On Cl-extension and Cl-reflection of subharmonic
functions from Lyapunov-Dini domains to R

P.V. Paramonov*

For Lyapunov-Dini domains D in RN (N € {2,3,...}) we study the possibility of C?-
extension and Cl-reflection of subharmonic functions in D of the class C'(D) through the
boundary of D to all of RY.

Bibliography: 14 titles.

1 Introduction

For previous results on C"-extension of subharmonic functions we refer the reader to
[1] — [5] and literature therein. In these papers one can find several different settings of
the problem. Here we deal with the following particular question (and related results).

For which compact sets X in RN any function f € CY(X) subharmonic on the interior
of X can be extended to a function F subharmonic and C* on all of RN with the property
[ Fllermyy < Axl| fllerx) (with Ax € (0,400) depending only on X )?

The main result of this paper (Theorem 3) says that the previous property is satisfied
by any C'-smooth closed bounded domain X in RY (N > 3) with connected complement
and with the so-called Log-Dini-property. An analogous result for the case N = 2 was
obtained in [3] by different methods (for balls in RY it appeared earlier in [2]). We also
prove several auxiliary results (having their own interests) on harmonic and subharmonic
Cl-reflection (Theorems 1, 3.1 and 3.5) and give several examples (see Section 4) showing
that the (sufficient) conditions of our theorems are close to be sharp. Now we go to precise
definitions, notations and statements.

A function e(-) € C([0,400)) with the properties £(0) = 0, € : (0,4+00) — (0, +00),
g(+) is (nonstrongly) increasing and £(t)/t is decreasing on (0, +00),

/1ﬂdt<+oo, (1.1)

t

is called a “Dini-type” function.

A C'-smooth bounded domain D in RY (N € {2,3,...} is fixed) is called “Lyapunov-
Dini’ (L-D) domain if there exists a Dini-type function e(-) (called a Dini-function for
D) such that for each x and y on S = 9D one has

g — | < e(lx —yl), (1.2)

where n’. means the inward (with respect to D) unit normal to S at x € S.

*The work was partially supported by the grant of Academy of Finland (project No. 211485).
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As usual, E, E°, OF mean the closure, the interior and the boundary of the set
E # 0 in RN, ||fllz = supgep |f(x)| is the uniform norm of the function f on F (and
|-l = |- |lzn). For an open set 2 in RY we denote by H(Q) (respectively, SH(f2)) the
class of all (real) functions harmonic (respectively, subharmonic) in €.

Recall, that for a closed set X in RY and m € {0,1,2,...} one defines C™(X) as
C™(RM)|x with the norm

[ fllm,x = nf || F[]n,

where the last infimum is taken over all functions F' € C™(RY) with the property F|x = f
and ||F||,, := maxg<n{[|0°F||} < +oo. Notice that in the case X = X°, for each
f € C™(X) the derivatives
oIP|
9 fx) = o

o oay

with [B] == 01+ -+ By <m (6= (01,...0n), Bn € {0,1,2,...}) are uniquely defined
for all x € X, and so in this case C"(X) can be identified with the Whitney-jet space
C7(X) (see [6]). If m = 0, we omit the index m in notations of C™(X) and || - ||, x-

In what follows we fir N € {2,3,...}, an arbitrary Dini-function ¢(-) and d € (0, +00).

Let D be a (L-D) domain in RY with Dini-function ¢(-) and diam D < d (d should be
large enough for D to exist). Set D, = RV\D. The constant A € (0, +0c0) in the following
Theorems 1-3 depends only on N, € and d .
Theorem 1. Let u; € H(D) N CY(D) and u, be the (only) solution of the Dirichlet
problem in D, with the boundary data u,|op, = ui|lap, (in the unbounded component of
D, we additionally require u,(c0) = 0 for N > 3 or |u,(00)| < 400 for N = 2, where
Up(00) = LMoo Up(X) must exist). Then u, € C'(D,) and

1ol oy < Alluilly 1 - (1.3)

We shall say that u, is the C1'-reflection of u; over (or through) the boundary S of the
domain D. We have a useful generalization of this result in Theorem 3.1 below. From
Theorem 1 we obtain the following “C'-extension” result.

Theorem 2. Suppose that D has connected complement and u; € H(D) N CY(D). Then
one can find a function F € C*(RY)NSH(RY) for N >3 (F € CL (RY)N SH(RY) for
N =2) such that F|5 = w; and

IFls < Allull 5 N 23, "
IVE| < AlVuillp, N=2. '

It is well known that R¥\ D (and then D,) is connected if and only if S = 9D is. The
next “localization” property can be useful in applications.

Corollary 1. Suppose that D has connected complement and f € SH(D)NCY (D). If for
each a € OD there is a ball B, centered at a and go € SH(Ba) NCY(Ba) with ga|p.np = f
then there exists F € SH(RY)NCYRY) if N > 3 (respectively, F € SHRN)NCL (RY)
if N =2) with F|l5 = f and ||F||1 < +o00 (respectively, ||[VF| < 400 if N =2).

And the main goal of this paper is the following.



Theorem 3. Suppose that D has connected complement and £(-) satisfies the so-called

“Log-Dini” property
1
t 1
/ et) log(=) dt < 400.
o t t

Then for each f € SH(D)N CY(D) one can find F € SH(RY) N CHRY) if N > 3 (or
Fe SHRN)YNCL (RY) if N =2) with F|g = f and

loc

1El < Allflhp, N=3,

IVE| < AVfl5. N=2. (15)

The last theorem is based on a constructive, but rather technical result, Theorem
3.5, that seems to be useful in applications (the C'-reflection property for subharmonic
functions).

As far as we know, Theorems 1-3 are new for all N > 3 even for the so-called Lyapunov
domains ((L-D) domains with e(¢) = t*, « € (0, 1)).

The formulated results were obtained during the autumnal semester of 2007 at the
University of Helsinki. The author is grateful to the University and the Academy of
Finland for hospitality and financial support. Especially many thanks are due to Pertti
Mattila for his attention to this work.

2 Proofs of Theorems 1 and 2

In the sequel we denote by Ao, A; ... some (fized in this section) positive constants,
which (in the long run) depend only on N, €(-) and d (this is important for the proofs
of Theorems 1-3 and will be discussed in each nontrivial situation). The constants Ay
(depending only on N) and A (depending on N, £(-) and d) can be different in different
accuracies. Set B(a,r) = {x € RY||x —a| < r} and B(a,r) = {x € R¥||x —a| <}
(ae RN, r>0).

First we formulate several auxiliary results, which basically (but sometimes not so

easy) follow from [7, Theorems 2.2 - 2.5]. We decided, for completeness and for the
reader’s convenience, to present the detailed proofs of these results in Section 4 below
(see Theorems 4.4-4.9).
Theorem W1. Let D be a (L-D) domain in RY with Dini-function &(-) and diam D < d,
S =0D. Lety € C(S) and u; (respectively, u,) be the solution of the Dirichlet problem
in D (respectively, D, = R¥\D) with the boundary data 1.

(1) If ¢ € C*(S) then u; and u, are of the class C*(D) and C*(D,) respectively, and

satisfy the estimates:
[uill, 5 < Aol|¥ll2,s
o]l b, < Aol[¥]|2,s -

(2) Leta € S, r € (0,d/2), and suppose that ¢» =0 on SN B(a,r). Then u; and u,
are of the class C*(D N B(a,r/2)) and C'(D, N B(a,r/2)) respectively, with

(2.1)

8ui 3u0 Ao d
. < —log(—
o+ | ae| < S210a(5) Il
where n = —n’ is the outward normal to S at a € S.
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(3) Let N > 3. Let D, be the unbounded component of D,, S. = 9D., and w €
H(D,) N C(D,) be such that w|s, = 0 and w(co) = 1. Then w € C*(D,), w57 < Ao

and for each a € S, one has
ow -

on° —

a

Ao

In Theorem W1 (1) we cannot, in general, put ||¢]|1 s instead of ||¢||2,s (see [7, Remark
1] and Example 4.1 below). It should be said that the dependence of Ay only on N, ¢, d
was not ascertained in [7].

Proof of Theorem 1. First we reduce the proof to the case when u; can be extended as a
harmonic function on some neighborhood of D, so that uilap belongs to the class C?(S)
and so, by Theorem W1 (1), we have u, € C*(D,). In fact, suppose we have proved (1.3)

for all such u;. In general case, by [8, Corollary 6.3] we can find a sequence {v;} %,

each v;, is harmonic on (it’s own) neighborhood of D, such that u; = ::Of v;s and
[visll; 5 < 22*5||ui||175. Define v,s by v;s (like u, by u;), so that v,, € H(D,) N CY(D,),
[vos|li 5; < Allvisll; 5. Then v, = T 0os gives the result. So we can always assume

that u, € C1(D,).

Set h;(x) = Ou;/On’, (respectively, h,(x) = du,/0n?), where x € S and n’, (respec-
tively, n2) is the unit inward normal to S at x with respect to the domain D (respectively,
D,).

It is well known (see [9, Ch. 2, §6.5, (27)]) that if we set u = u; in D and u = u, in
D, then

Au= (h; + h,) o (2.2)

in the distributional sense, where o is the (N —1)-dimensional (Lebesque) surface measure
on S. Denote by ®y(x) = ®(x) the standard fundamental solution for the Laplacian A
in RY:

1

®a(x) = (1/27)log x|, @n(x) = gy

N >3,

where oy is the (value of the) surface measure of the unit sphere in RY.
Put h = h; + h, on S, so that by the classical Liouville theorem we have

u(x) = (P * (ho))(x) + c2 = /SCID(X —y)h(y)doy + ca, (2.3)

where ¢ = 0 for all N > 2 and |es| < [Juyf|s for N = 2. It is enough, by the maximum
principle, to (properly) estimate ||h,||s. In fact, since u; € C*(D) and u, € C1(D,), we
have

Vo(y) — ho(x)nS + Vu(x) — hy(x)n’

X

asy — x € 8,y € D,, so that, since ||u,|5; = ||ul|5, it would be enough to prove that
|olls < Alluil|1,s. Then the jet (uo, Vuo)p can be extended to some function of the class
CH(RY) by Whitney theorem [6] which also gives the estimate (1.3).

