regular. For every $0<r<R \leq d(E), R<\infty$, and $p \in E$ there exist disjoint closed balls $B\left(x_{i}, r\right), i=1, \ldots, m$, such that $x_{i} \in E \cap B(p, R)$,

$$
\left(5^{s} C_{E}\right)^{-1}(R / r)^{s} \leq m \leq 2^{s} C_{E}(R / r)^{s}
$$

and

$$
E \cap B(p, R) \subset \bigcup_{i=1}^{m} B\left(x_{i}, 5 r\right)
$$

Proof. By a standard covering theorem, see, e.g., Theorem 2.1 in [M], we can find disjoint balls $B\left(x_{i}, r\right), i=1,2, \ldots$, such that $x_{i} \in E \cap$ $B(p, R)$ and the balls $B\left(x_{i}, 5 r\right)$ cover $E \cap B(p, R)$. There are only finitely many, say m, of these balls, since the disjoint sets $B\left(x_{i}, r\right)$ have all μ measure at least r^{s}, they are contained in $B(p, 2 R)$ which has measure at most $C_{E}(2 R)^{s}$. More precisely, we have

$$
m r^{s} \leq \sum_{i=1}^{m} \mu\left(B\left(x_{i}, r\right)\right) \leq \mu(B(p, 2 R)) \leq C_{E}(2 R)^{s},
$$

whence $m \leq 2^{s} C_{E}(R / r)^{s}$, and

$$
m C_{E} 5^{s} r^{s} \geq \sum_{i=1}^{m} \mu\left(B\left(x_{i}, 5 r\right)\right) \geq \mu(B(p, R)) \geq R^{s}
$$

whence $m \geq\left(5^{s} C_{E}\right)^{-1}(R / r)^{s}$.
For less than one-dimensional sets we can get more information:
2.2. Lemma. Let $0<s<1, C \geq 1, R>0$, let $E \subset X$ be closed and bounded and let μ be a Borel measure on X such that $\mu(X \backslash E)=0$ and that

$$
\mu(B(x, r)) \leq C r^{s} \text { for all } x \in E, r>0,
$$

and

$$
\mu(B(x, r)) \geq r^{s} \text { for all } x \in E, 0<r<R .
$$

Let $D=\left(3 C 2^{s}\right)^{1 /(1-s)}+1$. For every $0<r<R /(2 D)$ there exist disjoint closed balls $B\left(x_{i}, r\right), i=1, \ldots, m$, and positive numbers $\rho_{i}, r \leq$ $\rho_{i} \leq D r$, such that $m \leq C d(E)^{s} / r^{s}, x_{i} \in E, x_{j} \notin B\left(x_{i}, \rho_{i}\right)$ for $i<j$,

$$
E \subset \bigcup_{i=1}^{m} B\left(x_{i}, \rho_{i}\right) \text { and } E \cap B\left(x_{i}, \rho_{i}+r\right) \backslash B\left(x_{i}, \rho_{i}\right)=\emptyset .
$$

Proof. Let $x_{1} \in E$. Denote

$$
A_{0}=B\left(x_{1}, r\right), A_{i}=B\left(x_{1},(i+1) r\right) \backslash B\left(x_{1}, i r\right), i=1,2, \ldots
$$

If $E \cap A_{1}=\emptyset$, denote $\rho_{1}=r$. Otherwise, let l be the largest positive integer such that $2 l r<R$ and $E \cap A_{i} \neq \emptyset$ for $i=1, \ldots, l$, say $y_{i} \in E \cap A_{i}$.

Then $B\left(y_{i}, r\right) \subset A_{i-1} \cup A_{i} \cup A_{i+1} \subset B\left(x_{1}, 2 l r\right)$. Therefore

$$
\begin{aligned}
& l r^{s} \leq \sum_{i=1}^{l} \mu\left(B\left(y_{i}, r\right)\right) \leq \sum_{i=1}^{l} \mu\left(A_{i-1} \cup A_{i} \cup A_{i+1}\right) \leq \\
& 3 \mu\left(B\left(x_{1}, 2 l r\right)\right) \leq 3 C 2^{s} l^{s} r^{s}
\end{aligned}
$$

whence $l^{1-s} \leq 3 C 2^{s}$ and, since $s<1, l \leq\left(3 C 2^{s}\right)^{1 /(1-s)}=D-1$. As $2(l+1) \leq 2 D<R / r$, we conclude that $E \cap A_{l+1}=\emptyset$ by the maximality of l. Let $\rho_{1}=(l+1) r$. Then $r \leq \rho_{1} \leq D r$ and $E \cap B\left(x_{1}, \rho_{1}+r\right) \backslash$ $B\left(x_{1}, \rho_{1}\right)=\emptyset$. Let $x_{2} \in E \backslash B\left(x_{1}, \rho_{1}\right)=E \backslash B\left(x_{1}, \rho_{1}+r\right)$. Then the balls $B\left(x_{1}, r\right)$ and $B\left(x_{2}, r\right)$ are disjoint. Repeating the same argument as above with x_{1} replaced by x_{2} we find ρ_{2} such that $r \leq \rho_{2} \leq D r$ and $E \cap B\left(x_{2}, \rho_{2}+r\right) \backslash B\left(x_{2}, \rho_{2}\right)=\emptyset$. After $k-1$ steps we choose

$$
x_{k} \in E \backslash \bigcup_{i=1}^{k-1} B\left(x_{i}, \rho_{i}\right),
$$

if this set is non-empty. As in the proof of Lemma 2.1 this process ends after some m steps when E is covered by the balls $B\left(x_{i}, \rho_{i}\right), i=$ $1, \ldots, m$. Also, as before, m satisfies the required estimate $m \leq$ $C d(E)^{s} / r^{s}$.

The following lemma will be needed to get bilipschitz maps in the whole \mathbb{R}^{n}.
2.3. Lemma. Let $C \geq 1$ and $\lambda \geq 9$. There are positive numbers $s_{0}=s_{0}(C, \lambda), 0<s_{0}<1$, and $D=D(C, \lambda)>1$, depending only on C and λ, with the following property.

Let $0<s<s_{0}$, let $E \subset X$ be closed and bounded, let $R>0$ and let μ be a Borel measure on X such that $\mu(X \backslash E)=0$ and that

$$
\mu(B(x, r)) \leq C r^{s} \text { for all } x \in E, r>0
$$

and

$$
\mu(B(x, r)) \geq r^{s} \text { for all } x \in E, 0<r<R .
$$

For every $0<r<R / D$ there exist disjoint closed balls $B\left(x_{i}, \lambda \rho_{i} / 3\right), i=$ $1, \ldots, m$, such that $x_{i} \in E, r \leq \rho_{i} \leq D r, m \leq C d(E)^{s} / r^{s}$,

$$
E \subset \bigcup_{i=1}^{m} B\left(x_{i}, \rho_{i}\right) \text { and } E \cap B\left(x_{i}, \lambda \rho_{i}\right) \backslash B\left(x_{i}, \rho_{i}\right)=\emptyset
$$

Proof. The function $s \mapsto\left(1-3 C \lambda^{2 s}\left(\lambda^{s}-1\right)\right)^{-1 / s}$ is positive and increasing in some interval $\left(0, s_{1}\right)$, so it is bounded in some interval $\left(0, s_{0}\right)$. We choose s_{0} and D so that

$$
\lambda\left(1-3 C \lambda^{2 s}\left(\lambda^{s}-1\right)\right)^{-1 / s} \leq D \text { for } 0<s<s_{0}
$$

Set $c=\log D / \log \lambda$.
Let $x \in E$ and denote

$$
A_{0}=B(x, r), A_{i}=B\left(x, \lambda^{i} r\right) \backslash B\left(x, \lambda^{i-1} r\right), i=1,2, \ldots
$$

If $E \cap A_{1}=\emptyset$, denote $r(x)=r$. Otherwise, let l be the largest positive integer such that $l \leq c$ and that $E \cap A_{i} \neq \emptyset$ for $1=1, \ldots, l$. Then for $i=1, \ldots, l$ there is $y_{i} \in E \cap A_{i}$ with $B\left(y_{i}, \lambda^{i-2} r\right) \subset A_{i-1} \cup A_{i} \cup A_{i+1}$. By the choice of $c, \lambda^{l-2} r<D r<R$. Hence

$$
\begin{aligned}
& r^{s} \lambda^{-s} \frac{\lambda^{s l}-1}{\lambda^{s}-1}=r^{s} \sum_{i=1}^{l} \lambda^{s(i-2)} \leq \\
& \sum_{i=1}^{l} \mu\left(B\left(y_{i}, \lambda^{i-2} r\right)\right) \leq \sum_{i=1}^{l} \mu\left(A_{i-1} \cup A_{i} \cup A_{i+1}\right) \leq \\
& 3 \mu\left(E \cap B\left(x, \lambda^{l+1} r\right)\right) \leq 3 C \lambda^{s(l+1)} r^{s} .
\end{aligned}
$$

This gives

$$
\left(1-3 C \lambda^{2 s}\left(\lambda^{s}-1\right)\right) \lambda^{s l} \leq 1
$$

whence

$$
\lambda^{l+1} \leq \lambda\left(1-3 C \lambda^{2 s}\left(\lambda^{s}-1\right)\right)^{-1 / s} \leq D
$$

Thus $l+1 \leq c$ and we conclude that $E \cap A_{l+1}=\emptyset$. Let $r(x)=\lambda^{l} r$. We have now shown that for any $x \in E$ there is $r(x), r \leq r(x) \leq D r$, such that $E \cap B(x, \lambda r(x)) \backslash B(x, r(x))=\emptyset$.

