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1 Introduction. Main definitions.

The recent achievements in the metric space theory are closely related to some gener-
alizations of differentiation. The concept of upper gradient [HeKo] and [Sh], Cheeger’s
notion of differentiability for Rademacher’s theorem in certain metric measure spaces [Ch],
the metric derivative in the studies of metric space valued functions of bounded varia-
tion [Am], [AmTi] and the Lipshitz type approach in [Ha] are interesting and important
examples of such generalizations. These generalizations of the differentiability usually
lead to nontrivial results only for assumption that metric spaces have ”sufficiently many”
rectifiable curves.

The our main goal is the introduction of the notion of ”differentiable” functions from
a metric space X to a metric space Y for arbitrary X and Y . We define ”tangent” spaces
at a point of a metric space as some quotient space of the sequences which converge to this
point and after that introduce the ”derivatives” of functions as corresponding quotient
maps.

Let (X, d) be a metric space and let a be point of X. Fix a sequence r̃ of positive real
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numbers rn which tend to zero. In what follows this sequence r̃ be called a normalizing
sequence.

1.1. Definition. Two sequences x̃ = {xn}n∈N and ỹ = {yn}n∈N, xn, yn ∈ X, are
mutually stable (with respect to a normalizing sequence r̃ = {rn}n∈N) if there is a finite
limit

lim
n→∞

d(xn, yn)

rn

:= d̃r̃(x̃, ỹ) = d̃(x̃, ỹ). (1.1)

We shall say that a family F̃ of sequences of points from X is maximal mutually stable
(with respect to a normalizing sequence r̃) if every two x̃, ỹ ∈ F̃ are mutually stable and
for an arbitrary z̃ = {zn}n∈N with zn ∈ X either z̃ ∈ F̃ or there is x̃ ∈ F̃ such that x̃ and
z̃ are not mutually stable.

The standard application of Zorn’s Lemma leads to the following

1.2. Proposition. Let (X, d) be a metric space and let a ∈ X. Then for every
normalizing sequence r̃ = {rn}n∈N there exists a maximal mutually stable family X̃a = X̃a,r̃

such that ã := {a, a, ...} ∈ X̃a.

Note that the condition ã ∈ X̃a implies the equality

lim
n→∞

d(xn, a) = 0

for every x̃ = {xn}n∈N which belongs to X̃a.
Consider a function d̃ : X̃a × X̃a → R where d̃(x̃, ỹ) = d̃r̃(x̃, ỹ) is defined by (1.1).

Obviously, d̃ is symmetric and nonnegative. Moreover, the triangle inequality for d implies

d̃(x̃, ỹ) ≤ d̃(x̃, z̃) + d̃(z̃, ỹ)

for all x̃, ỹ, z̃ from X̃a. Hence (X̃a, d̃) is a pseudometric space.

1.3. Definition. The pretangent space to the space X at the point a with respect to
normalizing sequence r̃ is the metric identification of the pseudometric space (X̃a,r̃, d̃).

Since the notion of pretangent space is an important step in the development of general
machinery for the definition of tangent spaces and differentiability in arbitrary metric
spaces, we recall this metric identification construction.

Define a relation ∼ on X̃a by x̃ ∼ ỹ if and only if d̃(x̃, ỹ) = 0. Then ∼ is an equivalence
relation and let Ωa,r̃ be the set of equivalence classes in X̃a under the equivalence relation
∼. It follows from general properties of pseudometric spaces, see for example [Kell,
Chapter 4, Th.15], that if ρ is defined on Ωa by

ρ(α, β) := d̃(x̃, ỹ) (1.2)

for some x̃ ∈ α and ỹ ∈ β, then ρ is well-defined metric on Ωa. By definition the metric
space (Ωa, ρ) is the metric identification of (X̃a, d̃).

Remark that Ωa,r̃ 6= ∅ for all r̃ because the constant sequence ã belongs to X̃a,r̃ in
accordance with Proposition 1.2.

Let {nk}k∈N be an increasing sequence of natural numbers. Denote by r̃′ the subse-
quence {rnk

}k∈N of the normalizing sequence r̃ = {rn}n∈N. It is clear that if x̃ = {xn}n∈N
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and ỹ = {yn}n∈N are mutually stable with respect to r̃, then x̃′ := {xnk
}k∈N and ỹ′ :=

{ynk
}k∈N are mutually stable with respect to r̃′ and that

d̃r̃(x̃, ỹ) = d̃r̃′(x̃
′, ỹ′). (1.3)

If X̃a,r̃ is a maximal mutually stable (with respect r̃) family, then by Zorn’s Lemma there
exists a maximal mutually stable (with respect r̃′) family X̃a,r̃′ such that

{x̃′ : x̃ ∈ X̃a,r̃} ⊆ X̃a,r̃′ .

Denote by inr̃′ the mapping X̃a,r̃ → X̃a,r̃′ with inr̃′(x̃) = x̃′ for all x̃ ∈ X̃a,r̃. If follows from
(1.3) that after metric identifications the mapping inr̃′ induces an isometric embedding
in′: Ωa,r̃ → Ωa,r̃′ , i.e., the diagramm

X̃a,r̃
inr̃′−−−−−→ X̃a,r̃′

p

y

yp′

Ωa,r̃
in′−−−−−→ Ωa,r̃′

(1.4)

is commutative. Here p, p′ are metric identification mappings p(x̃) = {ỹ ∈ X̃a,r̃ : d̃r̃(x̃, ỹ) =
0} and p′(x̃) = {ỹ′ ∈ X̃a,r̃′ : d̃r̃′(x̃

′, ỹ′) = 0}. Let X and Y be two metric spaces. Recall
that a map f : X → Y is called an isometry if f is distance-preserving and onto.

