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For Lyapunov-Dini domains D in RN (N ∈ {2, 3, . . .}) we study the possibility of C1-
extension and C1-reflection of subharmonic functions in D of the class C1(D) through the
boundary of D to all of RN .
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1 Introduction

For previous results on Cm-extension of subharmonic functions we refer the reader to
[1] – [5] and literature therein. In these papers one can find several different settings of
the problem. Here we deal with the following particular question (and related results).

For which compact sets X in RN any function f ∈ C1(X) subharmonic on the interior
of X can be extended to a function F subharmonic and C1 on all of RN with the property
‖F‖C1(RN ) ≤ AX‖f‖C1(X) (with AX ∈ (0, +∞) depending only on X)?

The main result of this paper (Theorem 3) says that the previous property is satisfied
by any C1-smooth closed bounded domain X in RN (N ≥ 3) with connected complement
and with the so-called Log-Dini-property. An analogous result for the case N = 2 was
obtained in [3] by different methods (for balls in RN it appeared earlier in [2]). We also
prove several auxiliary results (having their own interests) on harmonic and subharmonic
C1-reflection (Theorems 1, 3.1 and 3.5) and give several examples (see Section 4) showing
that the (sufficient) conditions of our theorems are close to be sharp. Now we go to precise
definitions, notations and statements.

A function ε(·) ∈ C([0, +∞)) with the properties ε(0) = 0, ε : (0, +∞) → (0, +∞),
ε(·) is (nonstrongly) increasing and ε(t)/t is decreasing on (0, +∞),

∫ 1

0

ε(t)

t
dt < +∞ , (1.1)

is called a “Dini-type” function.
A C1-smooth bounded domain D in RN (N ∈ {2, 3, . . .} is fixed) is called “Lyapunov-

Dini” (L-D) domain if there exists a Dini-type function ε(·) (called a Dini-function for
D) such that for each x and y on S = ∂D one has

|ni
x − ni

y| ≤ ε(|x− y|) , (1.2)

where ni
x means the inward (with respect to D) unit normal to S at x ∈ S.
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As usual, E, E◦, ∂E mean the closure, the interior and the boundary of the set
E 6= ∅ in RN , ‖f‖E = supx∈E |f(x)| is the uniform norm of the function f on E (and
‖ · ‖ = ‖ · ‖RN ). For an open set Ω in RN we denote by H(Ω) (respectively, SH(Ω)) the
class of all (real) functions harmonic (respectively, subharmonic) in Ω.

Recall, that for a closed set X in RN and m ∈ {0, 1, 2, . . .} one defines Cm(X) as
Cm(RN)|X with the norm

‖f‖m,X = inf ‖F‖m,

where the last infimum is taken over all functions F ∈ Cm(RN) with the property F |X = f
and ‖F‖m := max|β|≤m{‖∂βF‖} < +∞. Notice that in the case X = X◦, for each
f ∈ Cm(X) the derivatives

∂βf(x) =
∂|β|f(x)

∂xβ1

1 . . . ∂xβN

N

with |β| := β1 + · · · + βN ≤ m (β = (β1, . . . βN), βn ∈ {0, 1, 2, . . .}) are uniquely defined
for all x ∈ X, and so in this case Cm(X) can be identified with the Whitney-jet space
Cm

jet(X) (see [6]). If m = 0, we omit the index m in notations of Cm(X) and || · ||m,X .
In what follows we fix N ∈ {2, 3, . . .}, an arbitrary Dini-function ε(·) and d ∈ (0, +∞).

Let D be a (L-D) domain in RN with Dini-function ε(·) and diam D < d (d should be
large enough for D to exist). Set Do = RN\D. The constant A ∈ (0, +∞) in the following
Theorems 1-3 depends only on N , ε and d .
Theorem 1. Let ui ∈ H(D) ∩ C1(D) and uo be the (only) solution of the Dirichlet
problem in Do with the boundary data uo|∂Do = ui|∂Do (in the unbounded component of
Do we additionally require uo(∞) = 0 for N ≥ 3 or |uo(∞)| < +∞ for N = 2, where
uo(∞) = lim|x|→+∞ uo(x) must exist). Then uo ∈ C1(Do) and

‖uo‖1,Do
≤ A‖ui‖1,D . (1.3)

We shall say that uo is the C1-reflection of ui over (or through) the boundary S of the
domain D. We have a useful generalization of this result in Theorem 3.1 below. From
Theorem 1 we obtain the following “C1-extension” result.

Theorem 2. Suppose that D has connected complement and ui ∈ H(D) ∩ C1(D). Then
one can find a function F ∈ C1(RN) ∩ SH(RN) for N ≥ 3 (F ∈ C1

loc(RN) ∩ SH(RN) for
N = 2) such that F |D = ui and

‖F‖1 ≤ A‖ui‖1,D , N ≥ 3 ,
‖∇F‖ ≤ A‖∇ui‖D , N = 2 .

(1.4)

It is well known that RN\D (and then Do) is connected if and only if S = ∂D is. The
next “localization” property can be useful in applications.

Corollary 1. Suppose that D has connected complement and f ∈ SH(D)∩C1(D). If for
each a ∈ ∂D there is a ball Ba centered at a and ga ∈ SH(Ba)∩C1(Ba) with ga|Ba∩D = f
then there exists F ∈ SH(RN)∩C1(RN) if N ≥ 3 (respectively, F ∈ SH(RN)∩C1

loc(RN)
if N = 2) with F |D = f and ||F ||1 < +∞ (respectively, ‖∇F‖ < +∞ if N = 2).

And the main goal of this paper is the following.
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Theorem 3. Suppose that D has connected complement and ε(·) satisfies the so-called
“Log-Dini” property ∫ 1

0

ε(t)

t
log(

1

t
) dt < +∞ .

Then for each f ∈ SH(D) ∩ C1(D) one can find F ∈ SH(RN) ∩ C1(RN) if N ≥ 3 (or
F ∈ SH(RN) ∩ C1

loc(RN) if N = 2) with F |D = f and

‖F‖1 ≤ A‖f‖1,D , N ≥ 3 ,
‖∇F‖ ≤ A‖∇f‖D , N = 2 .

(1.5)

The last theorem is based on a constructive, but rather technical result, Theorem
3.5, that seems to be useful in applications (the C1-reflection property for subharmonic
functions).

As far as we know, Theorems 1-3 are new for all N ≥ 3 even for the so-called Lyapunov
domains ((L-D) domains with ε(t) = tα, α ∈ (0, 1)).

The formulated results were obtained during the autumnal semester of 2007 at the
University of Helsinki. The author is grateful to the University and the Academy of
Finland for hospitality and financial support. Especially many thanks are due to Pertti
Mattila for his attention to this work.

2 Proofs of Theorems 1 and 2

In the sequel we denote by A0, A1 . . . some (fixed in this section) positive constants,
which (in the long run) depend only on N , ε(·) and d (this is important for the proofs
of Theorems 1-3 and will be discussed in each nontrivial situation). The constants AN

(depending only on N) and A (depending on N , ε(·) and d) can be different in different
accuracies. Set B(a, r) = {x ∈ RN | |x − a| < r} and B(a, r) = {x ∈ RN | |x − a| ≤ r}
(a ∈ RN , r > 0).

First we formulate several auxiliary results, which basically (but sometimes not so
easy) follow from [7, Theorems 2.2 - 2.5]. We decided, for completeness and for the
reader’s convenience, to present the detailed proofs of these results in Section 4 below
(see Theorems 4.4-4.9).
Theorem W1. Let D be a (L-D) domain in RN with Dini-function ε(·) and diam D < d,
S = ∂D. Let ψ ∈ C(S) and ui (respectively, uo) be the solution of the Dirichlet problem
in D (respectively, Do = RN\D) with the boundary data ψ.

(1) If ψ ∈ C2(S) then ui and uo are of the class C1(D) and C1(Do) respectively, and
satisfy the estimates:

‖ui‖1,D ≤ A0‖ψ‖2,S ,
‖uo‖1,Do

≤ A0‖ψ‖2,S .
(2.1)

(2) Let a ∈ S, r ∈ (0, d/2), and suppose that ψ = 0 on S ∩ B(a, r). Then ui and uo

are of the class C1(D ∩B(a, r/2)) and C1(Do ∩B(a, r/2)) respectively, with

∣∣∣∣
∂ui

∂ni
a

∣∣∣∣ +

∣∣∣∣
∂uo

∂no
a

∣∣∣∣ ≤
A0

r
log(

d

r
) ||ψ||S ,

where no
a = −ni

a is the outward normal to S at a ∈ S.
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(3) Let N ≥ 3. Let D∗ be the unbounded component of Do, S∗ = ∂D∗, and w ∈
H(D∗) ∩ C(D∗) be such that w|S∗ = 0 and w(∞) = 1. Then w ∈ C1(D∗), ||w||1,D∗ ≤ A0

and for each a ∈ S∗ one has

A0
∂w

∂no
a

≥ 1 .

In Theorem W1 (1) we cannot, in general, put ‖ψ‖1,S instead of ‖ψ‖2,S (see [7, Remark
1] and Example 4.1 below). It should be said that the dependence of A0 only on N , ε, d
was not ascertained in [7].

Proof of Theorem 1. First we reduce the proof to the case when ui can be extended as a
harmonic function on some neighborhood of D, so that ui|∂D belongs to the class C2(S)
and so, by Theorem W1 (1), we have uo ∈ C1(Do). In fact, suppose we have proved (1.3)
for all such ui. In general case, by [8, Corollary 6.3] we can find a sequence {vis}+∞

s=1,
each vis is harmonic on (it’s own) neighborhood of D, such that ui =

∑+∞
s=1 vis and

‖vis‖1,D ≤ 22−s‖ui‖1,D. Define vos by vis (like uo by ui), so that vos ∈ H(Do) ∩ C1(Do),

‖vos‖1,Do
≤ A‖vis‖1,D. Then vo =

∑+∞
s=1 vos gives the result. So we can always assume

that uo ∈ C1(Do).
Set hi(x) = ∂ui/∂ni

x (respectively, ho(x) = ∂uo/∂no
x), where x ∈ S and ni

x (respec-
tively, no

x) is the unit inward normal to S at x with respect to the domain D (respectively,
Do).

It is well known (see [9, Ch. 2, §6.5, (27)]) that if we set u = ui in D and u = uo in
Do then

∆u = (hi + ho) σ (2.2)

in the distributional sense, where σ is the (N−1)-dimensional (Lebesque) surface measure
on S. Denote by ΦN(x) = Φ(x) the standard fundamental solution for the Laplacian ∆
in RN :

Φ2(x) = (1/2π) log |x| , ΦN(x) = − 1

σN(N − 2) |x|N−2
, N ≥ 3 ,

where σN is the (value of the) surface measure of the unit sphere in RN .
Put h = hi + ho on S, so that by the classical Liouville theorem we have

u(x) = (Φ ∗ (hσ))(x) + c2 =

∫

S

Φ(x− y)h(y)dσy + c2 , (2.3)

where c2 = 0 for all N > 2 and |c2| ≤ ||ui||S for N = 2. It is enough, by the maximum
principle, to (properly) estimate ‖ho‖S. In fact, since ui ∈ C1(D) and uo ∈ C1(Do), we
have

∇uo(y) → ho(x)no
x +∇ui(x)− hi(x)ni

x

as y → x ∈ S, y ∈ Do, so that, since ‖uo‖Do
= ‖ui‖Di

, it would be enough to prove that
‖ho‖S ≤ A‖ui‖1,S. Then the jet (uo,∇uo)Do

can be extended to some function of the class
C1(RN) by Whitney theorem [6] which also gives the estimate (1.3).