Let $M_{1}=\sup \{r(x): x \in E\}$. Choose $x_{1} \in E$ with $r(x)>M_{1} / 2$, and then inductively

$$
x_{j+1} \in E \backslash \bigcup_{i=1}^{j} B\left(x_{i}, r\left(x_{i}\right)\right) \text { with } r\left(x_{j+1}\right)>M_{1} / 2
$$

as long as possible. Thus we get points $x_{i} \in E$ and radii $r\left(x_{i}\right), r \leq$ $r\left(x_{i}\right) \leq D r$, for $i=1, \ldots, k_{1}$ such that $r\left(x_{i}\right) / 2 \leq r\left(x_{j}\right) \leq 2 r\left(x_{i}\right)$, $x_{j} \notin B\left(x_{i}, r\left(x_{i}\right)\right)$ for $i<j$, and

$$
\left\{x \in E: r(x)>M_{1} / 2\right\} \subset \bigcup_{i=1}^{k_{1}} B\left(x_{i}, r\left(x_{i}\right)\right) .
$$

If for some $l=1,2, \ldots$ the points $x_{1}, \ldots, x_{k_{l}}$ have been selected and $E \backslash \bigcup_{i=1}^{k_{l}} B\left(x_{i}, r\left(x_{i}\right)\right) \neq \emptyset$, let

$$
M_{l+1}=\sup \left\{r(x): x \in E \backslash \bigcup_{i=1}^{k_{l}} B\left(x_{i}, r\left(x_{i}\right)\right)\right\}
$$

choose $x_{k_{l+1}} \in E \backslash \bigcup_{i=1}^{k_{l}} B\left(x_{i}, r\left(x_{i}\right)\right)$ with $r\left(x_{k_{l+1}}\right)>M_{l+1} / 2$, and so on. This process will end for some $l=p$. Thus we get points $x_{1}, \ldots, x_{m} \in$
$E, m=k_{p}$, such that, with $\rho_{i}=r\left(x_{i}\right), r \leq \rho_{i} \leq D r$, for $i<j, x_{j} \notin$ $B\left(x_{i}, \rho_{i}\right)$ and $r_{j} \leq 2 \rho_{i}$,

$$
E \subset \bigcup_{i=1}^{m} B\left(x_{i}, \rho_{i}\right) \text { and } E \cap B\left(x_{i}, \lambda \rho_{i}\right) \backslash B\left(x_{i}, \rho_{i}\right)=\emptyset .
$$

To show that the balls $B\left(x_{i}, \lambda \rho_{i} / 3\right)$ are disjoint, let $i<j$. Then $\rho_{j} \leq 2 \rho_{i}$ and $x_{j} \in E \cap\left(\mathbb{R}^{n} \backslash B\left(x_{i}, \rho_{i}\right)\right)=E \cap\left(\mathbb{R}^{n} \backslash B\left(x_{i}, \lambda \rho_{i}\right)\right)$. So $d\left(x_{i}, x_{j}\right)>\lambda \rho_{i}$ and $(\lambda / 3)\left(\rho_{i}+\rho_{j}\right) \leq \lambda \rho_{i}<d\left(x_{i}, x_{j}\right)$, which implies that $B\left(x_{i}, \lambda \rho_{i} / 3\right) \cap B\left(x_{j}, \lambda \rho_{j} / 3\right)=\emptyset$. The required estimate $m \leq C d(E)^{s} / r^{s}$ follows as before.

3. BILIPSCHITZ MAPS

In this section we begin to prove the bilipschitz equivalences mentioned in the introduction. It is easy to get explicit bounds for the bilipschitz constants of the maps from the proofs. In Theorem 3.1 $\operatorname{bilip}(f)$ is bounded by a constant depending only on s, t, n and C_{E}. In Theorems 3.3 and 4.2, if C_{E}, C_{F} and $d(E) / d(F)$ (interpreted as 0 if F is unbounded) are all $\leq C$, then $\operatorname{bilip}(f) \leq L$ where L depends only on s, t and C, and also on n in Theorem 4.2. If E and F are bounded, this dependence on the diameters is seen by first observing that we may assume that $d(F) \leq d(E)$; otherwise F can be replaced in the proofs by $F \cap B(p, d(E) / 2)$ for any $p \in F$. Secondly, changing the metrics to $d_{E}(x, y)=d(x, y) / d(E)$ and $d_{F}(x, y)=d(x, y) / d(F)$, we have $d(E)=d(F)=1$, the regularity constants don't change and a bilipschitz constant L changes to $L d(E) / d(F)$.

For any $0<t<n$ we shall define some standard t-dimensional Cantor sets in \mathbb{R}^{n}. Define $0<d<1 / 2$ by $2^{n} d^{t}=1$. Let $Q \subset \mathbb{R}^{n}$ be a closed cube of side-length a. Let $Q_{1}, \ldots, Q_{2^{n}} \subset Q$ be the closed cubes of side-length $d a$ in the corners of Q. Continue this process. Then $C(t, a)$ is defined as

$$
C(t, a)=\bigcap_{k=1}^{\infty} \bigcup_{i_{1} \ldots i_{k}} Q_{i_{1} \ldots i_{k}},
$$

where $i_{j}=1, \ldots 2^{n}$ and each $Q_{i_{1} \ldots i_{k}}$ is a closed cube of sidelength $d^{k} a$ such that $Q_{i_{1} \ldots i_{k} i}, i=1, \ldots, 2^{n}$, are contained in the corners of $Q_{i_{1} \ldots i_{k}}$. It is well known and easy to prove that $C(t, a)$ is t-regular, it is also a particular case of a self similar set satisfying the open set as considered in $[\mathrm{H}]$.
3.1. Theorem. Let $E \subset X$ be a bounded s-regular set and $0<t<s$.

Then there is a t-regular subset F of E and a bilipschitz map $f: F \rightarrow$
$C(t, d(E))$ where $C(t, d(E))$ is a Cantor subset of \mathbb{R}^{n} with $t<n$ as above. Moreover, $C_{F} \leq C$ where C depends only s, t, n and C_{E}.

Proof. We may assume that $d(E)=1$. Choose a sufficiently large integer N so that denoting $d=2^{-N n / t}$, i.e., $2^{N n} d^{t}=1$, we have $d<1 / 3$ and $d^{s-t}<\left(15^{s} C_{E}\right)^{-1}=: c$. Then we can write $C(t, 1)$ as

$$
C(t, 1)=\bigcap_{k=1}^{\infty} \bigcup_{i_{1} \ldots i_{k}} Q_{i_{1} \ldots i_{k}}
$$

where each $Q_{i_{1} \ldots i_{k}}, 1 \leq i_{j} \leq 2^{N n}$, is a closed cube of side-length d^{k} such that $Q_{i_{1} \ldots i_{k} i_{k+1}} \subset Q_{i_{1} \ldots i_{k}}$. By Lemma 2.1 we can find disjoint balls $B\left(x_{i}, 3 d\right), x_{i} \in E, i=1, \ldots, m$, such that $m \geq c d^{-s}>d^{-t}=2^{N n}$. Now we keep the first $2^{N n}$ points x_{i} and forget about the others. Repeating this argument with E replaced by $E \cap B\left(x_{i}, d\right)$ and so on, we can choose points

$$
x_{i_{1} \ldots i_{k} i_{k+1}} \in E \cap B\left(x_{i_{1} \ldots i_{k}}, d^{k}\right), 1 \leq i_{j} \leq 2^{N n}
$$

such that the balls $B\left(x_{i_{1} \ldots i_{k} i}, 3 d^{k+1}\right), i=1, \ldots, 2^{N n}$, are disjoint subsets of $B\left(x_{i_{1} \ldots i_{k}}, 3 d^{k}\right)$. Then for $1 \leq l<k$,

$$
\begin{equation*}
d\left(x_{i_{1} \ldots i_{l}}, x_{i_{1} \ldots i_{k}}\right) \leq \sum_{j=l}^{k-1} d\left(x_{i_{1} \ldots i_{j}}, x_{i_{1} \ldots i_{j+1}}\right) \leq \sum_{j=l}^{k-1} d^{j}<2 d^{l} \tag{3.2}
\end{equation*}
$$

as $d<1 / 2$. Denote

$$
F=\bigcap_{k=1}^{\infty} \bigcup_{i_{1} \ldots i_{k}} B\left(x_{i_{1} \ldots i_{k}}, 3 d^{k}\right) .
$$

Then $F \subset E$. Let $y_{i_{1} \ldots i_{k}}$ be the center of $Q_{i_{1} \ldots i_{k}}$ and denote

$$
F_{k}=\left\{x_{i_{1} \ldots i_{k}}: i_{j}=1, \ldots, 2^{N n}, j=1, \ldots, k\right\}
$$

and

$$
C_{k}=\left\{y_{i_{1} \ldots i_{k}}: i_{j}=1, \ldots, 2^{N n}, j=1, \ldots, k\right\} .
$$