1.4. Definition. A pretangent Ωa,r̃ is tangent if for every r̃′ the mapping in′: Ωa,r̃ →
Ωa,r̃′ is an isometry.

1.5. Remark. As has been stated above, the function in′ : Ωa,r̃ → Ωa,r̃′ is an isometric
embedding. Since every surjective, isometric embedding is an isometry, Ωa,r̃ is tangent if
and only if in′ is surjective for all r̃′.

The following question naturally arieses.

1.6. Problem. Let (X, d) be a metric space and let a ∈ X. Find the conditions
under which all pretangent spaces Ωa,r̃ are tangent.

Let (X1, d1) and (X2, d2) be metric spaces, and r̃1, r̃2 normalizing sequences, and a1,
a2 points of X1 and X2 respectively, and X̃1

a1,r̃1
, X̃2

a2,r̃2
maximal mutually stable families

of sequences of points from X1 and X2 respectively. Let f : X1 → X2 be a function such
that f(a1) = a2. For every x̃1 := {x1

n}n∈N ∈ X̃1
a1,r̃1

write

f̃(x̃1) := {f(x1
n)}n∈N.

1.7. Definition. The function f is differentiable with respect to the pair (X̃1
a1,r̃1

, X̃2
a2,r̃2

)

if f(x̃1) ∈ X̃2
a1,r̃2

and d̃1(x̃1, ỹ1) = 0 implies d̃2(f̃(x̃1), f̃(ỹ1)) = 0 for all x̃1, ỹ1 ∈ X̃1
a1,r̃1

.
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Let pi : X̃ i
air̃i

→ Ωai,r̃i
, i = 1, 2, be metric identification mappings.

1.8. Definition. A function Df : Ωa1,r̃1 → Ωa2,r̃2 is a derivative of f with respect to
pretangent spaces Ωai,r̃i

, i = 1, 2, if f is differentiable with respect to (X̃1
a1,r̃1

, X̃2
a2,r̃2

) and
if the following diagramm

X̃1
a1,r̃1

f̃−−−−−−−→ X̃2
a2,r̃2

p1

y

yp2

Ωa1,r̃1

Df−−−−−−−−→ Ωa2,r̃2

is commutative.
Definitions 1.7 and 1.8 are a main goal of all previous constructions, so we present them

here, although the properties of ”metric space valued derivatives” Df are not discussed
in this paper.

2 First examples. Finite tangent spaces.

It is clear that Ωa is an one-point space if a is an isolated point of X. The converse
proposition is also true.

2.1. Proposition. Let (X, d) be a metric space and let a ∈ X. Then a is an isolated
point of X if and only if the pretangent space Ωa,r̃ is one-point for every normalizing
sequence r̃.

Proof. If a is not an isolated point of X, then there is a sequence b̃ = {bn}n∈N of
points in X such that lim

n→∞
d(a, bn) = 0 and d(a, bn) 6= 0 for all n ∈ N. Consider the

normalizing sequence r̃ = {rn}n∈N with rn := d(a, bn). It follows immediately from (1.1)
that d̃r̃(ã, b̃) = 1 where ã is the constant sequence {a, a, ...}. The application of Zorn’s
Lemma shows that there is a maximal mutually stable family X̃a,r̃ such that ã, b̃ ∈ X̃a,r̃.
Then the metric identification of the pseudometric space (X̃a,x̃, d̃) has at least two points.
¥

The following proposition characterizes the points a ∈ X such that the pretangent
spaces Ωa have cardinality at most two.

Define the function F : X ×X → R by the rule

F (x, y) =





d(x, y)(d(x, a) ∧ d(y, a))

(d(x, a) ∨ d(y, a))2
if (x, y) 6= (a, a)

0 if (x, y) = (a, a).

(2.1)

2.2. Theorem. Let (X, d) be a metric space and let a ∈ X. Then the inequality

card(Ωa,r̃) ≤ 2 (2.2)

holds for every normalizing sequence r̃ if and only if

lim
x→a
y→a

F (x, y) = 0 (2.3)
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where F is defined by (2.1).

Proof. Suppose that (2.3) does not hold. Then in X there are some sequences {x′n}n∈N
and {y′n}n∈N such that

lim
n→∞

x′n = lim
n→∞

y′n = a

and x′n 6= a 6= y′n for all n ∈ N and

lim sup
n→∞

F (x′n, y′n) > 0. (2.4)

Consider the normalizing sequence r̃ = {rn}n∈N with rn = d(x′n, a) ∨ d(y′n, a). Write

(xn, yn) :=

{
(x′n, y

′
n) if d(x′n, a) ≥ d(y′n, a)

(y′n, x′n) if d(y′n, a) > d(x′n, a).

Then we obtain

F (x′n, y
′
n) = F (xn, yn) =

d(xn, yn)

rn

· d(yn, a)

rn

. (2.5)

Since
d(yn, a) ≤ rn (2.6)

and
d(xn, yn) ≤ d(xn, a) + d(yn, a) ≤ 2rn, (2.7)

we have
F (xn, yn) ≤ 2 (2.8)

for all n ∈ N. Let {xnk
, ynk

}k∈N be a subsequence of {xn, yn}N for which

lim sup
n→∞

F (x′n, y
′
n) = lim

k→∞
F (xnk

, ynk
).

The inequality (2.4) and (2.8) imply that

0 < lim
k→∞

F (xnk
, ynk

) ≤ 2. (2.9)

We may assume without loss of generality that {xnk
, ynk

}k∈N and {xn, yn}n∈N coincide.
Conditions (2.6) and (2.7) imply the existence of finite limits

lim
m→∞

d(xnm , ynm)

rnm

≤ 2 and lim
m→∞

d(ynm , a)

rnm

≤ 1

for some subsequence {xnm , ynm}m∈N of {xn, yn}n∈N. Now we can, once again, take nm = n.
It follows from (2.5) and (2.9) that

0 < lim
n→∞

F (xn, yn) = lim
n→∞

d(xn, yn)

rn

· lim
n→∞

d(yn, a)

rn

≤ 2.