We are first going to obtain a priori type estimate of h,.

One can easily check the “doubling” property e(kt) < ke(t) (Vt > 0, Vk > 1) that
we shall often use below (without remarks). Fix (say, maximal) ro = ro(e) € (0, 1] with
condition €(rp) < 1/8. Take any a € S. Rotating and shifting the initial coordinate
system we can assume that a = 0, nj = {0,...,0,1} (so that D is “above” 0), and



find r € (0,79] and a function p(x’) (we set x = (x',zn), X' = (21,...,2y-1)) such
that ¢ € CY(|x'| < 1), ¢(0') = 0, Vp(0') = 0, [Vo(x')] < 1/4 for |x'| < r and for
Q. ={|X'| <r, |zn| <7} one has

Qr NS ={(x¢x)), X|<r}. (2.4)
Take x = (X', p(X')), |x'| < r, so that n’, = {—Vp(x'),1}//1+ |Vp(x')|>. Then, using
(1.2) for the taken x and for y = a = 0, we see that for all X', [x'| <,
V(x| < 2e(IX]),
()| < 2e([x'])Ix]
which show that in the last considerations we can take r = ro. Put Qo = Q-

By (2.3) and Lebesgue’s convergence theorem, since 0®(x)/0x, = z,/(on |x|), one
has

(2.5)

®(on) — x) — (£P(—x)) — ®(—dnj — x)

i(0) — hy(0) = tim | - h(x)doy =
2 (x’ P
_ / P ) dor — / 292} ) doy
$nQo ON [X| s\@o 0N
so that, by (2.4) and (2.5),
5 e(|x’]) 2 do(x)
74(0) = ho(0 g—/ S (o)) dx + = ||h / <
o) -0 < 2 [ S i+ Znlsa, [ S5
"0 et
< Al [ S+ Az hlsia, (2.
0

where A; = boy_1/on and Ay < And/ro. The first integral in (2.6) is estimated using
spherical coordinates in Ri{’l (the case N > 3, or just put o3 =2 if N =2):

/ f(X])dx" = oy / F(t) N2t .
B(0,r) 0

The second integral (that is, As) in (2.6) is estimated in (4.11) below (Section 4).
By (1.1), take maximal ry = ry(e) € (0,7o] with the property A, [ (e(t)/t)dt < 1/2.
So, finally, we have for each a € S (using (2.6) for r; instead of o as we clearly can):

1
|hi(a) — ho(a)| < =[|hllsnBazr) + Asllhlls\B@rm) -

From this one immediately obtains (for each a € S):

1
[ho(a)l < 5llhollsnsam) + Aalllholls\s@m) + [lhills) (2.7)

which is the mentioned above a priori estimate for h, (here Ay < Ayd/ry).

It is worth mentioning that the case u; = 1 (so that h; = 0), u, = 1 — w (see Theorem
W1 (3)), shows that (2.7) does not imply the estimate ||h,||s < Al|lhi]|s, and it is in fact
not so simple to obtain the desired estimate [|h,|ls < Al|u;||1,s from (2.7). We continue
the proof of Theorem 1 by using localization arguments [10], [8].
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For the rest of the proof we explicitly consider the case N > 3 (for N = 2 one should
use (and estimate) the norm ||V f[| + || f]|50,a+1) instead of |[f][1). We can assume that
0 € D, so that B(0,d) contains D. By definition of ||u;|, 5 we can find U € C'(RY),
Ulg = u;, SuppU C B(0,d + 1) and ||Ul]y < 3Jugl|, 5. Let, for short, m = ||u;l|, 5.

Suppose that M = maxyeg |ho(x)| is attained at some point b = by € S. Take
By = B(b,71/8), w0 € C5°(By), vo = 1 on B(b,r;/16), 0 < o < 1, ||Ago| < Ay/ri.
We also can find points b; € RY, j = 1,...,J, and ¢; € C°(B;), B; = B(b;,11/64),
such that 0 < ¢; < 1, [[Ap;|| < Ay/r} and Zj:o @; = 1 on B(0,d+ 1). Clearly, we
also can assume that J depends only on N, r and d, that B; N B(0,d + 1) # 0, but
B;N B(b,r;/16) = 0 for j > 1.

We now have:

J
U=oxAU =& = Z%AU => U,

Jj=0 Jj=0
where U; = & (p;AU). By [8, Lemms 4.1] we have ||VU;|| < Ayx||VU||. Therefore (since
U;(o0) = 0), we have for all j =0,...,J:
[Ujllh < Asm, As = As(N), (2.8)

U; € HRN\B;) N H(D), so that (using formula U; = ® * AU;) and integration by parts,
we get
||Uj||2,E]2. < Aem, As < An/r1, (2.9)

where for k > 0 we set E¥ = R¥\B(b;, kry/64), j = 1,...,J, and Ef = RN\ B(by, kr1/8).
Set u;; = Uj|p and define h;j, u,; and hy; by u;; the same way as h;, u, and h, by u;.
We have u;o) = Z}]:o Ui(o); and o) = ijo hio);, as well as (by (2.8)):

1hijlls < lluijll, 5 < [1Uj]ls < Asm. (2.10)

It B C D, then U; = 0 and so u;; = 0, and we shall assume that B; ¢ D for all

j. Let 2B; = B(by,r1/32), j # 0. If 2B;N D = () then (as S C E?) by (2.9) we have
lwijll2,s = ||Ujll2,s < Agm, so that, by (2.2), applied to u;j|s, we then have

[hojlls < [luoslly p7 < Aolluijllz,s < AgAem = Azm. (2.11)

Changing, if necessary, the numeration, we can suppose that the indices j =1,...,1
(I < J) are such that 2B; NS # 0 (and B; € D).

Lemma 2.1. For each 7 =0,...,1 one has
10| 205 < Asm. (2.12)
Proof. Since we have (by (2.9)) for any j
[wisllo, p2ns < “UjHQ,EJ? < Agm,
we can find v;; € C*(S) such that v;; = u;; on E? NS and

[vijll2,s < 2uijllo,p2ns < 246m . (2.13)



Let w;; = u;j —v;;, and let v,; (respectively, w,;) are the solutions of the Dirichlet problem
in D, with boundary data v;; (respectively, w;;). By (2.13) and (2.1) we have

Since w;; = 0 on £ NS and |Jw,||5; < Asm, by Theorem W1 (2) (applied to 1 = w;j|s
and r = r1/16) one has

anj

one || S 100511, 5, < 2A0Agn .

S

Ow,,; 6440 d 256A404g  d
Z 79 < log(— oill- < —"log(— :
|G s S B s < S oy
which gives (2.12). O

Now, by (2.11) and (2.12), since b € E} for all j # 0, we get

J
> hoj(b)| < Agm, (2.14)
=1

1hooll E3ns < Asm. (2.15)

We can suppose that Ag < Ag. Also assume that M > 2Agm, otherwise Theorem 1 is
proved. By (2.14) it follows that |he(b)| > M/2, and by (2.15) we can see that |h.(x)]
attains it’s maximum on S at some point b, € B(b,3r;/8) N S. Now, applying (2.7) for
heo instead of h,, b, instead of a and h;y instead of h;, taking into account that B(b,, )
contains B(b, 3r/8) (so that ||hol|s\Bb.rn) < Asm) and applying (2.10), we obtain:

1
|h00(b*)| S §|h00(b*)| + A4(A8m + A5m> )
and we have finally:
M < 2|hg(b.)| < 4A4(Ag + As)m,
which completes the proof of Theorem 1 with A = A(N,d, ).

Proof of Theorem 2.
Lemma 2.2. Let D be a (L-D) domain with the Dini-function () and diam D < d.
Then there exist a Dini-type function €, with

ec(t) < An(t/ro+ (1)),

a neighborhood 0 of S = 0D and a function E € CH(RY) such that ||E||; < Ay, E=0
on S, |[VEX)|>1forallxeQ, E>0mQND (E>0inD), E<0inQ\D (E<0
in D,), and

IVE(x) = VE(y)| < e.(lx —yl)

for all x and y in RV,



Proof. Fix any a € S and consider the corresponding ry, )» and ¢, as in the proof
of Theorem 1. Recall that after rotating and shifting the initial coordinate system we
obtain the new coordinate system (again denoted by 04) and the corresponding objects
translate as follows: a — 0, Q. — Qo = {|X/| < ro,|zn] < 70}, Ya — ¢ = ©o sO
that S N Qo = {(X, (X)), x| < 10}, DN Qo = {|X| < 1o, 0(xX) < 25 < 70}, where
o € CH{IX| < 1o}b), (0) = 0, Vp(0') = 0, [V (x) | iy < 1/4.

Now, from (1.2) we need to obtain some more than (2.5). Concretely, for all x" and y’
with x| <o, |y'| <79 we have

Y DI NG 77 ) B G (2 CI )
(x/sp(x")) (¥ (y") \/1+|V90( ), \/1+|Vg0(x’)|2
<e(|(x' =y e(x) —o(y)]) < 5/4(IX = y']).,
2

)
so that [1/4/14 [Ve(y')|? — 1//1+ [Ve(x)[?] < 5/4e(|x' — y']).

Therefore,

Vo(y') — V(x|
1+ [Vo(y')|?

and hence

<5/4e(Ix —y']) + [Ve(X)[5/4e(Ix — y'|) < 25/16e(]x" = y']),

IVe(y') = V)| < 2e(IX" = y']),

x| <o, [y'] < 7o

Fix now a function x with the following properties: xy = 0 outside Qg, 0 < x < 2
inside QF, x = 2 on Qp = {|x'| < r9/2, |xn| < 1ro/2}, x € C2(RY), and ||x]||m < An/ri
(m=1or2). Set

Eo(x) = x(x)(zn — »(X)),

so that we have Ey € CL(RY). Since we have assumed that D N Qo = {|x/| < 7o, p(x) <
xn <19}, we have Eg(x) > 0 in D and Eg > 0 on DN Qg. Clearly, Eo(x) =0 on S. We
also have

VEy(x)|s = Vx(x)(zn — 9(X)]s + x(x){(=Ve(x'), ) }s = x(x)/1 + [V(x') [Png,
| Eol| < Anto, [|[VE|| < A,

and |VEo(x) — VEo(y)| < An(|x—yl|/ro +e(jx —y])), for all x and y.