Define the maps

$$
f_{k}: F_{k} \rightarrow C_{k} \text { by } f\left(x_{i_{1} \ldots i_{k}}\right)=y_{i_{1} \ldots i_{k}} .
$$

We check now that f_{k} is bilipschitz with a constant depending only on s, t, n and C_{E}. Let $x=x_{i_{1} \ldots i_{k}}, x^{\prime}=x_{j_{1} \ldots j_{k}} \in F_{k}$ with $x \neq x^{\prime}$. Let $l \geq 1$ be such that $i_{1}=j_{1}, \ldots, i_{l}=j_{l}$ and $i_{l+1} \neq j_{l+1}$; if $i_{1} \neq j_{1}$ the argument is similar. Then by $(3.2) x \in B\left(x_{i_{1} \ldots i_{l} i_{l+1}}, 2 d^{l+1}\right) \cap B\left(x_{i_{1} \ldots i_{l}}, 2 d^{l}\right)$ and $x^{\prime} \in$ $B\left(x_{j_{1} \ldots j_{j} j_{l+1}}, 2 d^{l+1}\right) \cap B\left(x_{i_{1} \ldots i_{l}}, 2 d^{l}\right)$. Since the balls $B\left(x_{i_{1} \ldots i_{l} i_{l+1}}, 3 d^{l+1}\right)$ and $B\left(x_{j_{1} \ldots j_{l j+1}}, 3 d^{l+1}\right)$ are disjoint, we get that $d^{l+1} \leq d\left(x, x^{\prime}\right) \leq 4 d^{l}$.

Letting $y=y_{i_{1} \ldots i_{k}}$ and $y^{\prime}=y_{j_{1} \ldots j_{k}}$ we see from the construction of $C(t, 1)$ that $(1-2 d) d^{l} \leq\left|y-y^{\prime}\right| \leq \sqrt{n} d^{l}$. Hence

$$
d\left(f_{k}(x), f_{k}\left(x^{\prime}\right)\right)=\left|y-y^{\prime}\right| \leq(\sqrt{n} / d) d\left(x, x^{\prime}\right)
$$

and

$$
d\left(f_{k}(x), f_{k}\left(x^{\prime}\right)\right)=\left|y-y^{\prime}\right| \geq((1-2 d) / 4) d\left(x, x^{\prime}\right)
$$

Denote $L=\max \{\sqrt{n} / d, 4 /(1-2 d)\}$.
If $x \in F$ there is a unique sequence $\left(i_{1}, i_{2}, \ldots\right)$ such that $x \in$ $B\left(x_{i_{1} \ldots i_{k}}, 3 d^{k}\right)$ for all $k=1,2, \ldots$. Let $y \in C(t, 1)$ be the point for which $y \in Q_{i_{1} \ldots i_{k}}$ for all $k=1,2, \ldots$. Then $y=\lim _{k \rightarrow \infty} y_{i_{1} \ldots i_{k}}=$ $\lim _{k \rightarrow \infty} f_{k}\left(x_{i_{1} \ldots i_{k}}\right)$. We define the map $f: F \rightarrow C(t, 1)$ by setting $f(x)=y$. If also $x^{\prime}=\lim _{k \rightarrow \infty} x_{j_{1} \ldots j_{k}}$ and $y^{\prime}=\lim _{k \rightarrow \infty} y_{j_{1} \ldots j_{k}}$ we have

$$
\begin{aligned}
& d\left(f(x), f\left(x^{\prime}\right)\right)=\lim _{k \rightarrow \infty}\left(f_{k}\left(x_{i_{1} \ldots i_{k}}\right), f_{k}\left(x_{j_{1} \ldots j_{k}}\right)\right) \\
& \leq \lim _{k \rightarrow \infty} L d\left(x_{i_{1} \ldots i_{k}}, x_{j_{1} \ldots j_{k}}\right)=\operatorname{Ld}\left(x, x^{\prime}\right)
\end{aligned}
$$

and similarly $d\left(f(x), f\left(x^{\prime}\right)\right) \geq d\left(x, x^{\prime}\right) / L$. Obviously, $f(F)=C(t, 1)$. The last statement, $C_{F} \leq C$, of the theorem follows immediately from the fact that L depends only s, t, n and C_{E}.

Next we turn to study less than one-dimensional sets.
3.3. Theorem. Let $E \subset X$ be s-regular and $F \subset Y$ t-regular with $0<s<1$ and $s<t$. Suppose that either E is bounded or both E and F are unbounded. Then there is a bilipschitz map $f: E \rightarrow f(E) \subset F$.

Proof. We shall first consider the case where both E and F are bounded. By the remarks in the beginning of this section, we then may assume that $d(E)=d(F)=1$. Let $D=\left(3 C_{E} 2^{s}\right)^{1 /(1-s)}+1$. Choose d so small that

$$
0<d^{t-s}<\left(2^{s} 15^{t} D^{s} C_{E} C_{F}\right)^{-1} \text { and } 2 D d<1 .
$$

We shall show that there exist s-regular sets $E_{i_{1} \ldots i_{k}}$, points $x_{i_{1} \ldots i_{k}} \in$ $E, y_{i_{1} \ldots i_{k}} \in F$ and radii $\rho_{i_{1} \ldots i_{k}}$ where

$$
1 \leq i_{j} \leq m_{i_{0} \ldots i_{j-1}}, j=1, \ldots, k, \text { with } m_{i_{0} \ldots i_{j-1}} \leq C_{E} 2^{s} D^{s} / d^{s}, i_{0}=0
$$

such that for all $k=1,2, \ldots$,

$$
\begin{aligned}
& E=\bigcup_{i_{1} \ldots i_{k}} E_{i_{1} \ldots i_{k}}, \\
& E_{i_{1} \ldots i_{k} i_{k+1}} \subset E_{i_{1} \ldots i_{k}}, \\
& d^{k} \leq \rho_{i_{1} \ldots i_{k}} \leq D d^{k}, \\
& x_{i_{1} \ldots i_{k}} \in E_{i_{1} \ldots i_{k}} \subset B\left(x_{i_{1} \ldots i_{k}}, \rho_{i_{1} \ldots i_{k}}\right), \\
& E \cap B\left(x_{i_{1} \ldots i_{k}}, \rho_{i_{1} \ldots i_{k}}+d^{k}\right) \backslash B\left(x_{i_{1} \ldots i_{k}}, \rho_{i_{1} \ldots i_{k}}\right)=\emptyset, \\
& d\left(E_{i_{1} \ldots i_{k}}, E_{j_{1} \ldots j_{k}}\right) \geq d^{k} \text { if } i_{k} \neq j_{k}, \\
& y_{i_{1} \ldots i_{k} i_{k+1}} \in F \cap B\left(y_{i_{1} \ldots i_{k}}, d^{k}\right), \\
& B\left(y_{i_{1} \ldots i_{k} i_{k+1}}, 2 d^{k+1}\right) \subset B\left(y_{i_{1} \ldots i_{k}}, 2 d^{k}\right), \\
& B\left(y_{i_{1} \ldots i_{k}}, 3 d^{k}\right) \cap B\left(y_{j_{1} \ldots j_{k}}, 3 d^{k}\right)=\emptyset \text { if } i_{k} \neq j_{k} .
\end{aligned}
$$

By Lemma 2.2 we find $x_{i} \in E$ and $\rho_{i}, d \leq \rho_{i} \leq D d$, with $i=$ $1, \ldots, m_{0}, m_{0} \leq C_{E} / d^{s}$, such that the balls $B\left(x_{i}, d\right)$ are disjoint, $x_{j} \notin$ $B\left(x_{i}, \rho_{i}\right)$ for $i<j$,

$$
E \subset \bigcup_{i=1}^{m_{0}} B\left(x_{i}, \rho_{i}\right)
$$

and

$$
E \cap B\left(x_{i}, \rho_{i}+d\right) \backslash B\left(x_{i}, \rho_{i}\right)=\emptyset
$$

By Lemma 2.1 we find $y_{i} \in F$ with $i=1, \ldots, n_{0}, n_{0} \geq\left(15^{t} C_{F} d^{t}\right)^{-1} \geq$ $C_{E} / d^{s} \geq m_{0}$ such that the balls $B\left(y_{i}, 3 d\right)$ are disjoint. We define

$$
E_{1}=E \cap B\left(x_{1}, \rho_{1}\right) \text { and } E_{i}=E \cap B\left(x_{i}, \rho_{i}\right) \backslash \bigcup_{j=1}^{i-1} E_{j} \text { for } i \geq 2
$$