We are first going to obtain a priori type estimate of ho.
One can easily check the “doubling” property ε(kt) ≤ kε(t) (∀t > 0, ∀k ≥ 1) that

we shall often use below (without remarks). Fix (say, maximal) r0 = r0(ε) ∈ (0, 1] with
condition ε(r0) ≤ 1/8. Take any a ∈ S. Rotating and shifting the initial coordinate
system we can assume that a = 0, ni

0 = {0, . . . , 0, 1} (so that D is “above” 0), and
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find r ∈ (0, r0] and a function ϕ(x′) (we set x = (x′, xN), x′ = (x1, . . . , xN−1)) such
that ϕ ∈ C1(|x′| ≤ r), ϕ(0′) = 0, ∇ϕ(0′) = 0′, |∇ϕ(x′)| ≤ 1/4 for |x′| ≤ r and for
Qr = {|x′| ≤ r, |xN | ≤ r} one has

Qr ∩ S = {(x, ϕ(x′)), |x′| ≤ r} . (2.4)

Take x = (x′, ϕ(x′)), |x′| < r, so that ni
x = {−∇ϕ(x′), 1}/

√
1 + |∇ϕ(x′)|2. Then, using

(1.2) for the taken x and for y = a = 0, we see that for all x′, |x′| < r,

|∇ϕ(x′)| ≤ 2ε(|x′|),
|ϕ(x′)| ≤ 2ε(|x′|)|x′| , (2.5)

which show that in the last considerations we can take r = r0. Put Q0 = Qr0 .
By (2.3) and Lebesgue’s convergence theorem, since ∂Φ(x)/∂xn = xn/(σN |x|N) , one

has

hi(0)− ho(0) = lim
δ→0

∫

S

Φ(δni
0 − x)− (±Φ(−x))− Φ(−δni

0 − x)

δ
h(x)dσx =

= −
∫

S∩Q0

2ϕ(x′)
σN |x|N h(x)dσx −

∫

S\Q0

2
∂Φ(x)

∂xN

h(x)dσx

so that, by (2.4) and (2.5),

|hi(0)− ho(0)| ≤ 5

σN

∫

|x′|≤r0

ε(|x′|)
|x′|N−1

h(x′, ϕ(x′)) dx′ +
2

σN

‖h‖S\Q0

∫

S\Q0

dσ(x)

|x|N−1
≤

≤ A1 ‖h‖Q0∩S

∫ r0

0

ε(t)

t
dt + A2 ‖h‖S\Q0 , (2.6)

where A1 = 5σN−1/σN and A2 ≤ ANd/r0. The first integral in (2.6) is estimated using
spherical coordinates in RN−1

x′ (the case N ≥ 3, or just put σ1 = 2 if N = 2):

∫

B(0′,r)
f(|x′|) dx′ = σN−1

∫ r

0

f(t) tN−2dt .

The second integral (that is, A2) in (2.6) is estimated in (4.11) below (Section 4).
By (1.1), take maximal r1 = r1(ε) ∈ (0, r0] with the property A1

∫ r1

0
(ε(t)/t)dt ≤ 1/2.

So, finally, we have for each a ∈ S (using (2.6) for r1 instead of r0 as we clearly can):

|hi(a)− ho(a)| ≤ 1

2
‖h‖S∩B(a,2r1) + A3‖h‖S\B(a,r1) .

From this one immediately obtains (for each a ∈ S):

|ho(a)| ≤ 1

2
‖ho‖S∩B(a,r1) + A4(‖ho‖S\B(a,r1) + ‖hi‖S) , (2.7)

which is the mentioned above a priori estimate for ho (here A4 ≤ ANd/r1).
It is worth mentioning that the case ui ≡ 1 (so that hi ≡ 0), uo = 1−w (see Theorem

W1 (3)), shows that (2.7) does not imply the estimate ||ho||S ≤ A||hi||S, and it is in fact
not so simple to obtain the desired estimate ‖ho‖S ≤ A‖ui‖1,S from (2.7). We continue
the proof of Theorem 1 by using localization arguments [10], [8].
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For the rest of the proof we explicitly consider the case N ≥ 3 (for N = 2 one should
use (and estimate) the norm ||∇f || + ||f ||B(0,d+1) instead of ||f ||1). We can assume that
0 ∈ D, so that B(0, d) contains D. By definition of ‖ui‖1,D we can find U ∈ C1(RN),
U |D = ui, Supp U ⊂ B(0, d + 1) and ‖U‖1 ≤ 3‖ui‖1,D. Let, for short, m = ‖ui‖1,D.

Suppose that M = maxx∈S |ho(x)| is attained at some point b = b0 ∈ S. Take
B0 = B(b, r1/8), ϕ0 ∈ C∞

0 (B0), ϕ0 = 1 on B(b, r1/16), 0 ≤ ϕ0 ≤ 1, ‖∆ϕ0‖ ≤ AN/r2
1.

We also can find points bj ∈ RN , j = 1, . . . , J , and ϕj ∈ C∞
0 (Bj), Bj = B(bj, r1/64),

such that 0 ≤ ϕj ≤ 1, ‖∆ϕj‖ ≤ AN/r2
1 and

∑J
j=0 ϕj = 1 on B(0, d + 1). Clearly, we

also can assume that J depends only on N , r1 and d, that Bj ∩ B(0, d + 1) 6= ∅, but
Bj ∩B(b, r1/16) = ∅ for j ≥ 1.

We now have:

U = Φ ∗∆U = Φ ∗ (
J∑

j=0

ϕj∆U) =
J∑

j=0

Uj,

where Uj = Φ∗ (ϕj∆U). By [8, Lemms 4.1] we have ‖∇Uj‖ ≤ AN‖∇U‖. Therefore (since
Uj(∞) = 0), we have for all j = 0, . . . , J :

‖Uj‖1 ≤ A5m, A5 = A5(N) , (2.8)

Uj ∈ H(RN\Bj)∩H(D), so that (using formula Uj = Φ ∗∆Uj) and integration by parts,
we get

‖Uj‖2,E2
j
≤ A6m , A6 ≤ AN/r1 , (2.9)

where for k > 0 we set Ek
j = RN\B(bj, kr1/64), j = 1, . . . , J , and Ek

0 = RN\B(b0, kr1/8).
Set uij = Uj|D and define hij, uoj and hoj by uij the same way as hi, uo and ho by ui.

We have ui(o) =
∑J

j=0 ui(o)j and hi(o) =
∑J

j=0 hi(o)j, as well as (by (2.8)):

‖hij‖S ≤ ‖uij‖1,D ≤ ‖Uj‖1 ≤ A5m. (2.10)

If Bj ⊂ D, then Uj ≡ 0 and so uij ≡ 0, and we shall assume that Bj * D for all
j. Let 2Bj ≡ B(bj, r1/32), j 6= 0. If 2Bj ∩ D = ∅ then (as S ⊂ E2

j ) by (2.9) we have
‖uij‖2,S = ‖Uj‖2,S ≤ A6m, so that, by (2.2), applied to uij|S, we then have

‖hoj‖S ≤ ‖uoj‖1,Do
≤ A0‖uij‖2,S ≤ A0A6m = A7m. (2.11)

Changing, if necessary, the numeration, we can suppose that the indices j = 1, . . . , I
(I ≤ J) are such that 2Bj ∩ S 6= ∅ (and Bj * D).

Lemma 2.1. For each j = 0, . . . , I one has

‖hoj‖E3
j∩S ≤ A8m. (2.12)

Proof. Since we have (by (2.9)) for any j

‖uij‖2,E2
j∩S ≤ ‖Uj‖2,E2

j
≤ A6m,

we can find vij ∈ C2(S) such that vij = uij on E2
j ∩ S and

‖vij‖2,S ≤ 2‖uij‖2,E2
j∩S ≤ 2A6m. (2.13)
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Let wij = uij−vij, and let voj (respectively, woj) are the solutions of the Dirichlet problem
in Do with boundary data vij (respectively, wij). By (2.13) and (2.1) we have

∥∥∥∥
∂voj

∂no
x

∥∥∥∥
S

≤ ‖voj‖1,Do
≤ 2A0A6m.

Since wij = 0 on E2
j ∩ S and ‖woj‖Do

≤ A6m, by Theorem W1 (2) (applied to ψ = wij|S
and r = r1/16) one has

∥∥∥∥
∂woj

∂no
x

∥∥∥∥
E3

j∩S

≤ 64A0

r1

log(
d

r1

)‖woj‖Do
≤ 256A0A6

r1

log(
d

r1

) m,

which gives (2.12).

Now, by (2.11) and (2.12), since b ∈ E3
j for all j 6= 0, we get

∣∣∣∣∣
J∑

j=1

hoj(b)

∣∣∣∣∣ ≤ A9m, (2.14)

‖ho0‖E3
0∩S ≤ A8m. (2.15)

We can suppose that A8 ≤ A9. Also assume that M ≥ 2A9m, otherwise Theorem 1 is
proved. By (2.14) it follows that |ho0(b)| ≥ M/2, and by (2.15) we can see that |ho0(x)|
attains it’s maximum on S at some point b∗ ∈ B(b, 3r1/8) ∩ S. Now, applying (2.7) for
ho0 instead of ho, b∗ instead of a and hi0 instead of hi, taking into account that B(b∗, r1)
contains B(b, 3r1/8) (so that ‖ho0‖S\B(b∗,r1) ≤ A8m) and applying (2.10), we obtain:

|ho0(b∗)| ≤ 1

2
|ho0(b∗)|+ A4(A8m + A5m) ,

and we have finally:
M ≤ 2|ho0(b∗)| ≤ 4A4(A8 + A5)m,

which completes the proof of Theorem 1 with A = A(N, d, r1).

Proof of Theorem 2.

Lemma 2.2. Let D be a (L-D) domain with the Dini-function ε(·) and diam D < d.
Then there exist a Dini-type function ε∗ with

ε∗(t) ≤ AN( t/r0 + ε(t)) ,

a neighborhood Ω of S = ∂D and a function E ∈ C1
0(RN) such that ||E||1 ≤ AN , E ≡ 0

on S, |∇E(x)| ≥ 1 for all x ∈ Ω, E > 0 in Ω ∩D (E ≥ 0 in D), E < 0 in Ω\D (E ≤ 0
in Do), and

|∇E(x)−∇E(y)| ≤ ε∗(|x− y|)
for all x and y in RN .
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Proof. Fix any a ∈ S and consider the corresponding r0, Qa and ϕa as in the proof
of Theorem 1. Recall that after rotating and shifting the initial coordinate system we
obtain the new coordinate system (again denoted by 0x) and the corresponding objects
translate as follows: a → 0, Qa → Q0 = {|x′| ≤ r0, |xN | ≤ r0}, ϕa → ϕ = ϕ0 so
that S ∩ Q0 = {(x′, ϕ(x′)), |x′| ≤ r0}, D ∩ Q0 = {|x′| ≤ r0, ϕ(x′) ≤ xN ≤ r0}, where
ϕ ∈ C1({|x′| ≤ r0}), ϕ(0′) = 0, ∇ϕ(0′) = 0′, ‖∇ϕ(x′)‖{|x′|≤r0} ≤ 1/4.

Now, from (1.2) we need to obtain some more than (2.5). Concretely, for all x′ and y′

with |x′| ≤ r0, |y′| ≤ r0 we have

|ni
(x′,ϕ(x′)) − ni

(y′,ϕ(y′))| =
∣∣∣∣∣

(−∇ϕ(y′), 1)√
1 + |∇ϕ(y′)|2 −

(−∇ϕ(x′), 1)√
1 + |∇ϕ(x′)|2

∣∣∣∣∣ ≤

≤ ε(|(x′ − y′, ϕ(x′)− ϕ(y′))|) ≤ 5/4ε(|x′ − y′|) ,

so that |1/
√

1 + |∇ϕ(y′)|2 − 1/
√

1 + |∇ϕ(x′)|2| ≤ 5/4ε(|x′ − y′|).
Therefore,

|∇ϕ(y′)−∇ϕ(x′)|√
1 + |∇ϕ(y′)|2 ≤ 5/4ε(|x′ − y′|) + |∇ϕ(x′)|5/4ε(|x′ − y′|) ≤ 25/16ε(|x′ − y′|),

and hence
|∇ϕ(y′)−∇ϕ(x′)| ≤ 2ε(|x′ − y′|),

|x′| ≤ r0, |y′| ≤ r0.
Fix now a function χ with the following properties: χ ≡ 0 outside Q0, 0 < χ ≤ 2

inside Q◦
0, χ = 2 on Q′

0 = {|x′| ≤ r0/2 , |xN | ≤ r0/2}, χ ∈ C2(RN), and ||χ||m ≤ AN/rm
0

(m = 1 or 2). Set
E0(x) = χ(x)(xN − ϕ(x′)),

so that we have E0 ∈ C1
0(RN). Since we have assumed that D ∩Q0 = {|x′| ≤ r0, ϕ(x′) ≤

xN ≤ r0}, we have E0(x) ≥ 0 in D and E0 > 0 on D ∩Q◦
0. Clearly, E0(x) ≡ 0 on S. We

also have

∇E0(x)|S = ∇χ(x)(xN − ϕ(x′))|S + χ(x){(−∇ϕ(x′), 1)}|S = χ(x)
√

1 + |∇ϕ(x′)|2ni
x ,

||E0|| ≤ ANr0 , ||∇E0|| ≤ AN ,

and |∇E0(x)−∇E0(y)| ≤ AN(|x− y|/r0 + ε(|x− y|)) , for all x and y.
Now, denote by Ea the function E0, rewritten in the initial coordinate system, and let

Q′
a be the cylinder corresponding to Q′

0.
Finally, choose some covering {Q′

as
} (s = 1, . . . , s0) of S by the cylinders Q′

as
, as ∈ S

(such that each point x belongs at most to AN of Qas), and consider the corresponding
Eas and χas(that is, E0 and χ in the initial coordinate system, denoting again Ox). Put

E(x) =

s0∑
s=1

Eas(x) ,

so that |∇E(x)| ≥ ∑s0

s=1 χas(x) ≥ 2 on S and

||E||1 ≤ AN , |∇E(x)−∇E(y)| ≤ AN(|x− y|/r0 + ε(|x− y|)) ,

The function E and the set Ω = {x ∈ RN : |∇E(x)| > 1} give the result.
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Corollary 2.3. In the notations of the previous lemma, for all δ > 0 small enough, let Dδ

be the connected component of the (open) set {x ∈ Ω ∪D |E(x) > −δ} that contains D.
Then Dδ → D as δ → 0 and (for all small enough δ) the Dδ have the same Dini-function,
majorized by ε∗(·).
Proof. Clearly, for δ small enough, we have Sδ = ∂Dδ ⊂ {x ∈ Ω |E(x) = −δ}. Take x
and y on Sδ and let niδ

x be the unit inward normal to Sδ at x ∈ Sδ with respect to Dδ.
Elementary planimetric arguments and Lemma 2.2 show that

|niδ
x − niδ

y | =
∣∣∣∣
∇E(x)

|∇E(x)| −
∇E(y)

|∇E(y)|

∣∣∣∣ ≤ |∇E(x)−∇E(y)| ≤ ε∗(|x− y|) ,

since infSδ
|∇E| ≥ infΩ |∇E| ≥ 1.