Now, denote by E, the function Eq, rewritten in the initial coordinate system, and let
Q. be the cylinder corresponding to Q.

Finally, choose some covering {Q', .} (s = 1,...,50) of S by the cylinders @', , a, € S
(such that each point x belongs at most to Ay of Qa,), and consider the corresponding
E,, and x,,(that is, Ey and x in the initial coordinate system, denoting again Oy). Put

E(X) = ZEas(X) )

s=1
so that [VE(x)| > Y2, xa.(x) > 2 on S and
1L < An, [VE(x) = VE(y)| < An(jx = y[/ro + e(lx = y])),
The function E and the set Q = {x € RY : |VE(x)| > 1} give the result.



Corollary 2.3. In the notations of the previous lemma, for all o > 0 small enough, let Ds
be the connected component of the (open) set {x € QU D | E(x) > —{d} that contains D.
Then Ds — D as § — 0 and (for all small enough §) the Ds have the same Dini-function,
magorized by €.(-).

Proof. Clearly, for 6 small enough, we have Ss = 0Ds C {x € Q| E(x) = —0}. Take x
and y on Ss and let nif be the unit inward normal to S5 at x € Ss with respect to Ds.
Elementary planimetric arguments and Lemma 2.2 show that

i6_ i) _ VE(x)  VE(y) x) — e (Jx —
In, —ny VE®)|  VE(Y)] <|VE(x) - VE(y)| <e(lx—-vyl),

since infg, |[VE| > infq |VE| > 1. O

Now we continue the proof of Theorem 2 for N > 2 (the case N = 2 is briefly discused
later). Let u; = uy € C*(D) N H(D), and put m = |juy|, 5. Suppose that u,, p € N,
is defined (with u, € C'(D) N H(D) and |Jupll, 5 < m/2P~"). Extend u, by Whitney’s
theorem to a function f, € C(RY) with || f,[l1 < m/2P72. By [8, Corollary 6.3] we can
find g, € C*(RY) harmonic on some domain Ds, (6, € (0,1) is small enough, so that
Sy = S5, and D, = D;, satisfy Corollary 2.3 with § = §, (diam D, < d) and || f, — gp|1 <
m/2P. Therefore, ||gp|1 < 5m/2P. Set upr1 = (fp — 9p)lp- Then [Jupall; 5 < m/27,
uy+1 € H(D)N CY(D). Since u; = p_l 29l and |lgpll, 5 < llgpll < 5m/27 it is enough
to find a function F, € C'(RV) N SH(RY) such that F|5 = gp|p and [|F,|l1 < Allgpll;, 5
The desired function F is ZJFOO

So, we have g, € C1(D, )ﬂH(D ). Put m, = ”ngle < |lgyllx < 5m/2P. Since D has
connected complement, we also can assume that D, has connected complement €),. By
Theorem 1 there exists a function h, € C*(Q,) N H(Q ), hy(00) = 0, such that hp = gy
on S, = 012, and

1hll1 3y < Aromy.

Here Ajp depends only on N, € and d (because all the domains D, by Corollary 2.3,
have the same Dini function, majorized by e,(-), and their diameters are less than d).
Applying Theorem W1 (3) for €, take the function w, € H(£,) N CY(Q,), w, = 0 on S,,
wy(o0) = 1, with [Jwy|[; g; < A1 (the last can be checked by Theorem 1 applied to the
functions u; = —1|5,; and u, = w, — 1) and

ow,

onk |4

> At >0, vxes,.

Here nf is the inward unit normal to 5, at x € S, with respect to the domain €2;,. For ¢ > 0
consider the function F}(x), which is equal to g,(x) on D, and F}(x) = hy(x) + tw,(x)
in €2,.

By (2.2), we have

dg oh ow
AR = (S S Q)
P (8n§( * Onk * onk ’
in the distributional sense (here nf = —nZ and o7 is the surface measure on S,).

Therefore, for t = t, = (1 + Ayg)Agm, we have F = Fl» € SH(RY) N Lip; (RY) and
15 N 2ipy < Aramn.



Final step. Regularization. Fix x; € C5°(B(0,1)), x1 > 0, x1(x) = x1(]x]),
fB(O,l) x1(x)dx = 1, and let x,(x) = x1(x/7)/7", 7 > 0. Put d, = dist(S, S,), then, for
any 7 € (0,d,) one can take

Fy=x.*F,.
In fact, it is easily seen that F, € C*(RY) and ||F,| < An|F}|lLip, < Am,. By the
meanvalue theorem for harmonic functions (taking into account that x, is radial and
J x-(x)dx = 1) we have F}, = F = g, on G. And we get (1.4) for N > 3.

For N = 2 the only difference in the proof is that we take, instead of w (from Theorem
W1 (3)), the function w, with the properties w, € H(D,), w.|s = 0 and w.(x)/(log |x|) —
1 as |x| — 0. Use Theorem 4.9 and the reflection z — 1/z, z € C.

Theorem 2 is proved. Il

Proof of Corollary 1. We can find open balls B; (j =1,...,J) and ¢; € C§°(B;) with the
following properties: ijl ¢;(x) =1 on D and for each j either B; C D or there exists
a; € 9D such that B; C B,,. If j is such that B; C D we define f; = ®* (¢;Af). In case
B; ¢ D we choose some a;, the corresponding Ba, and ga;, and set f; = ® * (p;Aga,).
By [8, Lemma 4.2] we have f; € CY(RY) (f; € CL(RY) for N =2) and Af; = p,Af >0
or Af; = ¢;jAga, > 0 (in the distributional sense), so that f; € SH(RY). Take Fy =
ijl fj € C’(lloc)(RN) N SH(RY) and consider u; = (f — Fy)|p. Since ga; = fin By, N D
we have

J
Auy=Af = p;Af =0
j=1

in D, which gives u; € H(D) N CY(D). Extend u; by Theorem 2 to a function F; €
C'(lloc) (RM)N SH(RY). The function F' = F, + F} gives the result. O]

Notice, that Corollary 1 can be reformulated for the “entire” class SH(D)NC*(D) in
(L-D) domains D by analogy with [3, Corollary 2.6] .

3 Proof of Theorem 3

In what follows the constants A, Ay, ... (depending only on N, e, d ) and Ay (depending
only on V) can be different from the corresponding above ones and even can change from
one formula to others. We need the following extension of Theorem 1.

Theorem 3.1. Let D be a (L-D) domain in RY with diam D < d and the Dini-function
e(+) satisfying the Log-Dini property

/01 #bg (%) dt < +o0. (3.1)

Let ¢ € CY(S), S = 0D, and u; (respectively, u,) be the solution of the Dirichlet problem
in D (respectively, in D, = RN\D) with the boundary data 1. Letz € D and a € S be
(one of ) the closest points to z on S. Assume that |z — a| = dist(z, S) < ro/2, and take
z: € D, such that z —a = —(z, —a). Then

[Vui(z) = (Vuo(za))al < All¢ll1s (3.2)
where ()5 means symmetry with respect to the hyperplane P, tangent to S at the point

a

acs.
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Remark 3.2. The functions e,(t) = 1/(log(1/t))? (0 <t <e?71) e(t) =e(e?)
(t > e P71) do satisfy (3.1) if and only if p > 2.
The functions (t) = t* satisfy (3.1) for each a € (0, 1].

First we prove the following Lemma. Put m = ||¢||;.s.

Lemma 3.3. In the notations of Theorem 3.1, letb € S andx € D (respectively, x € D,)
be such that |x —b| < r9/2 and the angle between x — b and n}, (respectively, ng ) be less
than 7 /6. Then

[i(0) (X) = i) (b)] < Amlx — b log ——— (3.3)

1
[x —b|’
The Example 4.1 (see also (4.1)) shows that the last estimate is ”almost” precise.

Proof. Denote by G(x,y) the Green function of the domain D. Recall that (in our choice)
G(x,y) = P(x—y) —vx(y), where ® is mentioned above (standard) fundamental solution
for the Laplacean A, and the function vy (y) is harmonic with respect to y in D, and
having the boundary data vx(y) = ®(y — x), y € S. In what follows p(x) means the
distance from x to S.

Theorem W2. In the present notations, G(x,y) € CY(D\{x}) (x being fized), and the
Green function G of D satisfies the following properties:

‘ IG(x,y) ’ o Arx)

S| Sy LSnEN (3.4)

o 0
axn oy,
where A = A(N, d,¢).

The same estimates hold for the Green functions of (and in) bounded components of
D,. For the unbounded component D, of D,, the last estimates hold also for the Green
function G, of D, (in place of G) for all y € B(0,2d) N D, (presumably, 0 € D) and all
xeD,.

A
G(xy)‘_m,lsnSN,lgng, (3.5)

The proof of this theorem (similar to that of [7, Theorem 2.3]) is given in Section 4
(see Theorem 4.5).

The next formula is well known [11, Theorem 12.1] (it directly follows from the Gauss-
Ostrogradski formula and then clearly holds for (L-D) domains):

1M<x>=:—-/£§¥%§§§¥2¢«y>doy- (3.6)

We can suppose that b = 0 and nj, = (0,...,0,1), so that by (3.4) and (3.6) one has (for
y = (¥ un)):

|M@—MW§L

TN TN
<A / ———mlyl|do +/ mly dy)
2(s@wx—ﬂN Y185+ [ e B+ 2™

11

0G(x,y)

6n’ ‘ [ (y 0)|doy, < Al/ ™ m|y|doy




ro
gAgmmN—l—Agm/ x—N rNldr < Amay (1+logr—0> )
0

(r2 + x%,)N/2 TN
The penultimate integral was estimated using spherical coordinates in the hyperplane
RN
y
When x belongs to the unbounded component of D,, it would be enough to addition-
ally apply the so-called Kelvin transform (see (4.21), Section 4). Lemma 3.3 is proved. [

Proof of Theorem 3.1. Clearly, we can set a = 0, z = (0,...,0,2x), 2y € (0,79/2), so
that nj = {0,...,0,1}.