Then the required properties for $k=1$ are readily checked.
Suppose then that for some $k \geq 1, E_{i_{1} \ldots i_{k}}, x_{i_{1} \ldots i_{k}} \in E, y_{i_{1} \ldots i_{k}} \in F$ and $\rho_{i_{1} \ldots i_{k}}$ have been found with the asserted properties. Fix $i_{1} \ldots i_{k}$. We shall apply Lemma 2.2 with $E=E_{i_{1} \ldots i_{k}}, R=d^{k}, r=d^{k+1}$ and $C=C_{E}$, recall that $2 D d<1$. Since $d\left(E_{i_{1} \ldots i_{k}}, E \backslash E_{i_{1} \ldots i_{k}}\right) \geq d^{k}$, we have $E \cap B(x, r)=E_{i_{1} \ldots i_{k}} \cap B(x, r)$ for $x \in E_{i_{1} \ldots i_{k}}$ and $0<r<d^{k}$, so this is possible. Thus we obtain $x_{i_{1} \ldots i_{k} i} \in E_{i_{1} \ldots i_{k}}$ and $\rho_{i_{1} \ldots i_{k} i}, i=$ $1, \ldots, m_{i_{0} \ldots i_{k}}$, such that $m_{i_{0} \ldots i_{k}} \leq C_{E} d\left(E_{i_{1} \ldots i_{k}}\right)^{s} / d^{(k+1) s} \leq C_{E} 2^{s} D^{s} / d^{s}$, the balls $B\left(x_{i_{1} \ldots i_{k} i}, d^{k+1}\right)$ are disjoint, $x_{i_{1} \ldots i_{k} j} \notin B\left(x_{i_{1} \ldots i_{k} i}, \rho_{i_{1} \cdots_{k} i}\right)$ for $i<j$,

$$
\begin{gathered}
d^{k+1} \leq \rho_{i_{1} \ldots i_{k} i} \leq D d^{k+1}, \\
E_{i_{1} \ldots i_{k}} \subset \bigcup_{i=1}^{m_{i_{0} \ldots i_{k}}} B\left(x_{i_{1} \ldots i_{k} i}, \rho_{i_{1} \ldots i_{k} i}\right)
\end{gathered}
$$

and

$$
E \cap B\left(x_{i_{1} \ldots i_{k} i}, \rho_{i_{1} \ldots i_{k} i}+d^{k+1}\right) \backslash B\left(x_{i_{1} \ldots i_{k} i}, \rho_{i_{1} \ldots i_{k} i}\right)=\emptyset .
$$

Define

$$
E_{i_{1} \ldots i_{k} 1}=E_{i_{1} \ldots i_{k}} \cap B\left(x_{i_{1} \ldots i_{k} 1}, \rho_{i_{1} \ldots i_{k} 1}\right)
$$

and

$$
E_{i_{1} \ldots i_{k} i}=E_{i_{1} \ldots i_{k}} \cap B\left(x_{i_{1} \ldots i_{k} i}, \rho_{i_{1} \ldots i_{k} i}\right) \backslash \bigcup_{j=1}^{i-1} E_{i_{1} \ldots i_{k} j} \text { for } i \geq 2
$$

Applying Lemma 2.1 we find points $y_{i_{1} \ldots i_{k} i} \in F \cap B\left(y_{i_{1} \ldots i_{k}}, d^{k}\right), i=$ $1, \ldots, n_{i_{0} \ldots i_{k}}$, with $n_{i_{0} \ldots i_{k}} \geq\left(15^{t} C_{F} d^{t}\right)^{-1} \geq C_{E} 2^{s} D^{s} / d^{s} \geq m_{i_{0} \ldots i_{k}}$ such that the balls $B\left(y_{i_{1} \ldots i_{k} i}, 3 d^{k+1}\right), i=1, \ldots, n_{i_{0} \ldots i_{k}}$, are disjoint. Then the required properties are easily checked.

Set

$$
A_{k}=\left\{x_{i_{1} \ldots i_{k}}: i_{j}=1, \ldots, m_{i_{0} \ldots i_{j-1}}, j=1, \ldots, k\right\}
$$

and

$$
B_{k}=\left\{y_{i_{1} \ldots i_{k}}: i_{j}=1, \ldots, m_{i_{0} \ldots i_{j-1}}, j=1, \ldots, k\right\}
$$

Define the maps

$$
f_{k}: A_{k} \rightarrow B_{k} \text { by } f\left(x_{i_{1} \ldots i_{k}}\right)=y_{i_{1} \ldots i_{k}} .
$$

We check now that f_{k} is bilipschitz with a constant depending only on s, t, C_{E} and C_{F}. Let $x=x_{i_{1} \ldots i_{k}}, x^{\prime}=x_{j_{1} \ldots j_{k}} \in A_{k}$ with $x \neq x^{\prime}$. Let $l \geq 1$ be such that $i_{1}=j_{1}, \ldots, i_{l}=j_{l}$ and $i_{l+1} \neq j_{l+1}$; if $i_{1} \neq j_{1}$ the argument is similar. Then, as in (3.2) in the proof of Theorem 3.1, $x \in E_{i_{1} \ldots i_{l} i_{l+1}} \cap B\left(x_{i_{1} \ldots i_{l}}, 2 D d^{l}\right)$ and $x^{\prime} \in E_{j_{1} \ldots j_{l} j_{l+1}} \cap B\left(x_{i_{1} \ldots i_{l}}, 2 D d^{l}\right)$. Since $d\left(E_{i_{1} \ldots i_{l} i_{l+1}}, E_{j_{1} \ldots j_{l} j_{l+1}}\right) \geq d^{l+1}$, we get that $d^{l+1} \leq d\left(x, x^{\prime}\right) \leq 4 D d^{l}$. Letting $y=y_{i_{1} \ldots i_{k}}$ and $y^{\prime}=y_{j_{1} \ldots j_{k}}$, we have $y \in B\left(y_{i_{1} \ldots i_{l} i_{l+1}}, 2 d^{l+1}\right) \cap$ $B\left(y_{i_{1} \ldots i_{l}}, 2 d^{l}\right)$ and $y^{\prime} \in B\left(y_{j_{1} \ldots j_{j} j_{l+1}}, 2 d^{l+1}\right) \cap B\left(y_{i_{1} \ldots i_{l}}, 2 d^{l}\right)$. Hence, as $B\left(y_{i_{1} \ldots i_{l} i_{l+1}}, 3 d^{l+1}\right) \cap B\left(y_{j_{1} \ldots j_{l} j_{l+1}}, 3 d^{l+1}\right)=\emptyset, d^{l+1} \leq d\left(y, y^{\prime}\right) \leq 4 d^{l}$,

$$
d\left(f_{k}(x), f_{k}\left(x^{\prime}\right)\right)=d\left(y, y^{\prime}\right) \leq(4 / d) d\left(x, x^{\prime}\right)
$$

and

$$
d\left(f_{k}(x), f_{k}\left(x^{\prime}\right)\right)=d\left(y, y^{\prime}\right) \geq(d /(4 D)) d\left(x, x^{\prime}\right)
$$

Denote $L=4 D / d>4 / d$.
As in the proof of Theorem 3.1 we define the map $f: E \rightarrow f(E) \subset F$ by

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}\left(x_{i_{1} \ldots i_{k}}\right)
$$

when $x=\lim _{k \rightarrow \infty} x_{i_{1} \ldots i_{k}}$. Then $\operatorname{bilip}(f) \leq L$.
If E is bounded and F unbounded, the same proof works with F replaced by $F \cap B(p, 1)$ for any $p \in F$. Suppose E and F are unbounded,
and let $p \in E$. Using the proof of Lemma 2.2 we find $R_{k},(2 D)^{k} \leq R_{k} \leq$ $D(2 D)^{k}, k=1,2, \ldots$, such that

$$
E \cap B\left(p, R_{k}+(2 D)^{k}\right) \backslash B\left(p, R_{k}\right)=\emptyset
$$

Let $E_{k}=E \cap B\left(p, R_{k}\right)$. We check that E_{k} is s-regular with $C_{E_{k}} \leq$ $(2 D)^{s} C_{E}$. To see this, let $x \in E_{k}$ and $0<r \leq d\left(E_{k}\right) \leq(2 D)^{k+1}$. If $r \leq(2 D)^{k}$, then $E_{k} \cap B(x, r)=E \cap B(x, r)$, so $\mu\left(E_{k} \cap B(x, r)\right) \geq r^{s}$. If $r>(2 D)^{k}$, we have $\mu\left(E_{k} \cap B(x, r)\right) \geq(2 D)^{k s} \geq(2 D)^{-s} r^{s}$. These facts imply that $C_{E_{k}} \leq(2 D)^{s} C_{E}$. Since the sets E_{k} are bounded we can find bilipschitz maps $f_{k}: E_{k} \rightarrow f\left(E_{k}\right) \subset F$ with $\operatorname{bilip}\left(f_{k}\right) \leq L$ where L depends only on s, t, C_{E} and C_{F}. Using Arzela-Ascoli theorem we can extract a subsequence $\left(f_{k_{i}}\right)$ such that the sequence $\left(f_{k_{i}}\right)_{k_{i} \geq k}$ converges on E_{k} for every $k=1,2, \ldots$ Then $f=\lim _{i \rightarrow \infty} f_{k_{i}}: E \rightarrow f(E) \subset F$ is bilipschitz with $\operatorname{bilip}(f) \leq L$.