Now we continue the proof of Theorem 2 for N > 2 (the case N = 2 is briefly discused
later). Let ui = u1 ∈ C1(D) ∩ H(D), and put m = ‖u1‖1,D. Suppose that up, p ∈ N,

is defined (with up ∈ C1(D) ∩ H(D) and ‖up‖1,D ≤ m/2p−1 ). Extend up by Whitney’s

theorem to a function fp ∈ C1
0(RN) with ‖fp‖1 ≤ m/2p−2. By [8, Corollary 6.3] we can

find gp ∈ C1(RN) harmonic on some domain Dδp (δp ∈ (0, 1) is small enough, so that
Sp = Sδp and Dp = Dδp satisfy Corollary 2.3 with δ = δp (diam Dp < d) and ‖fp− gp‖1 ≤
m/2p. Therefore, ‖gp‖1 ≤ 5m/2p. Set up+1 = (fp − gp)|D. Then ‖up+1‖1,D ≤ m/2p,

up+1 ∈ H(D) ∩ C1(D). Since ui =
∑+∞

p=1 gp|D and ‖gp‖1,D ≤ ‖gp‖1 ≤ 5m/2p it is enough

to find a function Fp ∈ C1(RN) ∩ SH(RN) such that Fp|D = gp|D and ‖Fp‖1 ≤ A‖gp‖1,D.

The desired function F is
∑+∞

p=1 Fp.

So, we have gp ∈ C1(Dp)∩H(Dp). Put mp = ‖gp‖1,Dp
≤ ‖gp‖1 ≤ 5m/2p. Since D has

connected complement, we also can assume that Dp has connected complement Ωp. By
Theorem 1 there exists a function hp ∈ C1(Ωp) ∩ H(Ωp), hp(∞) = 0, such that hp = gp

on Sp = ∂Ωp and
‖hp‖1,Ωp

≤ A10mp.

Here A10 depends only on N , ε and d (because all the domains Dp, by Corollary 2.3,
have the same Dini function, majorized by ε∗(·), and their diameters are less than d).
Applying Theorem W1 (3) for Ωp, take the function wp ∈ H(Ωp)∩C1(Ωp), wp = 0 on Sp,
wp(∞) = 1, with ‖wp‖1,Ωp

≤ A11 (the last can be checked by Theorem 1 applied to the
functions ui ≡ −1|Dp

and uo = wp − 1) and

∂wp

∂np
x

∣∣∣∣
Sp

≥ A−1
0 > 0, ∀x ∈ Sp .

Here np
x is the inward unit normal to Sp at x ∈ Sp with respect to the domain Ωp. For t > 0

consider the function F t
p(x), which is equal to gp(x) on Dp and F t

p(x) = hp(x) + twp(x)

in Ωp.
By (2.2), we have

∆F t
p =

(
∂gp

∂ni
x

+
∂hp

∂np
x

+ t
∂wp

∂np
x

)∣∣∣∣
Sp

σp

in the distributional sense (here ni
x = −np

x and σp is the surface measure on Sp).
Therefore, for t = t∗ = (1 + A10)A0mp we have F ∗

p = F t∗
p ∈ SH(RN) ∩ Lip1(RN) and

‖F ∗
p ‖Lip1 ≤ A12mp.
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Final step. Regularization. Fix χ1 ∈ C∞
0 (B(0, 1)), χ1 ≥ 0, χ1(x) = χ1(|x|),∫

B(0,1)
χ1(x)dx = 1, and let χτ (x) = χ1(x/τ)/τN , τ > 0. Put dp = dist(S, Sp), then, for

any τ ∈ (0, dp) one can take
Fp = χτ ∗ F ∗

p .

In fact, it is easily seen that Fp ∈ C1(RN) and ‖Fp‖1 ≤ AN‖F ∗
p ‖Lip1 ≤ Amp. By the

meanvalue theorem for harmonic functions (taking into account that χτ is radial and∫
χτ (x)dx = 1) we have Fp = F ∗

p = gp on G. And we get (1.4) for N ≥ 3.
For N = 2 the only difference in the proof is that we take, instead of w (from Theorem

W1 (3)), the function w∗ with the properties w∗ ∈ H(Do), w∗|S = 0 and w∗(x)/(log |x|) →
1 as |x| → 0. Use Theorem 4.9 and the reflection z → 1/z̄, z ∈ C.

Theorem 2 is proved.

Proof of Corollary 1. We can find open balls Bj (j = 1, . . . , J) and ϕj ∈ C∞
0 (Bj) with the

following properties:
∑J

j=1 ϕj(x) = 1 on D and for each j either Bj ⊂ D or there exists

aj ∈ ∂D such that Bj ⊂ Baj
. If j is such that Bj ⊂ D we define fj = Φ ∗ (ϕj∆f). In case

Bj * D we choose some aj, the corresponding Baj
and gaj

, and set fj = Φ ∗ (ϕj∆gaj
).

By [8, Lemma 4.2] we have fj ∈ C1(RN) (fj ∈ C1
loc(RN) for N = 2) and ∆fj = ϕj∆f ≥ 0

or ∆fj = ϕj∆gaj
≥ 0 (in the distributional sense), so that fj ∈ SH(RN). Take F0 =∑J

j=1 fj ∈ C1
(loc)(RN) ∩ SH(RN) and consider ui = (f − F0)|D. Since gaj

= f in Baj
∩D

we have

∆ui = ∆f −
J∑

j=1

ϕj∆f = 0

in D, which gives ui ∈ H(D) ∩ C1(D). Extend ui by Theorem 2 to a function F1 ∈
C1

(loc)(RN) ∩ SH(RN). The function F = F0 + F1 gives the result.

Notice, that Corollary 1 can be reformulated for the “entire” class SH(D)∩C1(D) in
(L-D) domains D by analogy with [3, Corollary 2.6] .

3 Proof of Theorem 3

In what follows the constants A,A1, . . . (depending only on N, ε, d ) and AN (depending
only on N) can be different from the corresponding above ones and even can change from
one formula to others. We need the following extension of Theorem 1.
Theorem 3.1. Let D be a (L-D) domain in RN with diam D < d and the Dini-function
ε(·) satisfying the Log-Dini property

∫ 1

0

ε(t)

t
log

(
1

t

)
dt < +∞. (3.1)

Let ψ ∈ C1(S), S = ∂D, and ui (respectively, uo) be the solution of the Dirichlet problem
in D (respectively, in Do = RN\D) with the boundary data ψ. Let z ∈ D and a ∈ S be
(one of) the closest points to z on S. Assume that |z − a| = dist(z, S) < r0/2, and take
z∗a ∈ Do such that z− a = −(z∗a − a). Then

|∇ui(z)− (∇uo(z
∗
a))

∗
a| ≤ A‖ψ‖1,S , (3.2)

where (·)∗a means symmetry with respect to the hyperplane Pa tangent to S at the point
a ∈ S.
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Remark 3.2. The functions εp(t) = 1/(log(1/t))p (0 < t < e−p−1), ε(t) = ε(e−p−1)
(t ≥ e−p−1), do satisfy (3.1) if and only if p > 2.

The functions ε(t) = tα satisfy (3.1) for each α ∈ (0, 1].

First we prove the following Lemma. Put m = ‖ψ‖1,S.

Lemma 3.3. In the notations of Theorem 3.1, let b ∈ S and x ∈ D (respectively, x ∈ Do)
be such that |x− b| < r0/2 and the angle between x− b and ni

b (respectively, no
b) be less

than π/6. Then

|ui(o)(x)− ui(o)(b)| ≤ Am|x− b| log
1

|x− b| . (3.3)

The Example 4.1 (see also (4.1)) shows that the last estimate is ”almost” precise.

Proof. Denote by G(x,y) the Green function of the domain D. Recall that (in our choice)
G(x,y) = Φ(x−y)−vx(y), where Φ is mentioned above (standard) fundamental solution
for the Laplacean ∆, and the function vx(y) is harmonic with respect to y in D, and
having the boundary data vx(y) = Φ(y − x), y ∈ S. In what follows ρ(x) means the
distance from x to S.

Theorem W2. In the present notations, G(x,y) ∈ C1(D \{x}) (x being fixed), and the
Green function G of D satisfies the following properties:

∣∣∣∣
∂G(x,y)

∂yn

∣∣∣∣ ≤
A ρ(x)

|x− y|N , 1 ≤ n ≤ N, (3.4)

∣∣∣∣
∂

∂xn

∂

∂yl

G(x,y)

∣∣∣∣ ≤
A

|x− y|N , 1 ≤ n ≤ N , 1 ≤ l ≤ N , (3.5)

where A = A(N, d, ε).
The same estimates hold for the Green functions of (and in) bounded components of

Do. For the unbounded component D∗ of Do, the last estimates hold also for the Green
function G∗ of D∗ (in place of G) for all y ∈ B(0, 2d) ∩D∗ (presumably, 0 ∈ D) and all
x ∈ D∗.

The proof of this theorem (similar to that of [7, Theorem 2.3]) is given in Section 4
(see Theorem 4.5).

The next formula is well known [11, Theorem 12.1] (it directly follows from the Gauss-
Ostrogradski formula and then clearly holds for (L-D) domains):

ui(x) = −
∫

S

∂G(x,y)

∂ni
y

ψ(y)dσy. (3.6)

We can suppose that b = 0 and ni
0 = (0, . . . , 0, 1), so that by (3.4) and (3.6) one has (for

y = (y′, yN)):

|ui(x)− ui(0)| ≤
∫

S

∣∣∣∣
∂G(x,y)

∂ni
y

∣∣∣∣ |ψ(y)− ψ(0)|dσy ≤ A1

∫

S

ρ(x)

|x− y|N m|y|dσy ≤

≤ A2

(∫

S\Q0

xN

|x− y|N m|y|dσy +

∫

S∩Q0

xN

(|y′|2 + x2
N)N/2

m|y′|dy′
)
≤

11



≤ A3mxN + A3m

∫ r0

0

xN

(r2 + x2
N)N/2

rN−1 dr ≤ AmxN

(
1 + log

r0

xN

)
.

The penultimate integral was estimated using spherical coordinates in the hyperplane
RN−1

y′ .
When x belongs to the unbounded component of Do, it would be enough to addition-

ally apply the so-called Kelvin transform (see (4.21), Section 4). Lemma 3.3 is proved.

Proof of Theorem 3.1. Clearly, we can set a = 0, z = (0, . . . , 0, zN), zN ∈ (0, r0/2), so
that ni

0 = {0, . . . , 0, 1}.
There exists a domain D′ ⊆ D ∩Q0 with the following properties: D′ is convex (L-D)

domain with Dini-function ANε(·), D′ is radially symmetric with respect to the variable
y′, and

D′ ∩ {(y′, yN) ∈ RN | |y′| < r0

3
} =

{(y′, yN) ∈ RN | |y′| < r0

3
, 4ϕε(|y′|) < yN < r0 − 4ϕε(|y′|)},

where ϕε(r) =
∫ r

0
ε(t)dt. Notice that ε(r0) ≤ 1/8 (see also (2.5)) and 4ϕε(|y′|) ≥

2|y′|ε(|y′|) ≥ ϕ(y′) (since ε(t)/t ≥ ε(r)/r for t ∈ (0, r]). Let D′
∗ be symmetric to

D′ with respect to the hyperplane P0 = {xN = 0}, so that D′
∗ ⊂ Do ∩ Q0, and let

G′(x,y) and G′
∗(x,y) be the Green functions of the domains D′ and D′

∗ respectively. Put
S ′ = {(y′, yN)| |y′| ≤ r0/3, yN = 4ϕε(|y′|)}, S ′ ⊂ ∂D′.