There exists a domain D' C D N Qo with the following properties: D’ is convex (L-D)
domain with Dini-function Aye(-), D’ is radially symmetric with respect to the variable
y’, and

.
D'n {(y’,yN) eRY||y'| < go} =

(v un) ERV Y| < 2, do(ly']) < uw < 1o — 4o (ly'D) )

where ¢.(r) =[] e(t)dt. Notice that g(rg) < 1/8 (see also (2.5)) and 4p.(ly'|) >
2ly'le(ly’]) = @(y') (since e(t)/t > e(r)/r for t € (0,7]). Let D, be symmetric to
D' with respect to the hyperplane Py = {zxy = 0}, so that D, C D, N Qq, and let
G'(x,y) and G’ (x,y) be the Green functions of the domains D" and D/, respectively. Put
S ={"ym)l Iyl <70/3, yv = 4pc(ly')}, S C OD".

By (1.2) we have for y = (v, p(y')) € S, |y'| < r0/3,

: ~ T 1
my—ny| < =(lyl) < (V23) <elro) <
so that the angle between n and nl, is less than 7/6 and we can apply (3.3) (for b =y)
to obtain

|ui(y’, 40 ([y'])) — (£ (y) — wo(y', —4e=(ly'D) < Ame:(ly']) log (3.7)

1
e (ly'l)
r9). Using (3.6) for w; and u, in D' and D

Put ¢(r) = p-(r)log(1/¢:(r)), (0,
G.(X,Y) (x,y e D, X=x5 and ¥ = y{), (3.5) and

’
respectively, the property G'(x,y)
(3.7), we obtain:

S

[Vui(z) = Vuo(z)| =

0 0
= X G/ 1 d - X_Gfk ) o d =
e O]ty = [ VagiGicy)| ey
o _
=/ Vi *7m, G'(x, )x:z (ui(y) — uo(¥)doy| <

Ay Ay
< ——x2mdo +/ — ey dy’ <
/6D’\S’ 1z — y|V Y s lz—y¥

ro/3
<A2m+A2m/ —@(OtN P dt < Am (3.8)

by (3.1) and inequalities te(t)/2 < p.(t) < ta( ), €(t) > te(1).
Again, the penultimate integral in (3.8) is estimated using spherical coordinates in Fy.
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The following Proposition in fact will not be used in the proof of Theorem 3, but it has
it’s own interest, and gives a clear understanding that in (3.2) we have to bother about

the "normal” derivative gﬁ;’
Proposition 3.4. In conditions of Theorem 3.1, the case a =0, z = (0,...,2y), 2y €
(0,79/2), we have
ou;
. <A , e{1,...,N -1}
e < als . ne }

By (3.6) and (3.5) it is enough to consider the case when ¥ (x) = 0 outside Q) and
for |x'| > r0/3. Fixn € {1,...,N —1}. Fory = (y,4p.(]y’])) C S’ define ¢(y) =
U(y', o(y") and set P(y) = 0 on AD'\S’, so that ) € C(AD’) and ||¢)||Lop < Am. Let
@ be the solution of the Dirichlet problem in D’ with the boundary data 1; We claim
that |£E—i|x:z| < Am. Consider the function 9(x) = @(z1,...,Zp-1,Tn, Tnits---, TN) —
W@, ... Tpo1, =Ty, Tny1, ..., TN), so that 0 € H(D'), ¥|(z,—0y = 0 and %hxn:o} =
28‘%“%:0}. Since ¢ € C1(dD') we have |#(x)| < Ama, on D', , where D', = D'N{z, >
0}, so that |0(x)| < Ama, in D’ and the claim follows.

Finally, take w = u; — @ in D’. By Lemma 3.3 (with b = (y/,¢(y’)) and x = y =
(¥ dpe(y')) € ),

1
8- (y'])

Clearly, also |w(y)| < Am for y € 0D'\S’. By (3.6), the equality

w(y)| < Aym8ipc(y’) log < Amg(ly'l).

= — : G/ d
axn N oD’ 8$n al’l;, (X7 y) . w(y) Oy
and estimates (3.5) end the proof of Proposition 3.4 as in (3.8). -

Proof of Theorem 3. Put M = || f||, 5 and pp = Af[p. We claim that for each domain €,
Q) C D, with piecewise smooth boundary, one has

1) < Mo (09), (3.9)
where o(+) is a surface (N — 1)-dimensional (Lebesque) measure. To prove this it suf-

fices (after reasonable regularization and then passing to the limit) to apply the Gauss-
Ostrogradski formula:

u(@) = [ Afeoix = [ (V1(y).03)doy < Mo(00)
Since for each ball B = B(b,d) C D we in fact have
u(B) = [ (V7(y) = T$(0).03)doy < wp(V1.8)0(0B) = o(6™ )
0B

(wr(g, ) being the modulus of continuity of the (scalar- or vector-) function g on the set
E), one can also easily prove that p(0Q N D) = 0 for the 2 considered.
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The idea of the proof of (1.5) is the following. Take u; € H(D), u;|lop = flop. If u; €
CY(D) and ||u;|, 5 < Aym, then it could be possible to prove (1.5) with A = A(A;, N, ¢, d)
(see the end of the proof of Theorem 3 below). But it turns out (see Example 4.1 below)
that it is not always u; € C*(D).

By Theorem 3.1, the “reflected” harmonic function u, satisfy the property (3.2), and
we need also appropriately “reflect” the measure p from D to D,. The last means that
we want to find such positive measure p* in D, (for the notations G, z, a, z} and (-)} see
Theorem 3.1, G,(x,y)) is the Green function of the domain D,) that

/ Go(x,y) dii, € C1(D,)

o

[ Ve, = [ FuGloy i)
D D, a

for all z € D with p(z) < ro/4. After this we shall have f,(x) = uo(x)+ [}, Go(xX,y)dp;, €
CYD,)NSH(D,), f, = f on S, and we can terminate the proof essentially as in the proof
of Theorem 2.

We pass to the details supposing that N > 3 (for N = 2 one can follow the previous
notes on this matter).

Let {Bj, ¢;}jes be the Whitney partition of unity on D (see [12, Ch.VI, §1]). Recall
that J is some countable set (for “nonoverlapping” the notations we assume that J N
{0,1,...N} =0), B; = B(bj,0,), b; € D and there is A; > 3N (depending only on N)
such that

and

<AM (3.10)

p(by): (3.11)

furthermore, for each z € D the number #(z,J) of balls B;, j € J, that intersect
B(z, p(z)/2) satisfies
#(z,J) < Ay (3.12)

and p; € C5°(B;), ¢; > 0, have the properties

[Ap;| < 21 ZSOJ =1 (xeD). (3.13)
] jeJ
Put p; = pp; and define fi(x) = [, G(x,y)dpuy, ij(x fG X, Y)d ity

Since f = u; + 1 in D (see [13 Theorem 1.247]), we have RS C’l( ). We claim that
also 4i; € C*(D) and
Izslh 5 < AM. (3.14)

In fact, let f; = ® % p;. By (3.13) and [8, Lemma 4.2], we have f; € C'(R") and
IVl < AM, (3.15)

and by (3.9) and (3.4), for x € D\B(by, (3/2)4;),

Alp( ) ( )dluy 5]].\7
/B x—yl¥ =y <AM

V()] < ] [ Gty <

J
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Since fi;— f; is harmonic in D, it remains to apply the maximum principle in B(b;, %5])
for %(;jj — f;), ne{l,..., N}, and recall that ti;|sp = 0. The claim (3.14) is proved.
Notice also, that the property (3.15) of f; allows to reduce the proof Theorem 3 to
the case when
Supp p C {x € D|p(x) < ra}, (3.16)

where some fixed ro = 73(e(+)) € (0,79/32) will be chosen later (see (3.22)). In fact, let
Jo={j € J|p(bj) > r2/2}. Then Fy = >, , f; is subharmonic in RN, || Folly < AM,
and it remains to extend (f — Fp)|p instead of f.

So, in the sequel we shall always require (3.16). The reflection of u over S (having
(3.16) and p(b;) < r2/2) consist of the following. For each j € J (Jy = 0), let a; € S be
(some) point closest to by, |a; —bj;| = p(b;). Let P; = P, be hyperplane tangent to S at
a;. Define i} as a measure, “symmetric” to p1; with respect to P (that is, p;(E) = pi(E7)
for each Borel set £ and the set £ symmetric to £/ with respect to P;). The measure

W=y

jedJ

is the desired reflection of u “over” S.

For checking (3.10) it remains to prove the following result (the case a = 0 in (3.10))
and use the maximum principle. Notice also, that Supp u* C B(0,2d) and we can use
Theorem W2 in order to estimate G,(x,y) for ]y\ < 2d.

Theorem 3.5. Let,u = [ Go(x,y)dps, , M] = [Go(x,y)d},, x € D,. Letz € D
be such that z = (0, .. ) 0<zy<rmy/d, a= 0 is closest (one of ) to z on S. Then
Vi) — Vi (@)| < AM, (3.17)

where the “overline” (for vectors) means symmetry with respect to the hyperplane Py =
{x e RN | zy = 0} tangent to S at a =0,

Proof. Let Qo and ¢.(-) be as in the proof of Theorem 3.1. We can find D (by analogy
with D’) with the properties: DN {y = (y',yn) € RV ||y'| < 10/16} =

={y e RV ||y'| <r0/16, 8p-(ly']) <y~ <70/2—8¢:(ly'])},

yn > 8¢.(|y'|) for all y € D, D is convex radially symmetric with respect to y’ domain
having Dini-function bounded by Ae(:), and D C {y € RY||y’| < ro/8}. Let D, be
symmetric to D with respect to Py (recall, that e(r) < 1/8 for 0 < r < rp).