4. MAPPINGS IN \mathbb{R}^{n}

In this section we prove for small dimensional sets in \mathbb{R}^{n} that we can find bilipschitz mappings of the whole \mathbb{R}^{n}. The following lemma may be well known, but we have not found a suitable reference in literature.
4.1. Lemma. Let $0<\delta<c(n)$, where $c(n)<1 / 2$ is a positive constant depending only on n and determined later. Let $p, q \in \mathbb{R}^{n}$ and $R>0$. For $i=1, \ldots, m$ let $\delta R \leq r_{i} \leq R / 3$ and $x_{i} \in B(p, R)$ and $y_{i} \in B(q, R)$ with $B\left(x_{i}, 3 r_{i}\right) \cap B\left(x_{j}, 3 r_{j}\right)=\emptyset$ and $B\left(y_{i}, 3 r_{i}\right) \cap B\left(y_{j}, 3 r_{j}\right)=\emptyset$ for $i \neq j$. Then there is a bilipschitz map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f(x)=x-p+q$ for $x \in \mathbb{R}^{n} \backslash B(p, 2 R)$ and $f(x)=x-x_{i}+y_{i}$ for $x \in B\left(x_{i}, r_{i}\right)$. Moreover, $\operatorname{bilip}(f) \leq L$ where L depends only on n and δ.

Proof. We may assume that $p=q=0$ and $R=1$. Let $\epsilon=\delta^{2 n+3}$. It is enough to construct a bilipschitz map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $\operatorname{bilip}(f) \leq L, L$ depending only on n and δ, such that $f(x)=x$ for $|x|>3 \sqrt{n}$ and $f(x)=x-x_{i}+y_{i}$ for $x \in B\left(x_{i}, \epsilon\right)$. To see this, consider bilipschitz maps $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with bilipschitz constants depending only on n and δ such that $g(x)=\left(\epsilon / r_{i}\right)\left(x-x_{i}\right)+x_{i}$ for $x \in B\left(x_{i}, r_{i}\right), g(x)=x$ for $x \in B(0,3 / 2) \backslash \bigcup_{i=1}^{m} B\left(x_{i}, 2 r_{i}\right), h(y)=\left(\epsilon / r_{i}\right)\left(y-y_{i}\right)+y_{i}$ for $y \in B\left(y_{i}, r_{i}\right)$, $h(y)=y$ for $y \in B(0,3 / 2) \backslash \bigcup_{i=1}^{m} B\left(y_{i}, 2 r_{i}\right), g(x)=h(x)$ for $|x|>2$ and $g(B(0,2))=h(B(0,2))=B(0,3 \sqrt{n})$. Then $h^{-1} \circ f \circ g$ has the required properties.

For the rest of the proof we assume that $n \geq 2$, for $n=1$ a much simpler argument works. Denote $Q=[-2,2]^{n-1}$. Let $a, b \in B(0,1) \subset$ \mathbb{R}^{n-1}. For $v \in \partial B(a, \epsilon)$ denote by v^{\prime} the single point in $\partial Q \cap\{t(v-$
$a)+a: t \geq 1\}$. Let $g(a, b): Q \rightarrow Q$ be the bilipschitz map such that

$$
g(a, b)(x)=x-a+b \text { for } x \in B(a, \epsilon)
$$

and for $v \in \partial B(a, \epsilon) g(a, b)$ maps the line segment $\left[v, v^{\prime}\right]$, affinely onto the line segment $\left[v-a+b, v^{\prime}\right]$. Then $g(a, b)(x)=x$ for $x \in \partial Q$ and $g(a, a)$ is the identity map. Moreover, $g(a, b)$ has a bilipschitz constant depending only on n.

Now we show that there exists a unit vector $\theta \in S^{n-1}$ such that $\left|\theta \cdot\left(x_{i}-x_{j}\right)\right|>5 \epsilon$ and $\left|\theta \cdot\left(y_{i}-y_{j}\right)\right|>5 \epsilon$ for $i \neq j$. To see this, let σ denote the surface measure on S^{n-1}. We have by some simple geometry (or one can consult [M], Lemma 3.11)
$\sigma\left(\left\{\theta \in S^{n-1}:\left|\theta \cdot\left(x_{i}-x_{j}\right)\right| \leq 5 \epsilon\right\}\right) \leq C_{1}(n)\left|x_{i}-x_{j}\right|^{-1} \epsilon \leq C_{1}(n) \delta^{2 n+2}$,
and similarly for y_{i}, y_{j}. There are less than $C_{2}(n) \delta^{-2 n}$ pairs $\left(x_{i}, x_{j}\right)$ and $\left(y_{i}, y_{j}\right)$, whence
$\sigma\left(\left\{\theta \in S^{n-1}:\left|\theta \cdot\left(x_{i}-x_{j}\right)\right| \leq 5 \epsilon\right.\right.$ or $\left|\theta \cdot\left(y_{i}-y_{j}\right)\right| \leq 5 \epsilon$ for some $\left.\left.i \neq j\right\}\right)$ $<\delta$,
if $C_{1}(n) C_{2}(n) \delta<1$, which we have taking $c(n) \leq\left(C_{1}(n) C_{2}(n)\right)^{-1}$ in the statement of the theorem. Taking also $c(n) \leq \sigma\left(S^{n-1}\right)$ our θ exists. We may assume that $\theta=(0, \ldots, 0,1)$.

Let t_{i} and $u_{i}, i=1, \ldots, m$, be the n 'th coordinates of x_{i} and y_{i}, respectively, and let $t_{0}=u_{0}=-2, t_{m+1}=u_{m+1}=2$. We may assume that $t_{i}<t_{i+1}$ and $u_{i}<u_{i+1}$ for $i=0, \ldots, m$. Then $\left|t_{i}-t_{j}\right|>5 \epsilon$ and $\left|u_{i}-u_{j}\right|>5 \epsilon$ for $i \neq j, i, j=0, \ldots, m+1$. For $x=\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}$, let $\tilde{x}=\left(x^{1}, \ldots, x^{n-1}\right)$. Let $Q_{0}=[-2,2]^{n}$ and for $i=1, \ldots, m$,

$$
\begin{aligned}
& R_{i}=\left\{x \in Q_{0}:\left|x^{n}-t_{i}\right| \leq \epsilon\right\}, \\
& S_{i}=\left\{y \in Q_{0}:\left|y^{n}-u_{i}\right| \leq \epsilon\right\} .
\end{aligned}
$$

We shall define f in Q_{0} with the help of the maps $g(a, b)$ in such a way that it maps R_{i} onto S_{i} translating $B\left(x_{i}, \epsilon\right)$ onto $B\left(y_{i}, \epsilon\right)$. Between R_{i} and $R_{i+1} f$ is defined by simple homotopies changing $f \mid R_{i}$ to $f \mid R_{i+1}$, and similarly in Q_{0} 'below' R_{1} and 'above' R_{m}. Finally f can be extended from Q_{0} to all of \mathbb{R}^{n} rather trivially. We do this now more precisely.

Let $x \in Q_{0}$ and $1 \leq i \leq m+1$. We set

$$
\begin{aligned}
& f(x)=\left(g\left(\tilde{x}_{i}, \tilde{y}_{i}\right)(\tilde{x}), x^{n}-t_{i}+u_{i}\right) \text { if }\left|x^{n}-t_{i}\right| \leq \epsilon \text { and } i \leq m, \\
& \left.\left.f(x)=\left(g\left(\left(2 \epsilon-\left|x^{n}-t_{i}\right|\right) / \epsilon\right) \tilde{x}_{i},\left(2 \epsilon-\left|x^{n}-t_{i}\right|\right) / \epsilon\right) \tilde{y}_{i}\right)(\tilde{x}), x^{n}+u_{i}-t_{i}\right)
\end{aligned}
$$

if $\epsilon \leq\left|x^{n}-t_{i}\right| \leq 2 \epsilon$ and $i \leq m$,

$$
\begin{aligned}
& f(x)=\left(\tilde{x}, \frac{x^{n}-t_{i-1}-2 \epsilon}{t_{i}-t_{i-1}-4 \epsilon}\left(u_{i}-2 \epsilon\right)+\frac{t_{i}-2 \epsilon-x^{n}}{t_{i}-t_{i-1}-4 \epsilon}\left(u_{i-1}+2 \epsilon\right)\right) \\
& \text { if } t_{i-1}+2 \epsilon \leq x^{n} \leq t_{i}-2 \epsilon, \\
& f(x)=x \text { if }-2 \leq x^{n} \leq-2+2 \epsilon \text { or } 2-2 \epsilon \leq x^{n} \leq 2
\end{aligned}
$$

Then $f: Q_{0} \rightarrow Q_{0}$ is bilipschitz with a constant depending only on n and $\delta, f(x)=x-x_{i}+y_{i}$ for $x \in B\left(x_{i}, \epsilon\right), f(x)=x$ for $x \in Q_{0}$ with $x_{n}=-2$ or $x_{n}=2$, and at the other parts of the boundary of $Q_{0} f$ is of the form $f(x)=\left(\tilde{x}, \phi\left(x^{n}\right)\right)$ where $\phi:[-2,2] \rightarrow[-2,2]$ is strictly increasing and piecewise affine. It is an easy matter to extend f to a bilipschitz mapping of \mathbb{R}^{n} with a bilipschitz constant depending only on n and δ and with $f(x)=x$ for $x \in \mathbb{R}^{n} \backslash B(0,3 \sqrt{n})$. For example, setting $\|\tilde{x}\|_{\infty}=\max \left\{\left|x^{1}\right|, \ldots,\left|x^{n-1}\right|\right\}$, we can take

$$
f(x)=\left(\tilde{x},\left(3-\|x\|_{\infty}\right) \phi\left(x^{n}\right)+\left(\|x\|_{\infty}-2\right) x^{n}\right)
$$

when $2 \leq\|\tilde{x}\|_{\infty} \leq 3$ and $\left|x^{n}\right| \leq 2$, and $f(x)=x$ when $\|\tilde{x}\|_{\infty}>3$ or $\left|x^{n}\right|>2$.
4.2. Theorem. Let $C \geq 1$ and let $s_{0}=s_{0}(C, 18), 0<s_{0}<1 / 6$, be the constant of Lemma 2.3. Let $0<s<s_{0}$ and $s<t<n$, let $E \subset \mathbb{R}^{n}$ be s-regular and $F \subset \mathbb{R}^{n} t$-regular with $C_{E}, C_{F} \leq C$. Suppose that either E is bounded or both E and F are unbounded. Then there is a bilipschitz map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f(E) \subset F$.