By (1.2) we have for y = (y′, ϕ(y′)) ∈ S, |y′| ≤ r0/3,

|ni
0 − ni

y| ≤ ε(|y|) ≤ ε
(√

2
r0

3

)
≤ ε(r0) ≤ 1

8
,

so that the angle between ni
0 and ni

y is less than π/6 and we can apply (3.3) (for b = y)
to obtain

|ui(y
′, 4ϕε(|y′|))− (±ψ(y))− uo(y

′,−4ϕε(|y′|))| ≤ Amϕε(|y′|) log
1

ϕε(|y′|) . (3.7)

Put ϕ̃(r) = ϕε(r) log(1/ϕε(r)), r ∈ (0, r0). Using (3.6) for ui and uo in D′ and D′
∗

respectively, the property G′(x,y) = G′
∗(x,y) (x, y ∈ D, x = x∗0 and y = y∗0), (3.5) and

(3.7), we obtain:
|∇ui(z)−∇uo(z)| =

=

∣∣∣∣∣
∫

∂D′
∇x

∂

∂ni
y

G′(x,y)

∣∣∣∣
x=z

ui(y)dσy −
∫

∂D′∗

∇x
∂

∂ni
y

G′∗(x,y)

∣∣∣∣
x=z

uo(y)dσy

∣∣∣∣∣ =

=

∣∣∣∣∣
∫

∂D′
∇x

∂

∂ni
y

G′(x,y)

∣∣∣∣
x=z

(ui(y)− uo(y)dσy

∣∣∣∣∣ ≤

≤
∫

∂D′\S′
A1

|z− y|N 2mdσy +

∫

S′

A1

|z− y|N mϕ̃(|y′|)dy′ ≤

≤ A2m + A2 m

∫ r0/3

0

1

tN
ϕ̃(t)tN−2 dt ≤ Am (3.8)

by (3.1) and inequalities tε(t)/2 ≤ ϕε(t) ≤ tε(t), ε(t) ≥ tε(1).
Again, the penultimate integral in (3.8) is estimated using spherical coordinates in P0.
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The following Proposition in fact will not be used in the proof of Theorem 3, but it has
it’s own interest, and gives a clear understanding that in (3.2) we have to bother about

the ”normal” derivative ∂ui

∂ni
a

∣∣∣
z
.

Proposition 3.4. In conditions of Theorem 3.1, the case a = 0, z = (0, . . . , zN), zN ∈
(0, r0/2), we have

∣∣∣∣
∂ui

∂xn

∣∣∣∣
x=z

∣∣∣∣ ≤ A ‖ψ‖1,S , n ∈ {1, . . . , N − 1}.

By (3.6) and (3.5) it is enough to consider the case when ψ(x) = 0 outside Q0 and
for |x′| > r0/3. Fix n ∈ {1, . . . , N − 1}. For y = (y′, 4ϕε(|y′|)) ⊂ S ′ define ψ̃(y) =
ψ(y′, ϕ(y′)) and set ψ̃(y) = 0 on ∂D′\S ′, so that ψ̃ ∈ C1(∂D′) and ‖ψ̃‖1,∂D′ ≤ Am. Let
ũ be the solution of the Dirichlet problem in D′ with the boundary data ψ̃. We claim
that | ∂ũ

∂xn
|x=z| ≤ Am. Consider the function ṽ(x) = ũ(x1, . . . , xn−1, xn, xn+1, . . . , xN) −

ũ(x1, . . . , xn−1,−xn, xn+1, . . . , xN), so that ṽ ∈ H(D′), ṽ|{xn=0} = 0 and ∂ṽ
∂xn
|{xn=0} =

2 ∂ũ
∂xn
|{xn=0}. Since ψ̃ ∈ C1(∂D′) we have |ṽ(x)| ≤ Amxn on ∂D′

+, where D′
+ = D′∩{xn >

0}, so that |ṽ(x)| ≤ A mxn in D′
+ and the claim follows.

Finally, take w = ui − ũ in D′. By Lemma 3.3 (with b = (y′, ϕ(y′)) and x = y =
(y′, 4ϕε(y

′)) ∈ S ′),

|w(y)| ≤ A1m8ϕε(y
′) log

1

8ϕε(|y′|) ≤ Amϕ̃(|y′|) .

Clearly, also |w(y)| ≤ Am for y ∈ ∂D′\S ′. By (3.6), the equality

∂w

∂xn

∣∣∣∣
x=z

= −
∫

∂D′

∂

∂xn

∂

∂ni
y

G′(x,y)

∣∣∣∣
x=z

w(y)dσy

and estimates (3.5) end the proof of Proposition 3.4 as in (3.8).

Proof of Theorem 3. Put M = ‖f‖1,D and µ = ∆f |D. We claim that for each domain Ω,
Ω ⊂ D, with piecewise smooth boundary, one has

µ(Ω) ≤ Mσ(∂Ω), (3.9)

where σ(·) is a surface (N − 1)-dimensional (Lebesque) measure. To prove this it suf-
fices (after reasonable regularization and then passing to the limit) to apply the Gauss-
Ostrogradski formula:

µ(Ω) =

∫

Ω

∆f(x)dx =

∫

∂Ω

(∇f(y),no
y)dσy ≤ Mσ(∂Ω).

Since for each ball B = B(b, δ) ⊂ D we in fact have

µ(B) =

∫

∂B

(∇f(y)−∇f(b),no
y)dσy ≤ ωD(∇f, δ)σ(∂B) = o(δN−1)

(ωE(g, ·) being the modulus of continuity of the (scalar- or vector-) function g on the set
E), one can also easily prove that µ(∂Ω ∩D) = 0 for the Ω considered.
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The idea of the proof of (1.5) is the following. Take ui ∈ H(D), ui|∂D = f |∂D. If ui ∈
C1(D) and ‖ui‖1,D ≤ A1m, then it could be possible to prove (1.5) with A = A(A1, N, ε, d)
(see the end of the proof of Theorem 3 below). But it turns out (see Example 4.1 below)
that it is not always ui ∈ C1(D).

By Theorem 3.1, the “reflected” harmonic function uo satisfy the property (3.2), and
we need also appropriately “reflect” the measure µ from D to Do. The last means that
we want to find such positive measure µ∗ in Do (for the notations G, z, a, z∗a and (·)∗a see
Theorem 3.1, Go(x,y)) is the Green function of the domain Do) that

∫

Do

Go(x,y) dµ∗y ∈ C1(Do)

and ∣∣∣∣
∫

D

∇xG(x,y)|x=zdµy −
(∫

Do

∇xGo(x,y)|x=z∗adµ∗y

)∗

a

∣∣∣∣ ≤ AM (3.10)

for all z ∈ D with ρ(z) < r0/4. After this we shall have fo(x) = uo(x)+
∫

Do
Go(x,y)dµ∗y ∈

C1(Do)∩SH(Do), fo = f on S, and we can terminate the proof essentially as in the proof
of Theorem 2.

We pass to the details supposing that N ≥ 3 (for N = 2 one can follow the previous
notes on this matter).

Let {Bj, ϕj}j∈J be the Whitney partition of unity on D (see [12, Ch.VI, §1]). Recall
that J is some countable set (for “nonoverlapping” the notations we assume that J ∩
{0, 1, . . . N} = ∅), Bj = B(bj, δj), bj ∈ D and there is A1 ≥ 3N (depending only on N)
such that

1

A1

ρ(bj) ≤ δj ≤ 1

6
ρ(bj) ; (3.11)

furthermore, for each z ∈ D the number #(z, J) of balls Bj, j ∈ J , that intersect
B(z, ρ(z)/2) satisfies

#(z, J) ≤ A1 ; (3.12)

and ϕj ∈ C∞
0 (Bj), ϕj ≥ 0, have the properties

‖∆ϕj‖ ≤ A1

δ2
j

,
∑
j∈J

ϕj(x) ≡ 1 (x ∈ D). (3.13)

Put µj = µϕj and define µ̂(x) =
∫

D
G(x,y)dµy, µ̂j(x) =

∫
G(x,y)dµjy.

Since f = ui + µ̂ in D (see [13, Theorem 1.24’]), we have µ̂ ∈ C1(D). We claim that
also µ̂j ∈ C1(D) and

‖µ̂j‖1,D ≤ AM. (3.14)

In fact, let fj = Φ ∗ µj. By (3.13) and [8, Lemma 4.2], we have fj ∈ C1(RN) and

‖∇fj‖ ≤ AM, (3.15)

and by (3.9) and (3.4), for x ∈ D\B(bj, (3/2)δj),

|∇µ̂j(x)| ≤
∣∣∣∣
∫
∇xG(x,y)dµjy

∣∣∣∣ ≤
∫

Bj

A1ρ(y)ϕj(y)dµy

|x− y|N ≤ A2

δN
j

(δj/2)N
≤ AM .
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Since µ̂j−fj is harmonic in D, it remains to apply the maximum principle in B(bj,
3
2
δj)

for ∂
∂xn

(µ̂j − fj), n ∈ {1, . . . , N}, and recall that µ̂j|∂D = 0. The claim (3.14) is proved.
Notice also, that the property (3.15) of fj allows to reduce the proof Theorem 3 to

the case when
Supp µ ⊂ {x ∈ D| ρ(x) < r2}, (3.16)

where some fixed r2 = r2(ε(·)) ∈ (0, r0/32) will be chosen later (see (3.22)). In fact, let
J0 = {j ∈ J | ρ(bj) ≥ r2/2}. Then F0 =

∑
j∈J0

fj is subharmonic in RN , ‖F0‖1 ≤ AM ,
and it remains to extend (f − F0)|D instead of f .

So, in the sequel we shall always require (3.16). The reflection of µ over S (having
(3.16) and ρ(bj) < r2/2) consist of the following. For each j ∈ J (J0 = ∅), let aj ∈ S be
(some) point closest to bj, |aj −bj| = ρ(bj). Let Pj = Paj

be hyperplane tangent to S at
aj. Define µ∗j as a measure, “symmetric” to µj with respect to Pj (that is, µj(E) = µ∗j(E

∗
j )

for each Borel set E and the set E∗
j symmetric to E with respect to Pj). The measure

µ∗ =
∑
j∈J

µ∗j

is the desired reflection of µ “over” S.
For checking (3.10) it remains to prove the following result (the case a = 0 in (3.10))

and use the maximum principle. Notice also, that Supp µ∗ ⊂ B(0, 2d) and we can use
Theorem W2 in order to estimate Go(x,y) for |y| < 2d.

Theorem 3.5. Let µ̂∗(x) =
∫

Go(x,y)dµ∗y , µ̂∗j(x) =
∫

Go(x,y)dµ∗jy , x ∈ Do. Let z ∈ D
be such that z = (0, . . . , zN), 0 < zN < r0/4, a = 0 is closest (one of) to z on S. Then

|∇µ̂(z)−∇µ̂∗(z)| ≤ AM , (3.17)

where the “overline” (for vectors) means symmetry with respect to the hyperplane P0 =
{x ∈ RN | xN = 0} tangent to S at a = 0.

Proof. Let Q0 and ϕε(·) be as in the proof of Theorem 3.1. We can find D̃ (by analogy
with D′) with the properties: D̃ ∩ {y = (y′, yN) ∈ RN | |y′| < r0/16} =

= {y ∈ RN | |y′| < r0/16 , 8ϕε(|y′|) < yN < r0/2− 8ϕε(|y′|)} ,

yN > 8ϕε(|y′|) for all y ∈ D̃, D̃ is convex radially symmetric with respect to y′ domain
having Dini-function bounded by Aε(·), and D̃ ⊂ {y ∈ RN | |y′| < r0/8}. Let D̃o be
symmetric to D̃ with respect to P0 (recall, that ε(r) ≤ 1/8 for 0 < r ≤ r0).

Lemma 3.6. Let J1 = {j ∈ J |bj ∈ D\D̃}, then

Σ1 =
∑
j∈J1

(|∇µ̂j(z)|+ |∇µ̂∗j(z)|) ≤ AM . (3.18)

Proof. Let first j ∈ J1 be such that |b′j| ≤ r0/16. Then (since ρ(bj) < r2/2 < r0/2)we

have |bjN | ≤ 8ϕε(|b′j|) ≤ 8|b′j|ε(|b′j|) ≤ |b′j|, so that ρ(bj) ≤ |bj| ≤
√

2|b′j|. Therefore,
for all y ∈ Bj we have, by (3.11),

|y − bj| ≤ 1

6
ρ(bj) ≤ 1

4
|b′j|
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and so |b′j| ≤ 4|y′|/3, which gives also |y| ≤ 2|y′| and

ρ(y) ≤ 7

6
ρ(bj) ≤ 20ϕε(|b′j|) ≤ A|y′|ε(y′).

And for these j we have by (3.4):

|∇µ̂j(z)| ≤
∫
|∇xG(x,y)|x=z|dµjy ≤

∫
A1ρ(y)

|z− y|N dµjy ≤
∫

A2|y′|ε(|y′|)dµjy

|y|N .