Consequently, we have

d̃(x̃, ã) = 1, 0 < d̃(ỹ, ã) ≤ 1, 0 < d̃(x̃, ỹ) ≤ 2
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for x̃ = {xn}n∈N, ỹ = {ỹn}n∈N. Hence, ã, ỹ, x̃ correspond to distinct points of the pretan-
gent space Ωa,r̃, that contradicts (2.2). The implication (2.2)⇒(2.3) is established.

To prove that (2.3) implies (2.2), suppose that

card(Ωa,r̃) ≥ 3

for some normalizing sequence r̃. Then there exist sequences x̃ = {xn}n∈N and ỹ =
{yn}n∈N such that all three quantities

d̃(x̃, ã) = lim
n→∞

d(xn, a)

rn

, d̃(ỹ, ã) = lim
n→∞

d(yn, a)

rn

and

d̃(x̃, ỹ) = lim
n→∞

d(xn, yn)

rn

are finite and positive. Consider the sequence {F (xn, yn)}n∈N where F was defined by
(2.1). Since

0 < lim
n→∞

d(xn, a) ∨ d(yn, a)

rn

= d̃(x̃, ã) ∨ d(ỹ, ã) < ∞

and

0 < lim
n→∞

d(xn, a) ∧ d(yn, a)

rn

= d̃(x̃, ã) ∧ d(ỹ, ã) < ∞,

we obtain

lim
n→∞

F (xn, yn) = lim
n→∞

d(xn,yn)
rn

· d(xn,a)∧d(yn,a)
rn(

d(xn,a)∨d(yn,a)
rn

)2 =
d̃(x̃, ỹ)(d̃(x̃, ã) ∧ d̃(ỹ, ã))(

d̃(x̃, ã) ∨ d̃(ỹ, ã)
)2 ∈ (0,∞),

contrary to limit relation (2.3). Hence, (2.3) implies (2.2). ¥

Theorem 2.2 can be generalized to the case of pretangent spaces with an arbitrary
finite cardinality.

For every natural n ≥ 2 let us denote by Xn the set of all n-tuples x = (x1, ..., xn)
with terms xk ∈ X for all k = 1, ..., n. Define the function Fn : Xn → R by the rule

Fn(x1, ..., xn) :=






 n∏

k,l=1
k<l

d(xk, xl)




(
n∧

k=1

d(xk, a)

)

(
n∨

k=1

d(xk, a)

)n(n−1)
2

+1
if (x1, ..., xn) 6= (a, ..., a)

0 if (x1, ..., xn) = (a, ..., a)

(2.10)

where
n∧

k=1

d(xk, a) := min
1≤k≤n

d(xk, a) and
n∨

k=1

d(xk, a) := max
1≤k≤n

d(xk, a).
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2.3. Theorem. Let (X, d) be a metric space, a ∈ X and let n ≥ 2 be a natural
number. Then the inequality

card(Ωa,r̃) ≤ n (2.11)

holds for every normalizing sequence r̃ and every pseudometric space (X̃a,r̃, d̃) if and only
if

lim
x1→a
. . .
xn→a

Fn(x1, ..., xn) = 0 (2.12)

where Fn is defined by (2.10).

The proof of this theorem can be obtained as a direct generalization of the proof of
Theorem 2.2 so we omit it.

2.4. Remarks. The value
n∏

k,l=1
k<l

d(xk, xl) in (2.10) can be regarded as a metric-space

analog of the well-known Vandermonde determinant.
There is some other functions Φn : Xn → R which can be used similarly as the function

Fn in Theorem 2.3. As an example consider the function

Φn(x1, ..., xn) :=






 n∧

k,l=1
k<l

d(xk, xl)




(
n∧

k=1

d(xn, a)

)

(
n∨

k=1

d(xk, a)

)2 if (x1, ..., xn) 6= (a, ..., a)

0 if (x1, ..., xn) = (a, ..., a).

(2.13)

Then (2.12) holds if and only if

lim
x1→a
. . .
xn→a

Φn(x1, ..., xn) = 0. (2.14)

Indeed, it follows from the simple inequality

d(xk, xl) ≤ 2
n∨

k=1

d(xk, a), k, l ∈ {1, ..., n}

that
Fn(x1, ..., xn) ≤ 2

n(n−1)
2

−1Φn(x1, ..., xn).

On the other hand we have

Fn(x1, ..., xn) ≥




n∧
k,l
k<l

d(xk, xl)

n∨
k=1

d(xk, a)




n(n−1)
2

·




n∧
k=1

d(xk, a)

n∨
k=1

d(xk, a)


 ≥
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≥




n∧
k,l
k<l

d(xk, xl)

n∧
k=1

d(xk, a)




n(n−1)
2

·




n∧
k=1

d(xk, a)

n∨
k=1

d(xk, a)




n(n−1)
2

= (Φn(x1, ..., xn))
n(n−1)

2 .

Using Theorems 2.2, 2.3 we can easily construct metric spaces with finite tangent
spaces. To this end, we first establish a lemma.

Let W̃ be a family of some sequences of points from X. Suppose that ã ∈ W̃ and
that every two x̃, ỹ ∈ W̃ are mutually stable with respect to a fixed normalizing sequence
r̃. Denote by W̃m a maximal mutually stable family such that W̃m ⊇ W̃ , by Ωa,r̃ the
pretangent space corresponding to (W̃m, d̃) and by Ωw

a,r̃ the metric identification of the

pseudometric space (W̃ , d̃). Clearly, there is an unique ”natural”, isometric embedding
Em : Ωw

a,r̃ → Ωa,r̃ for which the diagramm

W̃
in−−−−−−→ W̃m

p

y

ypm

Ωw
a,r̃

Em−−−−−→ Ωa,r̃

(2.15)

is commutative. Here p and pm are metric identification mappings and in(x̃) = x̃ for all
x̃ ∈ W̃ .

