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Abstract. We study the Lipschitz continuity of generalized sub-Gaussian
processes, and provide estimates for the distribution of the norms of such
processes. The results are applied to the case of weakly self-similar stationary-
increment generalized sub-Gaussian processes (the fractional Brownian mo-
tions are special cases).
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1. Introduction

Let (T, ρ) be some pseudometric space. We consider the Lipschitz continuity
of stochastic processes X = (X(t), t ∈ T ), and provide estimates for the dis-
tribution of norms of such processes. In particular, we provide function f , the
modulus of continuity, such that

lim sup
ε→0

sup
ρ(t,s)<ε

|X(t)−X(s)|

f(ε)
< 1

and estimates for the probabilities

P

{
sup

0<ρ(t,s)≤v

|X(t)−X(s)|
f(ρ(t, s))

> y

}
.

The case when (T, ρ) is a subset of a d-dimensional Euclidean space is con-
sidered as an example.

Obtained results are applied then to the weakly self-similar stationary-
increment processes (wsssi, for short) from the space Subϕ(Ω) of generalized
sub-Gaussian processes.

For Gaussian processes the moduli of continuity f were found by Dudley [2].
These results were generalized for some classes of processes from Orlicz spaces
in the paper by Kozachenko [4]. In [1] for random processes from some classes
∆ of Orlicz spaces besides modula of continuity also there were found estimates
for distributions of norms of such processes in Lipschitz spaces.
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2. Preliminaries

2.1. Space Subϕ(Ω). We recall briefly some basic facts about the generalized
sub-Gaussian space Subϕ(Ω) [1, 3].

Definition 2.1. A continuous even convex function u is an Orlicz N-function if
it is increasing for x > 0, u(x)

x → 0 as x → 0 and u(x)
x →∞ as x →∞.

For details on convex functions in Orlicz spaces we refer to Krasnoselskii and
Rutitskii [5].

Let (Ω,F ,P) be a standard probability space.

Definition 2.2. Let ϕ be an Orlicz N-function such that

lim inf
x→0

ϕ(x)
x2

= C > 0

(condition Q). The constant C may be equal to +∞ . A zero mean random
variable ξ belongs to the space Subϕ(Ω) if there exists a positive constant a
such that the inequality

E exp (λξ) ≤ exp (ϕ(aλ))

holds for all λ ∈ R .

Example 2.3. The following functions are N-functions satisfying condition Q:

ϕ(x) =
|x|α

α
, 1 < α ≤ 2;

ϕ(x) =

{
|x|2
α , |x| ≤ 1, α > 2;
|x|α
α , |x| > 1.

The space Subϕ(Ω) is a Banach space with respect to the norm

τϕ(ξ) = sup
λ6=0

ϕ−1 (lnE exp (λξ))
|λ|

and the inequalities

E exp (λξ) ≤ exp (ϕ(λτϕ(ξ))) , (2.1)

(Eξ2)
1
2 ≤ Cτϕ(ξ).

hold for all λ ∈ R , where C > 0 is some constant.

Definition 2.4. Let (T, ρ) be a pseudometric space. The metric entropy is

H(u) := lnN(T,ρ)(u)

where N(T,ρ)(u) denotes the least number of closed ρ-balls whose diameter do
not exceed 2u needed to cover T.

Definition 2.5. Let (T, ρ) be pseudometric separable space. A stochastic pro-
cess X = (X(t), t ∈ T ) belongs to the space Subϕ(Ω) if X(t) ∈ Subϕ(Ω) for all
t ∈ T .
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2.2. Auxiliary theorem. Recall that the Young-Fenchel transformation ϕ∗ of
an Orlicz N-function ϕ is

ϕ∗(x) := sup
y>0

(xy − ϕ(y)) , x ≥ 0.

The following theorem is rather technical, but it is needed to get our main
results.

Theorem 2.6. Let {ξi}n
i=1 ∈ Subϕ(Ω), x > 2, M and b be such numbers that

b > 1, M ≥ ϕ∗(2)
ln(2) , then

P
{

max
j=1,n

|ξj | > xb max
j=1,n

τϕ(ξj) · ϕ∗(−1)(M ln(n))
}

≤ n1−M b + 1
b− 1

exp{−ϕ∗(x)}. (2.2)

Proof. Let η : = max
j=1,n

|ξj | , a : = b max
j=1,n

τϕ(ξj), un : = ϕ∗(−1)(M ln(n)).

P{η > xaun} = E1{ω : η > xaun}

≤
n∑

j=1

E1{η = |ξj |} · 1{ω : |ξj | > xaun}

≤ n max
j=1,n

E1{ω : |ξj | > xaun} (2.3)

≤ n1−MnM max
j=1,n

E1{ω : |ξj | > xaun} ·
exp
{
ϕ∗
( |ξj |

aun

)}
exp{ϕ∗(x)}

.