Proof. We assume that E and F are bounded. The remaining case can be dealt with as at the end of the proof of Theorem 3.3. We can then assume that $E, F \subset B(0,1)$ with $d(E)=d(F)=1 / 2$. Let $c(n)$ and $D=D(C, 18)$ be as in Lemma 2.3, and choose d such that

$$
d<c(n), 12 D d<1 \text { and } 0<d^{t-s}<\left(2^{s} 60^{t} C_{E} C_{F} D^{t}\right)^{-1}
$$

By Lemma 2.3 we find $x_{i} \in E$ and $\rho_{i}, d \leq \rho_{i} \leq D d$, with $i=$ $1, \ldots, m_{0}, m_{0} \leq C_{E} / d^{s}$, such that the balls $B\left(x_{i}, 6 \rho_{i}\right)$ are disjoint,

$$
E \subset \bigcup_{i=1}^{m_{0}} B\left(x_{i}, \rho_{i}\right)
$$

and

$$
E \cap B\left(x_{i}, 18 \rho_{i}\right) \backslash B\left(x_{i}, \rho_{i}\right)=\emptyset .
$$

By Lemma 2.1 we find $y_{i} \in F$ with $i=1, \ldots, n_{0}$, $n_{0} \geq\left(5^{t} C_{F}\right)^{-1}(1 /(12 D d))^{t} \geq C_{E} / d^{s} \geq m_{0}$ such that the balls $B\left(y_{i}, 6 D d\right)$, $j=1, \ldots, n_{0}$, are disjoint. Next applying Lemma 2.3 with E replaced by $E \cap B\left(x_{i}, \rho_{i}\right), R=d, r=d^{2}$ and $C=C_{E}$, we find for every $i=1, \ldots, m_{0}, x_{i j} \in E \cap B\left(x_{i}, \rho_{i}\right)$ and $\rho_{i j}, d^{2} \leq \rho_{i j} \leq D d^{2}$, with $j=1, \ldots, m_{i}, m_{i} \leq C_{E} d\left(E \cap B\left(x_{i}, \rho_{i}\right)\right)^{s} / d^{2 s} \leq C_{E} 2^{s} D^{s} / d^{s}$, such that the balls $B\left(x_{i j}, 6 \rho_{i j}\right)$ are disjoint,

$$
E \cap B\left(x_{i}, \rho_{i}\right) \subset \bigcup_{j=1}^{m_{i}} B\left(x_{i j}, \rho_{i j}\right)
$$

and

$$
E \cap B\left(x_{i j}, 18 \rho_{i j}\right) \backslash B\left(x_{i j}, \rho_{i j}\right)=\emptyset,
$$

and by Lemma 2.1 we find $y_{i j} \in F \cap B\left(y_{i}, d\right), j=1, \ldots, n_{i}, n_{i} \geq$ $\left(5^{t} C_{F}\right)^{-1}\left(d /\left(6 D d^{2}\right)\right)^{t} \geq 2^{s} C_{E} / d^{s} \geq m_{i}$ such that the balls $B\left(y_{i j}, 6 D d^{2}\right)$ are disjoint. Continuing this we find for all $k=1,2, \ldots, x_{i_{1} \ldots i_{k}}, \rho_{i_{1} \ldots i_{k}}$ and $y_{i_{1} \ldots i_{k}}$ such that for all $i_{j}=m_{i_{0} \ldots i_{j-1}}, j=1, \ldots, k, k=1,2, \ldots$, with $i_{0}=0$,

$$
\begin{aligned}
& E \subset \bigcup_{i_{1} \ldots i_{k}} B\left(x_{i_{1} \ldots i_{k}}, \rho_{i_{1}, \ldots, i_{k}}\right), \\
& B\left(x_{i_{1} \ldots i_{k}}, 6 \rho_{i_{1} \ldots i_{k}}\right) \cap B\left(x_{j_{1} \ldots j_{k}}, 6 \rho_{i_{1} \ldots i_{k}}\right)=\emptyset \text { if } i_{k} \neq j_{k}, \\
& x_{i_{1} \ldots i_{k} i_{k+1}} \in E \cap B\left(x_{i_{1} \ldots i_{k}}, \rho_{i_{1} \ldots i_{k}}\right), \\
& d^{k} \leq \rho_{i_{1} \ldots i_{k}} \leq D d^{k}, \\
& B\left(x_{i_{1} \ldots i_{k} i_{k+1}}, 4 \rho_{i_{1} \ldots i_{k} i_{k+1}}\right) \subset B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1} \ldots i_{k}}\right), \\
& E \cap B\left(x_{i_{1} \ldots i_{k}}, 18 \rho_{i_{1} \ldots i_{k}}\right) \backslash B\left(x_{i_{1} \ldots i_{k}}, \rho_{i_{1} \ldots i_{k}}\right)=\emptyset, \\
& y_{i_{1} \ldots i_{k} i_{k+1}} \in F \cap B\left(y_{i_{1} \ldots i_{k}}, d^{k}\right), \\
& B\left(y_{i_{1} \ldots i_{k}}, 6 D d^{k}\right) \cap B\left(y_{j_{1} \ldots j_{k}}, 6 D d^{k}\right)=\emptyset \text { if } i_{k} \neq j_{k} .
\end{aligned}
$$

Using Lemma 4.1 we find a bilipschitz map $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f_{1}(x)=x$ for $|x|>2$ and $f_{1}(x)=x-x_{i}+y_{i}$ for $x \in B\left(x_{i}, 2 \rho_{i}\right)$, and $\operatorname{bilip}(f) \leq L$ where L depends only on s, t, n and C. Let

$$
B_{k}=\bigcup_{i_{1} \ldots i_{k}} B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)
$$

Then $B_{k+1} \subset B_{k}$ for all k and $E=\bigcap_{k=1}^{\infty} B_{k}$. We use Lemma 4.1 to define inductively $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f_{k+1}(x)=f_{k}(x)$ for $x \in \mathbb{R}^{n} \backslash B_{k}^{o}$, where B_{k}^{o} is the interior of $B_{k}, f_{k+1} \mid B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$ is L-bilipschitz and $f_{k+1}(x)=x-x_{i_{1}, \ldots, i_{k+1}}+y_{i_{1}, \ldots, i_{k+1}}$ for $x \in B\left(x_{i_{1} \ldots i_{k+1}}, 2 \rho_{i_{1}, \ldots, i_{k+1}}\right)$. We check now by induction that

$$
\begin{equation*}
|x-y| / L \leq\left|f_{k}(x)-f_{k}(y)\right| \leq L|x-y| \text { for all } x, y \in \mathbb{R}^{n} \tag{4.3}
\end{equation*}
$$

For $k=1$ this was already stated. Suppose this is true for $k-1$ for some $k \geq 2$ and let $x, y \in \mathbb{R}^{n}$. If $x, y \in \mathbb{R}^{n} \backslash B_{k}^{o}$, (4.3) follows from the definition of f_{k} and the induction hypothesis. If $x, y \in B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$ for some $i_{1} \ldots i_{k}$, then (4.3) follows from the fact that f_{k} is a translation in $B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$. Finally, let $x \in B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$ and $y \in \mathbb{R}^{n} \backslash B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$. Let $z \in \partial B\left(x_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$ be the point on the line segment with end points x and y. Then, by the two previous cases,

$$
\begin{aligned}
& \left|f_{k}(x)-f_{k}(y)\right| \leq\left|f_{k}(x)-f_{k}(z)\right|+\left|f_{k}(z)-f_{k}(y)\right| \leq \\
& L|x-z|+L|z-y|=L|x-z|
\end{aligned}
$$

This proves the right hand inequality of (4.3). A similar argument for f_{k}^{-1} with the balls $B\left(y_{i_{1} \ldots i_{k}}, 2 \rho_{i_{1}, \ldots, i_{k}}\right)$ gives the left hand inequality.