The same estimate holds also for |∇µ∗j(z)| (see Lemma 3.8 bellow). Since the part of the
sum in (3.18) for j with the property |b′j| > r0/16 can be estimated easily, we obtain

Σ1 ≤ A

(
M +

∫

|y|≤r0

ε(|y|)dµy

|y|N−1

)
(3.19)

and (3.18) immediately follows from the following elementary lemma.

Lemma 3.7. Let h(t) be a nondecreasing function on [0, +∞) with the property 0 ≤
h(t) ≤ tN−1, t ≥ 0. Then, for any r > 0,

∫ r

0

ε(t)

tN−1
dh(t) ≤ (N − 1)

∫ r

0

ε(t)

t
dt.

Proof. For δ ∈ (0, r) put hδ(t) = ε(δ)/δN−1 in (0, δ) and hδ(t) = ε(t)/tN−1 in [δ, a]. Since
hδ is positive and decreasing, the result follows directly applying Abel summation for the
Riemann sums of the integral

∫ r

0
hδ(t) dh(t), and then letting δ → 0.

To finish the proof of (3.18), we calculate the integral in (3.19) using spherical coor-
dinates in RN

y . Concretely, let h(r) = µ(B(0, r)). By (3.9) (since µ = 0 outside D) we
have h(r) ≤ A1MrN−1, and so

∫

|y|≤r0

ε(|y|)dµy

|y|N−1
≤ A2M

∫ r0

0

ε(r) dr

r
≤ AM . (3.20)

Lemma 3.6 is proved.

Lemma 3.8. Let j ∈ J be such that |bj| ≤ r0/2. Then for each y ∈ Bj we have

|y − y∗j | ≤ A∗|y|ε(|y|), (3.21)

where y∗j is symmetric to y with respect to Pj and A∗ ≤ 108.

Proof. Since |bj| ≤ r0/2, by definition of aj we have |aj| ≤ 2|bj| ≤ r0, so that aj ∈ S∩Q0

and ajN = ϕ(a′j) (recall that |ϕ(r)| ≤ 2rε(r) ≤ r/4 for r ≤ r0). Since |y| ∈ (5
6
|bj|, 7

6
|bj|)

for y ∈ Bj, we have |aj| ≤ 3|y| for these y. Elementary calculations show that

y − y∗j = y − 2(y,ni
0)n

i
0 − (y − 2(y − aj,n

i
j)n

i
j) = 2(y − aj,n

i
j)n

i
j − 2(y,ni

0)n
i
0,

where ni
0 and ni

j are the inner unit normals to S at x = 0 and x = aj respectively. Then

|y − y∗j | ≤ 2|ajN |+ 6|y − aj||ni
j − ni

0|.
Since |ni

j−ni
0| ≤ ε(|aj|), we easily obtain (3.21) using the “doubling” property of ε(·).
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The final restriction on r2 is (see (3.21))

A∗ε(r2) <
1

20
. (3.22)

In particular, in Lemma 3.8 we also have

|y − y∗j | ≤
1

4
|y| (3.23)

whenever |y| < 5r2.
Notice, that for |z| = zN ≥ 2r2 the proof of (3.17) is easy, because, by (3.4) and (3.9),

we even have

|∇µ̂(z)| ≤
∫
|∇xG(x,y)|x=z|dµy ≤ A1

∫
ρ(y)dµy

|z− y|N ≤ A2r2
σ(∂D)M

rN
2

≤ AM , (3.24)

and the same estimate holds also for |∇µ̂∗(z)|. So, from now on, we suppose that |z| ≤
2r2 ≤ r0/16. Consider the set Ωz = {y | |y|/2 > |y − z|} which is in fact Ωz = {y| |y −
4
3
z| < 2

3
|z|}.

The set J2 = {j ∈ J\J1|Bj ∩ Ωz 6= ∅} is “small” (the number of its elements can be
estimated with the help of (3.12)). By (3.14) (the analogous estimate holds also for µ̂∗j)
we have

Σ2 =
∑
j∈J2

(|∇µ̂j(z)|+ |∇µ̂∗j(z)|) ≤ AM.

Let now, J3 = {j ∈ J\(J1 ∪ J2)| |bj| > 4r2}. Then, like in (3.24),

Σ3 =
∑
j∈J3

(|∇µ̂j(z)|+ |∇µ̂∗j(z)|) ≤ AM.

Put J4 = J\(J1 ∪ J2 ∪ J3) and let νj, j ∈ J4, be the measure “symmetric” to µj with
respect to P0 (µj(E) = νj(E

∗
0) for any Borel set E).

We claim that ∑
j∈J4

|∇ν̂j(z)−∇µ̂∗j(z) ≤ AM, (3.25)

where ν̂j(x) =
∫

Go(x,y)dνjy. In fact, for j ∈ J4 one has

∇ν̂j(z)−∇µ̂∗j(z) =

∫
∇xGo(x,y)|x=zdµjy −

∫
∇xGo(x,y∗j )|x=zdµjy ,

|bj| ≤ 4r2 , and (by (3.11)) |y| ≤ 5r2 ≤ r0/6 whenever y ∈ Bj, so that (3.23) holds for
all y ∈ Ω4 = ∪j∈J4Bj. Since also (as j /∈ J2) Ω4 ∩ Ωz = ∅, we have finally for all y ∈ Ω4:

|y| ≤ 5r2 , |y − z| ≥ 1

2
|y| , |y − z| ≥ |z|/3 , |y − y∗j | ≤

1

4
|y| . (3.26)

Therefore, for y ∈ Ω4 we can write:

|∇xGo(x,y)|x=z −∇xGo(x,y∗j )|x=z| ≤ ‖∇x∇ỹGo(x, ỹ)|x=z‖ỹ∈[y,y∗j ]|y − y∗j | ,
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and so, by (3.5), (3.21) and (3.26),

∑
j∈J4

|∇ν̂j(z)−∇µ̂∗j(z)| ≤
∫

B(0,5r2)

A1

|z− y|N A∗|y|ε(|y|)dµy ≤ A

∫

B(0,r0)

ε(|y|)dµy

|y|N−1
,

which gives (3.25) by (3.20).
Finally, it remains to prove that

Σ4 =
∑
j∈J4

|∇µ̂j(z)−∇ν̂j(z)| ≤ AM .

Using (3.12) we then have

Σ4 ≤ A

∫

Ω4

|∇x(G(x,y)−G∗
o(x,y))|x=z|dµy, (3.27)

where G∗
o(x,y) = Go(x,y) (defined on ((Do)

∗
0)

2).
Recall, that for j ∈ J4 (as j /∈ J1) we have bj ∈ D̃, but it is not necessary that also

y ∈ D̃. The part of the integral in (3.27) with y ∈ Ω4\D̃ looks like
∫

Ω4\D̃
|∇x(G(x,y)−G∗

o(x,y))|x=z|dµy ≤ AM,

it can be estimated the same way as in (3.19)(Lemma 3.6) or as in (3.24).
So, it remains to estimate the integral

I1 =

∫

Ω4∩D̃

|∇x(G(x,y)−G∗
o(x,y))|x=z|dµy .

Notice, that for y ∈ D̃ we have yN > 8ϕε(|y′|), so that (since |ϕ(y′)| ≤ 4ϕε(|y′|) and
ϕ′ε(r) = ε(r) ≤ 1/8)

|y| ≥ ρ(y) ≥ 2√
5
(yN − 4ϕε(|y′|)) ≥ yN/3, ρ(y) ≤ 2yN ,

and the same holds for the distance from y to (S)∗0.
Also in Ω4 we have |y − z| ≥ |z|/3 (as Ω4 ∩ Ωz = ∅, see above). In order to estimate

I1 consider several steps.
10. Set Ω′

4 = Ω4 ∩ D̃ ∩ {|y| < 3|z|}. Then, by (3.4) and (3.9),
∫

Ω′4

|∇xG(x,y)|x=z|dµy ≤ A1

∫

Ω′4

ρ(y)

|z− y|N dµy ≤ A2

∫

Ω′4

|y|dµ(y)

|z|N ≤ AM ,

and the same way one estimates
∫
Ω′4
|∇xG

∗
o(x,y)|x=z|dµy.

20. Set Ω5 = Ω4∩D̃∩{|y| ≥ 3|z|}. Take Ψy(x) = G(x,y)−G∗
o(x,y) as a function of x,

x ∈ D′ (y ∈ Ω5 is fixed). We need to estimate |∇Ψy(z)|. Since Ψy ∈ H(D′)∩C1(D) we can
use (3.6) for Ψy in D′. To do this let us estimate Ψy(x) on ∂D′. If x = (x′, 4ϕε(|x′|)) ∈ ∂D′

is such that |x′| < r0/3, we have:

|G(x,y)−G(xϕ,y)| ≤ ‖∇G(·,y)‖[xϕ,x]|4ϕε(|x′|)− ϕ(x′)| ,
where xϕ = (x′, ϕ(x′)) ∈ S (so that G(xϕ,y) = 0). We need the following lemma.
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Lemma 3.9 (Elementary). In the notations just above we have

min
x̃∈[xϕ,x]

|y − x̃| ≥ A1|y − x′|,

where A1 ∈ (0, +∞) is absolute constant, and we identify (x′, 0) and x′.

Proof. Consider a trapezium with the vertices at y = (y′, yN), y′, x′, x and let yε =
(y′, 4ϕε(|y′|)). Then yN > 2yεN and it is not hard to see that for each x̃ ∈ [xϕ,x] the
angle between the vectors y − yε and x̃ − yε is greater than π/2 − arctan(1/2) (since
4ϕ′ε(r) = 4ε(r) ≤ 1/2 , r ≤ r0). Simple trigonometric calculations end the proof.

Now, by (3.4), we have

|G(x,y)−G(xϕ,y)| ≤ ‖∇G(·,y)‖[xϕ,x]|2ϕε(|x′|)− ϕ(x′)| ≤

≤ A1
ρ(y)

|y − x′|N 8ϕε(|x′|) ≤ A
yNϕε(|x′|)
|y − x′|N ,

Proceeding the same way with G∗
o (and x−ϕ = (x′,−ϕ(x′)) instead of xϕ) we finally get

|Ψy(x)| ≤ A
yNϕε(|x′|)
|y − x′|N

for x ∈ S ′ = {x′, 4ϕε(|x′|), |x′| < r0/3}. Therefore, by (3.6) and (3.5), applied in D′,

|∇Ψy(z)| =
∣∣∣∣
∫

∂D′

(
∇z

∂

∂nx

G′(z,x)

)
Ψy(x)dσx

∣∣∣∣ ≤
∣∣∣∣
∫

S′

∣∣∣∣ +

∣∣∣∣
∫

∂D′\S′

∣∣∣∣ ≤

≤
∫

S′

A1yNϕε(|x′|)dσx

|z− x|N |y − x′|N + A2 .

The penultimate integral is clearly less then A2, because |y′| ≤ r0/8 (y ∈ D̃) and |x| ≥
r0/3 (as x /∈ S ′).

Again, using Lemma 3.9 for z in place of y, we see that in order to estimate |∇Ψy(z)|
it remains to estimate the integral

I2 =

∫

|x′|≤r0/3

Kzy(x′) dx′ , y ∈ Ω5 ,

where we set

Kzy(x′) =
yN |x′|ε(|x′|)

|z− x′|N |y − x′|N .

Consider 3 cases.
Case 1. Here |x′| ≤ |y′|/2, and we apply spherical coordinates in RN

x′ :

∫

|x′|≤|y|/2

Kzy(x′)dx′ ≤ A1

|y|N−1

∫ |y|/2

0

rε(r)rN−2 dr

rN
≤ A1

|y|N−1
λ1(|y|) ,

where λ1(t) =
∫ t

0
ε(τ)
τ

dτ .
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Lemma 3.10. In the previous notations, for each r ∈ (0, 1],
∫ r

0

λ1(t)

t
dt ≤

∫ r

0

ε(t)

t
log

1

t
dt .

Proof. Apply the following corollary of Fubini’s theorem:
∫ r

0
dt

∫ t

0
fdτ =

∫ r

0
dτ

∫ r

τ
fdt .

Case 2. Here x′ ∈ K ′, where K ′ = {x′ ∈ RN−1 | |y|/2 ≤ |x′| ≤ 2|y|}. Then

∫

K′
Kzy(x′)dx′ ≤ A1

ε(|y|)
|y|N−1

∫

K′

yNdx′

|x′ − y|N ≤ A2
ε(|y|)
|y|N−1

∫ 3|y|

0

yNrN−2 dr

(r2 + y2
N)N/2

≤ A
ε(|y|)
|y|N−1

.

The penultimate integral is estimated in spherical coordinates of RN−1
x′−y′ .

Case 3. Here |x′| > 2|y′|, so that

∫

|x′|>2|y|
Kzy(x′)dx′ ≤ A |y|

∫ r0/3

2|y|

rε(r)rN−2 dr

r2N
≤ A

∫ r0

|y|

ε(r) dr

rN
=

A

|y|N−1
λ2(|y|) ,

where

λ2(t) = tN−1

∫ r0

t

ε(τ)

τN
dτ .

