
WEAK CONVERGENCE OF SINGULAR INTEGRALS

VASILIS CHOUSIONIS

Abstract. We show that the truncated singular integral operators

T ε
µ,K(f)(x) =

∫
Rn\B(x,ε)

K(x− y)f(y)dµy.

converge weakly in some dense subspaces of L2(µ), under mild assumptions
for the measures and the kernels.

1. Introduction

Let K : Rn \{0} → R be some continuously differentiable function and µ some
Radon measure in Rn. The truncated singular integral operators associated with
µ and K are given by

T ε
µ,K(f)(x) =

∫
Rn\B(x,ε)

K(x− y)f(y)dµy.

Here B(x, ε) is the closed ball centered at x with radius ε. Since the kernels we
are interested in will remain fixed in the proofs, although the measures might
vary, we will use the notation T ε

µ instead of T ε
µ,K . Following this convention, the

maximal singular integral operator is defined as

T ∗
µ(f)(x) = sup

ε>0

∣∣T ε
µ(f)(x)

∣∣ .

We are interested in limit properties of the operators T ε
µ. First consider the

direct question as to whether the limit, the so called principal value of T ,

lim
ε→0

T ε
µ(f)(x),

exists µ almost everywhere. When µ = Ln, the Lebesgue measure in Rn, and K
is a standard Calderón-Zygmund kernel, due to cancelations and the denseness
of smooth functions in L1, the principal values exist almost everywhere for L1-
functions. For more general measures, the question is more complicated. Let m
be an integer, 0 < m < n, and consider the coordinate Riesz kernels

Rm
i (x) =

xi

|x|m+1
for i = 1, ..., n.
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Let C some compact set with finite m-dimensional Hausdorff measure Hm, and
denote by µ = HmbC the restriction of Hm on C. By the works of Mattila
and Preiss [MP], Mattila and Melnikov [MM], Verdera [V] and Tolsa [T2] the
principal values

lim
ε→0

∫
Rn\B(x,ε)

xi − yi

|x− y|m+1
dµy

exist µ almost everywhere if and only if the set C is m-rectifiable i.e. if there
exist m-dimensional Lipschitz surfaces Mi, i ∈ N, such that

Hm(C \ ∪∞i=1Mi) = 0.

For m = 1, Tolsa in [T1] showed, among other things, that if the operators

Cε
µ(f)(x) =

∫
Rn\B(x,ε)

R2
i (x− y)dµy, for i=1,2,

are uniformly bounded in L2, which means that there exists some constant C
such that∫

|Cε
µ(f)|2dµ ≤ C

∫
|f |2dµ for every f ∈ L2 and every ε > 0,

then the principal values exist µ almost everywhere. For m > 1 the question
remains open.

In different settings L2-boundedness does not always imply the almost every-
where existence of principal values. Let C be the 1-dimensional four corners
Cantor set and µ its natural (1-dimensional Hausdorff) measure. David in [D3],
constructed Calderón-Zygmund standard kernels that define operators bounded
in L2(µ) whose principal values fail to exist µ almost everywhere. Although
David’s kernels can be chosen odd or even, they are not homogeneous of degree
−1. In [C] families of Calderón-Zygmund standard, smooth, odd and homoge-
neous kernels were constructed on Sieprinski gaskets Ed of Hausdorff dimension
d, 0 < d < 1. These kernels give rise to singular integral operators bounded in
L2(µd) with principal values diverging µd almost everywhere. Here µd = HdbEd.

Recently, in [MV], Mattila and Verdera showed for general measures and
kernels that the L2(µ)-boundedness of the operators T ε

µ,K forces them to con-

verge weakly in L2(µ). This means that there exists a bounded linear operator
Tµ,K : L2(µ) → L2(µ) such that for all f, g ∈ L2(µ),

lim
ε→0

∫
T ε

µ,K(f)(x)g(x)dµx =

∫
T (f)(x)g(x)dµx.