We have left to show that the limit $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ exists for all $x \in \mathbb{R}^{n}$. Then also f satisfies (4.3) and $f(E) \subset F$. First, if $x \in \mathbb{R}^{n} \backslash E$, then $x \in \mathbb{R}^{n} \backslash B_{l}$ for some l, and so $f_{k}(x)=f_{l}(x)$ for $k \geq l$. If $x \in E$, there are i_{1}, i_{2}, \ldots, such that $x \in B\left(x_{i, \ldots i_{k}}, 2 \rho_{i_{1} \ldots i_{k}}\right)$ for all k. Then $f_{k}(x) \in B\left(y_{i_{1} \ldots i_{k}}, 2 D d^{k}\right)$ and $\lim _{k \rightarrow \infty} f_{k}(x)=y=f(x)$ where $y=\lim _{k \rightarrow \infty} y_{i_{1} \ldots i_{k}}$.

5. SUB- AND SUPERSETS

In this section we shall consider the question whether a given regular set contains regular subsets of smaller dimension and whether it is contained in higher dimensional regular sets.
5.1. Theorem. Let $E \subset X$ be s-regular and $0<t<s$. For every $x \in E$ and $0<r<d(E), E \cap B(x, r)$ contains a t-regular subset F such that $C_{F} \leq C$ and $d(F) \geq c r$ where C and c are positive constants depending only on s, t and C_{E}.

This can be proven with the same method as Theorem 3.1. In fact, that method gives that $E \cap B(x, r)$ has a t-regular subset which is bilipschitz equivalent with $C(t, r)$ with a bilipschitz constant depending only on s, t and C_{E}. Observe that the regularity of E implies that $d(E \cap B(x, r)) \geq C_{E}^{-1 / s} r$.
5.2. Theorem. Let $0<s<t<u$. Suppose that $E \subset X$ is s-regular and that X is u-regular. Then there is a t-regular set F with $E \subset F \subset$ X. Moreover, $C_{F} \leq C$ where C depends only on s, t, C_{E} and C_{X}.

Proof. We shall only consider the case where X and E are bounded. A slight modification of the proof works if X or both X and E are
unbounded. Recalling the remarks at the beginning of Section 3, we may assume that $d(E)=1$. Let $0<d<1 / 30$ be such that $d^{u-s}<4^{-s} 30^{-u} C_{E}^{-1} C_{X}^{-1}$. By Lemma 2.1 there are for every $k=$ $1,2 \ldots$, disjoint balls $B\left(x_{k, i}, 6 d^{k}\right), i=1, \ldots, m_{k}$, such that $x_{k, i} \in E$ and the balls $B\left(x_{k, i}, 30 d^{k}\right)$ cover E. Further, there are disjoint balls $B\left(x_{k, i}, 6 d^{k}\right), i=m_{k}+1, \ldots, n_{k}$, such that $x_{k, i} \in X \backslash \cup_{i=1}^{m_{k}} B\left(x_{k, i}, 30 d^{k}\right)$ and the balls $B\left(x_{k, i}, 30 d^{k}\right), i=1, \ldots, n_{k}$, cover X.

Fix k and $i, 1 \leq i \leq m_{k}$. Denote

$$
\begin{aligned}
& J=\left\{j \in\left\{1, \ldots, n_{k}\right\}: B\left(x_{k+1, j}, d^{k+1}\right) \subset B\left(x_{k, i}, 3 d^{k}\right)\right\}, \\
& J^{\prime}=\left\{j \in\left\{1, \ldots, n_{k}\right\}: B\left(x_{k+1, j}, 30 d^{k+1}\right) \cap B\left(x_{k, i}, d^{k}\right) \neq \emptyset\right\}, \\
& I=\left\{j \in J: E \cap B\left(x_{k+1, j}, 6 d^{k+1}\right) \neq \emptyset\right\},
\end{aligned}
$$

and let n, n^{\prime} and m be the number of indices in J, J^{\prime} and I, respectively. Then, as $d<2 / 31, J^{\prime} \subset J$ and so $n^{\prime} \leq n$. Since $B\left(x_{k, i}, d^{k}\right) \subset$ $\cup_{j \in J^{\prime}} B\left(x_{k+1, j}, 30 d^{k+1}\right)$, we have, comparing measures as in the proof of Lemma 2.1, that $n \geq n^{\prime} \geq 30^{-u} C_{X}^{-1} d^{-u}$. If $j \in I$ there is $z_{j} \in$ $E \cap B\left(x_{k+1, j}, 6 d^{k+1}\right)$ and then, as also $j \in J$ and $d<1 / 7$,

$$
B\left(z_{j}, d^{k+1}\right) \subset B\left(x_{k+1, j}, 7 d^{k+1}\right) \subset B\left(x_{k, i}, 4 d^{k}\right)
$$

Then the balls $B\left(z_{j}, d^{k+1}\right), j \in I$, are disjoint and

$$
m d^{(k+1) s} \leq \sum_{j \in I} \mu\left(B\left(z_{j}, d^{k+1}\right)\right) \leq \mu\left(B\left(x_{k, i}, 4 d^{k}\right)\right) \leq 4^{s} C_{E} d^{k s}
$$

whence $m \leq 4^{s} C_{E} d^{-s}$. Combining these inequalities and recalling the choice of d, we find that

$$
m \leq 4^{s} C_{E} d^{-s}<30^{-u} C_{X}^{-1} d^{-u} \leq n .
$$

Thus we can choose some $j \in J \backslash I$. Let $y_{k, i}=x_{k+1, j}$ and $B_{k, i}=$ $B\left(y_{k, i}, d^{k+1}\right)$. Denote also $2 B_{k, i}=B\left(y_{k, i}, 2 d^{k+1}\right)$. Then for a fixed k the balls $2 B_{k, i}, i=1, \ldots, m_{k}$, are disjoint. If $x \in 2 B_{k, i}$, then, as $j \notin I$, $d(x, E) \geq 4 d^{k+1}$. On the other hand, as $j \in J, d(x, E) \leq d\left(x, x_{k, i}\right) \leq$ $d\left(x, y_{k, i}\right)+d\left(y_{k, i}, x_{k, i}\right) \leq 2 d^{k+1}+3 d^{k}<d^{k-1}$. It follows that the balls $2 B_{k, i}$ and $2 B_{l, j}$ with $|k-l| \geq 2$ are always disjoint. Hence any point of X can belong to at most two balls $2 B_{k, i}, i=1, \ldots, m_{k}, k=1,2, \ldots$.

By Theorem 5.1 we can choose for every $k, i, 1 \leq i \leq m_{k}$, t-regular sets $F_{k, i} \subset B_{k, i}$ such that $C_{F_{k, i}} \leq C$ and $d\left(F_{k, i}\right) \geq c d^{k}$ with C and c depending only on t, u and C_{X}. Let $\nu_{k, i}$ be the Borel measure related
to $F_{k, i}$ as in Definition 1.1. We define

$$
F=E \cup \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{m_{k}} F_{k, i}
$$

and

$$
\nu=\sum_{k=1}^{\infty} \sum_{i=1}^{m_{k}} \nu_{k, i} .
$$

Then F is a closed and bounded subset of X containing E.
We check now that F is t-regular. Let $x \in F$ and $0<r \leq d(F)$. It is enough to verify the required inequalities for $r<d$, so we assume this. Let l be the positive integer for which $d^{l+1} \leq r<d^{l}$. Denote

$$
K=\left\{(k, i): i=1, \ldots, m_{k}, k<l \text { and } B_{k, i} \cap B(x, r) \neq \emptyset\right\}
$$

and

$$
L=\left\{(k, i): i=1, \ldots, m_{k}, k \geq l \text { and } B_{k, i} \cap B(x, r) \neq \emptyset\right\} .
$$

We have

$$
\nu(B(x, r)) \leq \sum_{(k, i) \in K} \nu_{k, i}\left(B_{k, i} \cap B(x, r)\right)+\sum_{(k, i) \in L} \nu_{k, i}\left(B_{k, i} \cap B(x, r)\right) .
$$

If $(k, i) \in K$, then $r<d^{k+1}$ and $B(x, r) \subset 2 B_{k, i}$. Since this can happen for at most two balls $2 B_{k, i}, K$ can contain at most two elements and the first sum above is bounded by $2^{t+1} C r^{t}$. To estimate the second sum, let p_{k} be the number of indices in $I_{k}=\{i:(k, i) \in L\}$. Let $(k, i) \in L$. Then $B_{k, i} \cap B(x, r) \neq \emptyset$, and so $d\left(x_{k, i}, x\right) \leq d\left(x_{k, i}, y_{k, i}\right)+d\left(y_{k, i}, x\right) \leq$ $3 d^{k}+2 d^{k+1}+r<5 d^{l}$, which gives $B\left(x_{k, i}, d^{k}\right) \subset B\left(x, 6 d^{l}\right)$. Consequently,

$$
p_{k} d^{k s} \leq \sum_{i \in I_{k}} \mu\left(B\left(x_{k, i}, d^{k}\right)\right) \leq \mu\left(B\left(x, 6 d^{l}\right)\right) \leq C_{E} 12^{s} d^{l s}
$$

and so $p_{k} \leq 12^{s} C_{E} d^{(l-k) s}$. Hence

$$
\begin{aligned}
& \sum_{(k, i) \in L} \nu_{k, i}\left(B_{k, i} \cap B(x, r)\right) \leq \sum_{k=l}^{\infty} 12^{s} C_{E} d^{(l-k) s} C 4^{t} d^{(k+1) t} \leq \\
& 12^{s} 4^{t} C_{E} C d^{l s} \sum_{k=l}^{\infty} d^{(t-s) k}=12^{s} 4^{t} C_{E} C d^{l t} \frac{1}{1-d^{(t-s)}} \leq \\
& 12^{s} 4^{t} C_{E} C d^{-t} \frac{1}{1-d^{(t-s)}} r^{t} .
\end{aligned}
$$