Lemma 3.6. Let J, = {j € J|b; € D\D}, then
S1 =Y (IVi(2)| + Vi (2)]) < AM. (3.18)
JEN

Proof. Let first j € Ji be such that [b’| < 79/16. Then (since p(b;) < r2/2 < 79/2)we
have [bjn| < 8p:(|bj]) < 8[bjle(|bj]) < [b)], so that p(b;) < [b;| < \/_|b’| Therefore,
for all y € B; we have, by (3.11),

1
ly — by < p( i) < —Ib'l
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and so |b| < 4]y’[/3, which gives also |y| < 2|y’| and

>
=
IA

7 / ! /
gp(bj) < 20¢.(|bj]) < Aly'le(y").

And for these j we have by (3.4):

A Aoly’ d
Vij(z)] < /\vxe(x,y)\xzz\dujy < /ﬁ%y s/ 2|y IT;IgVD My

The same estimate holds also for [V (z)| (see Lemma 3.8 bellow). Since the part of the
sum in (3.18) for j with the property |b’| > /16 can be estimated easily, we obtain

o< A (M + /Iy<ro M) (3.19)

ly[¥

and (3.18) immediately follows from the following elementary lemma.

Lemma 3.7. Let h(t) be a nondecreasing function on [0,400) with the property 0 <
h(t) <tN=1 t > 0. Then, for any r > 0,

Proof. For § € (0,7) put hs(t) = &(0) /6™~ in (0,6) and hs(t) = e(t)/tN 1 in [4, a]. Since
hs is positive and decreasing, the result follows directly applying Abel summation for the
Riemann sums of the integral [J hs(t) dh(t), and then letting § — 0. O

To finish the proof of (3.18), we calculate the integral in (3.19) using spherical coor-
dinates in RY. Concretely, let h(r) = p(B(0,7)). By (3.9) (since pu = 0 outside D) we
have h(r) < A;MrN=1 and so

7”0
yDdny 4 0 AM | (3.20)
ly|<ro |Y|N !

Lemma 3.6 is proved. O

Lemma 3.8. Let j € J be such that |bj| < ro/2. Then for each'y € B; we have

¥ -yl < Adyle(lyl), (3.21)
where y; is symmetric to'y with respect to P; and A, < 108.
Proof. Since |b;| < r9/2, by definition of a; we have |a;| < 2|b;| < 7, so that a; € SNQo

and a;y = p(a}) (recall that [o(r)| < 2re(r) < r/4 for r < rg). Since |y| € (2|byl, £|bj|)

for y € Bj, we have |a;| < 3|y| for these y. Elementary calculations show that
y_Y; :y_Q(Y7n6)n6_ (y_2(y a]vn]) ) - 2(y_ajan§')n§' _2(y7n6)n67
where nj and n} are the inner unit normals to S at x = 0 and x = a; respectively. Then
¥ — ;1 < 2lajn] + 6ly — ay|nj — ng|.

Since [n} —ng| < £(|ay]), we easily obtain (3.21) using the “doubling” property of (-). [
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The final restriction on ro is (see (3.21))

1

A, —. 22
e(r2) < 55 (3.22)
In particular, in Lemma 3.8 we also have

— 1

[y =il < vl (3.23)

whenever |y| < 5rs.
Notice, that for |z| = zy > 2ry the proof of (3.17) is easy, because, by (3.4) and (3.9),
we even have

d

and the same estimate holds also for |Vu*(Z)|. So, from now on, we suppose that |z| <
2ry < 1y/16. Consider the set Q, = {y| |y|/2 > |y — 2|} which is in fact Q, = {y||y —
32| < 2|z|}.

The set J, = {j € J\Ji| B; N, # 0} is “small” (the number of its elements can be
estimated with the help of (3.12)). By (3.14) (the analogous estimate holds also for /ij)
we have )

% = S (Vi @) + Vi @) < AM.
Jj€J2

Let now, Js = {j € J\(J1 U J3)||bj| > 4ry}. Then, like in (3.24),

S5 =) (Vi) + |Vi(2)]) < AM.

JEJ3

Put Jy, = J\(J1 U, U J3) and let v;, j € Jy, be the measure “symmetric” to p; with
respect to Py (p;(E) = vj(E§) for any Borel set E).
We claim that

> IVii(z) - Vui(z) < AM, (3.25)
J€J4
where U;(x) = [ G,(x,y)dv;y. In fact, for j € Jy one has

Vv;(z) — V,u] /V Go(X,Y)|x=zdptjy — /V Go(X,¥}) Ix=zdtjy ;

|b;| < 4ry , and (by (3.11)) |y| < 5ry < ry/6 whenever y € B;, so that (3.23) holds for
all y € Q4 = Ujey, Bj. Since also (as j ¢ J2) 24 N, = 0, we have finally for all y € Qy:

1 I
vl <52, |y =2l = 5lyl, [y =2l = [2/3, [V =yl < 7yl (3.26)
Therefore, for y € {24 we can write:

|vao(X>y)|xzi - VXGO(X7 Y;‘()|x:2| S HvxvyGo(X7 5’)|x=2”9€[§,y;] |y - y;k| )
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and so, by (3.5), (3.21) and (3.26),

o N Ay € d
S 1V5(2) — Vi (@) < / A A yle(y Dy < A / jz'#

e (0,572) 1z —yl B(0,r0)

which gives (3.25) by (3.20).
Finally, it remains to prove that

E4—Z|Vﬁbg VV]( )| < AM.

JE€J4

Using (3.12) we then have

Yy< A A V(G (x,y) = Go(%, ¥)) x=zldpty, (3.27)

where G (x,y) = G,(X,y) (defined on ((D,)§)?).
Recall, that for j € Jy (as j ¢ J;) we have b; € D, but it is not necessary that also
y € D. The part of the integral in (3.27) with y € Q4\D looks like

/ V(G y) — G y)) sl dpty < AM,
Q4\D

it can be estimated the same way as in (3.19)(Lemma 3.6) or as in (3.24).
So, it remains to estimate the integral

= [ VMG~ Gy el
QuND

Notice, that for y € D we have yy > 8p.(|y’|), so that (since |o(y")| < 4p-(]y’|) and

p(r) =e(r) < 1/8)

2
vl = p(y) = —=(yv —4e=(Iy') = yn /3, p(y) < 2w,
V5
and the same holds for the distance from y to ().
Also in Q4 we have |y — z| > |z|/3 (as Q4 N Q, = 0, see above). In order to estimate
I, consider several steps.

19 Set 0, = QN D N {|y| < 3|z|}. Then, by (3.4) and (3.9),

d
|va(Xa y>|x:z|dl’l'y S Al / p(—y>]Vd < AQ / M S AMa
2 |z —y] A
and the same way one estimates f% IVxGE (X, ¥ ) |x=z|dpty-

20 Set Q5 = UNDN{|y| > 3|z|}. Take ¥y (x) = G(x,y)—G%(x,y) as a function of x,
x € D' (y € Qs is fixed). We need to estimate VW, (z)|. Since ¥y, € H(D')NC(D) we can
use (3.6) for Uy in D'. To do this let us estimate ¥y (x) on 9D'. If x = (%, 4¢.(|x])) € 0D’
is such that |x'| < r¢/3, we have:

|G(x,¥) = G(xp, ¥)| < VG 3 lpep |40 (IX]) — o(x)]

where x, = (¥, ¢(x')) € S (so that G(x,,y) = 0). We need the following lemma.
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Lemma 3.9 (Elementary). In the notations just above we have

min [y — X[ > Ay — x|,

XE[Xp,X]
where Ay € (0,400) is absolute constant, and we identify (x',0) and x'.

Proof. Consider a trapezium with the vertices at y = (y',yn), ¥, X/, x and let y. =
(y',4¢:(]y’])). Then yy > 2y.ny and it is not hard to see that for each x € [x,,x]| the
angle between the vectors y — y. and X — y. is greater than m/2 — arctan(1/2) (since
4 (r) = 4e(r) < 1/2, r < rp). Simple trigonometric calculations end the proof. O

Now, by (3.4), we have
G(x,y) = G, ¥)| < IVG(3) i, 1] 206 (1X]) — 0(x)] <

/
SAI p(Y) ] 5(|X/|) SAyNSOE(lXD,
ly — x|V ly = x|V

Proceeding the same way with G (and x_, = (X', —¢(x)) instead of x,,) we finally get

yne(x'])

U, (x)| < A
| y( )|— \y—X’IN

for x € §" = {x/, 4p.(|X']), |X'| < r0/3}. Therefore, by (3.6) and (3.5), applied in D,

0
V., G'(z,x) | U, (x)doy / /
/8D’ < Ony ( )> () ' OD\ S’

/
S/ Arynpe(|x'])dox + A,
S

7z — x| Ny — x/|V
y

<

VUy(2) =

< +

The penultimate integral is clearly less then Ay, because |y’| < ro/8 (y € D) and |x| >
ro/3 (as x ¢ 57).

Again, using Lemma 3.9 for z in place of y, we see that in order to estimate |V, (z)|
it remains to estimate the integral

[2 = / sz(Xl) dX/ , Y € 957
Ix'|<ro/3

where we set

ey — DX ()

K = .
2= xVy x|V

zy

Consider 3 cases.
Case 1. Here |x'| < |y’|/2, and we apply spherical coordinates in RY:

Ay WI72 g (r)rN =2 dr Ay
/ Koy (x)dx' < T/ ~ < =~ Myl
Ix'|<|y|/2 lyl 0 r vl

where A (t) = [i 22 dr.