Since if |ξj |
aun

> x > 2, n ≥ 2 and M ln(n) ≥ ϕ∗(2) (that is, un ≥ 2) then

nM exp
{

ϕ∗
(
|ξj |
aun

)}
= exp

{
M ln(n) + ϕ∗

(
|ξj |
aun

)}
= exp

{
ϕ∗(ϕ∗(−1)(M ln(n)) + ϕ∗

(
|ξj |
aun

)}
≤ exp

{
ϕ∗(ϕ∗(−1)(M ln(n)) +

|ξj |
aun

}
= exp

{
ϕ∗
(

un +
|ξj |
aun

)}
≤ exp

{
ϕ∗
(
|ξj |
a

)}
.

Therefore we have

P{η > xaun} = n1−M exp{−ϕ∗(x)} max
j=1,n

E exp
{

ϕ∗
(
|ξi|
a

)}
= n1−M exp{−ϕ∗(x)} max

j=1,n
E exp

{
ϕ∗
(

|ξi|
bτϕ|ξi|

)}
. (2.4)

In the book [1, Corollary 4.1] it is shown that if

P{|ξ| > x} ≤ C exp
{

ϕ∗
(

x

D

)}
,
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where C > 0, D > 0 then for all A > D we have

E exp
{

ϕ∗
(

ξ

A

)}
≤ 1 +

CD

A−D
. (2.5)

From [1, Lemma 4.3] we also have that

P{|ξ| > x} ≤ 2 exp
{
−ϕ∗

(
ξ

τϕ(ξ)

)}
then it follows from (2.5) that for b > 1

E exp
{

ϕ∗
(

ξj

bτϕ(ξj)

)}
≤ b + 1

b− 1
.

Therefore

P{η > xaun} ≤ n1−M b + 1
b− 1

exp{−ϕ∗(x)}.

�

3. Main results

Let (T, ρ) be a metric (pseudometric) separable compact space, X = {X(t),
t ∈ T} be a separable random process from the space Subϕ(Ω).

Suppose that there exists a monotonically increasing continuous function σ =
{σ(h), h ≥ 0} such that σ(0) = 0 and the following inequality holds

sup
ρ(t,s)≤h

τϕ(X(t)−X(s)) ≤ σ(h). (3.1)

Let N(u) be the least number of closed balls of radius u covering (T, ρ).

Theorem 3.1. Let N(u) →∞ as u → 0, M ≥ max
(
1, ϕ∗(2)

ln(2)

)
,

fB(u) =
1

(11− 2
√

30)

σ(u)∫
0

ϕ∗(−1)(2M ln(BN(σ(−1)(v)))) dv < ∞,

where B > 1, b > 1 are some numbers, and v is such a number that N(v) > 2.
Then for y > 2b the following inequality holds true

P
{

sup
0<ρ(t,s)≤v

|X(t)−X(s)|
fB(ρ(t, s))

> y

}
≤ 4BM−1(b + 1)

(N(v))M−1(BM−1 − 1)(b− 1)
exp
{
−ϕ∗

(
y

b

)}
. (3.2)

Proof. Let r ∈ (0, 1), {νk, k = 0, 1, 2, . . .} , be a such sequence that ν0 =
inf
s∈T

sup
t∈T

ρ(t, s), νk+1 = min{rνk, δk} , where

δk = A inf{ν : N(σ(−1)(ν)) < BN(σ(−1)(νk))}, (3.3)

where σ(−1)(ν) is the inverse function of the function σ , B > 1, A is such a
number that A > 1 and Ar < 1. For sequence {νk, k = 0, 1, 2, . . .} we have

νk+1 ≤ rνk, k = 0, 1, 2, . . . (3.4)
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that is

νk ≤
1

1− r
(νk − νk+1). (3.5)

From (3.3) and (3.4) we have that

N(σ(−1)(νk+2)) ≥ N(σ(−1)(rνk+1))

≥ N(σ(−1)(rδk)) ≥ BN(σ(−1)(νk)). (3.6)

That is

N(σ(−1)(νk)) ≥ BN(σ(−1)(νk−2)) ≥ B2N(σ(−1)(νk−4)) ≥ . . . (3.7)

Let ε0 = σ(−1)(ν0), . . . , εk = σ(−1)(νk). Let Vεk
, k = 0, 1, 2, . . . , be a set of the

centers of closed balls of radius εk that form a minimal covering of the space
(T, ρ). The number of points in Vεk

is equal to N(εk) = N(σ(−1)(νk)). Let

V0 =
∞⋃

k=0

Vεk
. It follows from (3.1) using Chebyshev inequality that the process

X is continuous in probability. Therefore the set V0 is a set of separability of
the process X. Let αn be the mapping of the set V0 into Vεn , where αn(t) = t ,
if t ∈ Vεn and otherwise αn(t) is a point in Vεn satisfying ρ(t, αn(t)) < εn. It
follows from Chebyshev inequality, (3.1) and (3.4) that

P{|X(t)−X(αn(t))| > r
n
2 } ≤ E(X(t)−X(αn(t)))2

rn

≤
Cτ2

ϕ(X(t)−X(αn(t)))
rn

≤ Cσ2(ρ(t, αn(t)))
rn

≤ Cσ2(εn)
rn

≤ Cν2
n

rn
≤ Cν2

0r2n

rn
= Cν2

0rn,

where C > 0 is some constant.