This proves the upper regularity of ν.
To prove the opposite inequality, suppose first that $x \in E$. Let k be the positive integer for which $33 d^{k} \leq r<33 d^{k-1}$. Then for some
$i, 1 \leq i \leq m_{k}, x \in B\left(x_{k, i}, 30 d^{k}\right)$. Since $B_{k, i} \subset B\left(x_{k, i}, 3 d^{k}\right)$ we have that $B_{k, i} \subset B\left(x, 33 d^{k}\right) \subset B(x, r)$. Thus

$$
\nu(B(x, r)) \geq \nu_{k, i}\left(B_{k, i}\right) \geq d\left(F_{k, i}\right)^{t} \geq c^{t} d^{k t} \geq c^{t} d^{t} 33^{-t} r^{t}
$$

Suppose finally that $x \in F_{k, i}$ for some k and i. If $r \leq 9 d^{k}$, then $d\left(F_{k, i}\right) \geq c d^{k} \geq(c / 9) r$, whence

$$
\nu(B(x, r)) \geq \nu\left(B(x,(c / 9) r) \geq(c / 9)^{t} r^{t} .\right.
$$

If $r>9 d^{k}$, then $d\left(x, x_{k, i}\right) \leq 3 d^{k}<r / 3$, so $B\left(x_{k, i}, r / 2\right) \subset B(x, r)$. Since $x_{k, i} \in E$, the required inequality follows from the case $x \in E$.

In the next example note that $\lim _{r \rightarrow 0} \mathcal{L}^{1}(F \cap B(x, r)) /(2 r)=1$ for \mathcal{L}^{1} almost all $x \in F$ by the Lebesgue density theorem. However, F has no subset E with $\mathcal{L}^{1}(E)>0$ for which $\mathcal{L}^{1}(F \cap B(x, r)) /(2 r)$ would be bounded below with a positive number uniformly for small $r>0$.
5.3. Example. There exists a compact set $F \subset \mathbb{R}$ with Lebesgue measure $\mathcal{L}^{1}(F)>0$ such that it contains no non-empty s-regular subset for any $s>0$.

Proof. Let $a<b, 0<\lambda<1 / 2$ and $0<t<1$. We shall construct a family $\mathcal{I}([a, b], \lambda, t)$ of closed disjoint subintervals of $[a, b]$. We do this for $[0,1]$ and then define $\mathcal{I}([a, b], \lambda, t)=\{f(I): I \in \mathcal{I}([0,1], \lambda, t)\}$ where $f(x)=(b-a) x+a$.

Let

$$
I_{1,1}=[(1-\lambda) / 2,(1+\lambda) / 2] .
$$

Then $[0,1] \backslash I_{1,1}$ consists of two intervals $J_{1,1}$ and $J_{1,2}$ of length $(1-\lambda) / 2$. We select closed intervals $I_{2,1}$ and $I_{2,2}$ of length $\lambda(1-\lambda) / 2$ in the middle of them (that is, the center of $I_{2, i}$ is the center of $J_{1, i}$). Continuing this we get intervals $I_{k, i}, i=1, \ldots, 2^{k-1}$, and $J_{k, i}, i=1, \ldots, 2^{k}$, such that $d\left(I_{k, i}\right)=2^{1-k} \lambda(1-\lambda)^{k-1}$ and $d\left(J_{k, i}\right)=2^{-k}(1-\lambda)^{k}$. Moreover, each $I_{k, i}$ is the mid-interval of some $J_{k-1, j}$ and $J_{k-1, j} \backslash I_{k, i}$ consists of two intervals $J_{k, j_{1}}$ and $J_{k, j_{2}}$. Then

$$
\begin{aligned}
& \sum_{k=1}^{l} \sum_{i=1}^{2^{k-1}} d\left(I_{k, i}\right)=\sum_{k=1}^{l} \lambda(1-\lambda)^{k-1} \\
& =1-(1-\lambda)^{l} \rightarrow 1 \text { as } l \rightarrow \infty .
\end{aligned}
$$

We choose l such that

$$
\sum_{k=1}^{l} \sum_{i=1}^{2^{k-1}} d\left(I_{k, i}\right)>t
$$

and denote

$$
\mathcal{I}([0,1], \lambda, t)=\left\{I_{k, i}: i=1, \ldots, 2^{k-1}, k=1, \ldots, l\right\} .
$$

Then for any compact interval $I \subset \mathbb{R}$,

$$
\sum_{J \in \mathcal{I}(I, \lambda, t)} d(J)>t d(I) .
$$

Let $0<\lambda_{k}<1 / 2,0<t_{k}<1, k=1,2, \ldots$, such that $\lim _{k \rightarrow \infty} \lambda_{k}=0$ and $t=\prod_{k=1}^{\infty} t_{k}>0$. Define

$$
\mathcal{I}_{1}=\mathcal{I}\left([0,1], \lambda_{1}, t_{1}\right),
$$

and inductively for $m=1,2, \ldots$,

$$
\mathcal{I}_{m+1}=\left\{J: J \in \mathcal{I}\left(I, \lambda_{m+1}, t_{m+1}\right), I \in \mathcal{I}_{m}\right\} .
$$

The compact set F is now defined as

$$
F=\bigcap_{m=1}^{\infty} \bigcup_{I \in \mathcal{I}_{m}} I
$$

For every $m=1,2, \ldots$ we have

$$
\sum_{I \in \mathcal{I}_{m}} d(I)>t_{1} \cdots \cdots t_{m}>t
$$

whence $\mathcal{L}^{1}(F) \geq t$.
Suppose that $s>0$ and that E is an s-regular subset of F. Choose m so large that $\lambda_{m}<C_{E}^{-s} / 4$. Let $x \in E$. Then for every $m=$ $1,2, \ldots, x \in I$ for some $I \in \mathcal{I}_{m}$. Suppose that I would be one of the shortest intervals in the family \mathcal{I}_{m}. Then by our construction there is an interval J such that I is in the middle of $J, I \cap E=J \cap E$ and $d(I)=\lambda_{m} d(J)$. As $B(x, d(J) / 4) \subset J$ we have by the regularity of E,

$$
\begin{aligned}
& 4^{-s} d(J)^{s} \leq \mu(B(x, d(J) / 4))= \\
& \mu\left(B(x, d(I)) \leq C_{E} d(I)^{s}=C_{E}\left(\lambda_{m} d(J)\right)^{s}\right.
\end{aligned}
$$

Thus $\lambda_{m} \geq C_{E}^{-1 / s} / 4$. This contradicts with the choice of m. So E contains no points in the shortest intervals of \mathcal{I}_{m}. But then we can repeat the same argument with the second shortest intervals of \mathcal{I}_{m} concluding that neither can they contain any points of E. Continuing this we see that $E=\emptyset$.

References

[DS1] G. David and S. Semmes: Analysis of and on Uniformly Rectifiable Sets, Surveys and Monograhs 38, Amer. Math. Soc., 1993.
[DS2] G. David and S. Semmes: Fractured Fractals and Broken Dreams, Oxford University Press, 1997.
[FM] K.J. Falconer and D.T. Marsh: On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.
[F] H. Federer: Geometric Measure Theory, Springer-Verlag, 1969.
[H] J.E. Hutchinson: Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
[JW] A. Jonsson and H. Wallin: Function spaces on subsets of \mathbb{R}^{n}, Harwood Academic Publishers, 1984.
[M] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
[RRX] H. Rao, H.-J. Ruan and L.-F. XI: Lipschitz equivalence and self-similar sets, C. R. Math. Acad. Sci. Paris 342, no. 3 (2006), 191-196.
[RRY] H. Rao, H.-J. Ruan and Y.-M. Yang: Gap sequence, Lipschitz equivalence and box dimension of fractals, Nonlinearity 21 (2008), 1339-1347.

Pertti Mattila: Department of Mathematics and Statistics, Fi00014 University of Helsinki, Finland,

E-mail address: pertti.mattila@helsinki.fi
Pirjo Safanen: Haaga-Helia, Hietakummuntie 1 A, Fi-00700 Helsinki, Finland,

E-mail address: pirjo.saaranen@haaga-helia.fi

[^0]: 2000 Mathematics Subject Classification. 28A75.
 Key words and phrases. regular set, bilipschitz mapping.
 Part of these results were included in the licentiate thesis of Pirjo Saaranen at the University of Jyväskylä in 1991.