Furthermore it was remarked in [MV], that by the Banach-Steinhaus theorem the
converse also holds often. Motivated by this recent development it is natural to
ask if limits of this type might exist if we remove the very strong L2-boundedness
assumption.
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We prove that the operators T ε
µ,K converge weakly in the sense of Theorem 1.4

under some mild assumptions for the measures and the kernels. It is of interest
that weak convergence of this type holds for many (n − 1)-purely unrectifiable
measures µ, that is when µ(E) = 0 for all (n− 1)-rectifiable sets E. Recall that
for 1-purely unrectifiable measures and 1-dimensional Riesz kernels the principal
values diverge almost everywhere and the weak convergence in L2 fails.

Our setting is determined by the following definitions.

Definition 1.1. The class ∆ will contain all finite Radon measures µ on Rn such
that

µ(B(x, r)) ≤ Cµr
n−1 for r > 0, (1.1)

where Cµ is some constant depending on µ. The subclass Σ ⊂ ∆ will contain all
the measures µ ∈ ∆ such that for 0 < r < diam(sptµ) and x ∈ sptµ,

C−1
µ rn−1 ≤ µ(B(x, r)) ≤ Cµr

n−1, (1.2)

where Cµ depends on µ. Radon measures, not necessarily finite, satisfying (1.2)
are also referred as (n− 1) Ahlfors-David regular.

Definition 1.2. The class K will contain all continuously differentiable kernels
K : Rn \{0} → R satisfying for all x ∈ Rn \{0},

(i) K(−x) = −K(x) (Antisymmetry)
(ii) |K(x)| ≤ C0|x|−(n−1)

(iii) |∇K(x)| ≤ C1 |x|−n

where the constants C0 and C1 depend on K.

The classes K and ∆ have been studied widely, see e.g. [D2] and the references
therein. Notice also that both K and ∆ are quite broad. For example the class ∆
contains measures supported on balls intersected with (n− 1-dimensional planes
and Lipschitz graphs but it also contains measures whose support is some fractal
set like the 1-dimensional four corners Cantor set in R2. Moreover Riesz kernels
for m = n− 1 belong to K, as well as stranger kernels like the ones appearing in
[D3].

We continue with some basic notation. For x ∈ Rn and m = 1, .., n let xbm=
(x1, .., xm). Denote the graph of a given function f : Rn−1 → R by

Cf = {x ∈ Rn : xn = f(xbn-1)}

and the corresponding half spaces by

H+
f = {x ∈ Rn : xn > f(xbn-1)} and H−

f = {x ∈ Rn : xn < f(xbn-1)}.

The following theorem is the main tool used to establish weak convergence.
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Theorem 1.3. Let µ ∈ ∆ and K ∈ K. Then for any Lipschitz function f :
Rn−1 → R the limit

lim
ε→0

∫
Rn\H−

f

∫
H−

f

|x−y|>ε

K(x− y)dµydµx (1.3)

exists.

Consider the following function spaces, which are dense subsets of L2(µ) for
µ ∈ ∆,

XQ(Rn) = {f : Rn → R, f is a finite linear combination of characteristic

functions of rectangles in Rn}

and

XB(Rn) = {f : Rn → R, f is a finite linear combination of characteristic

functions of balls in Rn}.

Rectangles in XQ need not have their sides parallel to the axis. Our principal
result reads as follows.

Theorem 1.4. If µ ∈ ∆ and K ∈ K the limit

lim
ε→0

∫
T ε

µ(f)(x)g(x)dµx

exists for f, g ∈ XB(Rn) and f, g ∈ XQ(Rn).

As noted earlier, by [MV], the weak convergence in L2(µ) implies that the op-
erators T ε

µ are uniformly bounded in L2(µ). Therefore, since the singular integral
operators associated with 1-dimensional Riesz kernels and 1-purely unrectifiable
measures are not bounded in L2(µ), one cannot hope of replacing the function
spaces XB(Rn) and XQ(Rn) with L2(µ) in theorem 1.4.