Therefore
∞∑

n=1

P{|X(t)−X(αn(t))| > r
n
2 } < ∞.

Now it follows from Borel-Cantelli lemma that X(αn(t)) → X(t) with probability
one as n →∞. Since the set V0 is countable then X(αn(t)) → X(t) as n →∞
with probability one for all t ∈ V0.

Take 0 < u ≤ ε0 , and choose such m that εm+1 < u ≤ εm. Since V0 is a set
of separability of the process X , then with probability one

sup
ρ(t,s)<u

t,s∈T

|X(t)−X(s)| = sup
ρ(t,s)<u
t,s∈V0

|X(t)−X(s)|. (3.8)

Let t and s belong to V0 and ρ(t, s) < u. Let k > m + 1. Denote tk = αk(t),
tk−1 = αk−1(tk), . . . , tm = αm(tm+1); sk = αk(s) sk−1 = αk−1(sk), . . . , sm =
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αm(tm+1). Then for any t, s such that ρ(t, s) < u we have

X(t)−X(s) = (X(t)−X(tk)) +
k∑

l=m+2

(X(tl)−X(tl−1))

− (X(s)−X(sk))−
k∑

l=m+2

(X(sl)−X(sl−1))

+ (X(tm+1)−X(sm+1)). (3.9)

It follows from (3.9) that

X(tm+1)−X(sm+1) = (X(t)−X(s))− (X(t)−X(tk))

+ (X(s)−X(sk))−
k∑

l=m+2

(X(tl)−X(tl−1))

+
k∑

l=m+2

(X(sl)−X(sl−1))

and

τϕ(X(tm+1)−X(sm+1))

≤ τϕ(X(t)−X(s)) + τϕ(X(t)−X(tk)) + τϕ(X(ts)−X(sk))

+
k∑

l=m+2

τϕ(X(tl)−X(tl−1)) +
k∑

l=m+2

τϕ(X(sl)−X(sl−1))

≤ σ(ρ(t, s)) + σ(ρ(t, tk)) + σ(ρ(s, sk)) +
k∑

l=m+2

σ(ρ(tl, tl−1))

+
k∑

l=m+2

σ(ρ(sl, sl−1))

≤ σ(u) + 2σ(εk) + 2
k∑

l=m+2

σ(εl−1) (3.10)

≤ σ(u) + 2
∞∑

l=m+2

σ(εl−1) = σ(u) + 2
∞∑

l=m+2

νl−1

≤ σ(u) + 2
∞∑
l=1

νm+l ≤ σ(u) + 2
∞∑
l=1

νm+1r
l−1

= σ(u) + νm+1
2

1− r
≤ σ(u)

(
1 +

2
1− r

)
= σ(u)

3− r

1− r
.
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It follows from (3.9) and (3.10) that for all t, s ∈ T such that ρ(t, s) < u we have

|X(t)−X(s)|

≤
k∑

l=m+2

|X(tl)−X(tl−1)|+
k∑

l=m+2

|X(sl)−X(sl−1)|

+ |X(t)−X(tk)|+ |X(s)−X(sk)|+ |X(tm+1)−X(sm+1)|

≤ 2
k∑

l=m+2

max
w∈Vεl

|X(w)−X(αl−1(w))| (3.11)

+ max
w,v∈Vεm+1 :

τϕ(X(w)−X(v))≤σ(u) 3−r
1−r

|X(w)−X(v)|

+ |X(t)−X(tk)|+ |X(s)−X(sk)|.

Now making k →∞ in (3.11) we have that with probability one

|X(t)−X(s)| ≤ 2
k∑

l=m+2

max
w∈Vεl

|X(w)−X(αl−1(w))|

+ max
w,v∈Vεm+1 :

τϕ(X(w)−X(v))≤σ(u) 3−r
1−r

|X(w)−X(v)|.

That is, it follows from (3.8) that

sup
ρ(t,s)≤u

t,s∈T

|X(t)−X(s)| = sup
ρ(t,s)≤u

t,s∈V0

|X(t)−X(s)|

≤2
∞∑

k=m+2

max
w∈Vεk

|X(w)−X(αl−1(w))| (3.12)

+ max
w,v∈Vεm+1

τϕ(X(w)−X(v))≤σ(u) 3−r
1−r

|X(w)−X(v)|.

Let

cl = bσ(εl−1)ϕ∗(−1)(M ln(N(εl))),

bm(u) = bϕ∗(−1)(M ln(N2(εm+1)))σ(u)
3− r

1− r
,

εm+1 < u ≤ εm.