2.5. Remark. Em is bijection if and only if for each ỹ ∈ W̃m there is x̃ ∈ W̃ such
that d̃(ỹ, x̃) = 0. For a formal proof of this simple fact see Lemma 3.1 in Section 3.

2.6. Lemma. Let (X, d) be a metric space, a ∈ X and let n ≥ 2 be a natural number.
Suppose that limit relation (2.12) holds. Then the inequality

card(Ωw
a,r̃) ≥ n (2.16)

implies that the embedding Em : Ωw
a,r̃ → Ωa,r̃ is an isometry and that a pretangent space

Ωa,r̃ is tangent.

Proof. By Theorem 2.3 limit relation (2.12) implies that

card(Ωa,r̃) ≤ n. (2.17)

Since Em is an injective mapping, inequalities (2.16) and (2.17) imply

card(Ωa,r̃) = card(Ωw
a,r̃) = n.

These equalities show that each isometric embedding Ωw
a,r̃ → Ωa,r̃ is an isometry because

n is a natural number.
Consider now commutative diagram (1.4) with X̃a,x̃ = W̃m. In complete analogy with

the above proof we can show that in′, is an isometry for every subsequence r̃′ of r̃. Hence,
Ωa,r̃ is tangent by Definition 1.4. ¥
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2.7. Example. Let H be a Hilbert space with the norm || · || and

dim H ≥ m (2.18)

where m is a positive integer. It follows from (2.18) that for every natural k ≤ m there are
orthonormal vectors e1, ..., ek in H. Let t̃ = {tj}j∈N be a sequence of strictly decreasing
positive numbers tj for which

lim
j→∞

tj
tj+1

= ∞. (2.19)

Write
X := {tjei : i = 1, ..., k, j ∈ N} ∪ {0}, (2.20)

i.e., 0 ∈ X, and
X ∩ {x ∈ H : ||x|| = t} = ∅

if t 6= rj for all j ∈ N, and

X ∩ {x ∈ H : ||x|| = tj} = {tje1, ..., tjek}.

Consider the following sequences of elements of X

0̃ = {0, ..., 0, ....}, x̃1 = {tje1}j∈N, ..., x̃k = {tjek}j∈N.

It is easy to see that all these sequences are pairwise mutually stable with respect to the

normalizing sequence r̃ = t̃ and that d̃(x̃p, x̃q) := lim
j→∞

||tjep − tjeq||
rj

=
√

2 for p 6= q, and

that

d(0̃, x̃p) := lim
j→∞

||tjep||
rj

= 1

for all p ∈ {1, ..., k}.
Let W̃m be a maximal mutually stable family such that W̃m ⊇ W̃ := {0̃, x̃1, ..., x̃k}.

We claim the following:
a) For each ỹ ∈ W̃m there is x̃ ∈ W̃ such that d̃(ỹ, x̃) = 0;
b) The space Ω0,r̃, corresponding to W̃m, is tangent.
Since card(Ωw

0,r̃) = k + 1, for the proof of (a) and (b) it is enough to show that

lim
x1→0
···

xk+1→0

Φk+1(x1, ..., xk+1) = 0 (2.21)

where Φn is defined by (2.13), see Remarks 2.4 and Lemma 2.6.
Let (x1, ..., xk+1) be a k + 1-tuple with xi ∈ X, i ∈ {1, ..., k + 1}. We may assume,

without loss of generality, that xi 6= 0 for all i = 1, ..., k +1 because Φk+1(x1, ..., xk+1) = 0
for the opposite case. Using (2.20) we can define natural numbers j = j(x1, ..., xk+1) and
s = s(x1, ..., xk+1) such that

tj =
k+1∨

l=1

||xl||, tj+s =
k+1∧

l=1

||xl||.
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Note that these numbers are well defined because the sequence t̃ = {tj}j∈N is strictly
decreasing. It follows from definition (2.20) that s ≥ 1 and that lim

x1→0
...

xk+1→0

j(x1, ..., xk+1) =

∞. Now from (2.19) we obtain

0 ≤ lim sup
x1→0

...
xk+1→0

Φ(x1, ..., xk+1) ≤ 2 lim sup
x1→0

...
xk+1→0

k+1∧
l=1

||xl||
k+1∨
l=1

||xl||
=

= 2 lim sup
x1→0

...
xk+1→0

tj+1

tj
· tj+2

tj+1

...
tj+s−1

tj+s

≤ 2 lim
j→∞

tj+1

tj
= 0.

Relation(2.21) is proved.

Let (X, p) and (Y, d) be metric spaces. Recall that a homeomorphism f : X → Y is a
similarity if there is a positive number k such that

d(f(x), f(y)) := kp(x, y)

for all x, y ∈ X. The number k is the dilatation number of f . Two metric spaces X and
Y are similar if there exists a similarity of X onto Y .

2.8. Proposition. Let H be the Hilbert space from Example 2.7. Then, each tangent
space at the point 0 ∈ X, where X was defined by (2.20), is either one-point or similar to
the space {0, e1, ..., ek} ⊆ H1.

Proof. Let Ω0,r̃ be a tangent space to X at the point 0. Equality (2.21) implies that

card(Ω0,r̃) := m ≤ k + 1.

Let X̃0,r̃ be a maximal mutually stable family for which p(X̃0,r̃) = Ω0,r̃, see diagramm
(1.4). If Ω0,r̃ is not one-point, then there are sequences x̃i = {xi

n}n∈N ∈ X̃0,r̃ such that

lim
n→∞

||xi
n||

rn

:= d̃(0̃, x̃i) ∈ (0,∞) (2.22)

for i = 1, ...,m− 1 and that

lim
n→∞

||xi
n − xj

n||
rn

:= d̃(x̃i, x̃j) ∈ (0,∞) (2.23)

for i, j ∈ {1, ...,m− 1} if i 6= j. Relations (2.22) imply

lim
n→∞

||xj
n||

||xi
n||

=
d̃(0̃, x̃j)

d̃(0̃, x̃i)
∈ (0,∞). (2.24)

1It is clear that a tangent space Ω0,r̃, in Example 2.7, is isometric with {0, e1, ..., ek}.
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It follows from (2.20), that for every x ∈ X \{0} there is an unique l = l(x) ∈ N for which

||x|| = tl.