Lemma 3.11. In the previous notation,
∫ r0

0

λ2(t)

t
dt =

1

N − 1

∫ r0

0

ε(t)

t
dt .

Proof. As in the proof of Lemma 3.10 (take r = r0).

Therefore, we obtain:

|∇Ψy(z)| ≤ A
ε(|y|) + λ1(|y|) + λ2(|y|)

|y|N−1
= A

λ(|y|)
|y|N−1

.

To finally estimate I1, it remains to check the following inequality:
∫

Ω5

|∇Ψy(z)| dµy ≤ A1

∫

|y|≤r0

λ(|y|)
|y|N−1

dµy ≤ A2M

∫ r0

0

λ(r)

r
dr ≤ AM ,

which follows from (3.9) and Lemmas 3.7, 3.10 and 3.11 (since, clearly, λ(ρ), in place of
ε(ρ), also satisfies the conditions of Lemma 3.7 ).

Theorem 3.5 is proved.

We terminate the proof of Theorem 3 following that one of Theorem 2. Let f ∈
C1(D)∩ SH(D) and m = ‖f‖1,D . For p ∈ {1, 2, . . . } we can find gp ∈ C1(Dp)∩ SH(Dp)

harmonic on Dp \ D ( Dp = Dδp , δp ∈ (0, 1) is small enough), ‖gp‖1,Dp
≤ Am/2p and

f =
∑+∞

p=1 gp|D . The proof of this fact is almost the same as (for balls) in [2, Lemma 5.2]

(plus iterations). It remains to appropriately extend each gp (from D). Put Ωp = RN \Dp

and Sp = ∂Dp. By Theorem 3.5 we find the subharmonic reflection hp of gp over Sp (that
is, hp ∈ C1(Ωp) ∩ SH(Ωp), hp = gp on Sp and ‖hp‖1,Ωp

≤ A‖gp‖1,Dp
). It follows from the

proof of Theorem 3.5 that hp ∈ H(Dδ′ \ Dδp) for some δ′ > δp. It suffices (taking (2.2)
into account) to add appropriate twp and make a regularization without changing gp on
D (which can be done because gp is harmonic in Dp \D ).
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4 Examples and background.

Example 4.1. Let D be any bounded convex domain in RN (N ≥ 2) such that S = ∂D
contains the set B′

δ = {x = (x′, xN) ∈ RN |xN = 0, |x′| < δ} for some δ > 0. Then there
exists ψ ∈ C1(D) ∩ SH(D) such that the solution Ψ of the Dirichlet problem in D with
the boundary data ψ|S is not in C1(D).

Proof. We can suppose that δ ∈ (0, 1/4) and

D ⊂ Ω = {x ∈ RN | xN > 0, |x′| < 1/2}.

Fix p ∈ (0, 1) and define

ψ(x) = ψ(|x′|) =
|x′|

| log |x′||p , |x′| ∈ (0, 1),

ψ(0) = 0. It can be easily checked that ψ ∈ C1(Ω) ∩ SH(Ω). Let ψ0(x
′) = ψ(x′) for

|x′| < 1/2 and ψ0(x
′) = ψ(1/2), |x′| ≥ 1/2, and let Ψ0 be the Dirichlet solution in

RN
+ = {x ∈ RN |xN > 0} with the boundary data ψ0. By the Poisson formula in RN

+ one
has for xN ∈ (0, 1/2):

Ψ0(0
′, xN) =

2

σN

∫

RN−1
y′

xNψ0(y
′)

|(y′, 0)− (0′, xN)|N dy′ ≥ 2σN−1

σN

∫ 1/2

0

xNrrN−2dr

(r2 + x2
N)N/2(log 1

r
)p
≥

≥ A(N) xN

∫ 1/2

xN

dr

r(log 1
r
)p

=
A(N) xN

1− p

((
log

1

xN

)1−p

− (log 2)1−p

)
,

so that, clearly, ∂Ψ0/∂xN |x=0 = +∞. On the other hand, we can find δ0 ∈ (0, δ) and
λ0 > 0 such that B+

0 = {x ∈ RN |xN > 0, |x′| < δ0} ⊂ D and λ0Ψ0 ≤ Ψ on ∂B+
0 .

Therefore,

Ψ(0′, xN) ≥ λ0A(N) xn

(
log

1

xN

)1−p

, xN ∈ (0, δ0),

which ends the proof and shows (letting p → 0+) that the estimate (3.3) is “almost”
precise. It is also easily seen that the function −ψ|∂D ∈ C1(S) can not be extended to D
as a function of the class C1(D) ∩ SH(D).

In the next example we construct a C1-smooth convex “almost” (L-D) domain D in
R2 for which the C1-harmonic reflection property (see Theorem 1) does not hold. This
example shows that the (sufficient) (L-D) condition on D in Theorem 1 is “almost” sharp.
An analogous example in RN , N ≥ 3 can be then easily obtained.

Example 4.2. Set B+ = {ζ ∈ C| |ζ| < 1/e, Re ζ > 0} and Σ′ = {ζ ∈ C| Re ζ = 0, |ζ| <
1/e} ⊂ ∂B+. The function k(ζ) = −ζ/ log(ζ) maps conformally B+ onto some domain
Ω+ and k is homeomorphism B+ onto Ω+ (we set k(0) = 0). Here log(ζ) means the main
holomorphic branch of logarithm in C\(−∞, 0], log(1) = 0. One checks the conformality
of k on B+ applying the classical inverse principal of boundaries correspondence. It can
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be easily shown that S ′ = k(Σ′) is C1-smooth curve, convex “to the right”. Moreover, on
S ′ we have (for some A ∈ (0, +∞))

0 ≤ −x1 ≤ A
x2

| log |x2|| , |x2| ≤
(

1 +
π2

4

)−1

e−1

Notice that the curve −x2 = |x2|/| log |x2||p with p > 1 is Lyapunov-Dini curve.
Then there exists bounded convex C1-smooth domain D ⊂ {z = x1 + ix2 ∈ C|x1 < 0}

such that S ′ ⊂ S = ∂D and S\{0} is C∞-smooth. Consider ui(x) = −x1 ∈ H(D) ∩
C∞(D). We claim that the corresponding uo (see the notations in Theorem 1) satisfies

∂uo

∂x1

∣∣∣∣
0

=
∂uo

∂no
0

= +∞. (4.1)

In fact, take h(x) = Re(k−1(z)) in Ω+ (x = (x1, x2)). One can find λ ∈ (0, +∞)
such that λuo ≥ h on ∂Ω+, and so in Ω by the maximum principle. So that (4.1) follows
from the equality ∂h/∂x1|0 = +∞. This example also shows that the Green function
of the (“almost” (L-D)) domain Ω∗

+ (obtained from Ω+ by “smoothing” ∂Ω+ near it’s
“angle”-points) does not satisfy [7, Theorem 2.3] (see also Theorem 4.5 below).

Example 4.3. For p ∈ (0, +∞) define a C1-function

fp(t) = − |t|
| log |t||p , t ∈ [−1/2, 1/2], t 6= 0,

and fp(0) = 0.
(1) For p ∈ (0, 1] there do not exist δ > 0 and a function F continuous and subhar-

monic on Bδ = {x ∈ R2| |x| < δ}, such that F (x1, 0) = f(x1) for |x1| < δ.
(2) For each p ∈ (1, +∞) one can find F ∈ C1

loc(R2) ∩ SH(R2) with F (x1, 0) = f(x1)
for all x1 ∈ [−1/2, 1/2] and ‖∇F‖ < +∞.

Proof. Set gp(t) = fp(t) for |t| ≤ 1/2 and let gp(t) be some negative bounded even
C2-function for |t| > 0. Let F+

p (respectively, F−
p ) be the Dirichlet solution in R2

+ (respec-
tively, in RN

− = {x ∈ R2|x2 < 0}) with the boundary data gp. By the Poisson formula we
have for all α ∈ (0, π) and r ∈ (0, 1/2:

F+
p (r cos α, r sin α) = F−

p (r cos α,−r sin α) =
1

π

∫ +∞

−∞

r sin α gp(t)dt

(t− r cos α)2 + r2 sin2 α
≥

≥ r sin α

2π

∫ +∞

0

gp(t)dt

t2 + r2
≤ −r sin α

4π

∫ 1/2

r

dt

t| log |t||p = −r sin α hp(r),

where hp(r) → +∞ as r → 0+ wherever p ∈ (0, 1].
Fix p ∈ (0, 1] and suppose, by contradiction, that such F in (1) exists.
Put M = sup|x|=δ/2(|F (x)| + |Fp(x)|) < +∞ and let u+ (respectively, u−) be the

solution of the Dirichlet problem in B+
δ/2 = Bδ/2 ∩ R2

+ (respectively, B−
δ/2 = Bδ/2 ∩ R2

−)

with the boundary data 0 on ∂B±
δ/2 ∩ {x2 = 0} and M on the rest of the boundary. By

Theorem W1(2) there is A ∈ (0, +∞) such that

|u+(x1, x2)|+ |u−(x1, x2)| ≤ Ax2
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for each x = (x1, x2) with |x| ≤ δ/4 and x2 ≥ 0.
Therefore, for α ∈ (0, π) and r ∈ (0, δ/4) one has (as F ≤ F±

p + u± in B±
δ/2)

F (r cos α,±r sin α) ≤ −r sin α (hp(r)− A), F (0) = 0,

which clearly, contradicts to the subharmoniticity of F (x) at x = 0 by the mean value
property.

Let now p > 1. It is not difficult to check (see also Theorem 4.9 below) that F−
p ∈

C1(R2
−). It suffices to apply Theorem 2.

Recall, that in [3, Theorem 3.1] it was proved that the (L-D) condition is in some
sense necessary in Theorem 3. For instance, in the scale of functions εp(·) (see Remark
3.2 above) we have the lack of the extension (in the sense of Theorem 3) for p ∈ (0, 1].
For p ≥ 1 domains with the Dini-function εp(·) are (L-D) domains. The case p > 2 is
covered by Theorem 3. The case p ∈ (1, 2] is still unconsidered.

We also do not know if the (L-D) condition in Theorem 2 is precise.

In the rest of the paper we discuss the proofs of Theorems W1 and W2 following
basically the ideas of the original proofs in [7]. In particular, we check that all the
appearing constants depend only on N , d = diam D and ε(·). The last is important for
the proofs of our main results. Also, for the interested reader (especially beginner) it
would be very useful to check all the details of the proofs, which look rather useful in
applications. First we present the detailed proof of the main working result of [7] – [7,
Theorem 2.2].

Theorem 4.4. Let ε1(t) be a Dini-type function with ε1(1) ≤ 1/2. Define ϕ1(r) =∫ r

0
ε1(t)dt, so that tε1(t)/2 ≤ ϕ1(t) ≤ tε1(t) and −ϕ1 is concave. Put

T1 = {x ∈ RN | |x′| ≤ 1 , −ϕ1(|x′|) ≤ xN ≤ 1} ,

Σ1 = {x ∈ ∂T1 | xN = −ϕ1(|x′|)}. Let u1 ∈ H(T ◦
1 ) have the boundary values u1|Σ1 = 0,

u1|∂T1\Σ1 = 1 (with ‖u1‖T1 ≤ 1). Then there exists a constant A1 = A1(N, ε(·)) ∈ (0, +∞)
such that

|u1(0
′, xN)| ≤ A1xN , xN ∈ (0, 1].

Proof. Set T2 = {z/2| z ∈ T1}, T2(x
′) = {z + (x′,−2ϕ1(x

′))| z ∈ T2}, Σ2(x
′) = {z/2 +

(x′,−2ϕ1(x
′))|z ∈ Σ1} ⊂ ∂T2(x

′). We claim that for |x′| < 1/2 one has Σ2(x
′) ∩ Σ1 = ∅

(that is, Σ2 is “below” Σ1). In fact, it is enough to check that

χt(s) = 2ϕ1(t) +
1

2
ϕ1(2s)− ϕ1(t + s) ≥ 0

for all t ≥ 0 and s ≥ 0. It is easily seen that the function χt(s) (t fixed) has it’s minimum
at s = t, so that it is enough to see that λ(t) = χt(t) ≥ 0, t ≥ 0. But λ(0) = 0 and
λ′(t) = 2ε1(t)− ε1(2t) ≥ 0, which ends the proof of the claim.

Let u′2 ∈ H((T2(x
′))◦) have the boundary values u′2 = 0 on Σ2(x

′) and u′2 = 1 on
∂T2(x

′) \ Σ2(x
′) (with ‖u′2‖T2(x′) ≤ 1). Since, clearly, (x′, 0) ∈ T2(x

′), by the maximum
principle for u1 and u′2 in T1 ∩ T2(x

′) we have

u1(x
′, 0) ≤ u′2(x

′, 0) = u1(0
′, 4ϕ1(|x′|))

for all x′ with |x′| ≤ 1/2.