Let

ξl = max
t∈Vεl

|X(t)−X(αl−1(t))|

and for εm+1 < u ≤ εm

ηm(u) = max
w,z∈Vεm+1

τϕ(X(w)−X(z))≤σ(u) 3−r
1−r

|X(w)−X(z)|.
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Let v > 0 be such that N(v) > 2 and n be such a number that εn+1 < V ≤ εn.
Let {G(u), u ≥ 0} , be such a function that G(u) increases and

G(u) ≥ 2
∞∑

l=m+2

cl + bm(u),

where m is such a number that εm+1 < u ≤ εm. Then if x > 2, N(v) > 2

P
{

sup
0<ρ(t,s)≤v

|X(t)−X(s)|
G(ρ(t, s))

> x

}
≤ P

{
max

[
sup

m≥n+1
sup

εm+1<ρ(t,s)≤εm

|X(t)−X(s)|
G(ρ(t, s))

,

sup
εn+1<ρ(t,s)≤v

|X(t)−X(s)|
G(ρ(t, s))

]
> x

}
(3.13)

≤ P
{

max
[

sup
m≥n+1

sup
εm+1<ρ(t,s)≤εm

(
2

∞∑
l=m+2

ξl + ηm(ρ(t, s))
)
×

×
(

2
∞∑

l=m+2

cl + bm(ρ(t, s))
)−1

,

sup
εn+1<ρ(t,s)≤v

(
2

∞∑
l=n+2

ξl + ηn(ρ(t, s))
)(

2
∞∑

l=n+2

cl + bn(ρ(t, s))
)−1]

> x

}

≤
∞∑

l=n+2

P
{

ξl

cl
> x

}
+

∞∑
l=n+1

P
{

sup
εl+1<u≤εl

ηl(u)
bl(u)

> x

}
+ P

{
sup

εn+1<u≤v

ηn(u)
bn(u)

> x

}
.

Evaluate the probabilities in (3.13). It follows from Theorem 2.6 that

P
{

sup
εl+1<u≤εl

ηl(u)
bl(u)

> x

}
≤ P

{
sup

εl+1<u≤εl

max
w,v∈Vεl+1

,

τϕ(X(w)−X(v))≤σ(u) 3−r
1−r

|X(w)−X(v)|
bl(u)

> x

}

≤ P
{

sup
εl+1<u<εl

max
w,v∈Vεl+1

,

τϕ(X(w)−X(v)) 6=0,

τϕ(X(w)−X(v))≤σ(u) 3−r
1−r

(
|X(w)−X(v)|

τϕ(X(w)−X(v))
τϕ(X(w)−X(v))

σ(u)3−r
1−r

×

× (bl(u))−1σ(u)
3− r

1− r

)
> x

}
≤ P

{
max

w,v∈Vεl+1

τϕ(X(w)−X(v)) 6=0

|X(w)−X(v)|
τϕ(X(w)−X(v))

> xbϕ∗(−1)(M ln(N2(εl+1)))
}

(3.14)

≤ b + 1
b− 1

(
N2(εl+1)

)1−M exp{−ϕ∗(x)}.
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Reasoning similarly we obtain that

P
{

sup
εn+1<u≤v

ηn(u)
bn(u)

> x

}
≤ b + 1

b− 1
(
N2(εn+1)

)1−M exp{−ϕ∗(x)}. (3.15)

It follows from the Theorem 2.6 also that

P
{

ξl

cl
> x

}
≤ P

{
max
t∈Vεl

:

τϕ(X(t)−X(αl−1(t))) 6=0

(X(t)−X(αl−1(t)))
σ(εl−1)ϕ∗(−1)(M ln(N(εl)))

> x

}

≤ b + 1
b− 1

(N(εl))
1−M exp{−ϕ∗(x)}. (3.16)

It follows from (3.14), (3.15), (3.16) and (3.6) that for x > 2, v > 0 such that
N(v) ≥ 2

P
{

sup
0<ρ(t,s)≤v

|X(t)−X(s)|
G(ρ(t, s))

> x

}
≤
( ∞∑

l=n+2

(N(εl))1−M +
∞∑

l=n+1

(N2(εl))1−M

)
b + 1
b− 1

exp{−ϕ∗(x)}

≤ 2
∞∑

l=n+1

(N(εl))1−M b + 1
b− 1

exp{−ϕ∗(x)} (3.17)

≤ 4
(N(εn+1))M−1

∞∑
l=0

(
1

BM−1

)l b + 1
b− 1

exp{−ϕ∗(x)}

=
4BM−1(b + 1)

(N(εn+1))M−1(BM−1 − 1)(b− 1)
exp{−ϕ∗(x)}

≤ 4BM−1(b + 1)
(N(v))M−1(BM−1 − 1)(b− 1)

exp{−ϕ∗(x)}.

Now we shall evaluate the sum 2
∞∑

l=m+2

cl+bm(u). Set Z(v) = bϕ∗(−1)(Mv), then

∞∑
l=m+2

cl =
∞∑

l=m+2

νl−1Z(ln(N(σ(−1)(νl)))) = A1 + A2,

where

A1 =
∑

l∈D
(m)
1

νl−1Z(ln(N(σ(−1)(νl)))),

D
(m)
1 = {l ≥ m + 2, νl = rνl−1},

A2 =
∑

l∈D
(m)
2

νl−1Z(ln(N(σ(−1)(νl)))),

D
(m)
2 = {l ≥ m + 2, νl = δl−1},
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It follows from (3.5) that

A1 =
1
r

∑
l∈D

(m)
1

νlZ(ln(N(σ(−1)(νl))))

≤ 1
r(1− r)

∞∑
l=m+2

(νl − νl+1)Z(ln(N(σ(−1)(νl))))

≤ 1
r(1− r)

∞∑
l=m+2

νl∫
νl+1

Z(ln(N(σ(−1)(u)))) du

=
1

r(1− r)

νm+2∫
0

Z(ln(N(σ(−1)(u)))) du.