Substituting tl(x) in (2.24) we obtain

lim
n→∞

tl(xj
n)

tl(xi
n)

=
d̃(0̃, x̃j)

d(0̃, x̃j)
∈ (0,∞).

These relations and (2.19) imply the equality

||xi
n|| = ||xj

n||,

for all i, j ∈ {1, ..., m− 1}, if n is taken large enough. Hence, using (2.23) and (2.20) for
all sufficiently large n we see that

||xi
n − xj

n|| = tl
√

2δij, ||xi
n|| = tl (2.25)

where δij is Kronecker’s delta, i, j ∈ {1, ..., m− 1} and l = l(xj
n) = l(xi

n). If

card(Ω0,r̃) < k + 1,

then there exists x̃m = {xm
n }n∈N such that

||xi
n − xm

n || = tl
√

2, ||xm
n || = tl (2.26)

for all i = 1, ..., m− 1 and for all n, l which satisfy (2.25). Relations (2.22), (2.23), (2.25)
and (2.26) imply the existence of positive finite limits

lim
n→∞

||xm
n ||

rn

and lim
n→∞

||xi
n − xm

n ||
rn

for all i = 1, ..., m− 1 but it contradicts maximally of X̃0,r̃. Consequently,

card(Ω0,r̃) = k + 1.

It also follows from (2.25) that spaces Ω0,r̃ and {0, e1, ..., ek} ⊆ H are similar.
To construct an one-point tangent space Ω0,r̃ consider the normalizing sequence r̃ =

{rn}n∈N such that
rn :=

√
tntn+1 (2.27)

where {tj}j∈N is the sequence from definition (2.20). For all x ∈ X \ {0} this definition
and (2.26) give either

||x||
rn

≥ tn√
tntn+1

=

√
tn

tn+1

(2.28)

, if ||x|| ≥ tn, or
||x||
rn

≤ tn+1√
tntn+1

=

√
tn+1

tn
(2.29)
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if ||x|| < tn. By (2.19)

√
tn

tn+1

tends to infinity with n → ∞. Hence, if there is a finite

lim
n→∞

||xn||
rn

, then d̃(0̃, x̃) = 0, i.e. the pretangent space Ω0,r̃ is one-point. To complete the

proof, it suffices to observe that (2.28) and (2.29) imply

||x||
rnk

≥
√

tnk

tnk+1

or, respectively,

||x||
rnk

≤
√

tnk

tnk+1

for every subsequence r̃′ = {rnk
}k∈N of r̃. Hence, Ω0,r̃′ is also one-point. Therefore the

one-point pretangent space Ω0,r̃ is tangent. ¥

The following problem seems to be interesting.

2.9. Problem. Let (X, d) be a metric space and let a be an accumulation point of
X. Find the conditions under which there is an one-point tangent space Ωa,r̃.

2.10. Example. Let C be the complex plane with the usual distance function
d(z, w) = |z − w|. Fix the following three sequences:

{zj}j∈N with zj ∈ C and |zj| = 1;

{αj}j∈N with αj ∈ R and lim
j→∞

αj = 0;

{tj}j∈N with tj ∈ R+, tj+1 < tj and lim
j→∞

tj+1

tj
= 0.

Write X := {tjzj : j ∈ N} ∪ {tjzje
iαj : j ∈ N} ∪ {0}. In the case under consideration the

function (2.1) has the form

F (z, w) =
|z − w|(|z| ∧ |w|)

(|z| ∨ |w|)2
(2.30)

if (z, w) 6= (0, 0).
We claim that

lim
z→0
w→0

F (z, w) = 0 (2.31)

holds. Indeed, as in Example 2.7, for every (w, z) ∈ (X \ {0})2 we can find j and s such
that j ≤ s and

|w| ∨ |z| = tj and |w| ∧ |z| = ts.

If j < s, then we have

F (z, w) ≥ |tj − ts|ts
t2j

=

∣∣∣∣1−
ts
tj

∣∣∣∣
ts
tj
≥ ts

tj
≥ tj+1

tj
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but if j = s we obtain

F (z, w) =
|tjzje

iαj − tjzj|tj
t2j

= |eiαj − 1|.

Since

lim
j→∞

tj+1

tj
= lim

j→∞
|1− eiαj | = 0,

(2.31) holds. Theorem 2.2 implies that each pretangent space at the point 0 ∈ X is
either two-point or one-point. Note that two-point pretangent spaces at 0 ∈ X exist by
Proposition 2.1 because 0 is not an isolated point of X. Moreover, all these pretangent
spaces are tangent by Lemma 2.6. To construct an one-point tangent space it is enough to
take a normalizing sequence r̃ with rj =

√
tjtj+1, see the end of the proof of Proposition

2.8.

3 Some properties of pretangent and tangent spaces.

Let (X, d) be a metric space and let a ∈ X. If X̃a,r̃ is a maximal mutually stable family
of sequences x̃ = {xn}n∈N, xn ∈ X for n ∈ N, and if Ỹa,r̃ is a nonempty subset of X̃a,r̃,
then there is an unique isometric embedding iny : Ωy

a,r̃ → Ωa,r̃ such that the following
diagramm

Ỹa,r̃
in−−−−−−→ X̃a,r̃

py

y

yp

Ωy
a,r̃

iny−−−−−→ Ωa,r̃

(3.1)

is commutative. Here Ωa,r̃ is a pretangent space corresponding to X̃a,r, Ωy
a,r̃ is a metric

identification of Ỹa,r̃, py and p are metric identification maps and in(ỹ) = ỹ for all ỹ ∈ Ỹa,r̃.