0
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Lemma 3.10. In the previous notations, for each r € (0, 1],

/Al—(t)dtg/ ﬂlogldt.
o t ot t

Proof. Apply the following corollary of Fubini’s theovem: [ dt [ fdr = [/ dr [" fdt. O
Case 2. Here X' € K', where K’ = {x' € RV |y|/2 < |¥/| < 2|y|}. Then

dx’ e(ly) (2™ ynr™dr e(lyl)
K,y (x')dx' < A ) / N <A / <A :
o GBS AT [ ey = Ay (r2 +yR)V? = [y N

The penultimate integral is estimated in spherical coordinates of Rﬁi:;,.
Case 3. Here |x'| > 2|y’|, so that

70/3 po(r)rN=2 dp " e(r)dr A
/ sz( )dX < A |Y|/ N < A / N = | N—1 )‘2(|Y|>7
x/[>2ly] v 7 yl

2yl

where

Lemma 3.11. In the previous notation,

/TO)\Q(>dt 1 /Tog(t)dt
. 1 N-1),

Proof. As in the proof of Lemma 3.10 (take r = ry). O

Therefore, we obtain:

VT, (2) < A D+ MAYD + (v _ ) My
T P P

To finally estimate [y, it remains to check the following inequality:

VU, (2)| du, < A AyD <4.M | M) g < an
y y

Qs lyl<ro ly|NV= 1

which follows from (3.9) and Lemmas 3.7, 3.10 and 3.11 (since, clearly, A(p), in place of
e(p), also satisfies the conditions of Lemma 3.7 ).
Theorem 3.5 is proved. O

We terminate the proof of Theorem 3 following that one of Theorem 2. Let f €
CHD)NSH(D) and m = || f||, 5. For p € {1,2,...} we can find g, € C*(D,) N SH(D,)
harmonic on D, \ D (D, = D;,, 4, € (0,1) is srnall enough), [lgpll; 5; < Am/2P and
f= ;fi gp|5 - The proof of this fact is almost the same as (for balls) in [2, Lemma 5.2]

(plus iterations). It remains to appropriately extend each g, (from D). Put , = R¥\ D,
and S, = 0D,. By Theorem 3.5 we find the subharmonic reflection h,, of g, over S, (that
is, h, € CI(Q )N SH(Qp), hy = g, on Sy and ||hylly o < Allgyll; 57 ). It follows from the

proof of Theorem 3.5 that h, € H(Dg \ D;,) for some §' > §,. It suffices (taking (2.2)
into account) to add appropriate tw, and make a regularizatlon without changing g, on

D (which can be done because g, is harmonic in D, \ D).
[
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4 Examples and background.

Example 4.1. Let D be any bounded convex domain in RN (N > 2) such that S = 0D
contains the set By = {x = (x',xn) € RN|zy = 0,|x'| < &} for some § > 0. Then there
exists 1 € CY(D) N SH(D) such that the solution ¥ of the Dirichlet problem in D with
the boundary data v|s is not in C*(D).

Proof. We can suppose that § € (0,1/4) and
DCQ={xecR"zy >0 x| <1/2}.
Fix p € (0,1) and define

B(ox) = () = X!

== e (0,1
|10g‘X/Hp7 |X| ( ’ )7

¥(0) = 0. It can be easily checked that ¢ € C*(Q) N SH(). Let ¢(x) = (x') for
Ix'| < 1/2 and v¥o(x') = ¥(1/2), |x’| > 1/2, and let ¥ be the Dirichlet solution in
RY = {x € R¥|zy > 0} with the boundary data t. By the Poisson formula in RY one
has for zy € (0,1/2):

o ox Sy |5 0) = (0 el o on Jo (7‘2+$?\/)N/2(10g%)p =

AN o /1/2 - j;%)p _ A(li\i);fzv ((10g %)”’ — (log 2)1—p) ;

TN

so that, clearly, 0Wy/0zn|x—0 = +00. On the other hand, we can find dy € (0,) and
Ao > 0 such that Bf = {x € R¥|zx > 0,|x'| < §} C D and \g¥y < ¥ on IB; .
Therefore,

1\
U0, xn) > NA(N) 2, (log —) . xn € (0,6),

TN

which ends the proof and shows (letting p — 0+) that the estimate (3.3) is “almost”
precise. It is also easily seen that the function —¢[sp € C 1(S) can not be extended to D
as a function of the class C'(D) N SH(D). O

In the next example we construct a C'-smooth convex “almost” (L-D) domain D in
R? for which the C'-harmonic reflection property (see Theorem 1) does not hold. This
example shows that the (sufficient) (L-D) condition on D in Theorem 1 is “almost” sharp.
An analogous example in R, N > 3 can be then easily obtained.

Example 4.2. Set B, = {C € C||¢| < 1/e,Re( >0} and ¥’ = {C € C| Re( = 0,[(] <
1/e} € OBy. The function k(¢) = —(/log(¢) maps conformally B, onto some domain
Q. and k is homeomorphism B, onto Q. (we set k(0) =0). Here log(¢) means the main
holomorphic branch of logarithm in C\(—o00,0], log(1) = 0. One checks the conformality

of k on By applying the classical inverse principal of boundaries correspondence. It can
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be easily shown that S" = k(¥') is C'-smooth curve, convexr “to the right”. Moreover, on
S" we have (for some A € (0,+00))

2\ —1
0< -1 < AL, |zo| < <1 + W—) e !
| log 24| 4

Notice that the curve —xy = |x9|/|log |xo|[P with p > 1 is Lyapunov-Dini curve.

Then there exists bounded convexr C*-smooth domain D C {z = x1 + izg € C|z; < 0}
such that " C S = 0D and S\{0} is C*°-smooth. Consider u;(x) = —x; € H(D) N
C>®(D). We claim that the corresponding u, (see the notations in Theorem 1) satisfies

ou,
(% 1

~ Ou,

- o
o Ong

In fact, take h(x) = Re(k7'(z)) in Q; (x = (x1,72)). One can find A € (0, +o0)
such that \u, > h on 9§, and so in € by the maximum principle. So that (4.1) follows
from the equality Oh/0xi|o = +oo. This example also shows that the Green function
of the (“almost” (L-D)) domain Q* (obtained from € by “smoothing” 0, near it’s
“angle”-points) does not satisfy [7, Theorem 2.3] (see also Theorem 4.5 below).

Example 4.3. For p € (0,+00) define a C*-function

4

fp(t) = Tog [1]F te[-1/2,1/2], t#0,
and f,(0) = 0.

(1) For p € (0,1] there do not exist 6 > 0 and a function F continuous and subhar-
monic on Bs = {x € R?| |x| < 8}, such that F(z1,0) = f(z1) for |z1] < 4.

(2) For each p € (1,400) one can find F € C}_(R?) N SH(R?) with F(x1,0) = f(x1)
for all x1 € [—1/2,1/2] and ||VF|| < +oc.

Proof. Set g,(t) = f,(t) for |[t| < 1/2 and let g,(t) be some negative bounded even
C?-function for [t| > 0. Let F} (respectively, F;") be the Dirichlet solution in R? (respec-
tively, in RY = {x € R?|z, < 0}) with the boundary data g,. By the Poisson formula we
have for all a € (0,7) and r € (0,1/2:

1 /+°° rsin g, (t)dt

Ef(rcosa,rsina) = F, (rcosa, —rsina) = —

T ) oo (t—rcosa)?+r2sin®a —
' e : 1/2
Z ’T’Slna/ gp(t)dt S _TSIHQ/ dt = —7r Sinahp(r>,
o ) Rt dr ), t]logt[|P

where h,(r) — +o00 as r — 0+ wherever p € (0, 1].

Fix p € (0,1] and suppose, by contradiction, that such F in (1) exists.

Put M = supjy_s/2(|F(x)] + [Fp(x)|) < +oo and let uy (respectively, u_) be the
solution of the Dirichlet problem in Bgr/z = Bs» NRY (respectively, B;jy = Bsjp N R?)
with the boundary data 0 on (9B§E/2 N {xs = 0} and M on the rest of the boundary. By
Theorem W1(2) there is A € (0, +00) such that

Uy (21, 22)| + |u— (21, 22)| < Ay
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for each x = (21, x9) with |x| < §/4 and z, > 0.
Therefore, for a € (0,7) and r € (0,6/4) one has (as F' < FF + ux in B(;—L/Z)

F(rcosa,£rsina) < —rsina (h,(r) — A), F(0) =0,

which clearly, contradicts to the subharmoniticity of F(x) at x = 0 by the mean value
property.

Let now p > 1. It is not difficult to check (see also Theorem 4.9 below) that F~ €
C1(R%). Tt suffices to apply Theorem 2.

Recall, that in [3, Theorem 3.1] it was proved that the (L-D) condition is in some
sense necessary in Theorem 3. For instance, in the scale of functions ,(-) (see Remark
3.2 above) we have the lack of the extension (in the sense of Theorem 3) for p € (0, 1].
For p > 1 domains with the Dini-function ¢,(-) are (L-D) domains. The case p > 2 is
covered by Theorem 3. The case p € (1, 2] is still unconsidered.

We also do not know if the (L-D) condition in Theorem 2 is precise. O

In the rest of the paper we discuss the proofs of Theorems W1 and W2 following
basically the ideas of the original proofs in [7]. In particular, we check that all the
appearing constants depend only on N, d = diam D and £(-). The last is important for
the proofs of our main results. Also, for the interested reader (especially beginner) it
would be very useful to check all the details of the proofs, which look rather useful in
applications. First we present the detailed proof of the main working result of [7] — [7,
Theorem 2.2].

Theorem 4.4. Let 1(t) be a Dini-type function with €1(1) < 1/2. Define p1(r) =
Jy e1(t)dt, so that tey(t)/2 < ¢1(t) < tei(t) and —¢y is concave. Put

T ={xeRY[|x| <1, —pu(]x]) <oy < 1},

Yio={xe€dli|xzny = —p1(|X'|)}. Let uy € H(TY) have the boundary values uy|s, = 0,
ui|or\s, = 1 (with ||u1||r, <1). Then there exists a constant Ay = Ay(N,e(+)) € (0, +00)
such that

[ui (0, zy)| < Ayoy,  on € (0,1].

Proof. Set Ty = {z/2|z € T}, Th(X') = {z + (X', —2p1(X))| 2z € Th}, Eo(X') = {z/2 +
(x/, =21 (x'))|z € 31} C 9T(x"). We claim that for |x'| < 1/2 one has Ya(x') N2 =)
(that is, ¥y is “below” ¥;). In fact, it is enough to check that

Xt(s) = 2p1(t) + %@1(23) —p(t+5)>0

for all t > 0 and s > 0. It is easily seen that the function x:(s) (¢ fixed) has it’s minimum
at s = t, so that it is enough to see that A(t) = x:(¢) > 0, ¢ > 0. But A(0) = 0 and
N(t) = 2e1(t) — e1(2t) > 0, which ends the proof of the claim.