Therefore

A1 ≤
1

r(1− r)

νm+2∫
0

Z(ln(N(σ(−1)(u)))) du. (3.18)

Since N(σ(−1)(δl)) < BN(σ(−1)(νl)) then

A2 =
∑

l∈D
(m)
2

νl−1Z(ln(N(σ(−1)(δl−1))))

≤
∑

l∈D
(m)
2

νl−1Z(ln(BN(σ(−1)(νl−1))))

≤ 1
1− r

∞∑
l=m+2

(νl−1 − νl)Z(ln(BN(σ(−1)(νl−1)))) (3.19)

≤ 1
1− r

νm+1∫
0

Z(ln(BN(σ(−1)(u)))) du.

Since νm+2 < νm+1 < σ(u) it follows from (3.18) and (3.19) then

2
∞∑

l=m+2

cl ≤
2(1 + r)
r(1− r)

σ(u)∫
0

Z(ln(BN(σ(−1)(u)))) du. (3.20)

For εm+1 < u ≤ εm (νm+1 < σ(u) ≤ νm )

bm(u) ≤ Z(2 ln(N(σ(−1)(νm+1))))σ(u)
3− r

1− r
.
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Since νm+1 = min(rνm, δm) then let’s consider two cases νm+1 = δm and νm+1 =
rνm. Let νm+1 = δm then it follows from (3.3)

σ(u)Z(2 ln(N(σ(−1)(νm+1)))) = σ(u)Z(2 ln(N(σ(−1)(δm))))

≤ σ(u)Z(2 ln(BN(σ(−1)(νm))))

≤ σ(u)Z(2 ln(BN(σ(−1)(u))))

≤
σ(u)∫
0

Z(2 ln(BN(σ(−1)(v)))) dv.

If νm+1 = rνm then

σ(u)Z(2 ln(N(σ(−1)(νm+1)))) = σ(u)Z(2 ln(N(σ(−1)(rνm))))

≤ σ(u)Z(2 ln(N(σ(−1)(rσ(u)))))

≤
σ(u)∫
0

Z(2 ln(N(σ(−1)(rv)))) dv

=
1
r

rσ(u)∫
0

Z(2 ln(N(σ(−1)(t)))) dt

≤ 1
r

σ(u)∫
0

Z(2 ln(BN(σ(−1)(v)))) dv.

Therefore

bm(u) ≤ 3− r

r(1− r)

σ(u)∫
0

Z(2 ln(BN(σ(−1)(v)))) dv.

So we have the following estimation

2
∞∑

l=m+2

cl + bm(u) ≤ 5 + r

r(1− r)
b

σ(u)∫
0

ϕ∗(−1)(M2 ln(BN(σ(−1)(v)))) dv. (3.21)

That is, it follows from (3.17) that for x > 2

P
{

sup
0<ρ(t,s)≤v

|X(t)−X(s)|
Gr,b(ρ(t, s))

> x

}
≤ 4BM−1(b + 1)

(N(v))M−1(BM−1 − 1)(b− 1)
exp{−ϕ∗(x)}, (3.22)

where

Gr,b(u) = b
5 + r

r(1− r)

σ(u)∫
0

ϕ∗(−1)(M2 ln(BN(σ(−1)(v)))) dv.
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Since inf
0<r<1

5+r
r(1−r) = 1

11−2
√

30
then for x > 2

P
{

sup
0<ρ(t,s)≤v

|X(t)−X(s)|
bfB(ρ(t, s))

> x

}
≤ 4BM−1(b + 1)

(N(v))M−1(BM−1 − 1)(b− 1)
exp{−ϕ∗(x)}. (3.23)

The inequality (3.2) follows from this inequality (for y = xb > 2b). �

Theorem 3.2. Let the assumptions of the Theorem 3.1 hold true. Then with
probability one

lim sup
ε→0

sup
ρ(t,s)<ε

|X(t)−X(s)|

2bfB(ε)
< 1, (3.24)

where

fB(u) =
1

11− 2
√

30

σ(u)∫
0

ϕ∗(−1)(2M ln(BN(σ(−1)(v))))dv.

Proof. It follows from (3.12) that with probability one

sup
ρ(t,s)≤u

|X(t)−X(s)| ≤ 2
∞∑

k=m+2

ξk + ηm(u) (3.25)

It follows from (3.15) that for sufficiently large k ηk(u) < 2bk(u) with prob-
ability one. From (3.16) we have that for sufficiently large k ξk < 2ck with
probability one. Therefore for sufficiently large k (or small enough u) we have

sup
ρ(t,s)≤u

|X(t)−X(s)| ≤ 2

(
2

∞∑
k=m+2

ck + bm(u)

)
. (3.26)

Now it follows from (3.21) and (3.23) that for sufficiently small u

sup
0<ρ(t,s)≤u

|X(t)−X(s)| ≤ 2bfB(u)

with probability one. �

The following corollary follows from the Theorem 3.2.