Before starting proving Theorems 1.3 and 1.4, we are going to state, applied
to our setting, some known results that are going to be used in the proofs. The
first one was proved by David in [D1].

Theorem 1.5. Let K ∈ K, µ ∈ ∆ and σ ∈ Σ such that

T ∗
σ : L2(σ) → L2(σ)

is bounded. Then

T ∗
σ : L2(σ) → L2(µ) and T ∗

µ : L2(µ) → L2(σ)

are also bounded.

Coifman, David and Meyer proved the following theorem in [CDM] based on
earlier results by Coifman, McIntosh and Meyer,see [CMM].
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Theorem 1.6. Let S ⊂ Rn be some (n−1)-dimensional Lipschitz graph and let
σ = Hn−1bS. Then if K ∈ K the corresponding maximal operator,

T ∗
σ : L2(σ) → L2(σ)

is bounded.

The following theorem was first proved by Mattila and Melnikov in [MM] for
the Cauchy transform in the plane, and in the general form stated below by
Verdera in [V].

Theorem 1.7. Let S ⊂ Rn be some Hn−1 measurable, (n− 1)-rectifiable set of
finite Hn−1 measure. Then if K ∈ K and ν is any finite Radon measure in Rn

the principal values

lim
ε→0

∫
|x−y|>ε

K(x− y)dνy

exist for Hn−1 almost all x ∈ S.

Throughout this paper A <∼ B means A <∼ CB for some absolute constant C.

2. Proof of Theorem 1.3

Let L > max{1, Lip(f)}, V = {x ∈ Rn : xn = 0} and without loss of generality
assume that sptµ ⊂ B(0, 1). We can also assume that Cf ∩ sptµ 6= ∅, since
otherwise the quantity ∫

Rn\H−
f

∫
H−

f

|x−y|>ε

K(x− y)dµydµx

is constant for ε small enough. In that case pr−1
V (prV (sptµ)) ∩ Cf ⊂ B(0, 5L).

Let S = B(0, 5L) ∩ Cf and denote

σ = Hn−1bS and ν = µbH−
f .

It follows easily that σ ∈ Σ.
By Theorem 1.6

T ∗
σ : L2(σ) → L2(σ)

is bounded. Furthermore since ν ∈ ∆, σ ∈ Σ and T ∗
σ is bounded Theorem 1.5

implies that
T ∗

ν : L2(ν) → L2(σ)

is bounded. Therefore by Hölder’s inequality and the L2 boundedness of T ∗
ν ,∫

T ∗
ν (1)(x)dσx ≤ ‖T ∗

ν (1)‖L2(σ)‖1‖L2(σ)

<∼ ‖T ∗
ν (1)‖L2(σ)

<∼ ‖1‖L2(ν).
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Hence ∫
T ∗

ν (1)(x)dσx < ∞. (2.1)

Since σ ∈ Σ there exists some constant CS such that for x ∈ S and 0 < r < 5L,

rn−1

CS

≤ σ(B(x, r)) ≤ CSrn−1.

Therefore

µ(S ∩B(x, r)) ≤ Cµr
n−1

≤ CµCSσ(B(x, r))

for x ∈ S and 0 < r < 5L. Using Vitalli’s covering theorem for µ we deduce that
µbS ≤ CµCSσ, which combined with (2.1) gives∫

S

T ∗
ν (1)(x)dµx < ∞. (2.2)

The following Lemma, roughly speaking, allows us to compare the values of
T ∗

ν (1) on Whitney cubelike sets in H+
f and on their projections on Cf .