Let u, € H((T»(x'))°) have the boundary values u), = 0 on ¥3(x’) and u), = 1 on
OT5(x') \ 3a(x') (with [Ju||zyxy < 1). Since, clearly, (x',0) € T5(x’), by the maximum
principle for w; and uh in 73 N Ty (x") we have

ui (X', 0) < up(x',0) = ui (07, dpa (X))

for all x" with |x/| < 1/2.
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Let uy be the solution of the Dirichlet problem in RY with the boundary data ¢ (x’) =
u1(0, 491 (|X'])), |x'| < 1/2, (x') =1 for |x/| > 1/2. By the Poisson formula,

/ 2 / /
uy(X', Tn) = E/RN—l ((y’ _X)xN_’_:E )N/2¢(y )dy'.

It is clear that w,(x',xy) > 1/2 for |x'| > 1/2. For |x'| < 1/2 we have
Uw(x,71)>i/+mm>i/+wmzl
~on ) (T2+1)N/2 ~on Jo (T2+1)N/2 2

(one estimates the corresponding integral fol changing variables t = 1/r). We then have
u(x',xy) < 2uy(x’,zx) and so, for zy € (0,1),

4 3 1) 0/ 4 N—Qd +oo N—Qd
w0, zy) < N1 (/ v ; @1(27“)3\[7"/2 : +/ QZN J\Z2> ;
oN 0 (r2 + %) 5 (r? + 2%)

where § € (0,1/2] will be choosen later.
Suppose that

0/
zn€(0,1] TN

and let ¢t € (0, 1] be such that u,(0’,t)/t > Ay /2.
Then we have for Ay = 320y_1/0N:

5 N-2 +oo 4 .N-2
tAypq(r)r™ —2dr 1 tr —2dr
At < 2uy(0'1) < A " T Nz |
it < 2u(0) < A (/0 (r2 4 t2)N/2 - 4/5 (r2 4 t2)N/2

Therefore,
5
Ay < Ay (Al/ 61(7,)037“—{— i) )
o T 46

Take the maximal ¢ = §; € (0, 1/2] such that

AQ/:1 2 g, <1/2,

r

and we find A; < Ay/(26;).
To finish the proof of Theorem 4.4 we need to reduce the general situation to the

case when we know that A; < 4o0o. To this end, for each fixed # € (0,1/2) define
ea(t) = e1(0)t/0, for t € (0,61), eo(t) = £1(0) for t € [0y,0], and ey(t) = &1(t) for t > 6,
where 6 € (0,0) is chosen such that

/06 eo(t)dt = /09 eq(t)dt,

which gives 6, = 2 < fe e1(t ) Recall that e (kt) > ke (t) for k € (0, 1].

0 &1 (9)
The main reason to c0n31der the functlon go(+) is the following. Each €y(-) is a Dini-
type function such that op(t fo go(7)dT is equal to py(t) for ¢t > 0 and @y(t) < ¢1(t)

for ¢ € [0,0]. Moreover:

/59()dt</ 2y w0,
0 t 0 t
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In fact, integration by parts gives:

[y [t ) [
0 t 0 0

t T

< alr) +/T oill) gy / f1ll) gy (4.2)
r 0 t? g t
Let Ty, ug, Ay be defined for g4(-) as Ty, uy, A; for 1(-) in Theorem 4.4 above. We claim
that Ay are finite for each 6 € (0,1/2). In fact, given 6 one can find 0y € (0,1/4) such
that B((0', —dg), ) C RN¥\Ty and so the claim follows from the maximum principle (in
the domain Ty C T1) for ug and vg(x) = lp(55 ¥ — |x + (0, 64)|>~V) with an appropriate
lg > 0. It remains to note that ug — wu; as 6 — 0, and apply (4.2) to see that Ay depend
only on &(+). O

Theorem 4.5. Let D be a (L-D) domain in RY with the Dini function (-) and d =
diam D. Let G(x,y) be the Green function for D. Then there is A = A(N,d,¢) € (0,+00)
such that for each x and 'y in D one has

(1) 1Gxy) < Ap(x)lx —y['"", here N >3;
(2) |0G(x,y)/0x,| < Alx —y['"7,

(3) 10G(x,y)/0y.| < Ap(x)[x —y[™",

(4) 10°G(x,¥)/(0xndy,)| < Alx —y|™

for allm and n in {1,...,N}.

The same estimates hold for the Green functions of (and in) bounded components of
D,. For the unbounded component D, of D,, the estimates (1)-(4) hold also for the Green
function G, of D, (in place of G) for all'y € B(0,2d) N D, (presumably, 0 € D) and all
x e D,.

Proof. We consider only the case N > 3. The proof of (2)-(4) for N = 2 can be obtained
using conformal mappings [14, Theorem 3.5].

(1). Let, as before, 7y € (0, 1] be the maximal number with the property €(r¢) < 1/8.
Fix y € D. We can suppose that x = (0',xy) € D, zy > 0, is such that p(x) = |x/|, and
0 € 0D is the closest to x on dD. It is trivial that

As
0< -G < "

where Ay = Ay(N). If p(x) > ry then

| Aofx =yl Ad _ Ap(x)
Tox -y T x —y VT x -y VY

It remains to consider the case {p(x) < 19, p(x) < |x—y|/8}. Put r = min{ro, |x —y|/8},
so that 0 < zy = p(x) < r < rg. Let, as before, Q, = {z € RY, |Z'| <r |zn| < r}. We
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claim that dist(y,0Q,) > |x —y|/2, which follows easily considering the cases r < ¢ and
r = ro. Therefore,

2NV A,

< - s
GOy < i

= Mg, Vxe€ 8(@,, N D)

Define ,(t) = 4e(rt), so that e;(¢) satisfies the conditions of Theorem 4.4, and, since

e1(t) < 4e(t), we have
t t
/ MdT < 4/ @d’]', t>0. (4.3)
o T o T

Moreover, if (as before) ¢.(t) = fotg(T)dT, we have

t
4
p1(t) = 4/ e(rr)dr = —p.(rt),
0 r
so that the set T} (see the proof of Theorem 4.4) is similar to the set

T, = {z€ Q| —4p.(2]) < 2y <} 5 (Q, N D)

with coefficient 1/r. By the maximum principle (in @, N D) for the functions —G/(x,y)
and Mguq(x/r), using Theorem 4.4 and (4.3), we get

N N 1
Gl )| < Mo () < A o
‘ (X y)l— Gu1 r = 47“ |X_y|N_2

with Ay = A4(N,e(+)). Finally, if r = |x —y|/8, (r < 19) then

8A4p(x)
< —

If |x —y|/8 > ry (that is, r = ry), we have

App(x) o Awp(x)d . Ap(x)

rolx —y[V72 T rolx —y[NT T x —y [V

G(x,y)| <

with A = Ayd/rg. So, finally, A = A(N,¢,d).
(2). Let p(x) < |x —y|. Take a ball By = B(x,p) with p = p(x)/2, and represent
G(z,y) at Bx by the Poisson integral:

1 P’ — |z —x|?

After taking 0/0z,|,—x under the integral, it suffices to use (1) to have an appropriately
estimate of G({,y) for ¢ € 0Bx. If p(x) > |x —y|, take B = B(x,|x —y|/2) and do the
same in B using the estimate G(z,y) < 2V A,|z — y|*™V, z € dB.

Lemma 4.6. Fized y € D, one has %G(x, y) — 0 uniformly as x — 0D.
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Proof. Fix r > 0 small enough, so that for |x —y| = r we have G(x,y) > |[P(x —y)/2| >
Aslx —y[*N, A5 = A5(N). If z is a vector with |z| < r, we have, by (2), for |x —y| =7

Gxy +2) - Gxy)

2|

< Alx =y < Agr G (x,y)]- (4.4)

Since G(x,y) = G(x,y +2z) = 0 for x € 9D, the inequality (4.4) holds for all x €
D\B(y,r) = D, (notice that |G(x,y)| = —G(x,y) is harmonic in D,). Fixing x € D,
and letting |z| — 0 we get

X
9G] < Aur G| < Aot L

x € D,, which proves the Lemma. Il

Finitely, using (2) with 0G /0y, instead of 0G /0x,, and applying Lemma 4.6, we obtain
(3) the same way as in the proof of (1). Also (4) follows from (3) as (2) follows from (1).
The proof of the last part of Theorem 4.5 (that concerns G,) goes the same way as
before (whenever |x| < 4d and |y| < 2d). In case |x| > 4d and |y| < 2d use maximum
principle. O

Theorem 4.7. In conditions of Theorem 4.5 we have G(x,y) € C*(D\{y}), y fized.

Proof. Fix y € D. By definition, G(x,y) = ®(x —y) — vy(x), where v(x) = vy(x) €
H(D)NC(D) and v|s = ®(x —y)|s € C*(S). We have to prove that v € C'(D). By
(2) of Theorem 4.5 and the maximum principle the function |Vv| is bounded in D. It is

enough to prove that there exists a Dini-type function €, (independent of x) such that
for all n and m in {1,..., N}

aInaxmv(x) < , x€D. (4.5)

7o < 240

In fact, (4.5) gives that Vv is uniformly continuous in D and then, clearly, v € C*(D).
To prove (4.5) we can assume that x = (0',zy), zy € (0,79/2), p(x) = |x|, 0 € S is
the closest to x on S. We use the notation from the proof of Theorem 3.1 (rg, Qo, D',
S’) and denote by G (¢, n) the Green function of RY.
Let v|g = v|s, where ¢ € CZ(RY). Take u(z) = v(z) — ¥ (0) — (Vi(0), z), so that
ue C(D) N H(D), [Vullp < +00, uls = o, where to(z) = 1(z) — 1$(0) — (V(0). 2)
and so

[¢0(2)] < wi|z])|z| (4.6)

with some Dini-type function wi(t), independent of x. It suffices to prove (4.5) for u
in place of v. Using the Gauss-Ostrogradski (or just the second Green’s) formula (in
D' c RY) we get

/a . (u(n)é’@(z,n) _ Ou(n)

o (o]
8nn ﬁnn

G (z, "7)) doy =

. / (U(Q)AG(2,€) = Au(¢)G4 (2, ))d¢ = —u(z),
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where ng is the inward unit normal to dD" at 7.
Since ||Vullp = M, < 400, we have for n = (n',4¢-(|7'])), |7'| < ro/3 (that is,

neS coD),
u(m)| < [u(n) —u(@’, o) + luln’, o(n')] <
< MBe:(|n']) + wi(2n')In'| < walln'])In'], (4.7)
where wy(+) is a Dini-type function and (n’, ¢(n’)) C S. We can write

Fu | / {aum) G (z.m) 7
oD’

02,02 |, ong 02,0z, 02,0%m

— u(n) (VnG(z,m), n)

Zz=X

— /BD/(Hl(X, n) — Hy(x,m))doy, .