23



Let uψ be the solution of the Dirichlet problem in RN
+ with the boundary data ψ(x′) =

u1(0, 4ϕ1(|x′|)), |x′| ≤ 1/2, ψ(x′) = 1 for |x′| ≥ 1/2. By the Poisson formula,

uψ(x′, xN) =
2

σN

∫

RN−1

xN

((y′ − x′)2 + x2
N)N/2

ψ(y′)dy′.

It is clear that uψ(x′, xN) ≥ 1/2 for |x′| ≥ 1/2. For |x′| ≤ 1/2 we have

uψ(x′, 1) ≥ 2

σN

∫ +∞

1

σN−1r
N−2dr

(r2 + 1)N/2
≥ 1

σN

∫ +∞

0

σN−1r
N−2dr

(r2 + 1)N/2
=

1

2

(one estimates the corresponding integral
∫ 1

0
changing variables t = 1/r). We then have

u(x′, xN) ≤ 2uψ(x′, xN) and so, for xN ∈ (0, 1),

u(0′, xN) ≤ 4σN−1

σN

(∫ δ

0

xNu(0′, 4ϕ1(r))r
N−2dr

(r2 + x2
N)N/2

+

∫ +∞

δ

xNrN−2dr

(r2 + x2
N)N/2

)
,

where δ ∈ (0, 1/2] will be choosen later.
Suppose that

A1 = sup
xN∈(0,1]

u1(0
′, xN)

xN

< +∞

and let t ∈ (0, 1] be such that u1(0
′, t)/t ≥ A1/2.

Then we have for A2 = 32σN−1/σN :

A1t ≤ 2u1(0
′, t) ≤ A2

(∫ δ

0

tA1ϕ1(r)r
N−2dr

(r2 + t2)N/2
+

1

4

∫ +∞

δ

trN−2dr

(r2 + t2)N/2

)
.

Therefore,

A1 ≤ A2

(
A1

∫ δ

0

ε1(r)

r
dr +

1

4δ

)
.

Take the maximal δ = δ1 ∈ (0, 1/2] such that

A2

∫ δ1

0

ε1(r)

r
dr ≤ 1/2,

and we find A1 ≤ A2/(2δ1).
To finish the proof of Theorem 4.4 we need to reduce the general situation to the

case when we know that A1 < +∞. To this end, for each fixed θ ∈ (0, 1/2) define
εθ(t) = ε1(θ)t/θ1 for t ∈ (0, θ1), εθ(t) = ε1(θ) for t ∈ [θ1, θ], and εθ(t) = ε1(t) for t ≥ θ,
where θ1 ∈ (0, θ) is chosen such that

∫ θ

0

εθ(t)dt =

∫ θ

0

ε1(t)dt,

which gives θ1 = 2
(
θ − ∫ θ

0
ε1(t)
ε1(θ)

dt
)
. Recall that ε1(kt) ≥ kε1(t) for k ∈ (0, 1].

The main reason to consider the function εθ(·) is the following. Each εθ(·) is a Dini-
type function such that ϕθ(t) =

∫ t

0
εθ(τ)dτ is equal to ϕ1(t) for t ≥ θ and ϕθ(t) ≤ ϕ1(t)

for t ∈ [0, θ]. Moreover:
∫ r

0

εθ(t)

t
dt ≤

∫ r

0

ε1(t)

t
dt, ∀r > 0.
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In fact, integration by parts gives:

∫ r

0

εθ(t)

t
dt =

∫ r

0

dϕθ(t)

t
=

ϕθ(r)

r
+

∫ r

0

ϕθ(t)

t2
dt ≤

≤ ϕ1(r)

r
+

∫ r

0

ϕ1(t)

t2
dt =

∫ r

0

ε1(t)

t
dt. (4.2)

Let Tθ, uθ, Aθ be defined for εθ(·) as T1, u1, A1 for ε1(·) in Theorem 4.4 above. We claim
that Aθ are finite for each θ ∈ (0, 1/2). In fact, given θ one can find δθ ∈ (0, 1/4) such
that B((0′,−δθ), δθ) ⊂ RN\Tθ and so the claim follows from the maximum principle (in
the domain Tθ ⊂ T1) for uθ and vθ(x) = lθ(δ

2−N
θ − |x + (0′, δθ)|2−N) with an appropriate

lθ > 0. It remains to note that uθ → u1 as θ → 0, and apply (4.2) to see that Aθ depend
only on ε1(·).
Theorem 4.5. Let D be a (L-D) domain in RN with the Dini function ε(·) and d =
diam D. Let G(x,y) be the Green function for D. Then there is A = A(N, d, ε) ∈ (0, +∞)
such that for each x and y in D one has

(1) |G(x,y)| ≤ Aρ(x)|x− y|1−N , here N ≥ 3 ;

(2) |∂G(x,y)/∂xn| ≤ A |x− y|1−N ,

(3) |∂G(x,y)/∂yn| ≤ Aρ(x)|x− y|−N ,

(4) |∂2G(x,y)/(∂xm∂yn)| ≤ A |x− y|−N

for all m and n in {1, . . . , N}.
The same estimates hold for the Green functions of (and in) bounded components of

Do. For the unbounded component D∗ of Do, the estimates (1)-(4) hold also for the Green
function G∗ of D∗ (in place of G) for all y ∈ B(0, 2d) ∩D∗ (presumably, 0 ∈ D) and all
x ∈ D∗.

Proof. We consider only the case N ≥ 3. The proof of (2)-(4) for N = 2 can be obtained
using conformal mappings [14, Theorem 3.5].

(1). Let, as before, r0 ∈ (0, 1] be the maximal number with the property ε(r0) ≤ 1/8.
Fix y ∈ D. We can suppose that x = (0′, xN) ∈ D, xN > 0, is such that ρ(x) = |x|, and
0 ∈ ∂D is the closest to x on ∂D. It is trivial that

0 ≤ −G(x,y) ≤ A2

|x− y|N−2
,

where A2 = A2(N). If ρ(x) ≥ r0 then

|G(x,y)| ≤ A2|x− y|
|x− y|N−1

≤ A2d

|x− y|N−1
≤ A3ρ(x)

|x− y|N−1
,

where A3 = A2d/r0. Also, if |x− y| ≤ 8ρ(x) then

|G(x,y)| ≤ A2|x− y|
|x− y|N−1

≤ 8A2ρ(x)

|x− y|N−1
.

It remains to consider the case {ρ(x) < r0, ρ(x) < |x−y|/8}. Put r = min{r0, |x−y|/8},
so that 0 ≤ xN = ρ(x) < r ≤ r0. Let, as before, Qr = {z ∈ RN , |z′| ≤ r, |zN | ≤ r}. We
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claim that dist(y, ∂Qr) ≥ |x−y|/2, which follows easily considering the cases r < r0 and
r = r0. Therefore,

|G(x,y)| ≤ 2NA2

|x− y|N−2
= MG, ∀x ∈ ∂(Qr ∩D).

Define ε1(t) = 4ε(rt), so that ε1(t) satisfies the conditions of Theorem 4.4, and, since
ε1(t) ≤ 4ε(t), we have ∫ t

0

ε1(τ)

τ
dτ ≤ 4

∫ t

0

ε(τ)

τ
dτ, t > 0. (4.3)

Moreover, if (as before) ϕε(t) =
∫ t

0
ε(τ)dτ , we have

ϕ1(t) = 4

∫ t

0

ε(rτ)dτ =
4

r
ϕε(rt),

so that the set T1 (see the proof of Theorem 4.4) is similar to the set

Tr = {z ∈ Qr| − 4ϕε(|z′|) ≤ zN ≤ r} ⊃ (Qr ∩D)

with coefficient 1/r. By the maximum principle (in Qr ∩D) for the functions −G(x,y)
and MGu1(x/r), using Theorem 4.4 and (4.3), we get

|G(x,y)| ≤ MGu1

(xN

r

)
≤ A4

xN

r

1

|x− y|N−2

with A4 = A4(N, ε(·)). Finally, if r = |x− y|/8, (r ≤ r0) then

G(x,y) ≤ 8A4ρ(x)

|x− y|N−1
.

If |x− y|/8 > r0 (that is, r = r0), we have

|G(x,y)| ≤ A4ρ(x)

r0|x− y|N−2
≤ A4ρ(x)d

r0|x− y|N−1
≤ Aρ(x)

|x− y|N−1

with A = A4d/r0. So, finally, A = A(N, ε, d).
(2). Let ρ(x) ≤ |x − y|. Take a ball Bx = B(x, ρ) with ρ = ρ(x)/2, and represent

G(z,y) at Bx by the Poisson integral:

G(z,y) =
1

σN

∫

∂Bx

ρ2 − |z− x|2
ρ|z− ζ|N G(ζ,y)dσζ.

After taking ∂/∂zn|z=x under the integral, it suffices to use (1) to have an appropriately
estimate of G(ζ,y) for ζ ∈ ∂Bx. If ρ(x) > |x− y|, take B = B(x, |x− y|/2) and do the
same in B using the estimate G(z,y) ≤ 2NA2|z− y|2−N , z ∈ ∂B.

Lemma 4.6. Fixed y ∈ D, one has ∂
∂yn

G(x,y) → 0 uniformly as x → ∂D.
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Proof. Fix r > 0 small enough, so that for |x− y| = r we have G(x,y) ≥ |Φ(x− y)/2| ≥
A5|x−y|2−N , A5 = A5(N). If z is a vector with |z| ¿ r, we have, by (2), for |x−y| = r:

|G(x,y + z)−G(x,y)|
|z| ≤ A|x− y|1−N ≤ A6r

−1|G(x,y)|. (4.4)

Since G(x,y) = G(x,y + z) = 0 for x ∈ ∂D, the inequality (4.4) holds for all x ∈
D\B(y, r) = Dr (notice that |G(x,y)| = −G(x,y) is harmonic in Dr). Fixing x ∈ Dr

and letting |z| → 0 we get

|∇yG(x,y)| ≤ A6r
−1|G(x,y)| ≤ A7r

−1 ρ(x)

|x− y|N−1
,

x ∈ Dr, which proves the Lemma.

Finitely, using (2) with ∂G/∂yn instead of ∂G/∂xn and applying Lemma 4.6, we obtain
(3) the same way as in the proof of (1). Also (4) follows from (3) as (2) follows from (1).

The proof of the last part of Theorem 4.5 (that concerns G∗) goes the same way as
before (whenever |x| < 4d and |y| < 2d). In case |x| ≥ 4d and |y| < 2d use maximum
principle.

Theorem 4.7. In conditions of Theorem 4.5 we have G(x,y) ∈ C1(D\{y}), y fixed.

Proof. Fix y ∈ D. By definition, G(x,y) = Φ(x − y) − vy(x), where v(x) = vy(x) ∈
H(D) ∩ C(D) and v|S = Φ(x − y)|S ∈ C2(S). We have to prove that v ∈ C1(D). By
(2) of Theorem 4.5 and the maximum principle the function |∇v| is bounded in D. It is
enough to prove that there exists a Dini-type function ε∗ (independent of x) such that
for all n and m in {1, . . . , N}

∣∣∣∣
∂2

∂xn∂xm

v(x)

∣∣∣∣ ≤
ε∗(ρ(x))

ρ(x)
, x ∈ D. (4.5)

In fact, (4.5) gives that ∇v is uniformly continuous in D and then, clearly, v ∈ C1(D).
To prove (4.5) we can assume that x = (0′, xN), xN ∈ (0, r0/2), ρ(x) = |x|, 0 ∈ S is

the closest to x on S. We use the notation from the proof of Theorem 3.1 (r0, Q0, D′,
S ′) and denote by G+(ζ,η) the Green function of RN

+ .
Let v|S = ψ|S, where ψ ∈ C2

0(RN). Take u(z) = v(z) − ψ(0) − (∇ψ(0) , z), so that
u ∈ C(D) ∩ H(D), ‖∇u‖D < +∞, u|S = ψ0, where ψ0(z) = ψ(z) − ψ(0) − (∇ψ(0) , z)
and so

|ψ0(z)| ≤ ω1(|z|)|z| (4.6)

with some Dini-type function ω1(t), independent of x. It suffices to prove (4.5) for u
in place of v. Using the Gauss-Ostrogradski (or just the second Green’s) formula (in
D′ ⊂ RN

+ ) we get

∫

∂D′

(
u(η)

∂G+(z,η)

∂no
η

− ∂u(η)

∂no
η

G+(z,η)

)
dση =

= −
∫

D′
(u(ζ)∆ζG+(z, ζ)−∆u(ζ)G+(z, ζ))dζ = −u(z),
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where no
η is the inward unit normal to ∂D′ at η.