Corollary 3.3. For small enough u

sup
ρ(t,s)≤u

|X(t)−X(s)| ≤ 2bfB(u)

with probability one.
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4. Application to Subϕ(Ω) random processes in finite-dimensional
spaces

Let T be a cube in finite-dimensional space, i.e., T = [T1, T2]× . . .× [T1, T2]︸ ︷︷ ︸
d times

,

T1 < T2 , ρ(t, s) = max
1≤i≤d

|ti − si| , where t = (ti, i = 1, d), s = (si, i = 1, d).

Theorem 4.1. Let X = {X(t), t ∈ T} be a separable random process from the
space Subϕ(Ω). Suppose that there exists a monotonically increasing continuous
function σ = {σ(h), h ≥ 0} such that σ(0) = 0 and the following inequality holds

sup
ρ(t,s)≤h

τϕ(X(t)−X(s)) ≤ σ(h). (4.1)

Let M ≥ max
(
1, ϕ∗(2)

ln(2)

)
, B > 1, b > 1 be some numbers. Then for any y > 2b

and v ≤ T2−T1

2·21/d the following inequality holds true

P

{
sup

0<ρ(t,s)≤v

|X(t)−X(s)|
fd

B(ρ(t, s))
> y

}

≤ 4BM−1(b + 1)
(BM−1 − 1)(b− 1)

(
2v

T2 − T1

)d(M−1)

exp
{
−ϕ∗

(y

b

)}
, (4.2)

where

fd
B(u) =

1
11− 2

√
30

σ(u)∫
0

ϕ∗(−1)

(
2Md ln

(
B1/d

(
T2 − T1

2σ(−1)(s)
+ 1
)))

ds.

Moreover, with probability one

lim sup
ε→0

sup
ρ(t,s)≤ε

|X(t)−X(s)|

2bfd
B(ε)

< 1. (4.3)

Proof. The theorem follows from the theorems 3.1 and 3.2 since in this case for
all z > 0 the following inequalities hold true(

T2 − T1

2z

)d

≤ N(z) ≤
(

T2 − T1

2z
+ 1
)d

. (4.4)

�

Remark 4.2. In (4.2) we have

fd
B(u) ≤ 1

11− 2
√

30

σ(u)∫
0

ϕ∗(−1)

(
2Md ln

(
B1/d

(
T2 − T1

σ(−1)(s)

)))
ds. (4.5)

Indeed, in (4.2) σ(−1)(s) ≤ σ(−1)(σ(v)) = v ≤ T2−T1

21+1/d . Therefore T2−T1

2σ(−1)(s)
≥

21/d > 1.

Example 4.3. Let ϕ(x) = |x|p
p , p > 1, for sufficiently large |x| . In this case

ϕ∗(x) = |x|q
q , where 1

p+1
q = 1, and ϕ∗(−1)(x) = (qx)1/q . Suppose that T2−T1 > 1
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and σ(h) = c

(ln 1
h)α , c > 0, h ∈ (0, 1), α > 1

q . Then σ(−1)(h) = exp
{
−
(

c
h

)1/α
}

and for sufficiently small u we have

fd
B(u)

≤ 1
11− 2

√
30

σ(u)∫
0

q1/q

(
2Md ln

(
B1/d(T2 − T1) exp

{(c

t

)1/α
}))1/q

dt

≤ (2Mdq)1/q

11− 2
√

30

 σ(u)∫
0

(
ln(B1/d(T2 − T1))

)1/q
dt +

σ(u)∫
0

(c

t

) 1
αq

dt

 (4.6)

=
(2Mdq)1/q

11− 2
√

30

(
σ(u)

(
ln(B1/d(T2 − T1))

)1/q
+

c
1

αq

1− 1
αq

(σ(u))1−
1

αq

)

≤ A · (σ(u))1−
1

αq =
Ac(

ln 1
u

)α− 1
q

,

where

A =
(2Mdq)1/q

11− 2
√

30

((
lnB1/d(T2 − T1)

)1/q
+

c
1

αq

1− 1
αq

)
.

Example 4.4. Let ϕ(x) be the same as in the Example 4.3, σ(h) = Dhα, h > 0,

D > 0, 0 < α ≤ 1, T2 − T1 > 1. In this case σ(−1)(u) =
(

u
D

) 1
α . Then

fd
B(u)

≤ 1
11− 2

√
30

Duα∫
0

q1/q

(
2Md ln

(
B1/d(T2 − T1)

(
D

t

)1/α
))1/q

dt

≤ (2Mdq)1/q

11− 2
√

30

Duα∫
0

[
(lnB1/d(T2 − T1))1/q +

(
1
α

ln
D

t

)1/q
]

dt

=
(2Mdq)1/q

11− 2
√

30

Duα(lnB1/d(T2 − T1))1/q +
(

1
α

)1/q
Duα∫
0

(
ln

D

t

)1/q

dt

 ,

Duα∫
0

(
ln

D

t

)1/q

dt = D

uα∫
0

(
ln

1
t

)1/q

dt.