We estimate the last integral using the following elementary inequalities for the Green
function G

32G+(Za"7) AnN
02,02 |, | ~ Ix—m|NtL’
0°G(z,¢) A
axnaxmag z=x,{=n - ‘X - "7‘NH ’
where A = A(N). Then
o r)rrN=2dr
[ inxmld, < o, / re_o <
(r24a2%) 2
N pN-1 g o g dr g(ry)  Ao(zn)
< AM, — + AM, = AM,
< u5($N)/O 2N+ / <N33N * TN )7

where \p(t) =1t [, ETT dr is Dini-type function by Lemma 3.11. Also, by (4.7),

T0 A
/ | Ha(x, m)| doy < / <—+1 wa(r)r N2 dr
5 0

r24+a%) 2

can be estimated similarly. Finally, the analogous integrals over 9D’\S’ are estimated
trivially. O]

Theorem W2 now is also completely proved.

Theorem 4.8. In conditions of Theorem 4.5 let 1y € C1(S) be a C'-Dini function on S,
which means that there is ¢ € C§(RYN) with ¥|s = 1y and

V(%) = Vi(y) Sw(x—yl), ¥x,Vy eRY, (4.8)

where function w(+) is a Dini-type function. Let u; be the Dirichlet solution in D with the
boundary data vy. Then u; € C*(D) and

" w(r
oo < 4 (190l + [~ XD+ o) (49
0
For instance, if 1o € C*(S) then

uilly 5 < Allvollz,s- (4.10)
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Proof. Let us first estimate ||Vu;||5. To this end it suffices to estimate |u; (0, zy) —
u;(0)|/xn, where 0 € S,z € (0,79/2) and 0 is the closest to x = (0',zy) € D on S. In
fact, if z # 0 is (fixed) small enough vector, then the function (u;(x + z) — u;(x))/|z| is
harmonic in DN {x —z|x € D}, and so attains it’s extremums when x € S or x+z € S.
Therefore, it is enough to take x +z = 0 € S and suppose that 0 is the closest to
x = (0/,xx) on S (the last uses also the fact that u; € C''(S)). Now, by Theorem 4.7,
G(x,y) € CYD\{y}), so we already have a right to use formula (3.6), which gives

) = uf0) = (V6(0),3) = ~ [ FEEI 43) — (0) = (V0(0), ) dy.

g On}
By (4.8) we have [¢(y) —1(0) — (V¥(0),y)| < w(|y|)|y|, and so, by Theorem 4.5 (3),

z IN Jg

x—y¥ T
" w(r) doy
S |V¢(0)| + AQ dr + AQW(d) N_1°
0 S, y|
where S = {y € S||y| > ro}.
We claim that do(y) J
o\y
/* T < A (4.11)

To check this, consider the system of equal disjoint cubes { K} ;cz~ (with the side length
I =r9/vV/'N) covering RY that is

Kj={z e R"|jul <2, < (ju+ 1), ne{l,...,N}},

J=(1,--sin) €ZYN. T K;NS > a+# 0 then K; C Qa and so (SN K;) < o(SN
Qa) < ANréV_l. For m = 1,2,... let N,, be the number of cubes (); that intersect
B(0, (m + 1)ry)\B(0,mr), so that, clearly, N,, < Aym”~!. Therefore,
d/ro N-1,_ N-1
doy Anry = m d
—2 < — < Ay—. 4.12
[ s < X S <A @2

By this we proved that ||Vu;||p is bounded and, as soon as we prove that u; € C* (D), we
also immediately obtain (4.9). To check that u; € C'(D) it suffices to repeat the second
part of the proof of Theorem 4.7, where we used the property (4.6), which corresponds to

(4.8).
Finally, if 1o € C?(S) we can find ¢ € CZ(RY) with [|¢[]2 < 2||2oll2.s = M, so that
for the corresponding w(-) we have
w(t) <2Mt and w(d) <2M.
Then (4.9) gives (4.10). O

Theorem 4.9. Let D be a (L-D) domain in RY with the Dini-type function &(-) and
d = diam D. Then there is a function C(t) = C(N,d,e(-),t) > 0 on (0,400); such that
for each 'y € D we have

_IGXY) S ipy)), Wx €D, (4.13)

oni,

where G 1s the Green function for D.
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Proof. Let 0 € S =0D, {0,...,0,1} = n}, (for D), and ro, D', S" are defined in the proof
of Theorem 3.1. Let G, and G’ be the Green functions for ]R_]X and D’ respectively. Take
y =y, yn) and x = (x/,zx) with 0 < xy < yn/2 < 19/4 (so that |y — x| > yn/2). B
the (second) Green formula,

-G(z,y)doy, . (4.14)

Z

Gixy) = Golxy) = [ Gulaxy,

It can be easily checked that there are A; = A;(N) and Ay = Ay(N) in (0,4+00) such
that

—Gi(x,y) > Ajrylx -y, (4.15)

~Gy(z,%x) < Aszyzn|x —z|™V, VzeRY. (4.16)

Fix § € (0,70/3] and let S5 = {z € 9D'||2'| < ¢}, S; = 0D'\Sj. By (4.16) and (2) of
Theorem 4.5,

S/ Asznzy As do, <
S

; [x =2V [z —y[¥

0
/S G+(z,x)%G(z,y)sz

% z

! 1 1)
A4| ie 1/ eelleda’ _, _ an / ) g (4.17)
y 0

<o |x—2¥ |y —x|[¥!

Also by (1) and (3) of Theorem 4.5,

0
/* Gi(z,x)=— o G(z,y)do,| <

Az n YN
< do, <
Lgx—ﬂle—ZW ‘

INYN

do
gAGxNyN/ | o < Ag ol (4.18)
S; z|

where the last inequality can be checked the same way as in (4.12):
/ do, _ X ANaN-lmN—l . As
|Z|2N 1= (Om)2N-1 = §N

Fix (maximal) oy € (0,70/3] with the property (recall (4.15))

) 1
A5/ @dr < Ay, (4.19)
o T 3
and let y be such that
A7?JJJ¥ 1
—A
oy — 3

that is yy < \/A1/3A70y = 91, and so

1 _
Azyn/bo < §A1]y — x|V
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So, finally, by (4.14)—(4.19), for yy < 6; and all zx < yy/2 we have (using maximum
principle):
AlfL‘N

> ! S S 4.2
-G(x,y) > =G'(x,y) > T =y (4.20)
which gives
8G<X, y> A1 A1
Oxn  |,_ol — 3BlyIN"t T 36y

Lemma 4.10. In conditions of Theorem 4.9 let a € D. There is Ag = Ag(N) € [1,+00)
such that for each b € B(a, p(a)/8) one has

Ay'|G(z,a)] < |G(2,b)| < Ay|G(z,a)]
for all z € D with p(z) < p(a)/2.

Proof. Use trivial inequality (the case N > 3)
1 p(a)
L0z~ a)] < [Glza)| < [0z —a)|. o a < 22
and maximum principle for —G(z,a) and —IG(z,b) in D\B(a, 3p(a)/16) with an appro-
priate [ = [(N) € (0, +00). O

We are ready to finish the proof of Theorem 4.9. Fix any ¢ € D and put p;(¢) =
min{p(¢), d1}. In our notations it suffices to prove that for all zx € (0, p1(¢)/4) one has

—G((0',2n),¢) = 2nC(p(C))-

Take yy = p1(¢). One can find M points {¢,,}M_, with ¢; = (0',yn) =y, {u = €,
A

p(Cn) = p1(€)/2, Cuyr € B(Cn, p(C,0)/8) and M = M (N, d, e p(C)S pplying Lemma
410toa=¢,,, b=¢,,.; (me{l,...,M —1}) we can finally take (by (4.20))

Clp) = Ag™ A1 /307
and (4.13) is proved. O

Proof of Theorem W1. The proof of (1) for u; and u, in bounded components of Dy follows
immediately from Theorem 4.8. To prove (2) for u; we apply (3.6) to have

Ou;(x) _ 0°G(x, y)w(y)day

or,, sx Ox,0n}

where x € D N B(a,r/2) and S¥ = {y € S||y —a| > r}. By (4) of Theorem 4.5 then

da( ) d

[Vuy(x)] < All¢]ls ~ < A10||¢||5 In—
al

The last inequality can be proved as in (4.12):

[ e A _Nii
sly—al¥ T ()Y m
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To finish the proof of (1) and (2) for u, in D, and (3) for w in D, it is enough to apply
the so called Kelvin transform (see (4.21) below ; for (3), additionally, use Theorem 4.9).
We can suppose that 0 € D and p(0) > ry. The inversion x — x* = x/|x|? (via the

unit sphere) maps some (L-D) domain D (with the Dini-function Ae(-), A = A(N,d,¢))
onto D,U{oc}. If f, € H(D,) and f.(c0) = 0 (for N > 3, which gives f.(x) = O(|x]*"))
or |fi(00)| < 400 (for N = 2), the Kelvin transform (via the unit sphere) of the function
f+ is defined as

Fox) =[x M(x/Ixf*) . x € D. (4.21)

Then f € H(D) and

Af(x) =[x N[AL)x/Ix?) . xe D

(see [11, Ch.13)).
]
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