Lemma 2.1. Let f : Rn−1 → R be some Lipschitz function with L > max{1, Lip(f)}.
If

Q =
n−1∏
i=1

[a, b) ⊂ V with b− a = r,

A = {x ∈ Rn : xbn-1 ∈ Q and f(xbn-1) + 2Lr ≤ xn < f(xbn-1) + 4Lr},
A′ = {x ∈ Cf : xbn-1 ∈ Q},

then for z ∈ A and z′ ∈ A′,

T ∗
ν (1)(z) ≤ 3T ∗

ν (1)(z′) + D

where D = D(µ, K, f, n).

Proof. Let z ∈ A, z′ ∈ A′ and ε > 0. Since

| zbn-1− z′bn-1 | ≤
√

n− 1r

and

|zn − z′n| ≤ |zn − f(zbn-1)|+ |f(zbn-1)− f(z′bn-1)|
≤ Lr(4 +

√
n− 1),

we get

|z − z′| =

√
| zbn-1− z′bn-1 |2 + |zn − z′n|

2

≤ C(n)r
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where C(n) =
√(

4L +
√

n− 1
)2

+ n− 1. We have to consider two cases for
ε > 0.

For ε ≤ |z − z′|,

|T ε
ν (1)(z)− T ε

ν (1)(z′)| =

∣∣∣∣∫
B(z,ε)c

K(z − y)dνy −
∫

B(z′,ε)c

K(z′ − y)dνy

∣∣∣∣
≤

∣∣∣∣∫
B(z′,4C(n)r)\B(z,ε)

K(z − y)dνy

∣∣∣∣
+

∣∣∣∣∫
B(z′,4C(n)r)\B(z′,ε)

K(z′ − y)dνy

∣∣∣∣
+

∫
B(z′,4C(n)r)c

|K(z − y)−K(z′ − y)| dνy

At this point notice that

d(Cf , Cf + 2Lr) ≥ r where Cf + 2Lr = {x ∈ Rn : xn = f(xbn-1) + 2Lr} .

To see this, by way of contradiction, suppose that there exist x ∈ Cf + 2Lr and
x′ ∈ Cf such that |x− x′| < r. Then

|f(xbn-1)− f(x′bn-1)| ≥ |f(xbn-1)− xn| − |xn − x′n|
> L| xbn-1− x′bn-1 |.

Therefore for z ∈ A and y ∈ sptν ⊂ H−
f ∪ Cf we get that |z − y| ≥ r. Hence∫

B(z′,4C(n)r)\B(z,ε)

|K(z − y)| dνy ≤ C0

∫
B(z′,4C(n)r)\B(z,ε)

1

|z − y|n−1dνy

≤ C0r
−(n−1)ν(B(z′, 4C(n)r))

≤ (4C(n))n−1C0Cµ.

Furthermore, ∣∣∣∣∫
B(z′,4C(n)r)\B(z′,ε)c

K(z′ − y)dνy

∣∣∣∣ ≤ 2T ∗
ν (1)(z′).

By the Mean Value Theorem we also derive that

|K(z − y)−K(z′ − y)| ≤ |∇K(ξ(y))| |z − z′|

≤ C1 |z − z′|
|ξ(y)|n
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where ξ(y) lies in the line segment joining y − z to y − z′. Hence∫
B(z′,4C(n)r)c

|K(z − y)−K(z′ − y)| dνy ≤

∞∑
j=1

∫
B(z′,2j4C(n)r)\B(z′,2j−14C(n)r)

C1 |z − z′|
|ξ(y)|n

dνy

For j ∈ N and y ∈ B(z′, 2j4C(n)r)\B(z′, 2j−14C(n)r),

|ξ(y)| ≥ |y − z′| − |ξ(y)− (y − z′)|
≥ |y − z′| − |y − z − (y − z′)|
≥ C(n)2jr.

Consequently,
∞∑

j=1

∫
B(z′,2j4C(n)r)\B(z′,2j−14C(n)r)

C1 |z − z′|
|ξ(y)|n

dνy ≤ 4n−1CµC1.