Since
uα∫
0

(
ln

1
t

)1/q

dt ≤ uα

(
ln

1
uα

)1/q
(

1 +
1

q ln 1
uα

)

≤ uα

(
ln

1
u

)1/q

α1/q

(
1 +

1
qα ln 1

κ

)
,
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u < κ < 1
e , then for sufficiently small u we have

fd
B(u) ≤ C1u

α + C2u
α

(
ln

1
u

)1/q

≤ C3u
α

(
ln

1
u

)1/q

,

where C1, C2, C3 are some constants.

Let now T = [T1, T2] , −∞ < T1 < T2 < ∞ , then T2−T1
2u ≤ N(u) ≤ T2−T1

2u + 1
and the next corollary holds.

Corollary 4.5. Let X = {X(t), t ∈ [T1, T2]} be a separable process from the
space Subϕ(Ω). Suppose that there exists a monotonically increasing continuous
function σ = {σ(h), h ≥ 0} such that σ(0) = 0 and the following inequality
holds:

sup
t,s∈[T1,T2]: ρ(t,s)≤h

τϕ(X(t)−X(s)) ≤ σ(h). (4.7)

Let M ≥ max
(
1, ϕ∗(2)

ln 2

)
, B > 1, b > 1 and u is such a number that T2−T1

2u > 2,
then for any y > 2b the following inequality holds true

P

{
sup

0<|t−s|≤u

|X(t)−X(s)|
f̃B(|t− s|)

> y

}

≤ 4(b + 1)(2u)M−1BM−1

(b− 1)(T2 − T1)M−1(BM−1 − 1)
exp

{
−ϕ∗

(y

b

)}
,

where

f̃B(u) =
1

(11− 2
√

30)

σ(u)∫
0

ϕ∗(−1)

(
2M ln

(
B

(
T2 − T1

2σ(−1)(v)
+ 1
)))

dv

≤ 1
11− 2

√
30

σ(u)∫
0

ϕ∗(−1)

(
2M ln

(
B(T2 − T1)
σ(−1)(v)

))
dv.

5. Lipschitz spaces

Definition 5.1. The function q = {q(t), t ∈ R} is called a modulus of continuity
if q(t) ≥ 0, q(0) = 0 and q(t) < q(t + s) ≤ q(t) + q(s) for t > 0, s > 0.

Example 5.2. The function q(t) = c|t|α , c > 0, 0 < α ≤ 1, is a modulus of
continuity.

Definition 5.3. Let (T, ρ) be a metric space and q be a modulus of continuity.
The family of functions {x(t), t ∈ T} , for which

sup
t,s∈T
t6=s

|x(t)− x(s)|
q(ρ(t, s))

< ∞ (5.1)

(or sup
ρ(t,s)≤h

|x(t)− x(s)| = o(q(h)) as h → 0) is called a Lipschitz space Λq(T, ρ)

(or Λo
q(T, ρ)).
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Theorem 5.4. Let X = {X(t), t ∈ T} be a random process, for which the
assumptions of the Theorem 3.1 hold true. If fB(u) ≤ q(u) (or fB(u) = o(q(u)))
then X belongs to the space Λq(T, ρ) (or Λo

q(T, ρ)) with probability one and the
following inequality holds true

P

{
sup

0<ρ(t,s)≤v

|X(t)−X(s)|
q(ρ(t, s))

> y

}

≤ 4BM−1(b + 1)
(N(v))M−1(BM−1 − 1)(b− 1)

exp
{
−ϕ∗

(y

b

)}
. (5.2)

This theorem is a simple corollary of the Theorem 3.1.

Corollary 5.5. Let X = {X(t), t ∈ T} be a random process, for which the
assumptions of the Theorem 3.1 hold true, q be a modulus of continuity. If

f q
B(u) =

σ(u)∫
0

ϕ∗(−1)(2M ln(BN(σ(−1)(v))))
q(v)

dv < ∞,

then X belongs to the space Λo
q(T, ρ) with probability one.

Proof. In this case

fB(u) ≤ c

σ(u)∫
0

q(u)ϕ∗(−1)(2M ln(BN(σ(−1)(v))))
q(v)

dv

≤ q(u)cf q
B(u)

= o(q(u)),

and assertion of this corollary follows from the Theorem 5.4. �

6. Application to weakly self-similar stationary increment
processes from the space Subϕ(Ω)

Consider a centred square integrable process ZH = (ZH(t) : t ∈ [0, 1]) , H ∈
(0, 1), that has the covariance function

RH(t, s) =
1
2
(
t2H + s2H − |t− s|2H

)
and belongs to the space Subϕ(Ω). For short, we shall say that ZH is wsssi-
Subϕ(Ω) (weakly self-similar stationary increment processes from the space
Subϕ(Ω)).