Since ‖∇u‖D = Mu < +∞, we have for η = (η′, 4ϕε(|η′|)), |η′| < r0/3 (that is,
η ∈ S ′ ⊂ ∂D′),

|u(η)| ≤ |u(η)− u(η′, ϕ(η′))|+ |u(η′, ϕ(η′)| ≤
≤ Mu8ϕε(|η′|) + ω1(2|η′|)|η′| ≤ ω2(|η′|)|η′| , (4.7)

where ω2(·) is a Dini-type function and (η′, ϕ(η′)) ⊂ S. We can write

∂2u

∂zn∂zm

∣∣∣∣
z=x

=

∫

∂D′

[
∂u(η)

∂no
η

∂2G+(z, η)

∂zn∂zm

∣∣∣∣
z=x

− u(η)
∂2

∂zn∂zm

(∇ηG(z, η) , no
η

)∣∣∣∣
z=x

]
dση =

=

∫

∂D′
(H1(x,η)−H2(x,η))dση .

We estimate the last integral using the following elementary inequalities for the Green
function G+: ∣∣∣∣

∂2G+(z, η)

∂zn∂zm

∣∣∣∣
z=x

∣∣∣∣ ≤
AηN

|x− η|N+1
,

∣∣∣∣∣
∂3G(z, ζ)

∂xn∂xm∂ζl

∣∣∣∣
z=x,ζ=η

∣∣∣∣∣ ≤
A

|x− η|N+1
,

where A = A(N). Then
∫

S′
|H1(x,η)| dση ≤ Mu

∫ r0

0

Aε(r)r rN−2dr

(r2 + x2
N)

N+1
2

≤

≤ AMuε(xN)

∫ xN

0

rN−1 dr

xN+1
N

+ AMu

∫ r0

xN

ε(r) dr

r2
= AMu

(
ε(xN)

NxN

+
λ2(xN)

xN

)
,

where λ2(t) = t
∫ r0

t
ε(r)
r2 dr is Dini-type function by Lemma 3.11. Also, by (4.7),

∫

S′
|H2(x, η)| dση ≤

∫ r0

0

A

(r2 + x2
N)

N+1
2

ω2(r)r rN−2dr

can be estimated similarly. Finally, the analogous integrals over ∂D′\S ′ are estimated
trivially.

Theorem W2 now is also completely proved.

Theorem 4.8. In conditions of Theorem 4.5 let ψ0 ∈ C1(S) be a C1-Dini function on S,
which means that there is ψ ∈ C1

0(RN) with ψ|S = ψ0 and

|∇ψ(x)−∇ψ(y)| ≤ ω(|x− y|) , ∀x , ∀y ∈ RN , (4.8)

where function ω(·) is a Dini-type function. Let ui be the Dirichlet solution in D with the
boundary data ψ0. Then ui ∈ C1(D) and

‖ui‖1,D ≤ A

(
‖∇ψ‖∂D +

∫ r0

0

ω(r)

r
dr + ω(d)

)
. (4.9)

For instance, if ψ0 ∈ C2(S) then

‖ui‖1,D ≤ A‖ψ0‖2,S. (4.10)
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Proof. Let us first estimate ‖∇ui‖D. To this end it suffices to estimate |ui(0
′, xN) −

ui(0)|/xN , where 0 ∈ S, xN ∈ (0, r0/2) and 0 is the closest to x = (0′, xN) ∈ D on S. In
fact, if z 6= 0 is (fixed) small enough vector, then the function (ui(x + z) − ui(x))/|z| is
harmonic in D ∩ {x− z|x ∈ D}, and so attains it’s extremums when x ∈ S or x + z ∈ S.
Therefore, it is enough to take x + z = 0 ∈ S and suppose that 0 is the closest to
x = (0′, xN) on S (the last uses also the fact that ui ∈ C1(S)). Now, by Theorem 4.7,
G(x,y) ∈ C1(D\{y}), so we already have a right to use formula (3.6), which gives

ui(x)− ui(0)− (∇ψ(0),x) = −
∫

S

∂G(x,y)

∂ni
y

(ψ(y)− ψ(0)− (∇ψ(0),y)) dσy.

By (4.8) we have |ψ(y)−ψ(0)− (∇ψ(0),y)| ≤ ω(|y|)|y|, and so, by Theorem 4.5 (3),

|ui(x)− ui(0)|
xN

≤ |∇ψ(0)|+ 1

xN

∫

S

A1xNω(|y|)|y|dσy

|x− y|N ≤

≤ |∇ψ(0)|+ A2

∫ r0

0

ω(r)

r
dr + A2ω(d)

∫

S∗r0

dσy

|y|N−1
,

where S∗r0
= {y ∈ S||y| ≥ r0}.

We claim that ∫

S∗r0

dσ(y)

|y|N−1
≤ AN

d

r0

. (4.11)

To check this, consider the system of equal disjoint cubes {Kj}j∈ZN (with the side length

l = r0/
√

N) covering RN , that is

Kj = {z ∈ RN | jnl ≤ zn < (jn + 1)l , n ∈ {1, . . . , N}},
j = (j1, . . . , jN) ∈ ZN . If Kj ∩ S 3 a 6= ∅ then Kj ⊂ Qa and so σ(S ∩ Kj) ≤ σ(S ∩
Qa) ≤ ANrN−1

0 . For m = 1, 2, . . . let Nm be the number of cubes Qj that intersect
B(0, (m + 1)r0)\B(0,mr0), so that, clearly, Nm ≤ ANmN−1. Therefore,

∫

S∗r0

dσy

|y|N−1
≤

d/r0∑
m=1

ANrN−1
0 mN−1

(r0m)N−1
≤ AN

d

r0

. (4.12)

By this we proved that ‖∇ui‖D is bounded and, as soon as we prove that ui ∈ C1(D), we
also immediately obtain (4.9). To check that ui ∈ C1(D) it suffices to repeat the second
part of the proof of Theorem 4.7, where we used the property (4.6), which corresponds to
(4.8).

Finally, if ψ0 ∈ C2(S) we can find ψ ∈ C2
0(RN) with ‖ψ‖2 ≤ 2‖ψ0‖2,S = M , so that

for the corresponding ω(·) we have

ω(t) ≤ 2Mt and ω(d) ≤ 2M .

Then (4.9) gives (4.10).

Theorem 4.9. Let D be a (L-D) domain in RN with the Dini-type function ε(·) and
d = diam D. Then there is a function C(t) = C(N, d, ε(·), t) > 0 on (0, +∞)t such that
for each y ∈ D we have

−∂G(x,y)

∂ni
x

≥ C(ρ(y)), ∀x ∈ ∂D , (4.13)

where G is the Green function for D.
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Proof. Let 0 ∈ S = ∂D, {0, . . . , 0, 1} = ni
0 (for D), and r0, D′, S ′ are defined in the proof

of Theorem 3.1. Let G+ and G′ be the Green functions for RN
+ and D′ respectively. Take

y = (y′, yN) and x = (x′, xN) with 0 < xN < yN/2 < r0/4 (so that |y − x| > yN/2). By
the (second) Green formula,

G(x,y)−G+(x,y) =

∫

∂D′
G+(z,x)

∂

∂ni
z

G(z,y)dσz . (4.14)

It can be easily checked that there are A1 = A1(N) and A2 = A2(N) in (0, +∞) such
that

−G+(x,y) ≥ A1xN |x− y|1−N , (4.15)

−G+(z,x) ≤ A2xNzN |x− z|−N , ∀z ∈ RN
+ . (4.16)

Fix δ ∈ (0, r0/3] and let S ′δ = {z ∈ ∂D′| |z′| ≤ δ}, S∗δ = ∂D′\S ′δ. By (4.16) and (2) of
Theorem 4.5,

∣∣∣∣∣
∫

S′δ

G+(z,x)
∂

∂ni
z

G(z,y)dσz

∣∣∣∣∣ ≤
∫

S′δ

A2xNzN

|x− z|N
A3

|z− y|N−1
dσz ≤

≤ A4
xN

|y|N−1

∫

|z′|<δ

ϕε(|z′|)dz′
|x− z|N ≤ A5

xN

|y − x|N−1

∫ δ

0

ε(r)

r
dr . (4.17)

Also by (1) and (3) of Theorem 4.5,

∣∣∣∣∣
∫

S∗δ

G+(z,x)
∂

∂ni
z

G(z,y)dσz

∣∣∣∣∣ ≤
∫

S∗δ

AxN

|x− z|N−1

yN

|y − z|N dσz ≤

≤ A6xNyN

∫

S∗δ

dσN

|z|2N−1
≤ A7

xNyN

δN
, (4.18)

where the last inequality can be checked the same way as in (4.12):

∫

S∗δ

dσz

|z|2N−1
≤

r0/δ∑
m=1

ANδN−1mN−1

(δm)2N−1
≤ A8

δN
.

Fix (maximal) δ0 ∈ (0, r0/3] with the property (recall (4.15))

A5

∫ δ0

0

ε(r)

r
dr ≤ 1

3
A1 , (4.19)

and let y be such that
A7y

N
N

δN
0

≤ 1

3
A1 ,

that is yN < N
√

A1/3A7δ0 = δ1, and so

A7yN/δ0 ≤ 1

3
A1|y − x|N−1.
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So, finally, by (4.14)–(4.19), for yN < δ1 and all xN < yN/2 we have (using maximum
principle):

−G(x,y) ≥ −G′(x,y) ≥ A1xN

3|x− y|N−1
, (4.20)

which gives ∣∣∣∣
∂G(x,y)

∂xN

∣∣∣∣
x=0

∣∣∣∣ ≥
A1

3|y|N−1
≥ A1

3δN
1

.

Lemma 4.10. In conditions of Theorem 4.9 let a ∈ D. There is A9 = A9(N) ∈ [1, +∞)
such that for each b ∈ B(a, ρ(a)/8) one has

A−1
9 |G(z, a)| ≤ |G(z,b)| ≤ A9|G(z, a)|

for all z ∈ D with ρ(z) ≤ ρ(a)/2.

Proof. Use trivial inequality (the case N ≥ 3)

1

2
|Φ(z− a)| ≤ |G(z, a)| ≤ |Φ(z− a)|, |z− a| < ρ(a)

2
,

and maximum principle for −G(z, a) and −lG(z,b) in D\B(a, 3ρ(a)/16) with an appro-
priate l = l(N) ∈ (0, +∞).

We are ready to finish the proof of Theorem 4.9. Fix any ζ ∈ D and put ρ1(ζ) =
min{ρ(ζ) , δ1}. In our notations it suffices to prove that for all xN ∈ (0 , ρ1(ζ)/4) one has

−G((0′, xN), ζ) ≥ xNC(ρ(ζ)).

Take yN = ρ1(ζ). One can find M points {ζm}M
m=1 with ζ1 = (0′, yN) = y, ζM = ζ,

ρ(ζm) ≥ ρ1(ζ)/2, ζm+1 ∈ B(ζm, ρ(ζm)/8) and M = M(N, d, ε, ρ(ζ)). Applying Lemma
4.10 to a = ζm, b = ζm+1 (m ∈ {1, . . . , M − 1}) we can finally take (by (4.20))

C(ρ) = A−M
9 A1/3δ

N
1 ,

and (4.13) is proved.

Proof of Theorem W1. The proof of (1) for ui and uo in bounded components of D0 follows
immediately from Theorem 4.8. To prove (2) for ui we apply (3.6) to have

∂ui(x)

∂xn

= −
∫

S∗r

∂2G(x,y)

∂xn∂ni
y

ψ(y)dσy ,

where x ∈ D ∩B(a, r/2) and S∗r = {y ∈ S| |y − a| ≥ r}. By (4) of Theorem 4.5 then

|∇ui(x)| ≤ A‖ψ‖S

∫

S∗r

dσ(y)

|y − a|N ≤ A10‖ψ‖S
1

r
ln

d

r
.

The last inequality can be proved as in (4.12):

∫

S∗r

dσy

|y − a|N ≤
d/r∑

m=1

ANrN−1mN−1

(rm)N
≤ AN

r

d/r∑
m=1

1

m
.
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To finish the proof of (1) and (2) for uo in D∗ and (3) for ω in D∗, it is enough to apply
the so called Kelvin transform (see (4.21) below ; for (3), additionally, use Theorem 4.9).

We can suppose that 0 ∈ D and ρ(0) ≥ r0. The inversion x → x∗ = x/|x|2 (via the
unit sphere) maps some (L-D) domain D̃ (with the Dini-function Aε(·), A = A(N, d, ε))
onto D∗∪{∞}. If f∗ ∈ H(D∗) and f∗(∞) = 0 (for N ≥ 3, which gives f∗(x) = O(|x|2−N))
or |f∗(∞)| < +∞ (for N = 2), the Kelvin transform (via the unit sphere) of the function
f∗ is defined as

f̃(x) = |x|2−Nf∗(x/|x|2) , x ∈ D̃. (4.21)

Then f̃ ∈ H(D̃) and

∆f̃(x) = |x|−2−N [∆f∗](x/|x|2) , x ∈ D̃

(see [11, Ch.13]).
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