Combining all the above we conclude that for z ∈ A, z′ ∈ A′ and 0 < ε ≤ |z − z′|,

|T ε
ν (1)(z)| ≤ 3T ∗

ν (1)(z′) + D1 (2.3)

where D1 = 4n−1Cµ(C1 + C0C(n)n−1).
Now we consider the case where ε > |z − z′|. Then

|T ε
ν (1)(z)− T ε

ν (1)(z′)| =

∣∣∣∣∫
B(z,ε)c

K(z − y)dνy −
∫

B(z′,ε)c

K(z′ − y)dνy

∣∣∣∣
≤

∣∣∣∣∫
B(z′,2ε)\B(z,ε)

K(z − y)dνy

∣∣∣∣
+

∣∣∣∣∫
B(z′,2ε)\B(z′,ε)

K(z′ − y)dνy

∣∣∣∣
+

∫
B(z′,2ε)c

|K(z − y)−K(z′ − y)| dνy

Exactly as before ∣∣∣∣∫
B(z′,2ε)\B(z,ε)

K(z − y)dνy

∣∣∣∣ ≤ 2n−1CµC0∣∣∣∣∫
B(z′,2ε)\B(z′,ε)

K(z′ − y)dνy

∣∣∣∣ ≤ 2T ∗
ν (1)(z′)

and ∫
B(z′,2ε)c

|K(z − y)−K(z′ − y)| dνy ≤ 22n−1CµC1.
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Thus for z ∈ A, z′ ∈ A′ and ε > |z − z′|,
T ε

ν (1)(z) ≤ 3T ∗
ν (1)(z′) + D2 (2.4)

where D2 = 22n−1Cµ(2C1 + C0). Finally combining (2.3) and (2.4) we conclude
that for z ∈ A, z′ ∈ A′,

T ∗
ν (1)(z) ≤ 3T ∗

ν (1)(z′) + D

where D = max{D1, D2}. �

Therefore if A, A′ as in Lemma 2.1 and E ⊂ A′ such that Hn−1(E) = cµ(A)
for some c > 0, we get∫

A

T ∗
ν (1)(z)dµz ≤ inf

z′∈E
(3T ∗

ν (1)(z′) + D) µ(A)

= c−1 inf
z′∈E

(3T ∗
ν (1)(z′) + D)Hn−1(E)

≤ 3c−1

∫
E

T ∗
ν (1)(z′)dHn−1z′ + Dc−1Hn−1(E). (2.5)

In the following our purpose is to show that∫
H+

f

T ∗
ν (1)(z)dµz < ∞, (2.6)

which combined with (2.2) implies that∫
H+

f ∪Cf

T ∗
ν (1)(z)dµz < ∞. (2.7)

For k ∈ N let

Sk = {x ∈ H+
f : xn ≥ f(xbn-1) + L21−k}.

In order to prove (2.6) it is enough to establish that∫
Sk

T ∗
ν (1)(z)dµz ≤ C, (2.8)

where C is some constant not depending on k. The idea is to use some appropri-
ate Whitney type decomposition on H+

f . For m ∈ N and j = (j1, .., jn−1) ∈ Zn−1

denote

Im
j =

∏n−1

i=1
[(ji − 1)2−m, ji2

−m)

Qm
j =

{
x ∈ Rn : xbn-1 ∈ Im,j and L21−m + f(xbn-1) ≤ xn < L22−m + f(xbn-1)

}
Dm = {Qm

j }j∈Zn−1

Qm = ∪j∈Zn−1Qm
j

Fm
j = {x ∈ Cf : xbn-1 ∈ Im

j }
A rough illustration of the decomposition is shown in Figure A.
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Figure A

Since µ ∈ ∆ and Hn−1bCf is (n − 1) AD-regular, the following estimates are
rather straightforward,

C−1
2 2−m(n−1) ≤ Hn−1(Fm

j ) ≤ C22
−m(n−1) for all m ∈ N, j ∈ Zn−1, (2.9)