3.1. Lemma. The mapping iny is an isometry if and only if for every x̃ ∈ X̃a,r̃ there
is ỹ ∈ Ỹa,r̃ such that

d̃(x̃, ỹ) = 0. (3.2)

Proof. The mapping iny is an isometry if and only if this mapping is surjective, that
is if

in−1
y (α) 6= ∅

for all α ∈ Ωa,r̃. The last condition and

p−1
y (in−1

y (α)) 6= ∅ (3.3)

are equivalent because py is surjective. Since iny ◦ py = p ◦ in, we can rewrite (3.3) as

∅ 6= in−1(p−1(α)). (3.4)
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If x̃ is an element of X̃a,r̃ such that p(x̃) = α, then p−1(α) = {ỹ ∈ X̃a,r̃ : d̃(x̃, ỹ) = 0}.
Hence (3.4) holds if and only if (3.2) occurs for some ỹ ∈ Ỹa,r̃. ¥

Suppose now that Y is a subspace of X. The closed spheres with center a and radius
ρ, 0 < ρ < ∞, are denoted by

Sρ = S(a, ρ) := {x ∈ X : d(a, x) = ρ}.
Write

ε(ρ) := ρ−1 sup
x∈Sρ

inf
y∈Y

d(x, y) (3.5)

for ρ > 0.
We present some necessary and sufficient conditions under which the map iny in (3.1)

is an isometry. In the following theorem we denote by Ỹa,r̃ a maximal mutually stable
family of sequences ỹ = {yn}n∈N for which all elements yn belong to Y ⊆ X and by Ωy

a,r̃

a pretangent space to Y at the point a ∈ Y .

3.2. Theorem. Let (X, d) be a metric space, let Y be a subspace of X and let a ∈ Y .
The following conditions are equivalent.

(i) An embedding iny : Ωy
a,r̃ → Ωa,r̃ is an isometry for every normalizing sequence r̃

and all maximal mutually stable families Ỹa,r̃ and X̃a,r̃ for which Ỹa,r̃ ⊆ X̃a,r̃.
(ii) The equality

lim
ρ→0

ε(ρ) = 0

holds.

Proof. Let X̃a,r̃ and Ỹa,r̃ be maximal mutually stable families and let Ỹa,r̃ ⊆ X̃a,r̃.
Suppose that condition (ii) holds true. Then for every x̃ = {xn}n∈N ∈ X̃a,r̃ there is
ỹ = ỹ(x̃) = {yn}n∈N such that yn ∈ Y for all n ∈ N and

d̃(x̃, ỹ(x̃)) = lim
n→∞

d(xn, yn)

rn

= 0. (3.6)

Indeed, if d̃(x̃, ã) = 0, then we can put ỹ = ã. If

d̃(x̃, ã) = lim
n→∞

d(xn, a)

rn

> 0,

then there is x̃′ = {x′n}n∈N ∈ X̃a,r̃ such that d̃(x̃, x̃′) = 0 and d(a, x′n) > 0 for all n ∈ N. It
follows from (3.5) with x = x′n and ρ = d(x′n, a) that

d(x′n, yn) ≤ ρε(ρ) + ρ2

for some yn ∈ Y . The last inequality and (ii) imply (3.6). Write

F̃y = {ỹ(x̃) : x̃ ∈ X̃a,r̃} ∪ Ỹa,r̃.

Since X̃a,r̃ is mutually stable, (3.6) implies that F̃y is also a mutually stable family of
sequences from Y . Maximality of Ỹa,r̃ implies that Ỹa,r̃ ⊇ F̃y. Hence, for every x̃ ∈ X̃a,r̃

there is ỹ(x̃) ∈ Ỹa,r̃ such that d̃(x̃, ỹ(x̃)) = 0. Condition (i) follows by Lemma 3.1.
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Suppose now that (ii) does not hold. Then there is a sequence ρ̃ of positive numbers
ρn with

lim
n→∞

ρn = 0

and there is a constant c > 0 such that for every n ∈ N there exists xn ∈ S(a, ρn) for
which

inf
y∈Y

d(xn, y) ≥ cρn. (3.7)

Let us denote by x̃ the sequence of points xn from X which satisfy (3.7). Take the
sequence ρ̃ = {ρn}n∈N as a normalizing sequence. Let X̃a,ρ̃ be a maximal mutually stable
with respect to ρ̃ family such that ã, x̃ ∈ X̃a,ρ̃. If iny is an isometry for some Ỹa,ρ̃ ⊆ X̃a,ρ̃,
then there is ỹ ∈ Ỹa,ρ̃ such that d̃(x̃, ỹ) = 0, see Lemma 3.1. It contradicts (3.7) because
(3.7) implies

lim sup
n→∞

d(xn, yn)

ρn

≥ c > 0

for every ỹ = {yn}n∈N with yn ∈ Y . ¥

Obviously, condition (ii) of Theorem 3.1 holds if Y is a dense subset in X. Therefore
we have the following

3.3. Corollary. Let (X, d) be a metric space, let Y be a dense subspace of X and let
a ∈ Y . Then the pretangent spaces to X and Y at the point a are pairwise isometric for
all normalizing sequences.

The next our goal is to show that all tangent spaces to metric spaces are complete.

3.4. Lemma. Let (X, d) be a metric space, let r̃ = {rn}n∈N be a normalizing sequence
and let F̃ 1

r̃ , F̃ 2
r̃ , F̃ 3

r̃ be mutually stable families of sequences x̃ = {xn}n∈N with xn ∈ X for
n ∈ N. Suppose that F̃ 1

r̃ is maximal, F̃ 2
r̃ ⊆ F̃ 1

r̃ ∩ F̃ 3
r̃ and that pseudometric space (F̃ 2

r̃ , d̃)
is a dense subspace of (F̃ 3

r̃ , d̃). Then the inclusion

F̃ 3
r̃ ⊆ F̃ 1

r̃ (3.8)

holds.