Remark 6.1. Note that if a stationary-increment second-order process ZH is
self-similar, i.e., the finite-dimensional distributions of ZH(t) and a−HZ(at) co-
incide, then ZH has necessarily the covariance function RH .
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Corollary 6.2. Let ZH be a wsssi-Subϕ(Ω)-process, M ≥ max
(
1, ϕ∗(2)

ln 2

)
, B >

1, b > 1 and u ∈ (0, 1
4), then for any y > 2b the following inequality holds true

P

{
sup

0<|t−s|≤u

|ZH(t)− ZH(s)|
bf̃B(|t− s|)

> y

}

≤ 4(b + 1)BM−1(2u)M−1

(b− 1)(BM−1 − 1)
exp

{
−ϕ∗

(y

b

)}
,

where

f̃B(u) =
1

(11− 2
√

30)

uH∫
0

ϕ∗(−1)

(
2M ln

(
B

(
1

2v1/H
+ 1
)))

dv

≤ 1
11− 2

√
30

uH∫
0

ϕ∗(−1)

(
2M ln

(
B

v1/H

))
dv.

This result follows from the Corollary 4.5 for σ(u) = uH , u ≥ 0.

Example 6.3. Let ϕ(x) = |x|p
p , 1 < p ≤ 2, for sufficiently large |x| . In this case

ϕ∗(x) = |x|r
r , where 1

p + 1
r = 1, and ϕ∗(−1)(x) = (rx)1/r .

In case of the process ZH we have σ(u) = uH , u > 0, and σ(−1)(u) = (u)
1
H .

In accordance with Corollary 6.2 u ∈ (0, 1
4). Then

f̃B(u) ≤ 1
11− 2

√
30

uH∫
0

r1/r

(
2M ln

(
B

(
1
t

)1/H
))1/r

dt

≤ (2Mr)1/r

11− 2
√

30

uH∫
0

[
(lnB)1/r +

(
1
H

ln
1
t

)1/r
]

dt

=
(2Mr)1/r

11− 2
√

30

uH(lnB)1/r +
(

1
H

)1/r
uH∫
0

(
ln

1
t

)1/r

dt

 ,

Since
uH∫
0

(
ln

1
t

)1/r

dt ≤ uH

(
ln

1
u

)1/r

H1/r

(
1 +

1
rH ln 1

κ

)
,

u < κ < 1
e , then for sufficiently small u we have

f̃B(u)

≤

[
(2Mr)1/r

11− 2
√

30
(lnB)1/r

]
uH +

[
(2Mr)1/r

11− 2
√

30

(
1 +

1
rH ln 1

κ

)]
uH

(
ln

1
u

)1/r

,

which implies that

f̃B(u) ≤ CB uH

(
ln

1
u

)1/r

,
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where

CB =
(2Mr)1/r

11− 2
√

30

(
(lnB)1/r + 1 +

1
rH ln 1

κ

)
. (6.1)

So, the following theorem holds true.

Theorem 6.4. Let ZH be wsssi-Subϕ(Ω) with ϕ(x) = |x|p
p , 0 < p ≤ 1. Then

this random process belongs to the space Λq(T, ρ) with probability one, where

T = [0, 1], ρ(t, s) = |t− s|, q(x) = CBxH
(
ln 1

x

) 1
r , CB is given in (6.1). Besides

that, for u ∈ (0, 1
4) and y > 2b the norm in this space satisfies the following

inequality

P

 sup
0<|t−s|≤u

|ZH(t)− ZH(s)|

CB|t− s|H
(
ln 1

|t−s|

) 1
r

> y

 (6.2)

≤ 4(b + 1)BM−1(2u)M−1

(b− 1)(BM−1 − 1)
exp

{
− yr

rbr

}
Remark 6.5. If ZH is a Gaussian process, that is the process of fractional
Brownian motion, then it satisfies theorem 6.4 with p = 2, r = 2 and q(x) =

C̃BxH
(
ln 1

x

) 1
2 , C̃B = 2

√
M

11−2
√

30

(
(lnB)1/2 + 1 + 1

2H ln 1
κ

)
.

For u ∈ (0, 1
4) and y > 2b

P

 sup
0<|t−s|<u

|ZH(t)− ZH(s)|

C̃B|t− s|H
(
ln 1

|t−s|

) 1
2

> y

 (6.3)

≤ 4(b + 1)BM−1(2u)M−1

(b− 1)(BM−1 − 1)
exp

{
− y2

2b2

}
.

Remark 6.6. The constants b, B and M can be chosen in order to minimize
the estimate in (6.2).

Example 6.7. Let

ϕ(x) =

{
|x|2
p , |x| < 1;
|x|p
p , |x| ≥ 1.

In this case ϕ∗(x) = |x|r
r for |x| ≥ 1, where 1

p + 1
r = 1, and ϕ∗(−1)(x) = (rx)

1
r

for |x| ≥ 1
r .

As in the previous example, under condition that

2M ln

(
B

(
1
u

) 1
H

)
≥ 1

r
,

or

0 < u ≤ BH exp
{
− H

2Mr

}
,
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or for

u ∈
(

0,min
(

BH exp
{
− H

2Mr

}
,
1
4

))
,

we have the same estimate as in the Example 6.3. Here

f̃B(u) ≤ CBuH

(
ln

1
u

) 1
r

.
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