µ(w + Qm
j ) ≤ C32

−m(n−1) for all w ∈ Rn, m ∈ N, j ∈ Zn−1, (2.10)

where C2 depends on L and C3 depends on µ and L.
Fix some k ∈ N. For all m ∈ N, 1 ≤ m ≤ k, our aim is to assign to each

Qm
j ∈ Dm some Borel set Em

j ⊂ Cf with the following properties,

(i) Em
j ⊂ Fm

j

(ii) Hn−1(Em
j ) =

µ(Qm
j )

10C2C3

(iii) Em
j ∩ (Em+1 ∪ ... ∪ Ek) = ∅ where El = ∪j∈Zn−1El

j for m + 1 ≤ l ≤ k.

Condition (iii) makes it clear that we need to start from m = k. In this case it
is easy to find Borel sets Ek

j satisfying

Ek
j ⊂ F k

j and Hn−1(Ek
j ) =

µ(Qk
j )

10C2C3

Notice that the sets Ek
j are disjoint for j ∈ Zn−1. In the following we can

proceed inductively. Let some m ∈ N, 1 ≤ m ≤ k − 1, and suppose that for all
l ∈ N, m < l ≤ k there exist families {Ep

j : j ∈ Zn−1} satisfying properties (i),(ii)

and (iii). In order to demonstrate that the desired family of sets {Em
j : j ∈ Zn−1}

exists, it is enough to show that

Hn−1(Fm
j \(Em+1 ∪ ... ∪ Ek)) >

µ(Qm
j )

10C2C3
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for all Qm
j ∈ Dm. Notice that

pr−1
V Qm

j ∩ (Qm+1 ∪ ... ∪Qk) =
k⋃

l=m+1

⋃
p∈Il,j

Ql
p

(2.11)

where Il,j ⊂ Zn−1 and #Il,j = 2(l−m)(n−1). This implies

Fm
j ∩ (Em+1 ∪ ... ∪ Ek) =

k⋃
l=m+1

⋃
p∈Il,j

El
p
. (2.12)

Furthermore,

k⋃
l=m+1

⋃
p∈Il,j

Ql
p
⊂ Qm

j + xm
j (2.13)

where xm
j = (0, .., 0,−L21−m). Therefore by (2.10) and (2.13),

Hn−1

 k⋃
l=m+1

⋃
p∈Il.j

El
p

 =
k∑

l=m+1

∑
p∈Il.j

Hn−1(El
p)

= 10−1C−1
2 C−1

3

k∑
l=m+1

∑
p∈Il,j

µ(Ql
p)

= 10−1C−1
2 C−1

3 µ

 k⋃
l=m+1

⋃
p∈Il.j

Ql
p


≤ 10−1C−1

2 C−1
3 µ(Qm

j + xm
j )

≤ 10−1C−1
2 2−m(n−1).

Consequently by (2.12), (2.9) and (2.10)

Hn−1(Fm
j \(Em+1 ∪ ... ∪ Ek)) ≥ C2

−12−m(n−1) −Hn−1

 k⋃
l=m+1

⋃
p∈Il.j

El
p


>

µ(Qm
j )

10C2C3

.

This completes the induction.
Finally using properties of the decomposition, (2.1), (2.5) and the fact that

∪{Em
j : Hn−1(Em

j ) > 0} ⊂ pr−1
V (prV (sptµ)) ∩ Cf ⊂ S,



12 VASILIS CHOUSIONIS

we derive∫
Sk

T ∗
ν (1)(z)dµz =

k∑
m=1

∑
j∈Zn−1

∫
Qm

j

T ∗
ν (1)(z)dµz

≤ 30C2C3

k∑
m=1

∑
j∈Zn−1

∫
Em

j

T ∗
ν (1)(z)dHn−1z

+10C2C3D
k∑

m=1

∑
j∈Zn−1

Hn−1(Em
j )