Proof. Suppose that (3.8) does not hold. Since F̃ 1
r̃ is maximal mutually stable with

respect to r̃, there are two sequences x̃ = {xn}n∈N ∈ F̃ 3
r̃ and ỹ = {yn}n∈N ∈ F̃ 1

r̃ such that
either

∞ ≥ lim sup
n→∞

d(xn, yn)

rn

> lim inf
n→∞

d(xn, yn)

rn

≥ 0 (3.9)

or

lim
n→∞

d(xn, yn)

rn

= ∞. (3.10)

For every ε > 0 we can find z̃ = {zn}n∈N ∈ F̃ 2
r̃ such that

d̃(x̃, ỹ) < ε
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because F̃ 2
r̃ is dense in F̃ 3

r̃ by the hypothesis of the lemma. The triangle inequality implies
∣∣∣∣
d(xn, yn)

rn

− d(zn, yn)

rn

∣∣∣∣ ≤
d(xn, zn)

rn

for all n ∈ N. Consequently we obtain
∣∣∣∣lim sup

n→∞

d(xn, yn)

rn

− d̃(z̃, ỹ)

∣∣∣∣ ≤ d̃(x̃, ỹ) < ε (3.11)

and ∣∣∣∣lim inf
n→∞

d(xn, yn)

rn

− d̃(z̃, ỹ)

∣∣∣∣ < ε

Therefore, the equality
∣∣∣∣lim sup

n→∞

d(xn, yn)

rn

− lim inf
n→∞

d(xn, yn)

rn

∣∣∣∣ < 2ε

holds for all ε > 0, this contradicts (3.9). To complete the proof, it suffices to observe
that (3.11) contradicts (3.10). ¥

3.5. Lemma. Let (X, d) be a metric space, let a ∈ X and let Ωa,r̃, r̃ = {rn}n∈N, be a
pretangent space with a corresponding maximal mutually stable family X̃a,r̃. Suppose that
Λ is a bounded subset of Ωa,r̃. Then there is a constant c > 0 such that for every α ∈ Λ
we can find x̃ = {xn}n∈N ∈ X̃a,r̃ such that

p(x̃) = α and
d(xn, a)

rn

≤ c (3.12)

for all n ∈ N where p is the metric identification of X̃a,r̃.

Proof. Write
A := {x̃ ∈ X̃a,r̃ : p(x̃) ∈ Λ}.

Since Λ is bounded in Ωa,r̃, we have

sup{d̃(x̃, ã) : x̃ ∈ A} := k < ∞.

For every x̃ = {xn}n∈N ∈ A introduce the sequence x̃∗ = {x∗n}n∈N by the rule

x∗n =

{
xn if d(xna) < (k + 1)rn

a if d(xn, a) ≥ (k + 1)rn.

Note that for every x̃ ∈ A there is n(x̃) ∈ N such that xn = x∗n if n ≥ n(x̃) because

d̃(x̃, ã) = lim
n→∞

d(xn, a)

rn

≤ k < k + 1.

Consequently x̃∗ ∈ X̃a,r̃ for all x̃ ∈ A. Moreover, relations (3.12) evidently hold with
x̃ = x̃∗, xn = x∗n and c = k + 1, which is what had to be proved. ¥
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3.6. Theorem. Let (X, d) be a metric space, a ∈ X and let r̃ ∈ {rn}n∈N be a
normalizing sequence. Then a tangent space Ωa,r̃, if it exists, is complete.

Proof. Let {αj}j∈N be a fundamental sequence in the metric space Ωa,r̃. We must to
show that {αj}j∈N is convergent. Let X̃a,r̃ be a maximal mutually stable family with the
pretangent space Ωa,r̃ and let p : X̃a,r̃ → Ωa,r̃ be a metric identification mapping. Every
fundamental sequence of an arbitrary metric space is bounded. Hence, by Lemma 3.5,
there is c > 0 such that for every j ∈ N there exists x̃j = {xj

n}n∈N ∈ X̃a,r̃ for which

p(x̃j) = αj and
d(xj

n, a)

rn

≤ c (3.13)

for all n ∈ N.
In accordance with Definition 1.4 and Lemma 3.4 it suffices to prove that there exists

a sequence x̃ = {xn}n∈N of points from X such that for some subsequence of natural
numbers nk and for all j ∈ N the sequences x̃′ = {xnk

}k∈N and x̃′j = {xj
nk
}k∈N are

mutually stable with respect to r̃′ = {rnk
}k∈N and

lim
j→∞

lim
k→∞

d(xnk
, xj

nk
)

rnk

= 0, (3.14)

see diagramm (1.4).
Suppose now that (3.14) holds and, in addition, we have the following condition: for

every k ∈ N there is j(k) ∈ N such that

xnk
= xj(k)

nk
(3.15)

where x
j(k)
nk is nk-th element of x̃j(k). Then it follows from (3.13) that the inequality

d(xj
nk

, xnk
)

rnk

≤ 2c

holds for all j, k ∈ N. In particular, we obtain

d(x1
nk

, xnk
)

rnk

≤ 2c

for all k ∈ N. Since every bounded infinite sequence of real numbers has a subsequence
that converges to a real number, there is a increasing infinite subsequence {n(1)

k }k∈N of the

sequence {nk}k∈N such that lim
k→∞

d(x
n

(1)
k

, x1

n
(1)
k

)

r
n

(1)
k

is finite. Hence, the sequences {x
n

(1)
k
}k∈N

and {x1

n
(1)
k

}k∈N are mutually stable with respect to {r
n

(1)
k
}k∈N. Analogously, by induction,

we can prove that for every integer i ≥ 2 there is a subsequence {n(i)
k }k∈N of the se-

quence {n(i−1)
k }k∈N such that {x

n
(i)
k
}k∈N and {xi

n
(i)
k

}k∈N are mutually stable with respect to

{r
n

(i)
k
}k∈N. Consider now the diagonal sequence {n(k)

k }k∈N. For every i ∈ N the sequences
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{xi

n
(k)
k

}k∈N and {x
n

(k)
k
}k∈N are mutually stable with respect to {r

n
(k)
k
}k∈N. Moreover, (3.14)

evidently holds with nk = j(k) = n
(k)
k . Consequently, for the proof of the theorem it

suffices to construct x̃ such that (3.15) and (3.14) are satisfied. In order to construct this

x̃, an estimate for
d(xj

n, x
i
n)

rn

is needed.