≤ 30C2C3

∫
S

T ∗
ν (1)(z)dHn−1z + 10C2C3DHn−1(S)

= 30C2C3

∫
T ∗

ν (1)(z)dσz + 10C2C3DHn−1(S),

finishing the proof of (2.8).
For z ∈ H+

f the limit

lim
ε→0

T ε
ν (1)(z)

exists since H+
f ∩ sptν = ∅. Furthermore by Theorem 1.7 the above limit also

exists for µ almost every z ∈ S. Thus by (2.7) and the Lebesgue dominated
convergence theorem we derive that the limit

lim
ε→0

∫
H+

f ∪Cf

T ε
ν (1)(z)dµz = lim

ε→0

∫
H+

f ∪Cf

∫
H−

f

|x−y|>ε

K(z − y)dµydµz

exists, completing the proof of Theorem 1.3.
Remark. As a corollary of Theorem 1.3 and Fubini’s theorem we derive that

the limits

lim
ε→0

∫
H+

f

∫
Rn\H+

f

|x−y|>ε

K(x− y)dµydµx

exist under the same assumptions with Theorem 1.3.

3. Weak Convergence in XB(Rn) and XQ(Rn)

To prove Theorem 1.4 assume without loss of generality that sptµ ⊂ B(0, 1)
and let f, g ∈ XQ(Rn) or f, g ∈ XB(Rn) be such that

f =
l∑

i=1

aiχQi
and g =

m∑
j=1

bjχPj
,

where ai, bj ∈ R and Qi, Pj are balls or Qi, Pj are rectangles. Then for ε > 0,
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∫
T ε

µ(f)(x)g(x)dµx =
m∑

j=1

l∑
i=1

bjai

∫
Pj

∫
Qi

|x−y|>ε

K(x− y)dµydµx.

Therefore it is enough to show that for balls P, Q or P, Q rectangles the limit

lim
ε→0

∫
P

∫
Q

|x−y|>ε

K(x− y)dµydµx

exists. But, ∫
P

∫
Q

|x−y|>ε

K(x− y)dµydµx = I1 + I2 + I3 + I4,

where,

I1 =

∫
P∩Q

∫
P∩Q

|x−y|>ε

K(x− y)dµydµx

I2 =

∫
P\Q

∫
P∩Q

|x−y|>ε

K(x− y)dµydµx

I3 =

∫
P∩Q

∫
Q\P

|x−y|>ε

K(x− y)dµydµx

I4 =

∫
P\Q

∫
Q\P

|x−y|>ε

K(x− y)dµydµx.

By the antisymmetry of K, for every ε > 0,

I1 = 0.

Furthermore by Fubini’s theorem I3 is essentially the same with I2, allowing us
to treat only I2 and I4. In that direction notice that for every rectangle, or ball,
say P there exist some collection of rotations of Lipschitz graphs {Fi(P )}2n

i=1, and
disjoint sets {Ai(P )}2n

i=1, such that

Rn \ P = ∪2n
i=1Ai(P ),

P ⊂ H−
Fi(P ) ∪ Fi(P ),

Ai(P ) ⊂ H+
Fi(P ).

See Figure B for an illustration in the case when P is a subset of the plane. Using
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Figure B

the above geometric property I2 and I4 can be decomposed in the following way,

I2 =
2n∑
i=1

∫
Ai(Q)∩P

∫
P∩Q

|x−y|>ε

K(x− y)dµydµx

and

I3 =
2n∑
i=1

∫
Ai(Q)∩P

∫
Q\P

|x−y|>ε

K(x− y)dµydµx.

Therefore since limits like

lim
ε→0

∫
Ai(Q)∩P

∫
P∩Q

|x−y|>ε

K(x− y)dµydµx

and

lim
ε→0

∫
Ai(Q)∩P

∫
Q\P

|x−y|>ε

K(x− y)dµydµx

exist by Theorem 1.3 we finally obtain Theorem 1.4.
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