3.7. Lemma. Let {x̃j}j∈N, x̃j = {xj
n}n∈N, be a fundamental sequence in a pseu-

dometric space (X̃a,r̃, d̃). Then there is a sequence {x̃∗j}j∈N ∈ X̃a,r̃ with the following
properties:

(i) The equality
d̃(x̃j, x̃

∗
j) = 0 (3.16)

holds for all j ∈ N;
(ii) For every ε > 0 there exists j0(ε) ∈ N such that the inequality

sup
n∈N

d(x∗jn , x∗in )

rn

≤ ε (3.17)

holds if i ∧ j ≥ j0(ε).

Proof. Let {x̃jk
}k∈N be a subsequence of {x̃j}j∈N such that j1 < j2 < ... < jk... and

d̃(x̃j, x̃jk
) ≤

(
1

2

)k+1

(3.18)

whenever j ≥ jk. For all j, n ∈ N write

(1)xj
n =





xj
n if j ≤ j1

xj
n if j > j1 and

d(xj1
n , xj

n)

rn

≤ 1

2

xj1
n if j > j1 and

d(xj1
n , xj

n)

rn

>
1

2

(3.19)

and put
(1)x̃j := {(1)xj

n}n∈N.

Inequality (3.18) implies that for every j ∈ N there is n0(j) ∈ N such that (1)xj
n = xj

n for
all n ≥ n0(j). Hence, we have the equality

d̃(x̃j,
(1)x̃j) = 0 (3.20)

for all j ∈ N. Note that (3.20) implies the inequality

d̃((1)x̃j, x̃jk
) ≤

(
1

2

)k+1

whenever j ≥ jk. Moreover, it follows from (3.19) that

sup
n∈N

d((1)xj
n, (1)xi

n)

rn

≤ sup
n∈N

d((1)xj
n, x

j1
n )

rn

+ sup
n∈N

d((1)xi
n, x

j1
n )

rn

≤ 1
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whenever i ∧ j > j1. Now we define (k)xj
n by induction in k.

If k ≥ 2 and j, n ∈ N write

(k)xj
n =





(k−1)xj
n if j ≤ jk

(k−1)xj
n if j > jk and

d(xjk
n , (k−1)xj

n)

rn

≤
(

1

2

)k

xjk
n if j > jk and

d(xjk
n , (k−1)xj

n)

rn

>

(
1

2

)k

and put
(k)x̃j := {(k)xj

n}n∈N.

In the same manner as in the case k = 1 we obtain the equality

d(x̃j,
(k)x̃j) = 0 (3.21)

for all j, k ∈ N and the inequality

sup
n∈N

d((k)xj
n, (k)xi

n)

rn

≤
(

1

2

)k

(3.22)

whenewer i ∧ j > jk. Now set for all n ∈ N
x∗jn = (1)xj

n if 1 ≤ j ≤ j1,

x∗jn = (2)xj
n if j1 < j ≤ j2,

.....................................

x∗jn = (k)xj
n if jk−1 < j ≤ jk,

and so on. The sequence x̃∗j := {x∗jn }n∈N has the properties (i) and (ii) because (3.21)
implies (3.16) and, moreover, (3.17) follows from (3.22). ¥

Continuation of the proof of Theorem 3.6. Using Lemma 3.7 we may assume that for
every ε > 0 there is j0 = j0(ε) ∈ N such that

sup
n∈N

d(xi
n, xj

n)

rn

≤ ε (3.23)

if i ∧ j ≥ j0(ε). Set xn = xn
n for all n ∈ N. Then if follows from (3.23) that

lim sup
n→∞

d(xn, xj
n)

rn

≤ ε. (3.24)

It was shown in the first part of the proof that there is a subsequence r̃′ = {rnk
}k∈N of

the sequence r̃ such that the sequences x̃′j = {xj
nk
}k∈N and x̃′ = {xnk

}k∈N are mutually
stable with respect r̃′ for all j ∈ N. Hence, by (3.24), we obtain

lim
n→∞

d(xnk
, xj

nk
)

rnk

≤ ε
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if j ≥ j0(ε). The last relation gives (3.14) when j →∞. To complete the proof, it suffices
to observe that (3.15) holds with j(k) = nk. ¥

Recall that a map f : X → Y is called closed if the image of each set closed in X is
closed in Y .

3.8. Corollary. Let (X, d) be a metric space, let Y be a subspace of X and let a ∈ Y .
If a pretangent space Ωy

a,r̃ is tangent, then the map iny : Ωy
a,r̃ → Ωa,r̃ is closed.

Proof. The map iny is an isometric embedding. Hence, iny is closed if and only if the
set iny(Ω

y
a,r̃) is a closed subset of Ωa,r̃. The space Ωy

a,r̃ is complete by Theorem 3.6. Since
a metric space is complete if and only if this space is closed in every its superspace, see
for example [Sear, Th.10.2.1], iny(Ω

y
a,r̃) is closed in Ωa,r̃. ¥
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[Sear] Mı́cheál Ó Searcóid, Metric Spaces, Springer-Verlag London Limited, 2007.

[Sh] N. Shanmugalingam, Newtonian spaces: an extention of Sobolev spaces to metric
measure spaces // Rev. Mat. Iberoamericana 16, (2000), 243–279.


